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Stochastic Theory of Continuous-Time
State-Space Identification

Rolf Johansson, Michel Verhaegen, and Chun Tung Chou

Abstract—This paper presents theory, algorithms, and vali- particular, as experimental data are usually provided as time
dation results for system identification of continuous-time state- series, it is relevant to provide continuous-time theory and
space models from finite input—output sequences. The algorithms algorithms that permit application to discrete-time data.

developed are methods of subspace model identification and . ) .

stochastic realization adapted to the continuous-time context. . Th!§ pgper treats the problem 9f continuous-time s_ystem
The resu|ting model can be decomposed into an input_output |dent|f|cat|0n based on dISCI‘ete—tIme data a.nd prOVIdes a
model and a stochastic innovations model. Using the Riccati framework with algorithms presented in preliminary forms in
equation, we have designed a procedure to provide a reduced-[11], [16], and [17]. The approach adopted is that of subspace-
order stochastic model that is minimal with respect to system model identification [18], [28], [30], and [31], although ele-

order as well as the number of stochastic inputs, thereby avoiding ts of fi fi dentificati imilar to th
several problems appearing in standard application of stochastic ments of continuous-ime Identimcation aré similar 10 those

realization to the model validation problem. previously presented for the prediction-error identification
[15], [14].
Index Terms—Continuous time, state-space system, system
identification. A. The Continuous-Time System Identification Problem

Consider a continuous-time time-invariant syst&m(A,
B, C, D) with the state-space equations

I. INTRODUCTION
HE LAS_T FEW years he}ve W|tn_ess_ed a strong mterest in #(t) = Az(t) + Bu(t) + v(t)
system identification using realization-based algorithms. 1)
The use of Markov parameters as suggested by Ho and y(t) = Cx(t) + Du(t) + ¢(t)

Kalman [13], Akaike [1], and Kung [20] of a system can be

effectively applied to the problem of state-space identificatiowiith input « € IR™, outputy € IR?, state vector: € IR™, and

see Verhaegest al. [30], [31], van Overschee and de Moorzero-mean disturbance stochastic processeslR”™, ¢ € IR?

[28], Juang and Pappa [19], Moonenal. [26], and Bayard acting on the state dynamics and the output, respectively.
[3], [4], [23], [24]. Suitable background for the discrete-timerhe continuous-time system identification problem is to find
theory supporting stochastic subspace model identificationgistimates of system matricgs B, C, D from finite sequences

to be found in [1], [10], and [28]. As for model structures an%k}ﬁ;o and {y:.}&_, of input-output data.

realization theory, see the important contributions in [8] and

[22]. As these subspace-mode identification algorithms dggl piscrete-Time Measurements

with the case of fitting a discrete-time model, it remains as an o ) ) ,
Assume periodic sampling to be made with perfodt a

open problem how to extend these methods for continuous- N ithfr — dth q
time systems. A great deal of modeling in natural sciences al§€ SEqUeNcé?y. i, With i = to+kh and the correspond-
discrete-time input-output dat@ys};_, and {ux};_o

technology is made by means of continuous-time models ahg

such models require suitable methods of system identificatiog™Pled from the continuous-time dynamic system of (1).
data may be assumed generated by the time-

[14]. To this end, a theoretical framework of continuous-timéltemat've!y’ ,
identification and statistical model validation is needed. [ffvariant discrete-time state-space system

Tt = Azxp + Boug + v
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Fig. 1. Autocorrelation functions (upper diagram) and autospectra (diagram below) of a continuous-time (solid line stochastieyariaitea discrete-time
(‘o’) sample sequencgwy }. The continuous-time process is bandwidth-limited to the Nyquist frequercy= =/2 rad/s of a sampling process with sampling
frequency 1 Hz. Properties of the sampled sequéngge} confirm that the sampled sequence is an uncorrelated stochastic process with a uniform autospectrum.

and e, which can be represented by the components Introduction of the complex variable transform
ty
= Aty —5) = 1
Vg, /tkl e v(s)ds, k=1,2,...,N 4) As) = : ©)
+ sT
CL = e(tk) (5)

corresponding to a stable, causal operator permits an algebraic
transformation of the model

with the covariance

T
{EIC)) -6y 2o o
AC 12 Q2 X = (I +7ADMX]+7BAU] + 7[A\V] + 720X (10)
g =rank@). (6) Y =CX + DU+ E. (11)
Consider a discrete-time time-invariant systef, (A, B,
C, D) with the state-space equations with input € IR™,  Reformulation while ignoring the initial conditions to linear

outputy, € IRP, state vectorr;, € IR", and noise sequencesgystem equations gives
v, € IR™, e, € IR? acting on the state dynamics and the
output, respectively. T4+A +B
Remark: As computation and statistical tests deal with @) =< rtraAT ><x> + <W>, z(t) = [NE] (1)
)

discrete-time data, we assume the original sampled stochast ¢ D " ¢

disturbance sequences to be uncorrelated with a uniform spec- (12)
trum up to the Nyquist frequency. The underlying continuous- _ <A)\ BA) <$> <TU> {A)\ =I+7A (13)
time stochastic processes will have an autocorrelation function ¢ D U e )’ Byx=7B

according to Fig. 1, thereby avoiding the mathematical prob-

lems associated with the stochastic processes of Browniae mapping betweefA, B) and (A,, By) being bijective.
motion. Provided that a standard positive semi-definiteness condition
of @ is fulfilled so that the Riccati equation has a solution,

] . ) . ) it is possible to replace the linear model of (13) with the
From the set of first-order linear differential equations qf,,ovations model

(1), we find the Laplace transform

sX =AX+BU+V +x29; x0=2(to) @) <£>:<A)\ BA><$>+<K)\>U]7 Ky =K. (14)
Y=CX+DU+E. (8) Yy ¢ D J\u I

C. Continuous-Time State-Space Linear System
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By recursion, it is found that and
y=Cx+ Du+w (15) I 0 0 0
= CAx[ z] + CBx[Au] + Du+ CK [Aw] + w (16) CK\ I . : :
: [y = : CKyx = 0 0 (25)
k
. . =3 .
= CAE N a] 4+ CAR B\ ] + Du CAN KN - s L0
el ; Sl CA2K, CATK, - CKx I
k
+ Z CAk—iKA[)\k—iw] + w. (17) ltis clear thatl’; of (22) represents the extended observability
J=1 matrix, as known from linear system theory and subspace

li ificati 2 1].
As to the purpose of subspace model identification, it PgOde identification [28], [30], [31]

straightforward to formulate extended linear models for the

original models and its innovations form IIl. SYSTEM IDENTIFICATION ALGORITHMS

The theory provided permits formulation of a variety of

Y=Lt +ld+IV+e (18) algorithms with the same algebraic properties as the original
y=r.x+1r.ud+I,W (19) discrete-time version though with application to continuous-
time modeling and identification. Below, we present one

with input-output and state variables realization-based algorithm (Alg. 1) and two subspace-based

A1y ALy algorithms (Algs. 2 and 3) with application to time-domain
A2y (N2 data and frequency-domain data, respectively. Theoretical jus-
Y= : , U= : . X =[Ntz (20) tification for each one of these algorithms follows separate
[)\i ] [)\iu] from the algorithms.
(t% u(t) Algorithm 1—System Realization ad modum Ho—Kalman
e _ [3], [13], [16], [19];
and stochastic processes of disturbance 1) Use least-squares identification to find a multivariable
[Xi—1y] [Xi—Le] transfer function
[)\iiQU] [)\iiQC] .
V= : , &= : G(A()) = DI*(ONL(N) = Gudk (26)
Alv] [Ale] k=0
(1) e(t) 1)
N1 whereDr (), Np(\) are polynomial matrices obtained
(A~ 2w) by means of some identification method such as linear
W = : regression with
[Atw]
w(t) £(t,0) = DL(Ny(t) — Np(Mu(t) 27)
q . . bl di G(\) = D (MNL(N) (28)
Eghasﬁor?meter matrices of state variables and input—output Di(A) = I+ DA+ -+ DyA™ (29)
o NL(A) = No+ N A+ - Ny A™ (30)
r, = C‘fh € RiP*" (22) 2) Solving for the transformed Markov parameters gives
CAg—l K
D 0 o0 Gk:Nk_ZDij—j, k=0,...,n (32)
o i=1
CA?By CA{®By -+ D i=t
and for stochastic input-output behavior 3) For suitable numberg r, s such that'+s < N, arrange
0 0 .0 0 the Markov parameters in the Hankel matrix
7C 0 0 0 Gq+1 Gq+2 Tt G(H’S
_ . . . ipXim N
r, = TC’IA,\ T.C o e R? (24) G = G(1.+2 Gq.—l—?) | G(HTSH (33)
0 O '

TCA?\_Q TCAg\_g - 7C 0 G(I+”’ Gq+7,+1 M Gq+7,+5_1
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4) Determine rank: and resultant system matrices

Gf,?s) = UxVT (singular value decomposition)

El =[Lxp Opx(r—1)p) (35)
EL =[Lnxm  Opx(s—1)m] (36)
Y, =diag{o1,09,...,0,} (37)
U,, = matrix of firstn columns ofU (38)
V., = matrix of firstn columns ofV/ (39)
A, =2 VUGV, e Y2 A= E(An — 1)

" o
B,=x*VTE, B= %Bn (41)
C,=E'U,s? C=c, (42)
D,=G,, D=D, (43)

which yields thenth-order state-space realization
i(t) = Ax(t) + Bu(t)

A . (44)
y(t) = Cxz(t) + Du(t).

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 1, JANUARY 1999

An algorithmic modification to accommodate frequency-

(34)domain data can be made by replacing Step 1 of Algorithm

2 by the following.

1') Arrange data matriceg/y, Yy using the filtered
fequency-domain data

(D = MU ()omiy s VYT = Y ()i - -

(54)
evaluated for
2
Wr = kﬁﬁws (55)
and arrange a matrix equation of frequency-sampled
data as
[Ai—ly]l [Ai—ly]Q [Ai—ly]N
[AiiQY]l [Ai72y]2 [AiiQY]N
Iv=| ! 5
[AY],  [AY] [AY]x
Yy Ys Yn
e RP*N (56)

Algorithm 2—Subspace Model Identification (MOESP) [30],

[31]:

1) Arrange data matriced, Yy by using the following
notation for sampled filtered data:

Wauli = Wul(ty), [Nyl = Vyl(te), etc.  (45)
where
Nyl [Vl Nyl
N2y NPyl N 2yln
Yy = : : : € RPN
RYIN [Ayl2 yln
1 Y2 YN
(46)
and a similar construction fdd .
2) Make a QR-factorization such that
Un Ry 0 Q1
= . 47
<yN> <R.21 RQQ) <Q2) “7)

3) Make a SVD of the matrixRy, € IR"P*? approximating
the column space af ,,

S, 0 .
v )W ).

4) Determine estimated, C of system matricest, C from

Roz = (U Us )( (48)

equations
UH = rows 1 through(i — 1)p of U, (49)
U = rows p + 1 throughip of U, (50)
. 1.
UDA,=UP, A= ~(Ax-1) (51)
¢ = rows 1 throughyp of U,,. (52)
5) Determine estimat&, D of system matrice®, D from
relationship
0, =T+ Ry R (53)

with similar construction foifx;, and proceed as from
Step 2 of Algorithm 2.
Algorithm 3 (Subspace Correlation Methodftlong  with
the data matriceg/y, Yy of Algorithm 2, introduce the
correlation variable

[)\j_lu]l [)\j_lu]g [)\j_lu]]\r
[)\j_QU,]l [)\j_QU/]Q [)\j_QU,]N
Zv=n| 5 :
Pade Dl Doy
U1 U UN
€ RN (57)

for j > m + p + n chosen sufficiently large. Proceed as from
Step 2 of Algorithm 2 with application of QR factorization

to the [ |atriX

Z/[NZ]\T ( + )><

T € IR, mTp) Jnl.
<yNZN

Theoretical Remarks on the Algorithm#n this section, we
provide some theoretical justification for the algorithms sug-
gested:

Algorithm 1—Continuous-Time State-Space Realization:
After operator reformulation and a least-squares transfer
function estimate, the algorithm follows the Ho-Kalman
algorithm step by step.

1) The first step aims toward system identification. The
(high-order) least-squares identification serves to find a
nonminimal input—output model with good prediction-
error accuracy as the first priority.

2) Step 2 serves to provide transformed Markov parameter
where the

(58)

Gy =CAY By, k>1. (59)

The recursion to obtai{G} may be replaced by a
linear equation.
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3) Organization of the Markov parameter in the Hankdy definition, the discrete-time Fourier transform is formulated
matrices G\% of block row dimensionr and block as the linear transformation

column dimensiors, respectively, permits YE y¥
Y2T ?JQT
Gl = 0,44 -C, (60) 2l = \
where YAT yf
C 1 ciwo h . ciwo (N—-1)h
CA 1 eiwlh . eiwl(]\f—l)h
0.=| V|, co=(By ANBx - ATB)). T=1. . : . (65)
CA.”*l 1 gwn—th ., gen—1(N=1)h
A

(61) For the standard FFT set of frequency poinis = k -
2n/Nh), k=0,1,2,...,N — 1, we have7*7T = N - Iy
so thatYy, Uy, ... of Algorithm 2 and its frequency-domain
version only differ by a right invertible facta¥ © as found

Thus, for Ay € IR™™", the rank ofO,, A% and(,
cannot exceed», which justifies the determination of

model order from a rank test df:,(,?s). from
4) The last algorithmic step involves a singular value AIY], e [ATY ]y
decomposition that accomplishes the factorization into A2Y], - [A2Y ]y

the extended observability matrix and extended control-
lability matrix, which permits rank evaluation cﬁ,(ffs) : :
and, hence, estimation of system order From the [AY]y o [AY]N

full-rank matrix factorst,,, %,,, V;,, estimates ofA,, Y, T YJ\"

B, C, and D are found. The final transformation to Nl e NN

parameter matrices in thedomain provides the state- 2 X7 P P X 7] P

space realization. = : : 7T, (66)
Algorithm 2—Continuous-Time Subspace Model Identifica- M o Dwlv

tion: This algorithm is similar to the MOESP algorithm of

discrete-time subspace model identification. The riaht factor? ™ d  affect the ob bility sub
1) The arrangement of input—output data matriggs Ly © nght facto 0es NOL anect e ouservabllity suvspace,

v& ich is always extracted from a left matrix factor and is the
of sampled data serves to express data the form of (1 : . . . . .
<o that guantity of primary interest in subspace model identification.

Algorithm 3—Subspace Correlation Metho@he subspace
Yy = D&y + DUy + Ty Wi (62) correlation method is similar to Algorithm 2 but differs in the
linear dependences
where Wy is the disturbance sample matrix (not avail-
able to measurement), and YnZy =Tody 2y +Tulln 2y +F“’WNZ§
InZE e RP™. (67)

yl P y]\r

— ([\i—1 i—1 i—1.].,

Ay = (el el W) (83) The left matrix factor extracted in estimation of observability
2) The QR-factorization serves to retrieve the matrix progubspace is not affected by the right multiplication 5§ .

uct I, X, which is found as the column space Bf, However, the algorithm output is not identical to that of

in the case of disturbance-free data. Algorithm 2 due to the change of relative magnitude of the
3) The singular value factorization of the matf%. serves disturbance term as a result of the right multiplication. Another

to find the left factor/,, of rank n corresponding td’,  property is the reduction of the matrix column dimension of

(up to a similarity transformation). The rank conditiorthe data matrix applied QR-factorization.

is evaluated by means of the nonzero singular values ofWhen input and disturbance are uncorrelated, this algo-

DI rithm serves to reduce disturbance-related bias in parameter
4) As the estimatd’, = U, contains products of th€- estimates. Statistical properties are analyzed in greater detail

matrix and powers ofi,, it is straightforward to find an below.

estimate ofC' from the p first rows. Next, an estimate Example: The algorithms were applied t&v = 1000
A is found. Subsequent transformation df, to the Samples of input-output data generated by simulation of the
s-domain is required. linear system
5) Given A, C, then B, D can be found to fit the in- 0 0 1000 10.0
put—output relationship provided Hy,. dzx _ 0 —0.10 —100.0 |z@®) + | 0 |u()
Algorithm 2 and its frequency-domain modification are dt ~1.00 1.00 0 0
very closely related as their data matrices with different (68)
interpretation obey the relationship 10 0
v =(g 0 )et+u (69)
Yy =T, v+, Un +T, ,Wn. (64)
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Fig. 2. Input-output data (upper two graphs) and filter data used for identification with sampling perod).01, filter order: = 5, and operator
time constantr = 0.05.

with input of variances? = 1 and a zero-mean stochastiaspect of statistical model validation is evaluation of the
disturbancev of varianceo?; see input—output data (Fig. 2).mismatch between input—output properties of a model and
A third-order model was identified with very good accuracgata. Statistical hypothesis tests applied to the autocorrelation
for purely deterministic datér? = 0) and with good accuracy of residuals as well as cross correlation between residuals
for 02 = 0.01; see transfer-function properties (Fig. 3) andnd input are instrumental in such model validation, partially
prediction performance (Fig. 4). The influence of the choiceslying on the algorithmic property @fx that

of algorithmic parameters (number of block rowsor r

and operator time constant) on relative prediction error YUz = (T.&N + Tuldy + T Wh U

(||E||?/||y(|:|12> alg_d pgrfilrrgetgdr ertr_;)_r ats measured b)(; gaz rtne:)rlc = T, XU + T Wty (70)

are found in Fig. 5. The identification was considered to be

failing for a relative prediction error norm of value larger than EAVNUNT = Dol XNUy T + TuEWilly}  (72)
one. Fig. 5 has been drawn accordingly without representin% N ] . o
relative error larger than one, thus showing the effectiv¥nerenty = 0 by construction, i.e., by the projection
range of the choice of andi. This figure also serves to property of the QR-factorization of .(A_f?), whereas statistical
illustrate sensitivity to stochastic disturbance and sensitivigfoPerties ofS{_WNL{,ﬂ are more difficult to evaluate also

to the choice of the free algorithm parameters (operator tirHé‘der assumptions of uncorrelated_ disturbances a_md control
constant- and number of block rowsor ). The level surfaces INPUtS. In the case of uncorrelated disturbance and input, mul-
indicate that- may be chosen in a suitable range over, perhaégllcaUO_n of the right factorZ?; before t.he QR—factonzatlon_
two orders of magnitude for Algs. 2 and 3 and one order 8} Algorithm 3 serves to reduce the disturbance-related bias
magnitude for Alg. 1; see Fig. 5, which includes contours & parameter estimates as

level surfaces, the central part corresponding to 1% error with

1
degradation for inappropriate values ofand . (INZR)(UNZR) T = (TN Zh + Tl 24
o N . N
Anothgr apphgatlon of the realization alggrlthm (Alg. 1) . —i—l“wWNZﬁ)(UNZﬁ)
to experimental impulse-response data obtained as ultrasonic - L
echo data for object identification detection in robotic envi- = Fa;(XNZN) (UNZN)
ronments has proved successful; see [16]. 4T, (WN Zf) (UN Z}G)L
T Tyl _ > 2T T\-L
[ll. STATISTICAL MODEL VALIDATION 8{(yNZN) (UNZN) }_ FmS{( NZN)(UNZN) }J_
T T
Statistical model validation accompanies parameter estima- W€ {(WNZN) (UNZN) }

tion to provide confidence in a model obtained. An important (72)
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Fig. 3. Transfer function (solid) and estimate (dashed) using a third-order model with sampling jpetio@.01, filter order: = 5, and operator time
constantr = 0.05 for N = 1000 samples of data witw2 = 0.01.
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Fig. 4. Output data (solid) and estimate (dashed) using Alg. 2 and a third-order model with samplinghperiod1, filter order: = 5, and operator time
constantr = 0.05 for N = 1000 samples of data witlw? = 0.01.
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Fig. 5. Relative prediction error norrffe||2/||y||2 and parameter error norm as measured versus choices of the number of block columns block and
operator time constant for Algorithm 1 (left), Algorithm 2 (middle), and Algorithm 3 (right). Level surfaces (diagram below) and magnitude ot (upp
diagram) using a third-order model with sampling period= 0.01 for N = 1000 samples of data witkw? = 0.01 illustrate algorithm robustness

and degradation properties for inappropriateand :.

By the correlation properties of input and disturbance, the Model Misfit Evaluation: Identification according to Algo-
last term tends to be small similar to the spectrum analysithms 1-3 gives the model

and the instrumental-variable method of identification. . . .

Consistency properties of this algorithm will be analyzed <§> = <A?‘ BR‘) <§7> #(t) =@, (73)
in detail in future work. Y ¢ D Jj\u)’
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A reconstructiont of the stater for some matrixk” such where the full-rank matriceg, 6 arise from the factorization
that A — KC is stable, i.e.Re A < 0, can be done as

T
. R PO . 3 3 n
©\ _ (A-KC B-KD\(#\_ (K (74) Qz(é)(é) , PeR™E seRY (86)
)= e, D u 0 /)%
and where (85) represents factorization of the covariance

matrix of the variables

Model-error dynamics of =z — & ande =y — 4
#\ (A-KC B-KD\(#
e) C D 0
N A-KC B-KD\(%
C D %

-k 75
* 0o I e’ (75) Then, use of the full-rank matrices ¢ of (85) suggests that
%1}(/3 stochastic state-space model be provided as

0 Ip Wi

] stoett—nere e

The stochastic realization problem can be approached
Kalman filter theory and covariance-matrix factorization Tr+1 = Axr + By, + Swy,

(“spgctral f:?\ctorizgtioni’) [2], '[6], and provided thgt a yr = Oz + Duy, + 6wy, (89)
continuous-time Riccati equation can be solved to find an o q
optimal K, we find that the model mismatch can be expressed %k = ¢ ¥k = C1x + Diug +wr, 2z, wi € R
by either of the spectral factors

e(s) = C(sI — A)7IV(s) + E(s) (76) sts— I
e(s) = (C(sI — AT K + D)W (s) = H(s)W(s) (77) o
An innovations-like model pseudoinverse is provided as

with a matrixé™ chosen as the pseudo-inversesaind with

¢, =68 C, D, =6D. (90)

where e(s), V(s), E(s), and W(s) are the Laplace trans-

forms of the residuals, disturbance, and innovations processeFkH} |:Az - 36tC B, — [36TD} [u} n [/3 } st
= Yk

respectively. The discrete-time counterpart is x sto §TD I,

e(s) = C(zI — A.)™ 'V (2) + E(z) (78) (91)
e(z) = (Ol — A) ' K. + D)W (2) = H(z)W(2). (79) whereA., B. are discrete-time versions of and B, respec-
To solve for identification residuals, it is suitable to use tHaVely: and with 8% for rank-deficient covariance matrices

up,

transfer operator inverses (@ replacing theK_ of the standard Kalr_n:_;m fil_ter. Th_en,
the output {¢;} reproduces the rank-deficient innovations
H™ Y (s)=-O(sI = (A- KC)) 'K +1 (80) sequence.
=—C(I — (Ax —KXC)N) "KM+ 1 (81)
H 'Y 2)=-CI—(A, - K.O)'K.+1. (82 IV. DISCUSSION

For nominal system parameter matricdsB, C, D and a This paper ha§ treated the _problem of continuous-time
solution K andv = Ke = Kw from the Riccati equation of SYStem identification based on discrete-time data and provides
the Kalman filter, we would have a framework with algorithms presented in preliminary forms

. , in [11] and [16], thereby extending subspace model identi-
<x> - <A_ KC B - KD) <x> + <0)w (83) fication to continuous-time models. We have provided both

€ -C -D 0 I subspace-based algorithms and realization-based algorithms
so that the outpu¢ reproducew of 3, except for a transient With application both in the time domain and in the frequency
arising from the initial condition ofi(t,). However, as no domain. To our knowledge, the time-domain algorithms are
covariance data ar priori known and as the system identifi-the first algorithms of its kind whereas frequency-domain
cation including its validation procedure is assumed to utiliZgorithms have previously been presented [23], [25]. Several
discrete-time data, it is generally necessary to resort to #§§U€S remain open issues, and we cannot claim to have any
residual realization algorithm complete treatment. The accuracy of estimates, effects of sto-

) . A A . ) chastic disturbance, performance comparison and robustness
<$k+1> — <AZ - K.C B _AKZD> <$k) + <KZ >y of algorithms, i.e., algorithmic effects and behavior when data

Ek ¢ D Uk I cannot be generated by a model in the model class, need
(84) further attention; see [28] for discussion on these issues for

the discrete-time case.
A relevant question is, of course, how general is the chaice
I, K.\(S 0 I, K. r (A, B\(S O and if it can, for instance, be replaced by some other bijective
<0 Ip><0 R)(O I,,) _<C 6)(0 Iq> mapping

T
X<Az /3) (85) N:bs—ka’ beR, acRY, sz? (92)
—p

Reformulation of the Riccati equation (see [9]) is

c 6 s+a
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WX\ _ ((al+ 4 Hal +Ab) (al +A) B0 —~(al+ 4B\ [
<Y> < c D 0 ) wU

with the Laplace-transformed linear model

(¥)=( 2)@)

(93)

the

as realization-based algorithms with application both to time
domain and to frequency-domain data. Thus, the algorithms
and the theory presented here provide extensions both of

continuous-time identification and of subspace model

and by the operator transformation shown at the top of thdentification.
page. Obviously, such an operator transformation entails aA favorable property is the following. Whereas the model

nonlinear parameter transformation with an inverse

A=a(Ay—bD)~HI - A)) (94)

obtained is a continuous-time model, statistical tests can
proceed in a manner that is standard for discrete-time models
[14]. Conversely, as validation data are generally available

which, of course, may be error prone or otherwise sensiti@é discrete-time data, it is desirable to provide means for
due to singularities or poor numerical properties of the matri@lidation of continuous-time models to available data.

inverse. By comparison, a model transformation ushis
linear, simple, and does not exhibit such parameter-matrix sin-
gularities: a circumstance that motivates the attention given the
favorable properties of this transformation. Actually, further 1]
studies to cover other linear fractional transformations are i|[1
progress [11], including advice on the choice of the additional?]
parameters involved.

We have considered the problem of finding appropriatgs)
stochastic realization to accompany estimated input—output
models in the case of multi-input multioutput subspace modefh]
identification. The case considered includes the problem of
rank-deficient residual covariance matrices: a case that is ep-
countered in applications with mixed stochastic-deterministif
input—output properties as well as for cases where outputs are
linearly dependent [28]. The inverse of output covariance mal%!
trix is generally needed both for formulation of an innovations
model and for a Kalman filter [18], [27], [29]. Our approach [7]
has been the formulation of an innovations model for the
rank-deficient model output that generalizes previously useg)
methods of stochastic realization [5], [7], [21], [22].

The modified pseudoinverse of (91) provides the mean§!
to evaluate a residual sequence from the mismatch between
an identified continuous-time model and discrete-time dak¥!
in such a way that standard statistical validation test can pg,
applied [14]. Such statistical tests include the following:

* autocorrelation test of residual sequereg};
* cross correlation test of inpyts; } and residual sequence
{Ek}; [12]
« test of normal distribution (zero crossings, distribution,
skewness, kurtosis, etc.).
[13]

V. CONCLUSION

. . . [14
This paper has treated the problem of contlnuous—urrge]

system identification based on discrete-time data and providés
a framework with algorithms presented in preliminary formﬁe
in [11] and [16]. The methodology involves a continuous-
time operator translation [14], [15], permitting an algebrai

i L 17]
reformulation and the use of subspace and realization algo-
rithms. We have provided subspace-based algorithms as well
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