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Stochastic Theory of Continuous-Time
State-Space Identification

Rolf Johansson, Michel Verhaegen, and Chun Tung Chou

Abstract—This paper presents theory, algorithms, and vali-
dation results for system identification of continuous-time state-
space models from finite input–output sequences. The algorithms
developed are methods of subspace model identification and
stochastic realization adapted to the continuous-time context.
The resulting model can be decomposed into an input–output
model and a stochastic innovations model. Using the Riccati
equation, we have designed a procedure to provide a reduced-
order stochastic model that is minimal with respect to system
order as well as the number of stochastic inputs, thereby avoiding
several problems appearing in standard application of stochastic
realization to the model validation problem.

Index Terms—Continuous time, state-space system, system
identification.

I. INTRODUCTION

T HE LAST FEW years have witnessed a strong interest in
system identification using realization-based algorithms.

The use of Markov parameters as suggested by Ho and
Kalman [13], Akaike [1], and Kung [20] of a system can be
effectively applied to the problem of state-space identification;
see Verhaegenet al. [30], [31], van Overschee and de Moor
[28], Juang and Pappa [19], Moonenet al. [26], and Bayard
[3], [4], [23], [24]. Suitable background for the discrete-time
theory supporting stochastic subspace model identification is
to be found in [1], [10], and [28]. As for model structures and
realization theory, see the important contributions in [8] and
[22]. As these subspace-mode identification algorithms deal
with the case of fitting a discrete-time model, it remains as an
open problem how to extend these methods for continuous-
time systems. A great deal of modeling in natural sciences and
technology is made by means of continuous-time models and
such models require suitable methods of system identification
[14]. To this end, a theoretical framework of continuous-time
identification and statistical model validation is needed. In
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particular, as experimental data are usually provided as time
series, it is relevant to provide continuous-time theory and
algorithms that permit application to discrete-time data.

This paper treats the problem of continuous-time system
identification based on discrete-time data and provides a
framework with algorithms presented in preliminary forms in
[11], [16], and [17]. The approach adopted is that of subspace-
model identification [18], [28], [30], and [31], although ele-
ments of continuous-time identification are similar to those
previously presented for the prediction-error identification
[15], [14].

A. The Continuous-Time System Identification Problem

Consider a continuous-time time-invariant system
with the state-space equations

(1)

with input , output , state vector , and
zero-mean disturbance stochastic processes
acting on the state dynamics and the output, respectively.
The continuous-time system identification problem is to find
estimates of system matrices from finite sequences

and of input-output data.

B. Discrete-Time Measurements

Assume periodic sampling to be made with periodat a
time sequence , with and the correspond-
ing discrete-time input-output data and
sampled from the continuous-time dynamic system of (1).
Alternatively, data may be assumed generated by the time-
invariant discrete-time state-space system

(2)

(3)

with equivalent input–output behavior to that of (1) at the
sampling-time sequence. The underlying discretized state
sequence and discrete-time stochastic processes

correspond to disturbance processes

1053–587X/99$10.00 1999 IEEE
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Fig. 1. Autocorrelation functions (upper diagram) and autospectra (diagram below) of a continuous-time (solid line stochastic variablew(t) and a discrete-time
(‘o’) sample sequencefwkg. The continuous-time process is bandwidth-limited to the Nyquist frequency!N = �=2 rad/s of a sampling process with sampling
frequency 1 Hz. Properties of the sampled sequencefwkg confirm that the sampled sequence is an uncorrelated stochastic process with a uniform autospectrum.

and , which can be represented by the components

(4)

(5)

with the covariance

rank (6)

Consider a discrete-time time-invariant system
with the state-space equations with input ,

output , state vector , and noise sequences
acting on the state dynamics and the

output, respectively.
Remark: As computation and statistical tests deal with

discrete-time data, we assume the original sampled stochastic
disturbance sequences to be uncorrelated with a uniform spec-
trum up to the Nyquist frequency. The underlying continuous-
time stochastic processes will have an autocorrelation function
according to Fig. 1, thereby avoiding the mathematical prob-
lems associated with the stochastic processes of Brownian
motion.

C. Continuous-Time State-Space Linear System

From the set of first-order linear differential equations of
(1), we find the Laplace transform

(7)

(8)

Introduction of the complex variable transform

(9)

corresponding to a stable, causal operator permits an algebraic
transformation of the model

(10)

(11)

Reformulation while ignoring the initial conditions to linear
system equations gives

(12)

(13)

the mapping between and being bijective.
Provided that a standard positive semi-definiteness condition
of is fulfilled so that the Riccati equation has a solution,
it is possible to replace the linear model of (13) with the
innovations model

(14)
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By recursion, it is found that

(15)

(16)
...

(17)

As to the purpose of subspace model identification, it is
straightforward to formulate extended linear models for the
original models and its innovations form

(18)

(19)

with input–output and state variables

...
... (20)

and stochastic processes of disturbance

...
...

...

(21)

and parameter matrices of state variables and input–output
behavior

...
(22)

...
...

...
...

. . .
(23)

and for stochastic input–output behavior

...
...

...
...

...
. . .

(24)

and

...
...

...
...

.. .
...

.. .

(25)

It is clear that of (22) represents the extended observability
matrix, as known from linear system theory and subspace
model identification [28], [30], [31].

II. SYSTEM IDENTIFICATION ALGORITHMS

The theory provided permits formulation of a variety of
algorithms with the same algebraic properties as the original
discrete-time version though with application to continuous-
time modeling and identification. Below, we present one
realization-based algorithm (Alg. 1) and two subspace-based
algorithms (Algs. 2 and 3) with application to time-domain
data and frequency-domain data, respectively. Theoretical jus-
tification for each one of these algorithms follows separate
from the algorithms.

Algorithm 1—System Realization ad modum Ho–Kalman
[3], [13], [16], [19]:

1) Use least-squares identification to find a multivariable
transfer function

(26)

where are polynomial matrices obtained
by means of some identification method such as linear
regression with

(27)

(28)

(29)

(30)

2) Solving for the transformed Markov parameters gives

(31)

(32)

3) For suitable numbers such that , arrange
the Markov parameters in the Hankel matrix

...
...

.. .
...

(33)
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4) Determine rank and resultant system matrices

(singular value decomposition) (34)

(35)

(36)

(37)

matrix of first columns of (38)

matrix of first columns of (39)

(40)

(41)

(42)

(43)

which yields the th-order state-space realization

(44)

Algorithm 2—Subspace Model Identification (MOESP) [30],
[31]:

1) Arrange data matrices by using the following
notation for sampled filtered data:

etc. (45)

where

...
...

...

(46)

and a similar construction for .
2) Make a QR-factorization such that

(47)

3) Make a SVD of the matrix approximating
the column space of

(48)

4) Determine estimates of system matrices from
equations

rows through of (49)

rows through of (50)

(51)

rows through of (52)

5) Determine estimate of system matrices from
relationship

(53)

An algorithmic modification to accommodate frequency-
domain data can be made by replacing Step 1 of Algorithm
2 by the following.

1 ) Arrange data matrices using the filtered
fequency-domain data

(54)

evaluated for

(55)

and arrange a matrix equation of frequency-sampled
data as

...
...

...

(56)

with similar construction for , and proceed as from
Step 2 of Algorithm 2.

Algorithm 3 (Subspace Correlation Method):Along with
the data matrices of Algorithm 2, introduce the
correlation variable

...
...

...

(57)

for chosen sufficiently large. Proceed as from
Step 2 of Algorithm 2 with application of QR factorization
to the matrix

(58)

Theoretical Remarks on the Algorithms:In this section, we
provide some theoretical justification for the algorithms sug-
gested:

Algorithm 1—Continuous-Time State-Space Realization:
After operator reformulation and a least-squares transfer
function estimate, the algorithm follows the Ho–Kalman
algorithm step by step.

1) The first step aims toward system identification. The
(high-order) least-squares identification serves to find a
nonminimal input–output model with good prediction-
error accuracy as the first priority.

2) Step 2 serves to provide transformed Markov parameter
where the

(59)

The recursion to obtain may be replaced by a
linear equation.
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3) Organization of the Markov parameter in the Hankel
matrices of block row dimension and block
column dimension , respectively, permits

(60)

where

...

(61)

Thus, for , the rank of and
cannot exceed , which justifies the determination of
model order from a rank test of .

4) The last algorithmic step involves a singular value
decomposition that accomplishes the factorization into
the extended observability matrix and extended control-
lability matrix, which permits rank evaluation of
and, hence, estimation of system order. From the
full-rank matrix factors estimates of

and are found. The final transformation to
parameter matrices in the-domain provides the state-
space realization.

Algorithm 2—Continuous-Time Subspace Model Identifica-
tion: This algorithm is similar to the MOESP algorithm of
discrete-time subspace model identification.

1) The arrangement of input–output data matrices
of sampled data serves to express data the form of (19)
so that

(62)

where is the disturbance sample matrix (not avail-
able to measurement), and

(63)

2) The QR-factorization serves to retrieve the matrix prod-
uct , which is found as the column space of
in the case of disturbance-free data.

3) The singular value factorization of the matrix serves
to find the left factor of rank corresponding to
(up to a similarity transformation). The rank condition
is evaluated by means of the nonzero singular values of

.
4) As the estimate contains products of the -

matrix and powers of , it is straightforward to find an
estimate of from the first rows. Next, an estimate

is found. Subsequent transformation of to the
-domain is required.

5) Given , then can be found to fit the in-
put–output relationship provided by .

Algorithm 2 and its frequency-domain modification are
very closely related as their data matrices with different
interpretation obey the relationship

(64)

By definition, the discrete-time Fourier transform is formulated
as the linear transformation

...
...

...
...

...
(65)

For the standard FFT set of frequency points
, we have

so that of Algorithm 2 and its frequency-domain
version only differ by a right invertible factor as found
from

...
...

...
... (66)

The right factor does not affect the observability subspace,
which is always extracted from a left matrix factor and is the
quantity of primary interest in subspace model identification.

Algorithm 3—Subspace Correlation Method:The subspace
correlation method is similar to Algorithm 2 but differs in the
linear dependences

(67)

The left matrix factor extracted in estimation of observability
subspace is not affected by the right multiplication of .
However, the algorithm output is not identical to that of
Algorithm 2 due to the change of relative magnitude of the
disturbance term as a result of the right multiplication. Another
property is the reduction of the matrix column dimension of
the data matrix applied QR-factorization.

When input and disturbance are uncorrelated, this algo-
rithm serves to reduce disturbance-related bias in parameter
estimates. Statistical properties are analyzed in greater detail
below.

Example: The algorithms were applied to
samples of input–output data generated by simulation of the
linear system

(68)

(69)



46 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 1, JANUARY 1999

Fig. 2. Input–output data (upper two graphs) and filter data used for identification with sampling periodh = 0:01, filter order i = 5, and operator
time constant� = 0:05.

with input of variance and a zero-mean stochastic
disturbance of variance ; see input–output data (Fig. 2).
A third-order model was identified with very good accuracy
for purely deterministic data and with good accuracy
for ; see transfer-function properties (Fig. 3) and
prediction performance (Fig. 4). The influence of the choices
of algorithmic parameters (number of block rowsor
and operator time constant) on relative prediction error

and parameter error as measured by gap metric
are found in Fig. 5. The identification was considered to be
failing for a relative prediction error norm of value larger than
one. Fig. 5 has been drawn accordingly without representing
relative error larger than one, thus showing the effective
range of the choice of and . This figure also serves to
illustrate sensitivity to stochastic disturbance and sensitivity
to the choice of the free algorithm parameters (operator time
constant and number of block rowsor ). The level surfaces
indicate that may be chosen in a suitable range over, perhaps,
two orders of magnitude for Algs. 2 and 3 and one order of
magnitude for Alg. 1; see Fig. 5, which includes contours of
level surfaces, the central part corresponding to 1% error with
degradation for inappropriate values ofand .

Another application of the realization algorithm (Alg. 1)
to experimental impulse-response data obtained as ultrasonic
echo data for object identification detection in robotic envi-
ronments has proved successful; see [16].

III. STATISTICAL MODEL VALIDATION

Statistical model validation accompanies parameter estima-
tion to provide confidence in a model obtained. An important

aspect of statistical model validation is evaluation of the
mismatch between input–output properties of a model and
data. Statistical hypothesis tests applied to the autocorrelation
of residuals as well as cross correlation between residuals
and input are instrumental in such model validation, partially
relying on the algorithmic property of that

(70)

(71)

where by construction, i.e., by the projection
property of the QR-factorization of (47), whereas statistical
properties of are more difficult to evaluate also
under assumptions of uncorrelated disturbances and control
inputs. In the case of uncorrelated disturbance and input, mul-
tiplication of the right factor before the QR-factorization
in Algorithm 3 serves to reduce the disturbance-related bias
of parameter estimates as

(72)
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Fig. 3. Transfer function (solid) and estimate (dashed) using a third-order model with sampling periodh = 0:01, filter order i = 5, and operator time
constant� = 0:05 for N = 1000 samples of data with�2

v
= 0:01.

Fig. 4. Output data (solid) and estimate (dashed) using Alg. 2 and a third-order model with sampling periodh = 0:01, filter orderi = 5, and operator time
constant� = 0:05 for N = 1000 samples of data with�2

v
= 0:01.
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Fig. 5. Relative prediction error normk"k2=kyk2 and parameter error norm as measured versus choices of the number of block columns block and
operator time constant for Algorithm 1 (left), Algorithm 2 (middle), and Algorithm 3 (right). Level surfaces (diagram below) and magnitude plot (upper
diagram) using a third-order model with sampling periodh = 0:01 for N = 1000 samples of data with�2

v
= 0:01 illustrate algorithm robustness

and degradation properties for inappropriate� and i.

By the correlation properties of input and disturbance, the
last term tends to be small similar to the spectrum analysis
and the instrumental-variable method of identification.
Consistency properties of this algorithm will be analyzed
in detail in future work.

Model Misfit Evaluation: Identification according to Algo-
rithms 1–3 gives the model

(73)
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A reconstruction of the state for some matrix such
that is stable, i.e., , can be done as

(74)

Model-error dynamics of and

(75)

The stochastic realization problem can be approached by
Kalman filter theory and covariance-matrix factorization
(“spectral factorization”) [2], [6], and provided that a
continuous-time Riccati equation can be solved to find an
optimal , we find that the model mismatch can be expressed
by either of the spectral factors

(76)

(77)

where and are the Laplace trans-
forms of the residuals, disturbance, and innovations processes,
respectively. The discrete-time counterpart is

(78)

(79)

To solve for identification residuals, it is suitable to use the
transfer operator inverses

(80)

(81)

(82)

For nominal system parameter matrices and a
solution and from the Riccati equation of
the Kalman filter, we would have

(83)

so that the output reproduce of , except for a transient
arising from the initial condition of . However, as no
covariance data area priori known and as the system identifi-
cation including its validation procedure is assumed to utilize
discrete-time data, it is generally necessary to resort to the
residual realization algorithm

(84)

Reformulation of the Riccati equation (see [9]) is

(85)

where the full-rank matrices arise from the factorization

(86)

and where (85) represents factorization of the covariance
matrix of the variables

(87)

(88)

Then, use of the full-rank matrices of (85) suggests that
the stochastic state-space model be provided as

(89)

with a matrix chosen as the pseudo-inverse ofand with

(90)

An innovations-like model pseudoinverse is provided as

(91)

where are discrete-time versions of and , respec-
tively, and with for rank-deficient covariance matrices

replacing the of the standard Kalman filter. Then,
the output reproduces the rank-deficient innovations
sequence.

IV. DISCUSSION

This paper has treated the problem of continuous-time
system identification based on discrete-time data and provides
a framework with algorithms presented in preliminary forms
in [11] and [16], thereby extending subspace model identi-
fication to continuous-time models. We have provided both
subspace-based algorithms and realization-based algorithms
with application both in the time domain and in the frequency
domain. To our knowledge, the time-domain algorithms are
the first algorithms of its kind whereas frequency-domain
algorithms have previously been presented [23], [25]. Several
issues remain open issues, and we cannot claim to have any
complete treatment. The accuracy of estimates, effects of sto-
chastic disturbance, performance comparison and robustness
of algorithms, i.e., algorithmic effects and behavior when data
cannot be generated by a model in the model class, need
further attention; see [28] for discussion on these issues for
the discrete-time case.

A relevant question is, of course, how general is the choice
and if it can, for instance, be replaced by some other bijective
mapping

(92)
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with the Laplace-transformed linear model

(93)

and by the operator transformation shown at the top of the
page. Obviously, such an operator transformation entails a
nonlinear parameter transformation with an inverse

(94)

which, of course, may be error prone or otherwise sensitive
due to singularities or poor numerical properties of the matrix
inverse. By comparison, a model transformation usingis
linear, simple, and does not exhibit such parameter-matrix sin-
gularities: a circumstance that motivates the attention given the
favorable properties of this transformation. Actually, further
studies to cover other linear fractional transformations are in
progress [11], including advice on the choice of the additional
parameters involved.

We have considered the problem of finding appropriate
stochastic realization to accompany estimated input–output
models in the case of multi-input multioutput subspace model
identification. The case considered includes the problem of
rank-deficient residual covariance matrices: a case that is en-
countered in applications with mixed stochastic-deterministic
input–output properties as well as for cases where outputs are
linearly dependent [28]. The inverse of output covariance ma-
trix is generally needed both for formulation of an innovations
model and for a Kalman filter [18], [27], [29]. Our approach
has been the formulation of an innovations model for the
rank-deficient model output that generalizes previously used
methods of stochastic realization [5], [7], [21], [22].

The modified pseudoinverse of (91) provides the means
to evaluate a residual sequence from the mismatch between
an identified continuous-time model and discrete-time data
in such a way that standard statistical validation test can be
applied [14]. Such statistical tests include the following:

• autocorrelation test of residual sequence ;
• cross correlation test of input and residual sequence

;
• test of normal distribution (zero crossings, distribution,

skewness, kurtosis, etc.).

V. CONCLUSION

This paper has treated the problem of continuous-time
system identification based on discrete-time data and provides
a framework with algorithms presented in preliminary forms
in [11] and [16]. The methodology involves a continuous-
time operator translation [14], [15], permitting an algebraic
reformulation and the use of subspace and realization algo-
rithms. We have provided subspace-based algorithms as well

as realization-based algorithms with application both to time
domain and to frequency-domain data. Thus, the algorithms
and the theory presented here provide extensions both of
the continuous-time identification and of subspace model
identification.

A favorable property is the following. Whereas the model
obtained is a continuous-time model, statistical tests can
proceed in a manner that is standard for discrete-time models
[14]. Conversely, as validation data are generally available
as discrete-time data, it is desirable to provide means for
validation of continuous-time models to available data.
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