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with Time Delays ∗

Johan Nilsson and Bo Bernhardsson

Department of Automatic Control
Lund Institute of Technology

Box 118, S-221 00 Lund, Sweden
johan@control.lth.se

Abstract
We discuss modeling and analysis of real-time con-
trol systems subject to random time delays in the
communication network. A new method for analysis
of given control schemes is presented. The state of
the network is modeled by a Markov chain and Lya-
punov equations for the expected LQG performance
are presented. An example that illustrates the re-
sults is given.

1. Introduction
Real-time control systems are increasingly often im-
plemented as distributed control systems, where con-
trol loops are closed over a communication network.
The communication network is shared by different
processors, each having different priorities and com-
putational loads. There will inevitably be time delays
in the communication of information between differ-
ent units. Computational delays can also be time-
varying. The length of the time delays are often hard
to predict and are here modeled as being random.

Different control schemes for systems with time-
varying delays have been suggested. One interest-
ing possibility that we will analyze here is to use
so called time-stamps on control and measurement
signals. We present a method to evaluate the per-
formance of such control schemes. Our analysis gen-
eralizes the approach taken in Nilsson et al. (1996)
in that we use a Markov chain to model the com-
munication network. Section 2 describes three dif-
ferent models of the network delays. In Section 3
we give Lyapunov recursions for the expected LQG-
performance and present an example that illustrates
the results.

The analysis is based on techniques from jump
linear systems, see e.g. Wonham (1971), Chizeck
et al. (1986) , Mariton (1990), Ji and Chizeck (1990),
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Industrial and Technical Development, Project Dicosmos, 93-3485.

Ji et al. (1991), Gajic and Qureshi (1995). Our
system model is, however, more general. We allow for
the probability distribution of the system matrices
to be generated by the Markov chain. Previous
references assumed the system matrices being given
directly by the state of the Markov chain.

2. Modeling of Network Delays
Network delays, or network transfer times, have
different characteristics depending on the network
hardware and software. In order to analyze control
systems with network delays in the loop we have to
model these. The network delay is typically varying
due to varying network load, scheduling policies in
the network and the nodes, and due to network
failures. We will use three models of the network
delay:

• Constant delay

• Random delay, which is independent from
transfer to transfer

• The distribution of the delay is governed by an
underlying Markov chain

The control loop usually also contains computational
delays. The effect of these can be embedded in the
network delays, see Section 3.

2.1 Network Modeled as Constant Delay
The simplest model of the network delay is to
model it as being constant for all transfers in the
communication network. This can be a good model
even if the network has varying delays, for instance
if the time scale in the process is much larger than
the delay introduced by the communication.

One way to achieve constant delays is by introduc-
tion of timed buffers after each transfer. By mak-
ing these buffers longer than the worst case delay
time the transfer time can be seen as being constant.



This method to make the communication delays con-
stant was proposed in Luck and Ray (1990). A draw-
back with this method is that the delay time often is
longer than necessary, which can lead to decreased
performance as shown in Nilsson et al. (1996).

2.2 Network Modeled as Consecutive Delays
Being Independent

To take the randomness of the network delays into
account, the time delays can be modeled as being
taken from a probabilistic distribution. To keep the
model simple to analyze one can assume the transfer
delay to be independent of previous delay times, see
Nilsson et al. (1996).

2.3 Network Modeled Using Markov Chain
In a real communication system the transfer time
will usually be correlated with the last transfer
delay. For example, the network load, which is one
of the factors affecting the delay, is typically varying
at a slower time scale than the sampling period in a
control system, i.e. the time between two transfers.
One way to model dependence between samples is
by letting the distribution of the network delay
be governed by the state of an underlying Markov
chain. Effects such as varying network load can be
modeled by making the Markov chain do a transition
every time a transfer is done in the communication
network.

EXAMPLE 1—SIMPLE NETWORK MODEL

To get a simple network model we can let the net-
work have three states, one for low network load, one
for medium network load, and one for high network
load. In Figure 1 the transitions between different
states in the communication network are modeled
as a Markov chain. Together with every state in the

L M H

Figure 1 An example of a Markov chain modeling the
state in a communication network. Here L is the state for
low network load, M the state for medium network load,
and H is the state for high network load. The arrows
show possible transitions in the system.

Markov chain we have a corresponding delay dis-
tribution modeling the delay for that network state.
These distributions could typically look like the prob-
ability distributions in Figure 2.

3. Analysis of Control Laws
In Figure 3 the control system is illustrated in a
block diagram. We will analyze given linear control
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Delay
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Figure 2 The delay distributions corresponding to the
states of the Markov chain in Figure 1. Here L is the state
for low network load, M the state for medium network
load, and H is the state for high network load.

laws. We will assume that the sensor node is sampled
regularly at a constant sampling period h. The
actuator node is assumed to be event driven, i.e.
the control signal will be used as soon as it arrives.
We will analyze several different models for the
communication network. The controlled process is

Sensor
node

Actuator
node

Network

Controller
node

Process

τ scτ ca

h
u(t) y(t)

Figure 3 Distributed digital control system with in-
duced delays, τ sc and τ ca .

assumed to be

dx
dt

= Ax(t) + Bu(t) + v(t), (1)

where x(t) ∈ R n, u(t) ∈ R m is the controlled
input and v(t) ∈ R n is white noise with zero mean
and covariance Rv. We will assume that the delay
from sensor to actuator is less than the sampling
period h, i.e. τ sc

k + τ ca
k < h. If this condition is not

satisfied control signals may arrive at the actuator
in corrupted order, which makes the analysis much
harder. The influence from the network is collected
in the variable τ k. For instance τ k can be a vector
with the delays in the loop, i.e. τ k = [τ sc

k , τ ca
k ]

T .
Discretizing (1) in the sampling instants, see Åström
and Wittenmark (1990), gives

xk+1 = Φpxk + Γp
0(τ k)uk + Γp

1(τ k)uk−1 + vk. (2)



The output equation is

yk = Cpxk + wk, (3)

where yk ∈ R p. The stochastic processes vk and wk

are uncorrelated white noise with zero mean and
covariance matrices R1 and R2 respectively. A linear
controller for this system can be written as

xc
k+1 = Φc

(τ k)xc
k + Γc

(τ k)yk (4)

uk = Cc
(τ k)xc

k + Dc
(τ k)yk, (5)

where appearance of τ k in Φc, Γc, Cc or Dc, captures
that the controller knows the network delays com-
pletely or partly. For a discussion of this see Nilsson
et al. (1996). Examples of such controllers are given
in Krtolica et al. (1994), Ray (1994), and Nilsson
et al. (1996).

From (2) – (5) we see that the closed loop system
can be written as

zk+1 = Φ(τ k)zk + Γ(τ k)ek, (6)

where

zk =

 xk

xc
k

uk−1

 , and ek =
[

vk

wk

]
. (7)

The matrices Φ(τ k) and Γ(τ k) can be derived from
(2)-(7). The variance of ek is R = diag(R1, R2).

The rest of this section investigates properties of the
closed loop system (6). The analysis is made for the
network models described in Section 2.

3.1 Network Modeled as Constant Delay
If we make the assumption that τ k in (6) is constant
for all k, we can use standard tools from the theory
of linear time-invariant discrete time systems to an-
alyze stability, variances of signals etc., see Åström
and Wittenmark (1990). One way to make the closed
loop system time invariant is to introduce buffers as
discussed in Section 2.

3.2 Network Modeled as Consecutive Delays
Being Independent

As described in Section 2, communication delays
in a data network usually vary from transfer to
transfer. In this situation the standard methods from
linear time-invariant discrete time systems cannot
be applied. There are examples where the closed
loop system is stable for all constant delays, but give
instability when the delay is varying. This section
develops some analysis tools for systems where
consecutive delays are random and independent.

Evaluation of Covariance Let the closed
loop system be given by (6), where {τ k} is a random
process independent of {ek}. We assume that τ k has
known stationary distribution, and that τ k is inde-
pendent from sample to sample. To keep track of the
noise processes we collect the random components
up to time k in the set

Yk = {τ 0, ..., τ k , e0, ..., ek}.

Introduce the state covariance Pk as

Pk = E
Yk−1

(zkzT
k ), (8)

where the expectation is calculated with respect
to noise in the process and randomness in the
communication delays. By iterating (8) we get

Pk+1 = E
Yk

(zk+1zT
k+1)

= E
Yk

(
(Φ(τ k)zkzT

k Φ(τ k)
T + Γ(τ k)ekeT

k Γ(τ k)
T)

= E
τ k

(
(Φ(τ k)PkΦ(τ k)

T + Γ(τ k)RΓ(τ k)
T) .

Here we have used that τ k, zk and ek are indepen-
dent, and that ek has mean zero. This is crucial for
the applied technique to work and indirectly requires
that τ k and τ k−1 are independent. Using Kronecker
products the iteration can be written as

vec(Pk+1) = E
τ k
(Φ(τ k)⊗ Φ(τ k)) vec(Pk)

+ vec E
τ k
(Γ(τ k)RΓ(τ k)

T
) = A vec(Pk) + G , (9)

where

A =E
τ k
(Φ(τ k) ⊗ Φ(τ k)), G =E

τ k
(Γ(τ k) ⊗ Γ(τ k)) vec(R).

From (9) we see that stability in the sense of
E(zT

k zk) < ∞, i.e. second moment stability, is guaran-
teed if ρ (E(Φ(τ k)⊗ Φ(τ k))) < 1, where ρ (A) denotes
the spectral radius of a matrix A. For a discussion of
the connection between second moment stability and
other stability concepts such as mean square stabil-
ity, stochastic stability and exponential mean square
stability see Ji et al. (1991).

Calculation of Stationary Covariance If
the recursion (9) is stable, ρ (E(Φ(τ k)⊗ Φ(τ k))) < 1,
the stationary covariance

P∞ = lim
k→∞

Pk (10)

can be found from the unique solution of the linear
equation

vec(P∞) = E(Φ(τ k)⊗ Φ(τ k)) vec(P∞)

+ vec E(Γ(τ k)RΓ(τ k)
T
). (11)



Calculation of Quadratic Cost Function
In LQG-control it is of importance to evaluate
quadratic cost functions like E zT

k S(τ k)zk. This can
be done as

E
Yk

zT
k S(τ k)zk = tr E

Yk

zT
k S(τ k)zk = tr(E

τ k
S(τ k) E

Yk−1

zkzT
k ),

(12)

which as k →∞ gives

lim
k→∞

E zT
k S(τ k)zk = tr(E

τ k
S(τ k)P∞). (13)

This quantity can now be calculated using (11).

Normally we want to calculate a cost function on
the form E(xT

k S11xk + uT
k S22uk). As uk is not an

element of zk, see (7), this cost function can not
always directly be cast into the formalism of (12). A
solution to this problem is to rewrite uk of (5) using
the output equation (3) as

uk = Cc
(τ k)xc

k + Dc
(τ k)(Cpxk + wk)

= [ Dc
(τ k)Cp Cc

(τ k) 0 ] zk + Dc
(τ k)wk.

Noting that τ k and wk are independent, and that wk

has zero mean, the cost function can be written as

E(xT
k S11xk + uT

k S22uk) = E(zT
k S(τ k)zk) + J1,

where

S(τ k) =

 S11 0 0

0 0 0

0 0 0


+

 (Dc
(τ k)Cp

)
T

Cc
(τ k)

T

0

S22 [ Dc
(τ k)Cp Cc

(τ k) 0 ]

J1 = tr
(
E{Dc

(τ k)
T S22 Dc

(τ k)}R2
)

,

where the first part again is on the form of (12).

3.3 Network Modeled Using Markov Chain
As described in Section 2 a more realistic model for
communication delays in data networks is to model
the delays as being random with the distribution
selected from an underlying Markov process. In this
section some analysis tools for these systems are
developed. Variances of signals and stability of the
closed loop is studied for a system with a Markov
chain which makes one transition every sample.
These results can be generalized to the case when the
Markov chain makes two transitions every sample,
this to allow for the state of the Markov chain to
change between sending measurement and control
signals. For details see Nilsson (1996).

Evaluation of Covariance Let the closed
loop system be described by (6), where τ k is a
random variable with probability distribution given
by the state of a Markov chain. The Markov chain
has the state rk ∈{1, ..., s} when τ k is generated. The
Markov chain makes a transition between samples
k and k + 1. The transition matrix for the Markov
chain is Q = {qij}, i, j ∈{1, ..., s}, where

qij = P(rk+1 = j j rk = i).

The Markov chain is assumed to be stationary and
regular, see Elliot et al. (1995). Introduce the Markov
state probability

π i(k) = P(rk = i), (14)

and the Markov state distribution

π (k) = [π 1(k) π 2(k) . . . π s(k)] .

The probability distribution for rk is given by the
recursion

π (k + 1) = π (k)Q
π (0) = π 0,

where π 0 is the probability distribution for r0. The
state noise ek is assumed to be white with unit
variance. The random components up to time k are
collected in

Yk = {e0, ..., ek , τ 0 , ..., τ k , r0 , ..., rk}.

Introduce the conditional state covariance as

Pi(k) = E
Yk−1

(
zkzT

k j rk = i
)

,

and

P̃i(k) = π i(k)Pi(k).

The following relationship now holds for the state
covariance P(k)

P(k) =
s∑

i= 1

π i(k)Pi(k) =
s∑

i= 1

P̃i(k). (15)

The following theorem gives an algorithm to evalu-
ate P̃i(k).

THEOREM 1
The vectorized state covariance matrix P̃(k) satisfies
the recursion

P̃(k + 1) = (QT ⊗ I) diag(A i)P̃(k)

+ (QT ⊗ I)(diag(π i(k))⊗ I)G. (16)



where

A i = E
τ k
(Φ(τ k)⊗ Φ(τ k) j rk = i) ,

G i = E
τ k

(
Γ(τ k)RΓT

(τ k) j rk = i
)

,

P̃(k) =


vec P̃1(k)

vec P̃2(k)
...

vec P̃s(k)

 , G =


vecG1

vecG2

...

vecGs

 .

The proof of Theorem 1 is given in Nilsson (1996).

From (16) it is seen that the closed loop will be
stable, in the sense that the covariance is finite, if
the matrix (QT ⊗ I) diag(A i) has all its eigenvalues
in the unit circle.

This result generalize the results in Ji et al. (1991)
and Gajic and Qureshi (1995) in the sense that we
let the Markov chain postulate the distribution of
Φ(τ k) and Γ(τ k), while Ji et al. (1991) and Gajic
and Qureshi (1995) let the Markov chain postulate
a deterministic Φ(τ k) and Γ(τ k) for every Markov
state. The results in Gajic and Qureshi (1995) are
for the continuous time case.

Calculation of Stationary Covariance In
the stable case the recursion (16) will converge as
k →∞,

P̃
∞ = lim

k→∞
P̃(k).

As the Markov chain is irreducible the stationary
distribution π∞ is given uniquely by π∞Q = π∞.
Since (16) is a stable linear difference equation it
follows that P̃∞ will be the unique solution of

P̃
∞ = (QT ⊗ I) diag(A i)P̃

∞

+ (QT ⊗ I)(diag(π∞i )⊗ I)G.

The stationary value of E zkzT
k is given by

P∞ = lim
k→∞

E(zkzT
k )

= lim
k→∞

s∑
i= 1

E(zkzT
k j rk = i)P(rk = i) =

s∑
i= 1

P̃∞i ,

where P̃∞i is the corresponding part of P̃∞.

EXAMPLE 2—VARIABLE DELAY

Consider the closed loop system in Figure 4. Assume

Actuator
node

Controller
node

Process Sensor

τ k

h

Figure 4 Digital control system with induced delay. The
probability distribution of the time-delay τ k is determined
by the state rk of the Markov chain in Figure 5

that the distribution of the communication delay τ k

from controller to actuator is given by

τ k =

{
0 if rk = 1,

rect(d− a, d + a) if rk = 2,
(17)

where rk is the state of the Markov chain in Figure 5,
and rect(d− a, d + a) denotes a uniform distribution
on the interval [d− a, d + a]. It is also assumed that
d − a > 0 and d + a < h. The controlled process is{

ẋ = x + u + e

y = x

Let the control strategy be given by uk = −Lxk.

1 2

1 − q1

q1 q2

1 − q2

Figure 5 Markov chain with two states. State 1 corre-
sponds to no delay, and state 2 corresponds to a time-delay
in the interval [d − a, d + a], see equation (17).

Discretizing the process in the sampling instants
determined by the sensor we get

xk+1 = Φxk + Γ0(τ k)uk + Γ1(τ k)uk−1 + Γeek,

where Φ = eAh = eh, and

Γ0(τ k)=


∫ h

0
eAsdsB = eh

− 1, if rk = 1,∫ h−τ k

0
eAsdsB = eh−τ k

− 1, if rk = 2,

Γ1(τ k)=


0, if rk = 1,∫ h

h−τ k

eAsdsB = eh−τ k
(eτ k

− 1), if rk = 2.



The closed loop system can then be written as

zk+1 = A(τ k)zk + Γ(τ k)ek,

where zk = [ xT
k uT

k−1 ]
T , and

A(τ k) =
[Φ − Γ0(τ k)L Γ1(τ k)

−L 0

]
, Γ(τ k) =

[Γe

0

]
.

Stability of the closed loop system is determined by
the spectral radius of (QT ⊗ I) diag(A i), where

A1 = A(0)⊗ A(0),
A2 = E

τ k
{A(τ k)⊗ A(τ k)jrk = 2},

and the transition matrix for the Markov chain is

Q =
[

q1 1 − q1

1− q2 q2

]
.

Figure 6 shows the stability region in the q1 − q2
space for h = 0.3, d = 0.8h, a = 0.1h and L = 4.
This corresponds to a control close to deadbeat for
the nominal case. In Figure 6 the upper left corner
(q1 = 1 and q2 = 0) corresponds to the nominal
system, i.e. a system without delay. The lower right
corner (q1 = 0 and q2 = 1) corresponds to the system
with a delay uniformly distributed on [d−a, d+ a]. As
seen from Figure 6 the controller does not stabilize
the process in this case. When q1 = q2 the stationary
distribution of the state in the Markov chain is
π 1 = π 2 = 0.5. In Figure 6 this is a line from the
lower left corner to the upper right corner. Note that
if the Markov chain stays a too long or a too short
short time in the states ( q1 = q2 near one or q1 = q2

near zero) the closed loop is not stable, but for a
region in between the closed loop is stable.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Unstable

Stable

q1

q2

Figure 6 Stability region in q1 − q2 space.

4. Conclusions and Future Work
We have used techniques from jump linear systems
to analyze the performance of control systems with

randomly varying time-delays. We have shown how
to analyze the performance improvement given by so
called time-stamps of control signals. Future work
will include studies of

• Optimal controllers when the distributions
of the network delays are generated from a
Markov chain.

• Experimental verification of the theoretical re-
sults for systems with network delays.
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