
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Interaction effects in the transport of particles in nanowire quantum dots

Kristinsdottir, Liney Halla

2015

Link to publication

Citation for published version (APA):
Kristinsdottir, L. H. (2015). Interaction effects in the transport of particles in nanowire quantum dots. [Doctoral
Thesis (compilation), Mathematical Physics].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/468a212c-d8a0-4e33-a3c6-9bca7ecca05c


INTERACT ION EFFECTS IN
THE TRANSPORT OF

PART ICLES IN NANOWIRE
QUANTUM DOTS

Líney Halla Kristinsdóttir

Division of Mathematical Physics
Faculty of Engineering

Lund University

THESIS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN ENGINEERING

esis advisor:
Stephanie M. Reimann

Faculty opponent:
Peter Schmelcher

Doctoral thesis which, by due permission from the Faculty of Engineering at Lund
University, will be publicly defended in Lundamarksalen at Lund Observatory,
Sölvegatan 27, Lund, on Tuesday, May 12, 2015, at 10:15, for the degree of Doctor
of Philosophy in Engineering.



D
O

K
U

M
EN

T
D

AT
AB

LA
D

en
lS

IS
61

41
21

Organization

LUND UNIVERSITY
Division of Mathematical Physics
Department of Physics
Sölvegatan 14A
SE–223 62 LUND
Sweden
Author(s)

Líney Halla Kristinsdóttir

Document name

DOCTORAL THESIS
Date of issue

2014-04-16
Sponsoring organization

Title and subtitle

Interaction effects in the transport of particles in nanowire quantum dots

Abstract

Interactions between physical bodies constantly affect their properties. is thesis presents a theoretical study on
the effects of interaction in few-body nanowire quantum dots. e focus is to a large extent on a phenomenon
called Wigner localization, and how this, as well as other interaction effects, can be identified in an experiment
by transport spectroscopy and by thermopower measurements. e physical systems considered are electrons in
semiconductor nanowires and an ultracold gas of dipolar particles in magneto-optical traps. e full many-body
description of the nanowire quantum dot is obtained by exact diagonalization (also known as the configuration
interaction method) while the transport simulations are based on a Pauli master equation approach. e thesis
is based on three papers: In Paper I we examine Wigner localization in an InSb nanowire quantum dot and
identify the onset of Wigner localization in an experiment. In Paper II we study how different interaction
regimes can be accessed in an ultracold dipolar gas by tuning the dipole-dipole interaction externally, providing
Wigner localization for strong repulsion and total current blockade for attraction. e effect of excited states on
the thermopower lineshape is investigated in Paper III, asserting the possibility to detect the onset of Wigner
localization by thermopower measurements.

Key words:

Quantum dots, semiconductor nanowires, ultracold dipolar gases, electron transport, atom transport, Wigner
localization, current blockade, thermopower

Classification system and/or index terms (if any):

Supplementary bibliographical information: Language

English

ISSN and key title: ISBN
978-91-7623-279-8 (print)
978-91-7623-280-4 (pdf )

Recipient’s notes Number of pages

108
Price

Security classification

Distributor
Líney Halla Kristinsdóttir, Division of Mathematical Physics, Department of Physics, Sölvegatan 14A, SE-
223 62 Lund, Sweden

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference
sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2015-04-07



INTERACT ION EFFECTS IN
THE TRANSPORT OF

PART ICLES IN NANOWIRE
QUANTUM DOTS

Líney Halla Kristinsdóttir

Division of Mathematical Physics
Faculty of Engineering

Lund University

2015



Front cover: An artistic view of the gradual localization of two particles in a nano-
wire quantum dot, as their interaction strength is increased.

©2015 Líney Halla Kristinsdóttir

Paper I ©2011 by American Physical Society
Paper II ©2013 by American Physical Society
Paper III ©2014 by American Institute of Physics

978-91-7623-279-8 (print)
978-91-7623-280-4 (pdf )
Lund-MPh-15/02

Printed in Sweden by Media-Tryck, Lund 2015



CONTENTS

Popular science summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Almenn samantekt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

P 1

1 Introduction 3
1.1 A versatile model for the general system . . . . . . . . . . . . . . . . . 5
1.2 Wigner localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Electrons in semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Ultracold dipolar gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 e Seebeck effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Methods 15
2.1 Finding the “exact” states of a nanowire quantum dot . . . . 16

.. Exact diagonalization method . . . . . . . . . . . 17
.. Quasi 1-dimensional systems: Effective interaction 19
.. Longitudinal confining potential & B-splines . . . 22

2.2 Modelling the leads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Transport through a quantum dot . . . . . . . . . . . . . . . . . . . . . . 26

.. Pauli master equation and Fermi’s golden rule . . 27
.. Approximating the tunneling couplings . . . . . . 29
.. Transport simulation in practice . . . . . . . . . 31
.. Second order von Neumann method . . . . . . . 32

i



2.4 Charge stability diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 ermopower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Overview of the papers 39
3.1 Paper I – Electrons in long nanowires: Wigner localization 39

.. Further work and outlook . . . . . . . . . . . . . 41
3.2 Paper II – Particles with tunable dipole-interaction: Total current

blockade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Paper III – ermal bias across a nanowire: Excitation effects 42

.. Scaling of thermocurrent peak heights . . . . . . 43

4 Double quantum dot: Preliminary results 47
4.1 Reversal of the odd-even size staggering of the Coulomb dia-

monds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Outlook 53

A Effective screened Coulomb interaction 55

References 61

T  69

I Signatures of Wigner localization in epitaxially grown nanowires 71

II Total Current Blockade in an Ultracold Dipolar Quantum Wire 77

III ermopower as a tool to investigate many-body effects in quantum
systems 85

ii



POPULAR SC I ENCE SUMMARY

Imagine a wire so thin that its diameter is about one-thousand times thinner than
a human hair. at is a nanowire. Now cut the nanowire such that its length is
about 1-10 times as long as its diameter. ere, we have just pictured a nanowire
quantum dot1, roughly like those discussed in this thesis.

e next step is to load some particles, like electrons or atoms, into the nanowire
quantum dot. e first intuition might be to picture the particles like balls lying
(or bouncing around) in a closed tube. However, in quantum systems, that would
not be a correct description. In fact, knowing the precise position of a particle
is near as impossible. All you know (if you are lucky) is the probability of the
particle’s position: You can picture it as a cloud.
What is more, in most cases the clouds of all the
particles will overlap, making a single cloud.

A central topic of this thesis is how the interaction of particles in nanowire quan-
tum dots affects the overall behaviour of the particles. All objects interact with
each other, due to gravitation, electromagnetism, collisions, and so on. Examples
are the pull we feel towards Earth, a magnet stuck to a fridge, or colliding billiard
balls. We will consider two types of interaction:

(i) e Coulomb interaction between electrons in semiconductors;
(ii) e dipole-dipole interaction between dipolar atoms/molecules trapped

in vacuum by laser light.

e dipoles can be pictured like rod-shaped magnets: If we
bring the north end of one magnet to the south end of an-
other, they will attract (snap together). In turn, if we rotate
the magnets so that they are side-by-side with both north

1 A quantum dot, in general, is some kind of a container (typically nanosized) in which the movement
of particles, such as electrons or atoms, is hindered in all directions. A distinct feature of quantum
dots is that the allowed energy levels are discrete – quantized – like the allowed energy levels of the
electron in an atom, which is why quantum dots are often called “artificial atoms”.
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ends up, they will repel (hard to push together). On the other hand, two electrons
will always repel each other.

An interaction effect that is discussed in all the papers that the thesis is based on,
is the so called Wigner localization2. What it boils down to is that when the inter-
action of particles is strongly repulsive and depends on their relative distance, the
particles will position themselves such that the energy of the system is minimized.
at is, the particles will localize. At first sight, this may not seem so impressive.
However, in quantum systems, localized particles are not at all common: Remem-
ber, usually the clouds of all the particles overlap. But when the particles repel
each other strongly enough, depending on their relative position, their clouds will
separate. One separate cloud for one particle. When you are used to not being able
to pinpoint a particle’s position at all, that is truly remarkable.

Why would anyone want to investigate interaction effects, such as Wigner localiza-
tion in nanowire quantum dots? Well, humankind has always had a need to know,
understand and explore; be it plants, countries, cultures, people, matter, fate, the
weather, and so forth. Sometimes our search for knowledge and understanding
has a practical purpose. Sometimes it does not. In science the latter is called fun-
damental research, to which this thesis belongs. On the other hand I could argue,
for example, that since the size of electronic gadgets keeps decreasing, the knowl-
edge of nanosized systems is essential. It really is. But that is not exactly why we
do fundamental research on the nanoscale. We are simply curious. Curious as to
what laws govern nature and what consequences they have. is thesis is a teeny
tiny piece of the immense puzzle making up our knowledge. Perhaps someday,
someone will find practical use for it. Perhaps.

2 Named after Eugene Wigner who predicted it in 1934 for bulk material (the opposite of quan-
tum dots, that is free movement in all directions), in which case the phenomenon is called Wigner
crystallization.
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ALMENN SAMANTEKT

Ímyndaðu þér vír sem er svo grannur að þvermál hans er einungis um einn þúsund-
asti af mannshári. Þetta er nanóvír. Klipptu nú vírinn þannig að lengd hans verði
um 1-10 sinnum meiri en þvermálið. Sko til, við höfum nú nanóvírsskammta-
punkt3 í höndunum, um það bil eins og þá sem þessi ritgerð allar um.

Næsta skref er að koma einhverjum eindum, t.d. rafeindum eða frumeindum,
fyrir í nanóvírsskammtapunktinum. Í fyrstu sér maður eindirnar kannski fyrir sér
sem litlar kúlur í lokuðum hólki. Í skammtakerfum er slík mynd aftur á móti
ekki alls kostar rétt. Raunar er það hér um bil ómögulegt að vita nákvæma stað-
setningu eindar. Það eina sem við þekkjum (ef við erum heppin) eru líkurnar á
staðsetningu hennar: Þú getur ímyndað þér
eindina eins og ský. Að auki skarast oftast ský
allra eindanna, svo úr verður eitt ský.

Eitt helsta viðfangsefni þessarar ritgerðar er hvernig víxlverkun einda í nanóvírs-
skammtapunkti breytir almennri hegðun þeirra. Allir hlutir víxlverka við hvern
annan vegna þyngdarafls, rafsegulmagns, árekstra og svo framvegis. Dæmi um víxl-
verkanir eru togkrafturinn sem við finnum gagnvart Jörðinni, segull fastur á ísskáp
eða árekstrar lottókúlna. Við munum skoða tvenns konar víxlverkun:

(i) Coulomb-víxlverkun rafeinda í hálfleiðurum;
(ii) Tvípólsvíxlverkun milli frum- eða sameinda sem eru lokaðar af í lofttæmi

með leisigeislum.

Það má sjá tvípól fyrir sér líkt og stangarlaga segul: Ef við
færum norðurenda eins seguls að suðurenda annars seguls,
þá dragast þeir að hvor öðrum (smella saman). Ef við snúum
tveim seglum þannig að þeir séu hlið við hlið, báðir með

3 Skammtapunktur er almennt einhvers konar ílát (gjarna í nanóstærð) þar sem hreyfing einda eins og
rafeinda og frumeinda, er takmörkuð í allar áttir. Eitt helsta sérkenni skammtapunkta er að leyfileg
orka eindanna er strjál – skömmtuð – eins og leyfileg orkuástönd rafeinda í frumeind. Af þessari
ástæðu eru skammtapunktar gjarna kallaðir „gervifrumeindir“.
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norðurendann í sömu átt, þá hrinda þeir hvor öðrum frá sér (erfitt að þrýsta þeim
saman). Tvær rafeindir munu aftur á móti alltaf hrinda hvor annarri frá sér.

Víxlverkunarhrif sem allað er um í öllum greinunum sem ritgerðin byggir á eru
hin svokallaða Wigner-staðbinding4. Í grunninn snýst hún um að þegar víxlverkun
einda er mjög fráhrindandi og er háð arlægðinni milli eindanna, þá munu eindirn-
ar staðsetja sig á þann hátt að orkan í kerfinu er í lágmarki. Með öðrum orðum, þá
verða eindirnar staðbundnar. Í fyrstu virðist það kannski ekki svo merkilegt. En
staðbundnar eindir eru alls ekki venjan í skammtakerfum: Mundu, oftast renna
ský allra eindanna saman í eitt ský. En þegar eindirnar hrinda hver annarri nógu
sterkt frá sér, háð arlægð, þá greinast skýin að. Eitt ský fyrir hverja eind. Þegar
maður er vanur því að geta alls ekki ákvarðað staðsetningu eindanna, þá er það svo
sannarlega magnað.

En hvers vegna skyldi nokkur hafa áhuga á að rannsaka víxlverkunarhrif, eins
og Wigner-staðbindingu í nanóvírsskammtapunktum? Jú, mannkynið hefur alltaf
fundið þörf fyrir að vita, skilja og skoða, hvort sem um ræðir plöntur, ókunnug
lönd, menningu, fólk, efni, örlög, veðrið o.s.frv. Stundum leiðir þessi þekkingar-
leit okkar til augljósrar hagnýtingar. Stundum ekki. Í vísindum er hið síðarnefnda
kallað grunnrannsóknir og þessi ritgerð tilheyrir þeim. Ég gæti að vísu fullyrt að
þar sem stærð raftækja minnkar stöðugt, þá sé þekking á nanókerfum bráðnauð-
synleg, svona til dæmis. Það er alveg satt. En það er samt ekki hin raunverulega
ástæða fyrir grunnrannsóknum á nanókvarða. Við erum einfaldlega forvitin. Við
viljum vita hvaða lögmál ríkja í náttúrunni og hverjar afleiðingar þeirra eru. Þessi
ritgerð er agnarsmá viðbót við þekkingu okkar. Kannski mun finnast hagnýting á
henni einhvern daginn. Kannski.

4 Fyrirbærið er nefnt eftir Eugene Wigner sem spáði fyrir um það árið 1934 fyrir almennt efni þar
sem hreyfing rafeindanna er frjáls í allar áttir (andstæða skammtapunkta). Í því tilviki er talað um
Wigner-kristöllun.
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PROLOGUE



It’s all about the journey, not the destination.

As stated by many wise people



1

INTRODUCT ION

All objects interact with each other via some kind of a force; gravitational, electro-
magnetic, collisional, etc. Sometimes the interaction is so small relative to other
influencing factors that it can be neglected. In most cases, however, the interaction
cannot be overlooked. Down on the nanoscale, the interaction between particles
can provide interesting quantum physical phenomena, for example Wigner crys-
tallization, current blockade, pairing, or the fractional quantum Hall effect, to
name only a few. Different types of interaction – short- or long-range, repulsive
or attractive, isotropic or anisotropic – may result in different effects. ese can
appear, for example, in the energy spectrum of the system.

e work presented in this thesis aims at the theoretical description of semicon-
ductor quantum dots (Paper I and Paper III), for which the energy spectrum can
be experimentally obtained by transport spectroscopy. We will also look at a sys-
tem of an ultracold atom gas with transport spectroscopy in mind (Paper II). is
is unusual, as the particle density or the momentum distribution are the prevailing

3
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measurable quantities. However, the experimental breakthrough by Brantut et al.
[12] has made transport spectroscopy with ultracold atoms a feasible option. is
encouraged an adjustment of our semiconductor nanowire model to describe atom
traps as well. e controllability and cleanness of such systems offers a great oppor-
tunity to explore a host of quantum physical phenomena, that are inaccessible in
semiconductors due to unavoidable perturbations of various kinds, for example.

is thesis presents a theoretical study, focusing on the effects of interaction in
nanosystems. Many of the most readily available theoretical methods only pro-
vide the ground state, or they are only valid for weak interactions. However, as
explained further below, in order to study the quantum transport and an interac-
tion effect called Wigner localization we also need information on e.g. the excited
states. If one is content with systems of very few particles (for example, up to 10
at maximum in case of strong interaction) the full energy spectrum is accessible
by exact diagonalization, also known as the configuration interaction method (see
e.g. refs. [16, 65] for an overview). Furthermore, this method, in fact, provides the
exact eigenstates of the system. From those we can derive, for example, the particle
density and information on how the system couples to leads/reservoirs. at way
we can model the transport of particles through the system, both in order to com-
pare our results with experiments, but also to look for interesting consequences of
the particles’ interaction in the quantum-mechanical properties of the system.

In the following we briefly introduce some of the main aspects of this thesis: e
general model system, Wigner localization, the specific interactions and systems
considered, and the concept of thermopower. In chapter 2 we will take a brief look
at the numerical methods used in the calculations. In chapter 3 the main results
of the papers, and my contribution to them, will be summarized. In chapter 4
some preliminary results are discussed. An outlook is given in chapter 5. Finally,
the papers are reprinted at the end of the thesis.
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(a) InSb nanowire.

External
aligning field

(b) Ultracold dipolar gas.

Figure 1.1 The two systems under study. (a) Scanning electron microscope (SEM) image of
an InSb nanowire. Gold strips (source/drain, yellow shaded) are grown on top, defining a
quantum dot (green shaded) with Schottky barriers at the interface. (Modified from Paper I.)
(b) Schematic illustration of an ultracold gas of dipolar atoms/molecules. A narrow channel
of dipolar particles is connected to two reservoirs (left/right). The dipole moments of the
particles are aligned at an angle Θ by an external field. (Modified from Paper II.)

1.1 A VERSAT I LE MODEL FOR THE GENERAL
SYSTEM

e systems that we study are at first sight quite disparate: A semiconductor nano-
wire (figure 1.1(a)) and a gas of ultracold atoms in a magneto-optical trap (as
schematically shown in figure 1.1(b)). Nevertheless, the same physical model can
be used to describe them. A schematic picture of the general system is shown in
figure 1.2, along with the potential across the system. A nanowire quantum dot1

is connected to two leads (particle reservoirs) with a potential barrier in between.
ere are many features in the model that can be changed: e type of confine-
ment in the transversal directions, the length and width of the quantum dot, the
height and width of the barriers, the type and strength of interaction in the quan-
tum dot, the effective mass of the particles in the dot, barriers and leads, and the
spin of the particles. Furthermore, the key ingredients in transport spectroscopy
can be varied as if we were in the laboratory: We can change the temperature of
either lead, apply a potential bias Vsd between source and drain, and change the
gate potential µgate. On the other hand, there are properties that are fixed: e

1 In this thesis, a nanowire quantum dot should be understood as a system that is confined in all three
spatial dimensions, where the confinement in the transversal directions is (much) tighter than in the
longitudinal direction.
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Nanowire
Lead

(source)
Lead

(drain)

Contact barrier Contact barrier

/2

gate¹

Vsd

/2Vsd

Figure 1.2 A schematic of the general model system; a quasi-one-dimensional nanowire
coupled to two leads (particle reservoirs). The potential across the system and some of the
parameters used to control it are shown in the lower panel. See further discussion in text.

statistics of the particles (here we deal only with fermions), the description of the
leads by a Fermi sea, and a maximum of 8-10 particles in the quantum dot. Here,
we also restrict ourselves to one particle tunneling at a time (1st order transport),
and assume a flat bottom potential (finite well) along the nanowire. is last re-
striction, however, can be remedied, as the use of B-splines allows us to use, in
principle, an arbitrary potential in the longitudinal direction, as further discussed
in section 2.1.3.

1.2 WIGNER LOCAL I ZAT ION

A recurring topic in all three papers is a phenomenon called Wigner localization.
is is a certain state of matter due to interaction, that was first predicted for
bulk material by Wigner in 1934 [80] and is in that case well known as Wigner
crystallization. It is a fairly intuitive notion. Assume that the interaction between
particles is long-range and repulsive and only depends on their relative distance,
not on their actual position. If the interaction is so strong that it is the dominating
factor in the system, then the particles will seek to position themselves such that
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the system energy is minimized: ey will crystallize. As it is rather superfluous
to talk of a crystal in a few-body system, the term Wigner localization was coined.
(See the review by Reimann and Manninen [65].)

Let us take a closer look at a two-body system, as the simplest possible case for in-
teracting spin-half fermions. We consider two limiting cases. Firstly, if the particles
are noninteracting, see figure 1.3(a), the system is described by the independent
particle shell-model: e many-body states are simply formed by filling a number
of single-particle levels and applying the proper statistics (and hence, the Pauli
exclusion principle). As can be seen from figure 1.3(a), the 1-body and 2-body
excitation energies coincide in this case, ∆ϵ = ∆E2.

Secondly, when strong repulsive interactions dominate the system, Wigner local-
ization may occur. e two fermions are then spatially separated, see figure 1.3(b).
In this case, the Pauli exclusion principle has no effect. Hence, there is practically
no difference between the singlet groundstate and the triplet 1st excited state. As
a consequence, the excitation energy of the two-body state becomes negligible,
∆E2/∆ϵ≪ 1.

It is our aim to find a signature of Wigner localization that can be used for com-
parison with experimental data. As stated before, the excitation spectrum of the
system is accessible by transport spectroscopy. However, it only provides the exci-
tation energies (energy difference between the groundstate and the excited states),
while it does not distinguish between states of the same energy. Hence one can-
not determine right away if the singlet ground state and triplet 1st excited state
have merged into one 4-fold degenerate state. One way would be to apply a homo-
geneous magnetic field to the system and thereby see the triplet state split up. If
one can tune the interaction strength, another possibility is to see the singlet and
triplet states separate as one decreases the interaction strength. Furthermore, we
can define an intermediate stage, the onset of Wigner localization2, where the singlet
ground state and triplet 1st excited state are very close but have not yet merged,

2 is regime is also known as incipient Wigner localization, see for example refs. [66, 37, 38].
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(b) Wigner localization.

Figure 1.3 Two extremes in interaction strength of spin-half fermions. (a) Noninteracting
particles. The system is simply described by the independent particle shell-model: N -body
states are obtained by ordering N particles into single-particle levels, taking the Pauli exclu-
sion principle into account, see the left and right panel for N = 1 and N = 2, respectively.
Hence, the excitation energies of one particle (∆ϵ) and two particles (∆E2) are equal, see the
centre panel. (b) Wigner localized particles (strong repulsive interaction). Left panel: Since
the particles are localized, i.e. their densities have negligible overlap, the Pauli exclusion
principle has negligible effect. Therefore, there is hardly any difference between the singlet
groundstate and triplet 1st excited state. Right panel: Consequently, the 2-body excitation
energy is negligible compared to the 1-body excitation energy, ∆E2/∆ϵ ≪ 1. See further
discussion in text.
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characterized by the condition that ∆E2 is significantly smaller than ∆ϵ, in short
∆E2 < ∆ϵ. Of the previously enumerated signatures of Wigner localization, the
last one is the easiest to determine in an experiment.

1.3 ELECTRONS IN SEMICONDUCTORS

We need a long-range interaction to obtain Wigner localization [78]. One of the
best known long-range interactions isCoulomb interaction, the interaction between
two charges. is is, for example, the interaction found between conductance elec-
trons in semiconductor nanowires, and the one considered by Wigner in his orig-
inal paper [80]. e Coulomb interaction between two point particles of charge
q1 and q2 is given by [46]

vC(r) =
q1q2
4πε

1

r
(1.1)

where r = |r1 − r2| is the distance between the particles and ε is the dielectric
permittivity of the surrounding material. For electrons, the strength of the inter-
action is uC = e2/(4πεa), where e is the elementary charge, and a is the length
scale of the problem (here, the half-length of the nanowire). However, it has to be
considered in relation to other energy scales of the system, i.e. that of the kinetic
energy (∼ ℏ2/ma2). is leads to the effective interaction strength

ũC =
e2

4πℏ2
ma

ε
(1.2)

wherem is the effective mass of the electrons. Once the material for the nanowire
has been chosen (ε,m), the only parameter left to tune the effective interaction
strength is the length of the nanowire3, 2a.

3 e different dielectric constants of the nanowire and the surrounding material affect the interaction
of the electrons in the nanowire, as will be discussed in appendix A. Choosing a material with high
dielectric constant for the nanowire may enhance localization of the electrons [56]. However, the
dielectric constants of a nanowire quantum dot device cannot be changed post-fabrication.
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e feasibility of tuning the length of a semiconductor nanowire in an experiment
was considered. In most realistic cases, however, it is either highly impractical or
impossible. e use of finger gates, where many gate electrodes are grown side
by side across the nanowire [32], was examined. It was, however, rejected due to
the complexity of such nanodevices, and since the presence of a finger gate, albeit
inactive, may affect the potential across the nanowire. It is, furthermore, not a
feasible option to change the spacing of the leads. In some cases the spacing is
already fixed during the growth of the nanowire, such as in heterostructure InAs-
InP nanowires. It is in any case impractical to grow or remove contacts from a
complete nanowire device.

We can, therefore, rule out the possibility of externally tuning a semiconductor
nanowire system from an effectively noninteracting state to a Wigner localized
state. Apart from that drawback, there is always the problem of defects (impurities,
bending, etc.) in semiconductor nanowires. A long nanowire is needed for Wigner
localization (ũC ∝ a), while it is extremely hard, if not impossible, to produce a
clean nanowire that is long enough, as we experienced while preparing Paper I.
erefore, we seek an alternative system with a different long-range interaction.

1.4 ULTRACOLD D IPOLAR GASES

Systems of ultracold atoms and molecules present an enormous potential of clean
and highly tunable mesoscopic systems [9]. e experimental techniques to work
with optical traps containing just a few particles already exist [71]. Furthermore,
the prospect of transport spectroscopy is very promising [12] and controlled ther-
motransport has recently been realized [11].

e most common interaction in ultracold systems is the contact interaction [39].
However, as the name implies, it is a zero-range interaction, and is therefore unsuit-
able for studying Wigner localization. Another interaction that has gained more
attention recently is the long-range dipole-dipole interaction [4, 52], e.g. due to its
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potential use in quantum computing [69]. is is the interaction between particles
that have an electric or magnetic dipole moment. Examples of particles with a mag-
netic dipole moment are chromium, erbium and dysprosium atoms [51, 55, 1].
On the other hand, Rydberg atoms [54, 36] and some diatomic molecules, for
example, exhibit an electric dipole moment4.

When the dipole moments of dipolar particles are aligned by an external field, the
dipole-dipole interaction is given by [46, 73]

vdd(r) =
d2

r3
(
1− 3 cos2(θrd)

)
+

4π

3
Cd2δ3(r) (1.3)

where θrd is the angle between the particle separation r and the electric dipole
moment p (or the magnetic dipole moment µ), d2 is the coupling strength, and
C = 1 for electric dipoles (C = −2 for magnetic dipoles). In case of electric
dipoles, d2 = p2/(4πε0) where ε0 is the vacuum permittivity. For magnetic
dipoles, the dipole coupling (d2 = µ0µ

2/(4π) where µ0 is the vacuum perme-
ability) is significantly weaker than for electric dipoles [52].

Note from eq. (1.3) that the long-range interaction is anisotropic: It ranges from
repulsive to attractive, depending on the relative position and orientation of the
dipoles, see figure 1.4. For strong dipolar interactions, it is therefore necessary to
confine the dipolar gas in one or two dimensions in order to stabilize the dipolar
gas against collapse [49, 59].

e effective strength of the long-range term of the dipole-dipole interaction (when
scaled relative to the kinetic energy, ∼ ℏ2/ma2) is

ũdd =
md2

aℏ2
(
1− 3 cos2 θrd

)
. (1.4)

4 Rydberg atoms are excited atoms, e.g. rubidium or caesium, where one or more of the electrons are
excited to orbitals with very high principal quantum number. Examples of polar molecules, that
have been trapped and cooled successfully in the rovibrational ground state, are KRb [58, 63] and
LiCs [23].
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Figure 1.4 The anisotropic dipole-dipole interaction depends on θrd (the angle between the
dipole moment d and the vector r connecting the dipolar particles) and falls off with 1/r3.
The interaction potential felt by a dipolar particle in the two dimensional plane, whose dipole
moment is aligned with the dipole moment of the reference particle above the plane (blue
ball), is depicted in two cases: The interaction is mainly repulsive (red, positive) when the
dipoles are side-by-side (parallel to the plane), whereas it is attractive (blue, negative) when
the dipoles are aligned head to tail (perpendicular to the plane).

is tells us, firstly, that shortening the quantum dot effectively increases the rel-
evance of the interaction. Secondly, and more importantly, we can tune the in-
teraction externally by changing the direction of the electric (or magnetic) field
that aligns the dipole moments of the particles. In one dimension, the sign of
the interaction is homogeneous, such that the particles’ interaction can be tuned,
externally, from strong repulsion to noninteracting and even further, into the at-
tractive regime (see figure 2.1). e tunability of the interaction is explored, for
example, in ref. [21] and Paper II.
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1.5 THE SEEBECK EFFECT

In 1821, omas Johann Seebeck discovered that a temperature difference across
metals causes charge carriers to diffuse, creating an electric current5. is is the well
known Seebeck effect (which, together with the Peltier effect and omson effect,
comprises the thermoelectric effect). e utilization of the Seebeck effect, turning
waste heat into electricity, is highly desirable, both from an economical and envi-
ronmental perspective. It has, however, proved extremely difficult, as a prospective
thermoelectric material relies on three parameters: electrical conductivity, thermal
conductivity, and thermopower (the Seebeck coefficient). ese parameters are in-
terdependent in a way that makes the thermoelectric efficiency of usual materials
too low. On the other hand, turning to nanoengineered materials has provided
a substantial increase in the largest achieved thermoelectric efficiency (or, more
precisely, the thermoelectric figure of merit) during the past two decades [45].

However, our interest in the Seebeck effect in nanostructures also lies in its use as a
characterization tool. e voltage bias that the temperature difference ∆T creates,
the thermovoltage, is given by

Vth = −S∆T (1.5)

where S is the Seebeck coefficient or thermopower. It has been shown that excited
states in quantum dots appear as fine structure (dips) in the thermopower at low
enough temperatures [7, 27, 26]. erefore, the excitation energies, such as∆ϵ and
∆E2, may be determined from the thermopower (see figure 2.7). ermopower
can thus be used to detect the onset of Wigner localization, as discussed in Pa-
per III.

5 In fact, Seebeck thought the temperature difference induced a magnetic polarization [70], not an
electric current. He conducted his experiments on a ring of copper, joined into a closed loop by
a second metal (antimony, bismuth, etc.). By heating one junction (at first, unintentionally by his
hand), Seebeck observed the deviation of a suspended magnetic needle, and therefore interpreted his
discovery as a magnetic effect. It was Hans Christian Ørsted who correctly attributed the deviation
of the magnetic needle to an electric current in the metallic loop (that induces a magnetic field by
Ampère’s law) and coined the term thermoelectricity [13].





2

METHODS

As outlined in the Introduction, the problem at hand is to simulate transport of
fermions in a nanosystem consisting of a quantum dot and two leads, with signif-
icant interaction of particles in the quantum dot. e main goal is to explore the
effects of the interaction, such as Wigner localization.

For transport through noninteracting systems or systems with weak interaction
(such that the system can be described as effectively noninteracting), the Landauer-
Büttiker formalism provides a good description [22]. Transport through interact-
ing systems in general is, however, a different matter. Various methods of varying
complexity exist. To our purposes, the Bardeen transfer Hamiltonian method [5,
25] becomes a natural choice, as it allows for a full many-body treatment of the
quantum dot. In this approach the system is described by the Hamiltonian

Ĥ = Ĥdot + Ĥleads + Ĥtunneling (2.1)

15
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where Ĥdot, Ĥleads and Ĥtunneling describe the dot, leads, and tunneling between
states in the dot and leads, respectively. is entails that we treat the barriers be-
tween the quantum dot and the two leads as a perturbation, assuming that the
transmission through the barriers is very small. In other words, instead of trying
to work on the whole system at once, we treat the systems of the quantum dot and
the leads separately, and subsequently handle the transport of particles between
the dot and the leads.

e chapter is organized as follows: e exact many-body approach to the quan-
tum dot is presented in section 2.1, while the treatment of the leads is briefly de-
scribed in section 2.2, and the transport formalism is detailed in section 2.3. e
basics of charge stability diagrams, by which results of transport simulations and ex-
periments are frequently presented, are given in section 2.4. Finally, thermopower
and its use for detecting the onset of Wigner localization is briefly described in
section 2.5.

2.1 F IND ING THE “EXACT” STATES OF A
NANOWIRE QUANTUM DOT

e quantum dot Hamiltonian, Ĥdot, is in general given by

Ĥdot = Ĥ0 + V̂int (2.2)

where Ĥ0 is a one-body operator, including e.g. the kinetic energy and the con-
fining potential, and V̂int is the two-body interaction between the particles. We
want to investigate how the interaction affects the system, that is, find the energy
spectrum and the probability density of the states. e most difficult part of that
task is, in general, how to handle the interaction, V̂int.

ere exists a number of different ways to model the system and the available meth-
ods to obtain the necessary information about the system can be implemented in
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various ways. ere are mean field methods, such as the Hartree-Fock method or
the Gross-Pitaevskii method, that effectively turn the two-body interaction into
a one-body problem. ese methods work very well for weak interactions, but
typically fail for increased correlations. ere are more advanced methods, such
as density functional theory, quantum Monte Carlo, Green’s functions, and exact
diagonalization. All of these methods are exact in principle, but require some ap-
proximations in practice, due to lack of e.g. computational power or information.
e different methods provide a varying amount of information on the system:
Quantum Monte Carlo methods typically only provide the ground state, while ex-
act diagonalization can give excited states as well; and Green’s functions give any
observable one needs, while exact diagonalization provides the full wave function.

Our method of choice is exact diagonalization (see, e.g., refs. [16, 68, 67, 65]),
also known as configuration interaction method in quantum chemistry [19]. is
method allows one, in principle, to calculate the states and whole energy spectrum
of the system up to an arbitrary accuracy. However, the computational power
needed increases exceedingly fast with the particle number and the degrees of free-
dom of the system. Furthermore, strong interaction is more demanding, especially
if it is attractive. In practice, this restricts the applicability of the method to sys-
tems of, for example, up to ∼10 particles, one to two dimensions, and strong
repulsive/weak attractive interaction. However, when working within the bound-
aries set by the computers of today, it is an extremely powerful method.

e numerical implementation of the exact diagonalization method used in this
thesis is incorporated in a library called cimethod. A description of the cimethod
library along with a number of applications can be found in ref. [20].

2.1.1 EXACT D IAGONAL IZAT ION METHOD

e aim of the exact diagonalization method is to find the states |a⟩ and energy
levelsEa of Ĥdot, that is, solve the eigenvalue problem Ĥdot|a⟩ = Ea|a⟩ (i.e. the
time-independent Schrödinger equation). e main idea is to expand the eigen-
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states |a⟩ in a complete many-body basis, and thus turn the eigenvalue problem
into the diagonalization of a matrix.

e exact diagonalization method is formulated within second quantization (see
refs. [41, 34], for example). us the aforementioned many-body basis consists
of Fock states, |n⟩, based on a suitably chosen complete set of single-particle
states, {|ϕi⟩}. e most natural choice of |ϕi⟩ are the single-particle eigenstates
of Ĥ0 with eigenenergy ϵi. Hence, within second quantization, the Hamiltonian
becomes

Ĥdot =

∞∑
i=1

ϵid̂
†
i d̂i +

1

2

∞∑
i,j,k,l=1

Vijkld̂
†
i d̂

†
j d̂ld̂k (2.3)

where d̂†i (d̂i) is the creation (annihilation) operator of a particle in state |ϕi⟩, and

Vijkl =

∫∫
ϕ∗i (x)ϕ

∗
j (x

′)v(x,x′)ϕk(x)ϕl(x
′) dx dx′ (2.4)

is the interaction integral1. Here x ≡ (r, σ) is the combined spatial and spin
coordinate, ϕi(x) is the wave function of single-particle state |ϕi⟩, and v(x,x′) is
the interaction. e matrix formulation of the eigenvalue problem becomes

⟨n1|Ĥdot|n1⟩ ⟨n1|Ĥdot|n2⟩ · · ·
⟨n2|Ĥdot|n1⟩ ⟨n2|Ĥdot|n2⟩ · · ·

...
...

. . .

a = Eaa (2.5)

where a = (a1, a2, . . .) is the vector representation of the state |a⟩ =
∞∑
ν=1

aν |nν⟩.

In practice, there are a few obstacles to overcome. It is evident from eq. (2.5),
that the matrix we wish to diagonalize is infinite. is is, of course, impossible
and consequently the basis must be cut off. To that end, the most common way
is either to include Fock states only up to some cut-off energy, or to restrict the
number of single-particle states used to build the Fock states. e low-lying energy

1 e interaction integrals Vijkl will play a central role in the next subsection.
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states can thus, in principle, be calculated up to an arbitrary accuracy by including
an ever larger number of basis states.

However, the many-body basis size increases extremely fast with increasing num-
ber of single-particle basis states and the number of particles in the system, while
computational power, such as the working memory, is a limited resource. In or-
der to reach convergence for systems of three or more particles, one usually has to
impose some conditions on the system to reduce its dimensionality and/or exploit
some symmetries of the Hamiltonian. For example, one may assume that the par-
ticles are spin-polarized. Another example, in the case of cylindrically symmetric
systems, is the use of conservation of angular momentum: e matrix in eq. (2.5)
can thus be made block-diagonal, and thereby the computational problem is split
into many smaller pieces. Yet another example to aid convergence is provided in
the following subsection.

2.1.2 QUAS I 1 -D IMENS IONAL SYSTEMS : EFFECT IVE
INTERACT ION

Assume that the confinement in two of the three spatial dimensions, say x and
y, is much stronger than in the third direction, z. Consequently, excitations in x
and y are much more expensive than several excitations in z. Since we are only
interested in the low-lying spectrum of the system, it is safe to assume that the
system is in the ground state in x and y. is assumption makes all calculations
effectively 1-dimensional, hence the term quasi-1-dimensional or quasi-1D.

Assuming the system to be quasi-1D, i.e. effectively reducing the dimensionality
of the problem, leads to a considerable reduction in the single-particle basis size.
Furthermore, it may increase numerical accuracy, by simplifying the computation
of the 6-dimensional integral in Vijkl (see eq. (2.4)). In general, the integral has
to be computed numerically, and therefore is a cause of numerical error. If its di-
mension can be reduced and/or the expression for the integrand can be simplified,
the accuracy of the calculations can increase significantly.
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Let us have a closer look at how this is done. Assume that the single-particle orbitals
can be separated as

ϕi(r) = ψ0(x, y)ζi(z) (2.6)

where ψ0 is the ground state in x and y, and ζi is the ith eigenstate in z. en we
can write (for simplicity we assume the interaction to be spin-independent)

Vijkl =

∫∫
ϕ∗i (r)ϕ

∗
j (r

′)v(r, r′)ϕk(r)ϕl(r
′) δσi,σk

δσj ,σl
drdr′

=

∫∫
dzdz′ζ∗i (z)ζ

∗
j (z

′)ζk(z)ζl(z
′) δσi,σk

δσj ,σl
×∫∫∫∫

dxdydx′dy′|ψ0(x, y)|2|ψ0(x
′, y′)|2v(r, r′)︸ ︷︷ ︸

:=V eff(z,z′)

(2.7)

=

∫∫
dzdz′ζ∗i (z)ζ

∗
j (z

′)V eff(z, z′)ζk(z)ζl(z
′) δσi,σk

δσj ,σl
(2.8)

where we have defined the effective interaction in one dimension, V eff . Depending
on the form of ψ0 and v, we may calculate some or all of the integrals in V eff

analytically.

In the following, we examine the effective interaction in the two systems consid-
ered in this thesis: We discuss to what extent V eff can be determined analytically,
what determines ψ0, the form of v, and which parameters control the effective
interaction.

Electrons — For electrons in a semiconductor nanowire we can calculate two in-
tegrals in V eff analytically. In this case the ground state ψ0(x, y) is determined by
the transverse confinement potential, which is modelled as a hard-wall cylinder. As
to the interaction of electrons, it is the Coulomb interaction. However, the nano-
wire and its surrounding material (air/substrate) have different dielectric constants,
resulting in a screened interaction [53, 74]. e effective screened Coulomb inter-
action, V eff

C , is derived in appendix A, with the final expression given in eq. (A.17).



Finding the “exact” states of a nanowire quantum dot 21

Note that in the model we assume a homogeneous material surrounding the nano-
wire with a single dielectric constant εout, while in reality it is a combination of
air, leads, and a Si substrate coated with SiO2. As the theoretical simulations could
be compared with experimental data, εout was used as a fitting parameter, match-
ing the addition energy (affinity), i.e., the width of the Coulomb diamonds (see
section 2.4).

Dipoles — For a gas of ultracold dipolar particles, it turns out that all integrals
in V eff can be carried out analytically. Again, ψ0 is determined by the transverse
confinement. For an ultracold atomic or molecular gas, the confinement is typi-
cally obtained by a magnetic and/or optical trap, whose potential minimum is in
most cases well described by a harmonic potential [2, 9]. We therefore assume that
ψ0 is the ground state of an isotropic two-dimensional harmonic oscillator. e
three-dimensional dipole-dipole interaction is given in eq. (1.3). By ignoring the
δ-part of the interaction2, we achieve the effective dipole-dipole interaction

V eff
dd (z − z′) = −d

2(1 + 3 cos(2Θ))

8l3⊥
Ṽ eff
dd (|z − z′|/l⊥) (2.9)

where
Ṽ eff
dd (u) = −2u+

√
2π(1 + u2) eu

2/2 erfc(u/
√
2) . (2.10)

Here d2 is the coupling strength of the dipoles (see section 1.4), Θ is the tilt angle
of the dipole moments relative to the z-axis (see figure 1.1(b)), l⊥ =

√
ℏ/mω is

the oscillator length in the transverse directions (whereω is the oscillator frequency
and m the mass of the particles), and erfc is the complementary error function.
e derivation of the above expression can be found in the appendix of ref. [24].

Examples of the effective dipole-dipole interaction between two particles, where
one particle is fixed at the origin (z′ = 0), is given in figure 2.1 for a few values
of the dipole tilt angle Θ. At the critical angle, Θcrit = 54.7◦, the interaction is
zero. For larger angles, Θ > Θcrit, the interaction is repulsive, while for smaller

2 We choose to focus on the effect of the long-range part of the interaction. In an experiment the
contact part may be eliminated by Feshbach resonances [9, 18].
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ddV
eff z( )

z z z

ddV
eff z( ) ddV
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Figure 2.1 The effective dipole-dipole interaction potential, V eff
dd (z− z′), with one particle

fixed at the origin, z′ = 0, as shown. The flexibility of the interaction depending on the
externally tunable dipole tilt angle Θ is evident: The interaction is positive (repulsive) for
Θ = 90◦ (left panel), zero at the critical angle Θcrit = 54.7◦ (centre panel), and negative
(attractive) for Θ = 45◦ (right panel).

angles, Θ < Θcrit, the interaction is attractive. is demonstrates how tunable
the dipole-dipole interaction is in quasi-1D, while still retaining the stability of
the dipolar particles against collapse.

2.1.3 LONG ITUD INAL CONF IN ING POTENT IAL & B - SPL INES

Once the effective interaction, V eff , has been determined, the single particle states,
ζi(z), in the z-direction are the only ingredient left in order to calculate the inter-
action integrals Vijkl in eq. (2.8) and create the matrix in the eigenvalue problem
(2.5). Assume that the one-body part of the dot Hamiltonian, Ĥ0, only consists of
the kinetic term and the confining potential. As stated at the beginning of this sec-
tion, it is most natural to choose the single-particle orbitals ϕi(r) = ψ0(x, y)ζi(z)

as the one-body eigenstates of Ĥ0. erefore, the single-particle orbitals ζi(z) are
defined by the longitudinal confining potential. As mentioned in section 1.1, we
assume the longitudinal confinement of the particles in the quantum dot to be
that of a finite well (see figure 1.2) in all three papers, i.e., the ζi(z) are the wave
functions of a one-dimensional finite well, which are well-known3.

We would also like to be able to model the effects of, for example, defects or disor-
der in the nanowire quantum dot. ese appear as bumps or random fluctuations
in the potential. However, the wave function for such potentials is, in general, not

3 at is, the analytic expression for the wave function is known. It depends, however, on the corre-
sponding eigenenergy, which has to be calculated numerically.
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known analytically. On the one hand, it is still possible to use the finite-well eigen-
states as single-particle basis states, while on the other hand, it can become very
hard, in this case, to achieve convergence.

By expanding the single-particle orbitals in B-splines, the single-particle orbitals
can be approximated numerically for, in principle, any confining potential. e
use of B-splines is well-known in atomic and molecular physics [3], but less fre-
quently applied in condensed matter physics. e main advantages, apart from
improved convergence when working with non-standard confining potentials, are,
firstly, that each B-spline is non-zero on a finite interval only, resulting in finite
limits for all integrals involving B-splines. Secondly, the flexibility for obtaining
local numerical accuracy is much higher, since in regions where there are abrupt or
irregular changes in the confining potential, the density of basis states (B-splines)
can be increased in a straightforward manner (by locally increasing the density
of break points, see below). Furthermore, numerical integrals may be calculated
exactly by Gaussian quadrature.

In what follows, the basics of B-splines and how they are used to solve the one-
body Schrödinger equation is briefly described. Given a nondecreasing sequence
of break points, τ = {τi : τi ≤ τj , i < j}, the ith B-spline of order k, denoted
by Bi,k,τ , can be found by the recurrence relation4:

Bi,1,τ (z) =

{
1 τi < z < τi+1

0 otherwise
(2.11)

Bi,k,τ (z) =
z − τi

τi+k−1 − τi
Bi,k−1,τ (z) +

τi+k − z

τi+k − τi+1
Bi+1,k−1,τ (z) . (2.12)

A few examples of B-splines of different order k and for different break point
sequences τ are given in figure 2.2. Some examples of the properties of the B-
splines are:

• Bi,k,τ is a polynomial of order k − 1;

4 B-splines are formally defined by divided differences, see ref. [10].
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Figure 2.2 Examples of B-spline functions. The order is k = 3, except in the top-right panel
where k = 5. The break points are shownwith the symbol♦. The break points in z = −1 and
z = 1 are k-fold degenerate. All internal break points are simple, except in the bottom-right
panel where z = 0 is a double break point.

• Bi,k,τ equals zero outside the interval [τi, τi+k];
• Bi,k,τ is positive on ]τi, τi+k[;
•
∑

iBi,k,τ (z) = 1 for all z on the interval spanned by τ , provided that the
first and last break point is each k-fold degenerate;

• If the function that is to be expanded in terms of Bi,k,τ should have at
mostm continuous derivatives in a point z, that point should be chosen as
a (k −m− 1)-fold degenerate break point.

For a mathematically rigorous treatment of B-splines and some more practical
properties for computer simulations, e.g. formulae for derivatives, see ref. [10].

Seeking the solutions to the single-particle Schrödinger equation, ĥ|ϕn⟩ = ϵn|ϕn⟩,
we write the single-particle orbitals in terms of the B-splines (here we use the short-
hand notation Bi ≡ Bi,k,τ ),

|ϕn⟩ =
∑
i

ci,n|Bi⟩ . (2.13)
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us the Schrödinger equation becomes a generalized eigenvalue problem

Hcn = ϵnBcn, (2.14)

where the eigenvectors cn have elements ci,n and the matrix elements of H and
B are, respectively,

Hij = ⟨Bi|ĥ|Bj⟩ and Bij = ⟨Bi|Bj⟩ . (2.15)

By using Gaussian quadrature, the integralsBij =
∫
dzBi(z)Bj(z) can be calcu-

lated exactly. If the confining potential can be expressed as a piecewise polynomial,
the integrals in Hij may be calculated exactly as well. Moreover, since Bi is zero
outside the interval [τi, τi+k], the matrices B and H are (2k − 1)-diagonal: e
only non-zero elements are on the main diagonal and on k− 1 diagonals on each
side of it. For such band matrices, efficient numerical routines exist.

2.2 MODELL ING THE LEADS

In contrast to the exhaustive treatment of the quantum dot in the previous section,
using a quite detailed description of the system and computationally heavy models,
the leads are described in rather simple terms. As is appropriate for metals, the leads
are treated within the Fermi liquid theory [41, 48]. at is, we assume the particles
in the leads to be noninteracting and replace their mass with an effective mass,
depending on the surrounding material. Furthermore, as we did for the quantum
dot, we will assume that the leads are quasi-one-dimensional, supporting only one
mode (the ground state) in the transversal directions, and that the potential in the
leads is constant. In the following we will denote the states in the leads with kσℓ,
where k is the wave vector, σ the spin, and ℓ = L,R denotes the left/right lead.
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2.3 TRANSPORT THROUGH A QUANTUM DOT

Finally, we turn our attention to the transport between the leads and quantum dot.
e discussion throughout this section is mainly based on refs. [76, 77]. In the
Bardeen transfer Hamiltonian method (see eq. (2.1)), the tunneling is described
by

Ĥtunneling =
∑
kσℓ,n

(
tn(kσℓ)d̂

†
nĉkσℓ + t∗n(kσℓ)ĉ

†
kσℓd̂n

)
(2.16)

where tn(kσℓ) are the tunneling couplings between state kσℓ in the leads and the
single-particle state n in the quantum dot, ĉ†kσℓ (ĉkσℓ) is the creation (annihilation)
operator of state kσℓ in the leads, and d̂†n (d̂n) is, as before, the creation (annihi-
lation) operator of state n in the quantum dot (note that the spin σ is included
in the state label n). e problem at hand is to determine the tunneling couplings
tn(kσℓ), or some expression thereof.

On the other hand, we are interested in the many-body states in the quantum dot.
erefore it is more natural to seek couplings between the leads and many-body
states in the dot. First a short note on notation: We adopt the convention that
the number of particles increases with the alphabetic order of labels. For example,
there is one more particle in state b than in state a, Nb = Na + 1, and similarly
Nc = Na + 2, and so on. Now, we insert the unit operators

∑
a |a⟩⟨a| and∑

b |b⟩⟨b| into eq. (2.16) as follows (see appendix A of ref. [64])

Ĥtunneling =
∑
kσℓ,n

(
tn(kσℓ)

∑
b

|b⟩⟨b|d̂†n
∑
a

|a⟩⟨a|ĉkσℓ + h.c.
)

=
∑
kσℓ,ab

(
ĉkσℓ|b⟩

∑
n

tn(kσℓ)⟨b|d̂†n|a⟩︸ ︷︷ ︸
:=Tba(kσℓ)

⟨a|+ h.c.
)

=
∑
kσℓ,ab

(
Tba(kσℓ)ĉkσℓ|b⟩⟨a|+ T ∗

ab(kσℓ)ĉ
†
kσℓ|a⟩⟨b|

)
. (2.17)

In the second step we reordered the terms and defined the scattering amplitude
Tba(kσℓ) of a particle in state kσ in lead ℓ that tunnels into the dot and thereby
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changes its state from a to b. It is straightforward to calculate the overlaps ⟨b|d̂†n|a⟩
from the many-body states found by the exact diagonalization method. Conse-
quently, once we have determined the tunneling couplings tn(kσℓ), the ampli-
tudes Tba(kσℓ) are known as well.

2.3.1 PAUL I MASTER EQUAT ION AND FERMI ’ S GOLDEN RULE

In order to be able to compare our findings with experimental data obtained by
transport spectroscopy, we must calculate the current through the system. To that
end, there exists a host of different methods of varying complexity and diverse
designs, some of which are applicable in combination with a detailed description
of the quantum dot. To name a few, there are density matrix approaches such as
the 1st order von Neumann (1vN), 2nd order von Neumann (2vN) [64], quan-
tum rate equations [43, 57], generalized master equations [44], and the simplest
method of them all, a rate equation [6, 47, 17] also known as (Pauli) master equa-
tion. e last one is our method of choice, due to its simplicity.

e Pauli master equation, along with Fermi’s golden rule (see below), is valid
if the coupling between the leads and quantum dot is weak as compared to the
system temperature, Γ ≪ kBT , where Γ is some average measure of the squared
tunneling couplings, |tn(kσℓ)|2. Furthermore, the level spacing has to be large
as compared to the coupling, Γ ≪ ∆ϵ. In Paper II, where attractive interaction
results in total transport blockade for a finite source-drain bias, Vsd, retaining weak
coupling Γ is especially important, see further discussion in section 2.3.4.

In the Pauli master equation approach, the current from lead ℓ into the dot is given
by

Iℓ = e
∑
ab

(
Rin,ℓ

a→bPa −Rout,ℓ
b→aPb

)
(2.18)
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where the occupation probability Pa of state a in the dot is governed by a classical
rate equation5

dPb

dt
=

∑
aℓ

Rin,ℓ
a→bPa +

∑
cℓ

Rout,ℓ
c→b Pc −

∑
cℓ

Rin,ℓ
b→cPb −

∑
aℓ

Rout,ℓ
b→aPb (2.19)

and Rin,ℓ
a→b (Rout,ℓ

b→a ) is the rate of particle transitions into (out of ) the dot from
(into) lead ℓ, changing the dot’s state from a to b (from b to a).

In addition, we can allow relaxation in the system by adding further transitions to
the rate equation above

dPb

dt
=

∑
aℓ

(
Rin,ℓ

a→bPa −Rout,ℓ
b→aPb

)
+

∑
cℓ

(
Rout,ℓ

c→b Pc −Rin,ℓ
b→cPb

)
+

∑
b′

(
Rrelax

b′→bPb′ −Rrelax
b→b′Pb

)
(2.20)

where the relaxation rates,

Rrelax
b→b′ =

{
1/τ if Eb′ < Eb

Rrelax
b′→be

−(Eb′−Eb)/kBT otherwise,
(2.21)

ensure detailed balance6. Here τ is the time unit (in the simulations we use τ =

ℏ/(1 meV)).

e rates in eqs. (2.19) and (2.20) are given by

Rin,ℓ
a→b = Γℓ

bafℓ(Eb − Ea)

Rout,ℓ
b→a = Γℓ

ba [1− fℓ(Eb − Ea)]
(2.22)

5 It is implicit in the rate equation that we treat all states in the leads on an equal footing, i.e. we ignore
the possibility of different contributions from different states g ≡ (kσℓ) in the leads, since Pa are
the diagonal elements of the reduced dot density operator ρ̂dot = Trleads[ρ̂], Pa =

∑
g ρag;ag ,

where ρ̂ is the density operator of the system.
6 e condition for detailed balance is Rrelax

b→b′ρB(b) = Rrelax
b′→bρB(b

′) where ρB is the Boltzmann
distribution, ρB(b) = e−Eb/kBT /

∑
b′ e

−Eb′/kBT .
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where Γℓ
ba are the transition rates between states a and b in the dot, and

fℓ(E) = 1/(e(E−µℓ)/kBTℓ +1) is the Fermi-Dirac distribution in lead ℓ with
chemical potential7 µℓ and temperature Tℓ.

e transition rates Γℓ
ba are given to first order in the tunneling couplings, by

Fermi’s golden rule

Γℓ
ba =

2π

ℏ
∑
kσ

|Tba(kσℓ)|2δ(Eb − Ea − Ek) . (2.23)

is entails that we only take 1st order tunneling processes into account, i.e. se-
quential tunneling (one particle tunneling at a time), and that we only take broad-
ening of the quantum dot energy levels due to temperature into account, not the
level broadening due to the presence of the leads. Once we have found the tunnel-
ing couplings Tba(kσℓ), we can calculate the current Iℓ.

2.3.2 APPROX IMAT ING THE TUNNEL ING COUPL INGS

We will make a series of approximations and assumptions to acquire an expression
for the tunneling couplings Tba(kσℓ), and thereby the transition rates Γℓ

ba. For
an overview, see figure 2.3. First of all, since we assume that the quantum dot is
quasi-one-dimensional and hence only supports one mode (the ground state) in
the transverse directions x, y (see section 2.1.2), we can approximate [76, 77]

Tba(kσℓ) ≃ Xℓ
ba(σ)t(kσℓ) (2.24)

with
Xℓ

ba(σ) =
∑
n

⟨b|d̂†n|a⟩χ∗
n(σ)

[
λnζ

′
n(zi,ℓ) + ζn(zi,ℓ)

]∗ (2.25)

where χn(σ) and ζn(z) are the spin and spatial part of the wave function in the
quantum dot, respectively, zi,ℓ is the interface point of the bands in lead ℓ and the

7 In practice, µℓ = µgate ± eVsd/2 where e is the elementary charge, µgate is the gate chemical
potential, and Vsd is the source-drain bias, see figure 1.2.
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Figure 2.3 Schematic sketch of the system, emphasizing parameters used to model the tun-
neling between the leads and the quantum dot. The whole system is quasi-one-dimensional;
the potential across it is shown with a thick dashed line. The dot potential is a finite well of
width 2a and depth V0 (for discussion of other potential shapes, see section 2.1.3), and the
lead potential is assumed to be of constant depth∆Ec. The barriers extend between zL and
−a, and a and zR. We assume that the wave functions in the right (left) lead and the dot
intersect at the interface point zi,R (zi,L), somewhere in the barrier region (its exact position
should not be of importance, so the center of the barrier is a popular choice). Note that the
relative width of the barrier region is greatly exaggerated.

quantum dot (see figure 2.3), and λn = ℏ/
√
−2mbϵn withmb the effective mass

of the particles in the barriers and ϵn the single-particle energies in the quantum
dot (relative to the barrier height). is, in a sense, separates the states in the dot
and the leads.

Inserting eq. (2.24) into eq. (2.23) and rearranging terms, we find

Γℓ
ba =

∑
σ

|Xℓ
ba(σ)|2

2π

ℏ
∑
k

|t(kσℓ)|2δ(Eb − Ea − Ek)︸ ︷︷ ︸
:=γσℓ(Eb−Ea)

=
∑
σ

|Xℓ
ba(σ)|2γσℓ(Eb − Ea) (2.26)

where we have defined the average coupling strength γσℓ(Eb − Ea). Since we
assume the leads to be quasi-one-dimensional as well, and the lead potential to be
constant of depth ∆Ec, we arrive at [76, 77]

γσℓ(E) ≃

√
2(E +∆Ec)

mℓ

e−2|zi,ℓ−zℓ|/λ

1− mb(E+∆Ec)
mℓE

(2.27)
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where mℓ is the effective mass of the particles in lead ℓ, λ = ℏ/
√
−2mbE, and

zℓ marks the interface of lead ℓ and the adjoining barrier, see figure 2.3.

2.3.3 TRANSPORT S IMULAT ION IN PRACT ICE

To summarize the transport discussion so far, the rates Rin
a→b, R

out
b→a in eq. (2.22)

are calculated by using the transition rates Γℓ
ba given in eq. (2.26). After having

solved the quantum dot system by exact diagonalization (see section 2.1), it is
straightforward to calculate the Xℓ

ba(σ)’s from eq. (2.25), while the average cou-
plings γσℓ(E) are given by eq. (2.27).

e transition rates Rin
a→b, R

out
b→a are then used to calculate the occupation prob-

abilities Pa, Pb, Pc, etc. by the rate equation (2.19) or (2.20). e rate equation
can be set up as a matrix equation8

d

dt
P = JP . (2.28)

We seek the steady state solution of the system, dP/dt = 0. at is, we wish to
find P such that JP = 0. us J must be singular, since otherwise P = 0 is the
only solution. More precisely, we need the n × n matrix J to be of rank n − 1,
in order to get only one solution such that

∑
i Pi = 1. Numerically this is not

straightforward.

We reformulate the problem9 by exploiting the condition
∑

i Pi = 1, as it implies:

• Once we know all but one Pb, we also know the remaining one.
• If dPb/dt = 0 for all but one Pb, then this must also be true for the last

remaining one.

8 Note that if one orders the occupation probabilities in P in order of increasing particle number,
J becomes a block matrix that is “tri-block-diagonal”, since the occupation probabilities (Pb) only
couple to occupations of states with one less (Pa) or one more (Pc) particle, and occupations of
states with the same number of particles (Pb′ ) in case of relaxation (eq. (2.20)).

9 A. Wacker, private communication.
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Consequently, we find the steady state P by solving the equation

J̃P = b with b =
[
0 0 · · · 0 1

]T
(2.29)

where

J̃ =

[
J [n− 1, n]

1 1 · · · 1

]
=

{
the matrix J with its last row
substituted by a row of 1’s

}
. (2.30)

Ultimately, once we have determined the occupation probabilities P, we use those
along with the rates Rin

a→b, R
out
b→a to find the current Iℓ by eq. (2.18).

2.3.4 SECOND ORDER VON NEUMANN METHOD

In Paper II we are especially interested in the regime of weak attractive interaction,
where our simulations predict a complete interaction blockade for a finite range
of the source-drain bias (Vsd). Since only sequencial tunneling is included in the
model, a careful analysis of the role of higher order processes, such as cotunneling
and pair-tunneling, is needed. To that end, we use the second order von Neumann
method (2vN), described in detail in ref. [64], with two levels in the quantum dot.

e second order von Neumann method is, as the name implies, to second or-
der in the squared tunneling couplings, giving level broadening not only due to
temperature but also due to the presence of the leads. e main point is, though,
that second order processes like pair-tunneling and cotunneling are included in
the calculations. is method is computationally much more heavy than the Pauli
master equation approach, and at present implementations beyond two dot levels
do not exist. However, calculations with two dot levels can indicate the limits of
our calculations. Unsurprisingly, the result is that as long as the couplings are so
weak that Γ ≪ kBT ≪ |U |, where U is the charging energy, the total current
blockade is valid. For stronger couplings, however, the current blockade is broken
by higher order tunneling processes.
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2.4 CHARGE STAB I L I TY D IAGRAMS

A standard tool in transport spectroscopy is the charge stability diagram. is type
of diagrams is extensively used in all three papers to give an overview of the theoret-
ical results and to enable comparison with experiments in Paper I. A single charge
stability diagram contains a lot of information and may seem quite overwhelming
at first sight. e aim of this section is to give a brief description of the main fea-
tures of charge stability diagrams, especially those used in the papers. A thorough
description may be found in ref. [79].

Let us begin by introducing a few terms (see e.g. ref. [31]). e chemical potential
of a quantum dot with N particles, is given by the energy needed to change the
dot from a state a of N − 1 particles to a state b of N particles

µa,bN = Eb − Ea . (2.31)

e addition energy (or affinity) for a N -particle dot is given by

∆µN = µ
bgs,cgs
N+1 − µ

ags,bgs
N (2.32)

where the subscript ‘gs’ denotes the respective ground states. is is the chemical
potential needed to add the (N + 1)st particle to the quantum dot.

e condition for a particle to be able to tunnel into aN -particle quantum dot in
state b, and thereby change its state to c, is that the chemical potential µb,cN+1 of
N + 1 particles is within the potential bias window set by the chemical potential
of the leads. Expressed in equations,

µL > µb,cN+1 > µR or µL < µb,cN+1 < µR . (2.33)

e former condition is depicted in figure 2.4(a). In a similar manner, if a particle
is to tunnel out of a N -particle quantum dot in state b, changing it to a (N − 1)-
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Figure 2.4 Conditions for transport in a N -particle quantum dot in state b. A chemical po-
tential level in the quantum dot must be within the bias window (light blue shaded) for
transport to take place. (a) A particle can tunnel into the dot, changing its state to c. (b) A
particle can tunnel out of the dot, changing its state to a. (c) No chemical potential level is
within the bias window, and hence, transport is blocked.

particle dot in state a, the corresponding N -particle chemical potential must be
inside the bias window,

µL > µa,bN > µR or µL < µa,bN < µR (2.34)

see figure 2.4(b). If neither of these conditions, eqs. (2.33) or (2.34), is fulfilled for
any state a or c, no particle can tunnel into or out of the quantum dot: e particle
transport is blocked, see figure 2.4(c). For electrons this is the so-called Coulomb
blockade, while in general the phenomenon is called interaction blockade [14].

e size of the bias window is controlled by the source-drain bias,µL−µR = eVsd.
Furthermore, the gate potential µgate determines the position of the chemical
potential levels in the dot relative to the chemical potential in the leads:

µL = µgate + eVsd/2 and µR = µgate − eVsd/2 . (2.35)

In other words, keeping Vsd fixed, the gate potential µgate can be used to “scroll”
the chemical potential levels in the quantum dot through the bias window. Now,
whenever a chemical potential level, µa,bN or µb,cN+1, matches either the chemical
potential in the left or right lead (see figure 2.6), there will be a jump in the current
through the quantum dot. Consequently, a plot of the differential conductance,
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dI/dVsd, as a function of Vsd and µgate will trace where those jumps occur – that
is, map the position of the chemical potential levels in the quantum dot. is map
is the charge stability diagram.

e main features of a charge stability diagram are shown in figure 2.5. From the
intersection points of the conductance lines, one can infer the relative position
of the chemical potential levels in the quantum dot, as explained in figure 2.6.
us the addition energy (see eq. (2.32)) can be read from the diagram, as shown
in figure 2.5(a). Furthermore, we find (the subscript ‘iex’ denotes an ith excited
state)

µ
ags,b1ex
N − µ

ags,bgs
N = (Eb1ex − Eags)− (Ebgs − Eags)

= Eb1ex − Ebgs ≡ ∆EN (2.36)

which is the excitation energy of a N -particle quantum dot10. Hence, the charge
stability diagram directly provides the excitation energies of the quantum dot. is
is illustrated in figure 2.5(b). Also, since µags,bN −µags,bgsN = Eb−Ebgs , one may in
principle determine the energy of anyN -particle state b relative to theN -particle
ground state bgs, from a charge stability diagram.

10 e single-particle excitation energy, or level spacing, is denoted by∆ϵ throughout the thesis, instead
of ∆E1.
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Figure 2.5 The main features of a charge stability diagram, showing dI/dVsd versus eVsd

and µgate. The red, green and pink dots correspond to the level diagrams in figure 2.6(a),
(b), and (c), respectively. (a) Tunneling between ground states creates the main conductance
lines, that frame the characteristic Coulomb diamonds in case of Coulomb interaction, or
interaction blockade diamonds for a general interaction. The half-width of theN th diamond
provides the addition energy ∆µN , as shown. (b) Transitions involving ground and excited
states (blue for 1st excited, and light blue for 2nd excited) lead up to or out from the main
conductance lines (thin dark blue). Energies of excited states relative to the ground state can
be read from the diagram as indicated. (These can also be read from the µgate-axis, as shown
in figure 2 in Paper III.) See further discussion in text and figure 2.6.
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Figure 2.6 Alignment of chemical potential levels in the leads and the quantum dot, corre-
sponding to the (a) red, (b) green, and (c) pink dots in figure 2.5. Since µL −µR = eVsd, the
corresponding differences in quantum dot chemical potentials in (b) and (c) (see eqs. (2.32)
and (2.36), respectively) can be read off a charge stability diagram, as shown by arrows in

figure 2.5. In other words, the level alignments in (b) provide eVsd = µL − µR = µ
bgs,cgs
N+1 −

µ
ags,bgs
N = ∆µN , and in (c) we find eVsd = µL − µR = µ

ags,b1ex
N − µ

ags,bgs
N = ∆EN .
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Figure 2.7 Schematic illustration of the thermopower lineshape for sequential tunneling
(red solid) and in case cotunneling dominates (black dashed). Excited states appear as fine
structure (dips) in the thermopower lineshape, such that the excitation energy ∆E may be
deduced, as shown. In case of cotunneling, these signatures of excited states can be lost.

2.5 THERMOPOWER

As mentioned in the Introduction (section 1.5), excited states appear as fine
structure in the thermopower lineshape. ereby, excitation energies may be de-
termined, as shown schematically in figure 2.7. is opens up the possibility to
identify the onset of Wigner localization, ∆E2 < ∆ϵ, by thermopower measure-
ments.

In order to calculate the thermopower, S, we set the temperatures of the leads as
TL = T + ∆T and TR = T in eq. (2.22), and determine how large a source-
drain bias Vsd is needed to set the current to zero (in other words, how large a
bias is needed to counteract the thermovoltage Vth induced by the temperature
difference ∆T ). us we get the thermopower as

S = − Vth
∆T

=
Vsd
∆T

∣∣∣∣
I=0

. (2.37)

Note here that the effects of excited states appear in the thermopower at very small
source drain bias, Vsd, that is within the Coulomb blockade region. is is in con-
trast to the conductance, for which the effects of excited states are exponentially
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suppressed in the Coulomb blockade region [7], such that they become indistin-
guishable.

In order to determine the excitation energies from the thermopower, the tempera-
ture must be low enough, such that the thermopower fine structure is not smeared
out due to thermal broadening. On the other hand, the influence of cotunneling in-
creases at very low temperatures. Cotunneling “cuts” the thermopower [30, 75, 50]
as shown schematically in figure 2.7, such that cotunneling can obstruct the sig-
natures of excited states in the thermopower. Consequently, there is a balance to
be kept: Low enough temperature to be able to resolve the excited states, but still
high enough to suppress cotunneling. Or in other terms, the coupling Γ must be
kept low enough to suppress cotunneling, but still high enough in order to deplete
the quantum dot.



3

OVERV IEW OF THE PAPERS

3.1 PAPER I – ELECTRONS IN LONG NANOWIRES :
W IGNER LOCAL I ZAT ION

In this paper we successfully identified the onset of Wigner localization in InSb
nanowire quantum dots, both theoretically and experimentally. We simulated InSb
nanowires of three different lengths, corresponding to the case of (i) independent
electrons (70 nm), (ii) onset of Wigner localization (160 nm), and (iii) Wigner
localization (300 nm).

In the first two cases we could compare our findings with experiment, with excel-
lent results for the 160 nm nanowire. ere we found the signature ∆ϵ < ∆E2

(see section 1.2) of the onset of Wigner localization for two electrons: Both di-
rectly from the energy spectrum (theory), and in the charge stability diagram (ex-
periment; theory for comparison). We could support this observation of the onset
of Wigner localization further, by demonstrating the strong suppression of anti-

39
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ferromagnetic coupling (experiment) and the slight spatial separation of the two
electrons seen in their density and pair-correlated density (theory).

In the case of a short nanowire (70 nm) we found qualitative agreement between
experiment and theory, while a simulation of a 60 nm wire gave better quantitative
results (excitation energies). As is pointed out in the paper, the energy bands at
the interface of the nanowire and gold contacts are most likely bent (not square
shaped as in the model), causing the nanowire to be effectively shorter than 70 nm
(the actual contact spacing). One might also suspect that the cause lies in the
shortness of the wire, i.e. its length is equal to its diameter, such that the quasi-
1D approximation (see section 2.1.2) no longer applies. e discrepancy, however,
lies in a too small theoretical value of the single-particle level spacing ∆ϵ, not too
large spacing as would be the result if the quasi-1D approximation was no longer
valid.1

For a 300 nm long nanowire our simulations showed that full Wigner localization
was reached for two electrons. Furthermore, we could identify the onset of Wigner
localization for three electrons. Unfortunately we had no successful experiments to
compare to in this case, as it proved impossible to process such a long nanowire that
was clean enough. at is, instead of a homogeneous potential along the nanowire,
it became an effective double dot due to defects2.

Rashba spin-orbit coupling has been shown to enhance localization of electrons
in two-dimensional systems [15, 8, 72]. Spin-orbit coupling is not included in
our model, while the effect is considerable in InSb nanowires [60]. Nevertheless,
a rough estimate suggests that the spin-orbit coupling in the InSb nanowires con-
sidered in the paper (see ref. [61]) should not affect the localization significantly.
Proper inclusion of the spin-orbit coupling in our model is, however, necessary to
confirm that assessment.

1 A simple calculation also shows, that even for a 70 nm long nanowire we are still well within the
quasi-1D approximation.

2 H. A. Nilsson, private communication.
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My contribution — I assembled major parts of the numerical code and ran the
simulations. I prepared all the figures, except the experimental subfigures. I partic-
ipated in analysing the results and was the main responsible for the writing of the
paper. I did not take part in the experiments.

3.1.1 FURTHER WORK AND OUTLOOK

e good agreement between the simulations and the experiments on InSb nano-
wire quantum dots felt very encouraging. It was exciting to observe the onset of
Wigner localization, but nevertheless, we could not see full Wigner localization in
an experiment and were restricted to the analysis of only two particles. We there-
fore sought new systems, where we might be more successful. One idea was to use
InAs-InP heterostructure nanowires, as these could be made thinner than the InSb
nanowires at that time (50 nm instead of 70 nm diameter). Hence, one would not
need as long a nanowire quantum dot to observe Wigner localization: e sim-
ulations indicated that 200 nm would be enough. However, the nanowires bent
during growth [29]. Once that obstacle had been overcome, a new one appeared,
as the nanowires proved very hard to deplete (obtain no conductance electrons
in the dot). In the meantime, we had started thinking of more exotic quantum
dots: e clean and highly tunable systems of ultracold dipolar particles in optical
traps. e successful transport experiments by Brantut et al. [12] were a welcome
support to the idea. is led to the following paper, with new interesting findings.

3.2 PAPER I I – PART ICLES WITH TUNABLE
D IPOLE - INTERACT ION : TOTAL CURRENT
BLOCKADE

In this letter we studied theoretically a nanowire quantum dot with ultracold dipo-
lar particles. We demonstrated how it is possible, with a single system setup, to
cover the regime of Wigner localization, onset of Wigner localization, and even
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go to attractive interaction, resulting in total current blockade for a finite range of
the source-drain bias.

e tunability of the system is due to the nature of the dipole-dipole interaction,
whose strength varies with the tilt angle of the dipoles, Θ (see section 1.4 and
figure 2.1). e tilt angle is controlled externally by an electric or magnetic field
(depending on the dipole type), which allows the exploration of the different in-
teraction regimes within the very same system. Such tunability is, of course, highly
appreciated in an experiment, as it makes comparison of the interaction regimes
much more reliable.

As we tune the interaction strength, we have to be careful to observe the limitations
of our theoretical methods, i.e. the transport formalism (see section 2.3.1), espe-
cially with regard to the attractive interaction. Here, we studied transport through
a two-level system, including second order tunneling processes by using the 2nd or-
der von Neumann method (2vN). Our conclusion was that the couplings between
the reservoirs (leads) and the quantum dot must be sufficiently weak in order to
achieve the total current blockade. In other words, if the couplings are not much
smaller than the absolute interaction strength, pair-tunneling of particles sets in
and breaks the current blockade.

My contribution — I implemented the effective dipole-dipole interaction and ran
all the simulations, except for the second order von Neumann calculations. I pre-
pared figures 2 and 3. I was the main responsible for the data analysis and the
writing of the paper.

3.3 PAPER I I I – THERMAL B IAS ACROSS A
NANOWIRE : EXC I TAT ION EFFECTS

In this paper we showed how the appearance of excited states as fine structure in
the thermopower (Seebeck coefficient) at low temperatures, can be used to identify
signatures of the onset of Wigner localization in a quantum dot. e advantage of
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thermopower as compared to conventional conductance measurements3 (such as
in Paper I) is that one does not have to apply a high source-drain bias to determine
the excitation energies needed. ereby problems such as stray fields and sample
heating can be avoided. However, it is important to keep weak couplings between
the leads and dot, as higher order tunneling processes such as cotunneling and pair-
tunneling, suppress the thermopower between the Coulomb peaks [30, 75, 50],
thereby effectively erasing the signatures of excited states.

At higher temperatures (3kBT > ∆ϵ), the thermopower fine structure due to the
excited states is smeared out due to thermal broadening. e excited states, how-
ever, still affect the thermopower lineshape by suppressing it and shifting its zeroes.
is is an important observation, as an unexpected position of the thermopower
zeroes might well be misinterpreted as bad data.

My contribution — I implemented the temperature difference in the transport
code and improved its accuracy. I performed all the simulations and prepared the
figures. I was the main responsible for the data analysis and the writing of the
paper.

3.3.1 SCAL ING OF THERMOCURRENT PEAK HE IGHTS

Some findings never find their way into an article. Here I would like to present
one such result that I still feel that deserves not to lie forgotten: An interesting
scaling behaviour of the peaks of the thermocurrent.

One issue regarding thermoelectric measurements is that of thermometry: At low
temperatures (below 15 K) it has proven hard to measure the temperature of the
leads, TR = T and TL = T + ∆T , with sufficient accuracy [40]. e question
arose, if it is possible to extract information about the temperature of the leads
from the thermocurrent (current at zero source-drain bias). By simulating a large

3 Here the question might arise, why the excited states do not appear in the conductance (without
thermal bias) at low source-drain bias, if they appear in the thermopower. e answer is that the
excited states do affect the conductance in the blockade diamonds, but their effect is exponentially
suppressed and, hence, imperceptible [7].



44 Overview of the papers

variety of temperature combinations, T and∆T , we observed a curious result:e
peak height of the thermocurrent is approximately proportional to∆T/Tmean, where
Tmean = T + 1

2∆T is the mean temperature of the leads. is scaling may fail if
∆T > T , and if transport via excited states affects the thermocurrent (generally
only at high Tmean), as shown in figure 3.1. Note that our calculations only include
first order tunneling effects; higher order effects might break this scaling behaviour.
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(a) No excited states affect the thermocurrent.
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(b) Excited states disturb the peak scaling at high Tmean.
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(c) 2nd and 3rd peak pair of (b). Dashed curves correspond to calcula-
tions excluding excited states.

Figure 3.1 Scaled thermocurrent in an InSb nanowire quantum dot. The heights of the cur-
rent peaks scale approximately as ∆T/Tmean. Deviations from this scaling behaviour occur
in the case∆T > T (green and light blue) and at high Tmean if excited states affect the ther-
mocurrent. The thin vertical lines show the chemical potentials in the quantum dot involving
ground states (solid) and excited states (dotted). (a) Short nanowire: No excited states affect
the thermocurrent. (b) Long nanowire: Excited states disturb the scaling of the thermocur-
rent peaks at high Tmean. (c) A closer look at the 2nd and 3rd current peak pairs in (b). If
excited states are excluded in the calculations (dashed curves), the scaling of the thermocur-
rent peaks is restored as long as ∆T < T .
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DOUBLE QUANTUM DOT:

PREL IM INARY RESULTS

Serially coupled quantum dots are an active area of research. ose are realized, for
example, in heterostructure or finger-gated semiconductor nanowires [35, 32], or
in optical lattices [9]. e use of B-splines (section 2.1.3) enables us to investigate
such systems. In this chapter, the simplest case of coupled quantum dots – a double
quantum dot – is considered. Preliminary results on the possible reversal of the odd-
even size staggering of Coulomb diamonds in double-well nanowire quantum dots,
are presented. e parameters used correspond to an InSb nanowire of diameter
70 nm, but the results are general in nature.
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4.1 REVERSAL OF THE ODD-EVEN S I ZE STAGGER ING
OF THE COULOMB D IAMONDS

As described in section 2.4, the half-width of the Coulomb diamonds provides the
charging energy, i.e., the potential energy needed to add another particle into the
quantum dot. In absence of very strong interaction, an odd-even size staggering of
the Coulomb diamonds is common in quasi-one-dimensional quantum dots [65].
at is, the diamonds corresponding to an even number of particlesN in the dot
are larger than the neighbouring diamonds for odd N . is can be understood
from a constant interaction model: Many-body states are built by adding spin-half
particles into single-particle levels. Adding an even particle such thatN = 2n− 1

becomes N = 2n, an already occupied single-particle level is filled, and thus
only the interaction energy has to be overcome. Adding an odd particle such that
N = 2n becomes N = 2n + 1, on the other hand, requires adding a particle
to a new single-particle level that is higher in energy, and hence, it is required to
both overcome the interaction energy and the energy difference between adjacent
single-particle levels. erefore, a larger chemical potential is needed to add odd
particles to the quantum dot than even particles. Hence, the size of the even N
Coulomb diamonds is generally larger than that of the odd N diamonds.

Let us now consider two serially coupled quantum dots in quasi-one dimension,
where one dot is considerably smaller than the other. e double dot can be repre-
sented by a double-well confining potential, such as shown in the top right panel of
figure 4.1. We continue the discussion in terms of the constant interaction model.
e single-particle energy levels of the smaller dot will be higher in energy and
with a larger level spacing than the energy levels of the larger dot. Starting to load
particles into the double dot, it is therefore to be expected that the particles will
first populate the larger dot. However, the balance of the interaction within each
dot and between the two dots must be considered as well. e interaction within
the larger dot is weaker than that within the smaller dot, whereas the magnitude
of the interaction relative to the kinetic energy is greater in the larger dot. At some
point, the lowest level in the smaller dot is reached. Due to the larger interaction
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Figure 4.1 Upper panel: Confining potential of a single quantum dot of lengthL = 160 nm
(left) and a double quantum dot (right). The double dot is made by adding a gaussian peak
to the finite well confining potential of the single dot. The peak is located at z = 40 nm and
is of height 100 meV and width FWHM = 20 nm. Lower panel: Charge stability diagram
for the single (left) and double (right) quantum dot. Note that the odd-even size staggering
of the Coulomb diamonds is temporarily reversed for N = 4 and N = 5 in the double dot.
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in the smaller dot, the next particle entering the system might occupy the larger
dot instead of filling the energy level in the smaller dot. us the odd-even size
staggering of the Coulomb diamonds will be temporarily reversed, until the en-
ergy level in the smaller dot is filled. is phenomenon is evident in figure 4.1,
where the size of theN = 4 andN = 5 diamonds is swapped, when a single-well
confining potential is turned into a double-well potential.

e above analysis is further confirmed by the ground state probability densities
of the double dot, shown in the upper panel of figure 4.2. To assist with the in-
terpretation of the probability density in the larger dot, the probability density of
a corresponding (single) quantum dot is shown in the lower panel of the figure.
For up to three particles, the probability density in the small dot is zero. e pos-
sibility of occupying the small dot only arises when the fourth particle is added to
the system (the area under the density peak in the small dot is Asmall = 0.68 for
N = 4). For five particles, there is one particle in the smaller dot (Asmall = 1.00

forN = 5) and the probability density in the larger dot agrees with that ofN = 4

in the corresponding single dot. When the sixth particle enters the system, there
are two particles in the smaller dot (Asmall = 2.00 forN ≥ 6 and the probability
density in the larger dot hardly changes), turning the odd-even size staggering back
to normal. Subsequently, as the seventh and eighth particles are added, the prob-
ability density remains unchanged in the small dot, while the probability density
in the large dot resembles that of N = 5 and N = 6 in the corresponding single
dot.
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Figure 4.2 Upper panel: Probability density in the double quantum dot presented in the
right half of figure 4.1. Lower panel: To help with the interpretation of the probability
density in the larger dot, the probability density of a corresponding single quantum dot
(L = 110 nm) is shown. The confining potential is depicted as a gray-shaded background in
both panels.
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OUTLOOK

Quantum dots provide a rich playfield for investigating many-body physics at the
quantum level [65, 9]. We have come a long way, both in our theoretical under-
standing and experimental control of such systems, e.g. in semiconductors and
ultracold gases. However, there are always new questions to be answered, new di-
rections to take. Experimental techniques are refined and novel approaches arise.
Computers can handle ever larger calculations, and theoretical models and com-
putational methods are under constant development.

e model described in the thesis is quite versatile, regarding e.g. the type of par-
ticles, interaction, and transverse confining potential, and can, as such, be used to
describe many new systems. Most importantly, the model can be extended and im-
proved. An arbitrary longitudinal potential in the quantum dot has already been
implemented. An interesting example of employing this new feature, is to investi-
gate the effect of disorder on the thermopower in interacting ultracold gases [11].
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Another example of a non-constant confining potential, is to look into serially
coupled double quantum dots, such as discussed in chapter 4. A quite interesting
beating pattern has been observed in the conductance and thermopower of double
semiconductor quantum dots [28]. Here a smaller quantum dot provides an over-
laying Coulomb diamond pattern on top of the Coulomb diamonds of the larger
quantum dot, in addition to a slow modulation of the thermopower imposed on
a more narrow pattern by the larger dot. Furthermore, going beyond the double
dot would be an exciting possibility. For example, looking into periodic structures,
such as in one-dimensional optical lattices [9].

As discussed in section 2.5, higher order tunneling processes become prominent
in the thermopower at low temperatures and/or larger couplings. Including sec-
ond order tunneling processes by the second order von Neumann method [64]
would, therefore, substantially increase the applicability of the model. is is espe-
cially important if thermopower is applied as a characterization tool for nanowire
quantum dots. In that case, theoretical understanding of the eperimental data is
essential. Here, our model provides the strong interaction perspective.

Finally, including spin-orbit coupling could strengthen the model. Both semicon-
ductor quantum dots [33, 61] and atomic gases [42] can exhibit significant spin-
orbit coupling, leading to interesting effects, such as the enhancement of Wigner
localization [15].



A

EFFECT IVE SCREENED COULOMB

INTERACT ION

Consider a cylindrical nanowire of radiusR and dielectric constant εin, submerged
in a medium of dielectric constant εout, see figure A.1. e aim of this appendix is
to find the effective one-dimensional interaction of electrons along the nanowire,
valid in the quasi-1D approximation (see section 2.1.2). us we assume that the
wave function of the system separates

ϕi(r) = ψ0(x, y)ζi(z) (A.1)

R

"in
"out

z

Figure A.1 Cylindrical nanowire of radius R and dielectric constant εin. The surrounding
medium has dielectric constant εout.
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where ψ0 is the ground state in the transverse directions and ζi is the ith single-
particle orbital. Accordingly, as defined in eq. (2.7), the effective interaction be-
tween two electrons at positions z1 and z2, respectively, is given by

V eff
C (z1, z2) =

∫∫∫∫
dx1dy1dx2dy2|ψ0(x1, y1)|2|ψ0(x2, y2)|2vC(r1, r2)

(A.2)
where vC(r1, r2) is the interaction of the electrons in three dimensions.

In cylindrical coordinates, the ground state of a hard-wall cylinder of radius R is

ψ0(ρ, φ) =

{
1√

2πN0
J0(k0ρ) ρ ≤ R

0 ρ > R
(A.3)

whereN0 is a normalization constant, J0 is the zeroth order Bessel function of the
first kind, k0R is the lowest zero of J0, and E0 = ℏ2k20/2m is the ground state
energy, withm the effective mass of the electrons. e screened interaction of the
electrons in the nanowire is given by [53, 74]

vC(r1, r2) = vunscr(r1, r2) + vcorr(r1, r2) (A.4)

where

vunscr(r1, r2) =
e2

4πεin

1

|r1 − r2|

=
e2

4πεin

1√
ρ21 + ρ22 − ρ1ρ2 cos(φ1 − φ2) + (z1 − z2)2

(A.5)

is the familiar unscreened Coulomb interaction with e the elementary charge, and

vcorr(r1, r2) = − e2

2π2εin

∞∑
α=−∞

∫ ∞

0
dk

[
eiα(φ1−φ2) cos(k(z1 − z2))

× fα

(
εin
εout

, kR

)
Iα(kρ1)Iα(kρ2)

]
(A.6)
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is a correction to the Coulomb interaction due to the different dielectric constants
of the wire and the surrounding material, with

fα

(
εin
εout

, kR

)
=

(1− εin
εout

)Kα(kR)K
′
α(kR)

Iα(kR)K ′
α(kR)− εin

εout
I ′α(kR)Kα(kR)

. (A.7)

Here Iα and Kα are the modified Bessel functions of the first and second kind,
respectively, and I ′α and K ′

α are their derivatives.

Let us separate the effective interaction in an analogous manner to the two terms
in vC(r1, r2),

V eff
C (z1, z2) = V eff

unscr(z1, z2) + V eff
corr(z1, z2) . (A.8)

e effective unscreened Coulomb interaction is thus

V eff
unscr(z1, z2)

=

∫∫∫∫
dρ1dρ2dφ1dφ2ρ1ρ2|ψ0(ρ1, φ1)|2|ψ0(ρ2, φ2)|2vunscr(r1, r2)

=
e2

4πεin

1

4π2N4
0

∫ R

0
dρ1

∫ R

0
dρ2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

× ρ1ρ2|J0(k0ρ1)|2|J0(k0ρ2)|2√
ρ21 + ρ22 − ρ1ρ2 cos(φ1 − φ2) + (z1 − z2)2

. (A.9)

We make the following change of variables

k0ρ1 = k0Rr1 = κ0r1

k0ρ2 = k0Rr2 = κ0r2
,

φ̄ = 1
2(φ1 + φ2)

φ = φ1 − φ2

, z = z1 − z2 (A.10)



58 Effective screened Coulomb interaction

and note especially that due to the identity cos(θ) = cos(2π−θ), the integration
limits for φ̄ and φ can both be set to [0, 2π]. Hence, the integral over φ̄ simply
equals 2π, and we arrive at

V eff
unscr(z)

=
e2

4πεin

R3

2πN4
0

∫ 2π

0
dφ

∫ 1

0
dr1

∫ 1

0
dr2

r1|J0(κ0r1)|2r2|J0(κ0r2)|2√
r21 + r22 − 2r1r2 cosφ+ (z/R)2

.

(A.11)

For the effective correction term we find

V eff
corr(z1, z2)

=

∫∫∫∫
dρ1dρ2dφ1dφ2ρ1ρ2|ψ0(ρ1, φ1)|2|ψ0(ρ2, φ2)|2vcorr(r1, r2)

= − e2

2π2εin

1

4π2N4
0

∫ R

0
dρ1

∫ R

0
dρ2

∫ 2π

0
dφ1

∫ 2π

0
dφ2

× ρ1ρ2|J0(k0ρ1)|2|J0(k0ρ2)|2

×
( ∞∑

α=−∞

∫ ∞

0
dk

[
eiα(φ1−φ2) cos(k(z1 − z2))

× fα

(
εin
εout

, kR
)
Iα(kρ1)Iα(kρ2)

])
= − e2

2π2εin

1

4π2N4
0

∞∑
α=−∞

∫ 2π

0
dφ1 e

iαφ1

∫ 2π

0
dφ2 e

−iαφ2

×
∫ ∞

0
dk

(
cos(k(z1 − z2))fα

(
εin
εout

, kR
)

×
[∫ R

0
dρ ρ|J0(k0ρ)|2Iα(kρ)

]2)
(A.12)

where we have exploited that the integrals over ρ1 and ρ2 are identical and therefore
renamed the integration variables ρ1, ρ2 as ρ. Now, note that the integrals over φ1

and φ2 are identically zero unless α = 0, in which case the integrals equal 2π.
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Hence, the sum disappears and only terms with α = 0 remain in the integral. We
make the following variable substitution

kρ = kRr = κr

k0ρ = k0Rr = κ0r
, z = z1 − z2 (A.13)

and by inserting f0 from eq. (A.7) we thus find

V eff
corr(z)

= − e2

2π2εin

R3

N4
0

∫ ∞

0
dκ

(
cos(κ z

R)
(1− εin

εout
)K0(κ)K

′
0(κ)

I0(κ)K ′
0(κ)−

εin
εout

I ′0(κ)K0(κ)

×
[∫ 1

0
dr r|J0(κ0r)|2I0(κr)

]2)
=

e2

4πεin

2R3

πN4
0

(
εin
εout

− 1

)∫ ∞

0
dκ

(
cos(κ z

R)K0(κ)K1(κ)

I0(κ)K1(κ) +
εin
εout

I1(κ)K0(κ)

×
[∫ 1

0
dr r|J0(κ0r)|2I0(κr)

]2)
(A.14)

where we have used the identities I ′0(κ) = I1(κ) and K ′
0(κ) = −K1(κ), see

eq. (9.6.27) in ref. [62]. Due to the exponentially asymptotic behaviour of the
modified Bessel functions, it is often better to use the scaled modified Bessel func-
tions

Ĩn(κ) = e−|κ| In(κ), K̃n(κ) = eκKn(κ) (A.15)

in numerical calculations. Finally, we arrive at

V eff
corr(z) =

e2

4πεin

2R3

πN4
0

(
εin
εout

− 1
)∫ ∞

0
dκ

(
cos(κ z

R)

Ĩ0(κ)K̃1(κ) +
εin
εout

Ĩ1(κ)K̃0(κ)

×
[∫ 1

0
dr r|J0(κ0r)|2Ĩ0(κr)

√
K̃0(κ)K̃1(κ) e

−κ(1−r)

]2)
.

(A.16)
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In summary, the effective screened Coulomb interaction of two electrons separated
by a distance z in a quasi one-dimensional cylindrical nanowire of radius R and
dielectric constant εin, submerged in a medium of dielectric constant εout (see
figure A.1), is given by

V eff
C (z)

=
e2

4πεin

R3

2πN4
0

∫ 2π

0
dφ

∫ 1

0
dr1

∫ 1

0
dr2

r1|J0(κ0r1)|2r2|J0(κ0r2)|2√
r21 + r22 − 2r1r2 cosφ+ (z/R)2

+
e2

4πεin

2R3

πN4
0

(
εin
εout

− 1
)∫ ∞

0
dκ

(
cos(κ z

R)

Ĩ0(κ)K̃1(κ) +
εin
εout

Ĩ1(κ)K̃0(κ)

×
[∫ 1

0
dr r|J0(κ0r)|2Ĩ0(κr)

√
K̃0(κ)K̃1(κ) e

−κ(1−r)

]2)
(A.17)

where

J0(x) is the zeroth order Bessel function of the first kind,

κ0 = k0R is the lowest zero of J0,

N0 is the normalization constant of J0,

Ĩn(x), K̃n(x) are the nth order scaled modified Bessel functions of the
first and second kind, respectively.
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