
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Runtime Trade-Offs Between Control Performance and Resource Usage in Embedded
Self-Triggered Control Systems

Samii, Soheil; Cervin, Anton; Eles, Petru; Peng, Zebo

2010

Link to publication

Citation for published version (APA):
Samii, S., Cervin, A., Eles, P., & Peng, Z. (2010). Runtime Trade-Offs Between Control Performance and
Resource Usage in Embedded Self-Triggered Control Systems. Paper presented at Workshop on Adaptive
Resource Management (WARM 2010), Stockholm, Sweden.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/bee2ae4d-96df-4ecc-a007-e2a325f320f7

Runtime Trade-Offs Between Control Performance and Resource
Usage in Embedded Self-Triggered Control Systems

Soheil Samii1, Petru Eles1, Zebo Peng1, Anton Cervin2

1Department of Computer and Information Science, Linköping University, Sweden
2Department of Automatic Control, Lund University, Sweden

Abstract

During the recent years, researchers in control en-
gineering have proposed more resource-efficient con-
trol strategies than the traditional periodic control
paradigm, resulting in two main control approaches:
event-based and self-triggered control. Such nonperi-
odic, state-based control methods, although subject to
many open research problems, can provide similar con-
trol performance as periodic control implementations
but with less use of computation and communication
resources. An important research direction, which is
the central part of this paper, is to find new runtime
scheduling techniques to trade off control performance
with resource usage in self-triggered control systems.
We present in this paper the current state of our re-
search on scheduling of self-triggered control tasks un-
der the consideration of the control-performance versus
resource-usage trade-off.

1 Introduction and Related Work

Embedded control systems have traditionally been de-
signed and implemented as periodic tasks that period-
ically sample and read sensors, compute control sig-
nals, and write the computed control signals to actua-
tors [18]. Modern embedded control systems comprise
several control loops (several physical plants are con-
trolled concurrently) that share execution platforms
with limited computation and communication band-
width [6]. Such resource sharing is not only due to
multiple control loops but also due to other (noncon-
trol) application tasks that execute on the same plat-
form as the control tasks and, moreover, have time-
varying resource needs. The design goal is not only
to provide high control performance for the multiple
control loops by an efficient use of the resources, but
also to accomodate resources for the execution of other
application tasks. Since the resource requirements of
the application tasks are inherently varying during ex-

ecution, the system needs to implement resource man-
agement and runtime adaptation techniques that find
proper trade-offs between the resource usage and con-
trol performance of the multiple control tasks. Re-
search efforts have been made recently towards such
resource management of periodic control systems with
mode changes [4, 13] and overload scenarios [10, 3].

Periodic control tasks, which are common in many
embedded control systems, use the system resources to
sample and compute control signals independently of
the states of the controlled plants, leading to inefficient
resource usage in two extreme cases: (1) the resources
are used unnecessarily much when a plant is stable,
and (2) depending on the period, the resources might
be used too little to provide good control when a plant
is close to instability (the two inefficiencies also arise
in situations with small and large plant disturbances,
respectively).

Event-based control [16] is an increasingly popu-
lar approach that can achieve similar control perfor-
mance as periodic control but with less use of CPUs
and communication components [17, 14, 7, 5, 8]. In
such approaches, plant states are measured continu-
ously to generate control events when needed, which
then activate the control tasks that perform sampling,
computation, and actuation (periodic control systems
can be considered to constitute a class of event-based
systems that generate control events with a constant
time-period independent of the states of the controlled
plant). An important characteristic of event-based con-
trol is that other tasks executing on the same platform
as the control tasks can use the resources more often
than if periodic tasks are used to implement the con-
trol loops. While reducing CPU and communication
requirements, event-based control loops typically in-
clude specialized hardware for continuous measurement
or very high-rate sampling of plant states to generate
control events.

Self-triggered control [1, 15] is another resource-
efficient alternative that does not rely on specialized,

hardware-based event-generators but results in similar
levels of resource usage. Instead of reacting to control
events, a self-triggered control task uses the sampled
states and a model of the controlled plant to compute
at runtime a deadline on when the task needs to ex-
ecute again to achieve specified control requirements
(e.g., stability requirements). Since the deadline of the
next task execution is computed already at the end of
the task, a resource manager has, compared to event-
based control systems, a larger time window and more
options for task scheduling and optimization of control
performance and resource usage; in event-based control
systems, a control event usually implies that the con-
trol task has immediate or very urgent need to execute,
imposing tight constraints on the resource manager and
scheduler.

The goal of our research is to develop a software-
based approach for online scheduling and control-
performance optimization for monoprocessor systems
running multiple self-triggered control tasks, in con-
junction with other application tasks with time-varying
CPU requirements. This approach must be able to
at runtime find proper trade-offs between the control
tasks’ control performance and CPU usage, as well as
to consider the varying CPU requirements of other run-
ning application tasks. In addition, to be able to make
use of this approach, a worst-case analysis method must
be developed to verify at design time that the compu-
tation resources are sufficient to achieve stability of all
control loops in worst-case execution scenarios, assum-
ing in such situations that the resources are used only
by the control tasks. To our knowledge, the resource-
management problem at hand has not been elaborated
for event-based and self-triggered control in the litera-
ture of real-time and control systems.

The remainder of this paper is organized as follows.
Sections 2 and 3 describe the system model and self-
triggered control paradigm, respectively. Our problem
formulation is presented in detail in Section 4. We
present in Section 5 a brief outline of our scheduling
and resource management technique. Subsequently, we
outline in Section 6 our remaining research work and
expected results. Section 7 concludes the paper.

2 System Model

Let us in this section introduce the system model and
components that we consider in this paper. Figure 1
shows an example of a control system with a CPU
hosting several application tasks depicted with white
circles. The tasks are divided in two partitions: a con-
trol partition and a best-effort partition. The control
partition comprises a scheduler and three control tasks

τ2

τ1

τ3

Control
partition

C
PU

−
sh

ar
e

re
qu

es
tBest−effort

partition

D/A

D/A

D/A

P
1

y
1

y
2

y
3

u
1

u
2

u
3

P
2

P
3

D
ea

dl
in

e

ρ

CPU

Sc
he

du
le

r

A/D

A/D

A/D

Scheduler

Figure 1. Control System Architecture

Sampling

Actuation
Computation

Update
states

Compute
deadline

Figure 2. Components of the Self-Triggered
Control Task

τ1, τ2, and τ3 that implement feedback-control loops
for the three physical plants P1, P2, and P3, respec-
tively. The outputs of a plant are connected to A/D
converters and sampled by the corresponding control
task. The produced control signals are written to the
actuators through D/A converters and are held con-
stant until the next execution of the task. The tasks
are scheduled on the CPU according to some scheduling
policy, priorities, and deadlines.

The best-effort partition in Figure 1 consists of three
tasks that do not have strict timing constraints but
rather execute according to some scheduling policy
when there are computation resources available (i.e.,
when the control partition is not executing a control
task). Although the control partition has highest pri-
ority, the best-effort partition can provide a request
on the amount of CPU currently needed by its tasks.
This request can be used by the scheduler in the con-
trol partition to achieve a proper trade-off between the
provided control performance and CPU usage of the
control tasks. The best-effort partition receives its re-
quested CPU share only if the control tasks can achieve
sufficient levels of control performance with the remain-
ing CPU share—if not, the control tasks will use more
CPU time and give less to the best-effort partition.

3 Self-Triggered Control

We shall in this section present the self-triggered con-
trol paradigm [1, 15]. The general structure of the con-
trol tasks we shall discuss in this paper is shown in
Figure 2. The first execution segment comprises three
sequential parts: (1) sampling of the plant outputs,
(2) computation of the control signal, and (3) writing
the computed control signal to actuators (the plant in-

τ3

τ2

τ1

d3

d2

d1
t1

t3

2t = ?

φ
3

φ
1

φ
2

���
���
���
���

�����
�����
�����
�����

?

���
���
���
���

time

?

Figure 3. Scheduling example

puts). The second segment updates controller states
to be used for the next control computation (the next
execution of the control task). These two first execu-
tion segments constitute the traditional periodic con-
trol task, which can be scheduled with traditional real-
time schedulers for periodic tasks (e.g., rate-monotonic
or earliest-deadline-first scheduling [9]).

A self-triggered control task is responsible for trig-
gering its next execution time, which is decided by the
task itself depending on the latest measurements of the
plant outputs and the plant dynamics. This triggering
is done by providing a deadline on the next execution
to the operating system (the scheduler of the control
partition in Figure 1), which in turn uses this dead-
line to schedule the next execution. Thus, in addition
to the first two execution segments in Figure 2, a self-
triggered control task computes in the third execution
segment a deadline on when it must sample the out-
puts and update the control signal again (i.e., a dead-
line on when the first segment of the task must start
to execute again). This deadline is computed to satisfy
the specified control objectives, which usually are re-
quirements related to stability of the controlled plants.
Contributions to the computation of this deadline in
two different control contexts have been made by Anta
and Tabuada [1, 2] and by Wang and Lemmon [15].

The computed deadline is used as a constraint for
the scheduling of task executions in the context of
resource sharing among multiple control tasks. The
scheduling is done by the operating system, which
in addition to the deadline considers the CPU re-
quest of the best-effort partition and a proper control-
performance trade-off for the control-task partition.
This scheduling component of the control partition is
the main topic of this paper.

Figure 3 shows an example of the schedule at some
point in execution of three control tasks. At time φ2,
task τ2 finishes its execution and prior to that it must
schedule its next execution by computing its deadline
d2 and start time t2. We can see that tasks τ1 and τ3

have already executed before time φ2 (the dashed rect-
angles) and have consequently already scheduled their
next executions with start times t1 and t3, respectively.
The tasks in the best-effort partition are scheduled in

the time intervals in which no control task is scheduled
for execution. We shall come back to Figure 3 in the
next section.

4 Problem Formulation

Let us in this section have a detailed discussion of
the resource-management and optimization problem at
hand. Given is a set of self-triggered control tasks T
with index set IT. Each task τi ∈ T (i ∈ IT) imple-
ments a given feedback controller of a plant

Pi :
ẋi = Aixi + Biui

yi = Cixi

where the vectors xi and ui are the plant state and con-
trolled input, respectively. The continuous-time output
yi is measured and sampled in the first execution seg-
ment of τi. The controlled input ui is updated and is
held constant until the next execution of the control
task. Such linear models are commonly used in con-
troller design and synthesis. The controlled plant can
have additive and bounded state disturbances, which
can be taken into account by a self-triggered control
task when computing deadlines for its future execu-
tion [11]. The (worst-case) execution time of task τi is
denoted ci.

When a control task τi ∈ T has executed the control
segments related to sampling, control-signal computa-
tion, actuation, and state update, the task computes
a deadline di that represents the latest start time of
the next execution of τi. Upon completion of a con-
trol task, the scheduler of the control partition is trig-
gered to schedule the next execution of that task, given
the current schedule and the computed deadline. This
scheduling decision aims to achieve a proper trade-off
between control performance and the amount of CPU
usage of the control partition. The trade-off is not only
done between the multiple control tasks but also be-
tween the best-effort partition that generates varying
CPU requests during execution. The CPU cost of a
control-task execution relative to the provided control
performance is thus decided by the CPU requests from
the other running tasks in the best-effort partition (Fig-
ure 1 shows that the best-effort partition communicates
its CPU need to the scheduler of the control partition).

Let us now formulate the problem central to this
paper. Let us denote with φi the scheduled comple-
tion time (decided by the start time and the worst-case
execution time) of the current execution of a task τi.
Having computed the deadline di in the third execution
segment of τi (Figure 2), a scheduling constraint for τi

is that φi � ti � di. This constraint is to be taken
into consideration by the scheduler when placing the

next execution into the current schedule. This place-
ment must not only consider the computed deadline,
but also the CPU request from the best-effort parti-
tion and the control-performance trade-off between the
task and the other already scheduled control-task exe-
cutions. The placement of the next execution of τi in
the current schedule can be done in the idle times of
the CPU or by moving an already scheduled task for-
wards or backwards in time. This trade-off among the
control performance of the multiple control tasks must
be considered together with the resource usage, which
has a varying cost due to the varying CPU request of
other running application tasks. For each τj ∈ T\{τi},
we have the following properties:

• We have an already computed deadline dj .

• We have a start time tj (tj � dj).

• For each τk ∈ T \ {τi, τj}, either tk + ck � tj or
tk � tj + cj hold.

The placement of τi in the schedule (i.e., the determina-
tion of ti) might involve changing the current schedule
(i.e., changing tj for some j ∈ IT\{i}) and must there-
fore satisfy the following constraints for each τj ∈ T:

• φi � tj � dj

• For each τk ∈ T \ {τj}, either tk + ck � tj or
tk � tj + cj hold.

For example, in Figure 3, when deciding the schedule of
τ2, the scheduler considers the schedule after time φ2.
If another control task must be moved due to control-
performance trade-offs, it must be moved to or after
φ2.

The cost that we adopt for each control task τi ∈ T is
a linear combination Ji(ti) = wiJ

c
i (ti) + ρJ r

i (ti), where
wiJ

c
i is a weighted control cost (smaller cost means

higher control performance), J r
i is the cost of executing

on the CPU (executing a task later in time leads to a
smaller resource cost), and ρ is a time-varying param-
eter that the other noncontrol tasks on the CPU use
to communicate to the scheduler the desired trade-off
between control performance and resource usage. The
parameter ρ is sampled by the control-partition sched-
uler before any scheduling decision is taken. The given
weights wi are used to transform the control costs to
similar magnitudes as well as to indicate relative im-
portance of the multiple control loops. In Figure 1, the
best-effort partition changes the parameter ρ continu-
ously depending on the varying workload generated by
the running application tasks in that partition. This
means that the best-effort partition continuously pro-
vides a request on the current control-performance and

resource-usage trade-off. The costs are all functions of
the start time ti of the next execution of τi. The con-
trol cost for task τi ∈ T is defined in the time interval
[φi, di] as the quadratic state cost

Jc
i (ti) =

1
di − φi

∫ di

φi

xT
i (t)Qixi(t)dt,

where Qi is a weight matrix (usually a diagonal ma-
trix) that can be used by the designer to give different
weights to the individual state components in xi. Such
quadratic state costs are common in the literature of
control systems [18]. The start time ti of the next exe-
cution of τi determines the time when the first segment
(Figure 2) of τi executes (i.e., when the next sample is
taken and consequently the next actuation is made to
update the control input ui). The start time ti thus
affects the dynamics of the state xi in the considered
time interval [φi, di]. The CPU cost for task τi ∈ T is
defined in the same time interval as the linear cost

J r
i (ti) =

di − ti
di − φi

,

which models a linear decrease between a resource cost
of 1 at ti = φi and a cost of 0 at ti = di (postpon-
ing the next execution gives a small resource cost and
hence CPU time to potential executions of tasks in the
best-effort partition). Since the placement of the next
execution of a certain task τi ∈ T might involve moving
some of the other tasks, the objective of the control-
task scheduler is to find a schedule that minimizes the
cumulative cost of all self-triggered control tasks. This
cost is defined as

J =
∑
i∈IT

Ji(ti) =
∑
i∈IT

(wiJ
c
i (ti) + ρJ r

i (ti)) .

Thus, an already scheduled task execution can be
moved if this results in an improvement in the over-
all cost of all control tasks. For example, in Figure 3,
the scheduled execution of τ3 is moved to accomodate
execution of τ2, if that move results in a smaller overall
control and resource cost than if τ2 is scheduled in the
idle time intervals given by the current schedule at in
the time interval [φ2, d2].

5 Approach Outline

We shall in this section propose our scheduling method
for self-triggered control tasks. Let us consider the ex-
ecution of control task τi ∈ T and assume that it is
scheduled to complete at time φi (as an example, this
could be task τ2 in Figure 3). The most recent measure-
ment of the outputs of plant Pi is yφi

= yi(φi − ci).

The cost function Jc
i can be written as a function of

this last sample and the start time of the next execu-
tion of τi as Jc

i (ti) = yT
φi

Mi(ti)yφi
. The matrix Mi

depends on ti and has a complex closed-form mathe-
matical expression involving several matrix integrals.
We consider that this matrix is approximated numer-
ically by another matrix M̃i(ti) of polynomials, which
can be evaluated fast at runtime. Such numerical ap-
proximations are done at design time. Thus, the ap-
proximated overall cost to be considered at runtime by
the control-task scheduler is

J̃i(ti) = wiy
T
φi

M̃i(ti)yφi
+ ρ

di − ti
di − φi

.

Our scheduling approach is based on a golden-
section search [12]. For task τi, this search evaluates
J̃i(ti) for several values of ti ∈ [φi, di] towards the best
solution found by the golden-section search. The gran-
ularity of the search can be chosen depending on the
constraints on execution-time overhead of the sched-
uler.

When the golden-section search has completed, we
need to consider how its results affect the existing
schedule for the other control-task executions. If the
best ti is in conflict with the existing schedule, the
scheduler must decide whether to modify the current
schedule in order to accomodate the next execution of
τi at the best start time ti, or to use another value
of ti that is not in conflict with the existing sched-
ule. This trade-off is enabled by the fact that the
scheduler has already performed the search for the cur-
rently scheduled control-task executions. Thus, for
each τj ∈ T \ {τi}, the scheduler knows at runtime
the value of J̃j(tj) for several values of tj ∈ [φj , dj],
out of which the scheduler only needs to consider those
evaluated values in [φi, dj]. Some of these values are
then compared to find the best overall cost trade-off
possible with this proposed scheduling heuristic.

6 Further Work

We are currently working on finalizing the proposed
scheduling heuristic and implementing it in a simula-
tion platform. We plan to use this platform to validate
and evaluate our proposed approach. In the following
list, we summarize the remaining work to be done and
our expected research results:

• Assess the execution-time overhead of the schedul-
ing mechanism (deciding the start time of the next
task execution) and compare this to a periodic con-
trol strategy.

• Develop a design-time analysis method that can
determine whether the available computation re-
sources are sufficient to achieve stable control for
all controlled plants in worst-case scenarios. This
analysis does not need to consider the execution
requirements of the other application tasks in the
best-effort partition as the control tasks are al-
lowed to use the full capacity of the CPU to achieve
stable control in worst-case scenarios. In addition,
it must be guaranteed offline that, in every exe-
cution scenario, the scheduler is able to schedule
the control-task executions before their respective
deadlines—that is, to achieve stability—imposed
in the last execution segment of each self-triggered
control task.

• Perform experiments on various benchmarks with-
out a best-effort partition to measure the control
performance achieved by our proposed scheduling
heuristic. We expect to achieve similar control
performance as periodic control but with less use
of computation resources, including the execution-
time overhead induced by the proposed control-
task scheduler.

• Perform experiments on various benchmarks with
a best-effort partition with different CPU require-
ments. It is interesting to investigate how the
control-performance is degraded when the control
tasks share the CPU with other application tasks.
We expect to have no or little degradation for sce-
narios with some CPU request from the best-effort
partition. When ρ is increased even more, it is
natural to expect a larger degradation, but still
satisfactory control performance. Even if ρ is very
large, stability must be guaranteed at the cost of
not giving the requested CPU bandwidth to the
application tasks in the best-effort partition.

7 Conclusions

Resource-constrained embedded control systems, tradi-
tionally implemented with periodic sampling and actu-
ation, are emerging towards such adaptive implemen-
tation methodologies as event-based and self-triggered
control in which the control intervals are dynamic and
governed by the system state. Scheduling and resource-
management in such systems with several control loops
must be efficient both in terms of the provided control
performance and the amount of system resources used
at runtime. We have in this paper presented the current
status of our research towards software-based runtime
resource-management and optimization techniques for
embedded self-triggered control systems. We have out-

lined the remaining work to be completed and the ex-
pected results of our research.

Acknowledgments

The authors thank Prof. Paulo Tabuada and the other
members of Cyber-Physical Systems Laboratory at
University of California, Los Angeles, for hosting Soheil
Samii during a visit in 2009. The ideas presented in this
paper originated during that visit.

References

[1] A. Anta and P. Tabuada. Self-triggered stabilization
of homogeneous control systems. In Proceedings of the
American Control Conference, pages 4129–4134, 2008.

[2] A. Anta and P. Tabuada. On the benefits of relax-
ing the periodicity assumption for networked control
systems over CAN. In Proceedings of the 30th IEEE
Real-Time Systems Symposium, pages 3–12, 2009.

[3] G. Buttazzo, M. Velasco, and P. Mart́ı. Quality-
of-control management in overloaded real-time sys-
tems. IEEE Transactions on Computers, 56(2):253–
266, February 2007.

[4] A. Cervin, J. Eker, B. Bernhardsson, and K. E.
Årzén. Feedback–feedforward scheduling of control
tasks. Real-Time Systems, 23(1–2):25–53, 2002.

[5] A. Cervin and T. Henningsson. Scheduling of event-
triggered controllers on a shared network. In Proceed-
ings of the 47th Conference on Decision and Control,
pages 3601–3606, 2008.

[6] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and
K. E. Årzén. How does control timing affect perfor-
mance? Analysis and simulation of timing using Jitter-
bug and TrueTime. IEEE Control Systems Magazine,
23(3):16–30, 2003.

[7] A. Cervin and E. Johannesson. Sporadic control of
scalar systems with delay, jitter and measurement

noise. In Proceedings of the 17th IFAC World Congress,
2008.

[8] W. P. M. H. Heemels, J. H. Sandee, and P. P. J.
van den Bosch. Analysis of event-driven controllers
for linear systems. International Journal of Control,
81(4):571–590, 2008.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):47–61, 1973.

[10] P. Mart́ı, J. Yépez, M. Velasco, R. Villà, and
J. Fuertes. Managing quality-of-control in network-
based control systems by controller and message
scheduling co-design. IEEE Transactions on Industrial
Electronics, 51(6):1159–1167, 2004.

[11] M. Mazo Jr. and P. Tabuada. Input-to-state stability
of self-triggered control systems. In Proceedings of the
48th Conference on Decision and Control, pages 928–
933, 2009.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipes in C. Cambridge
University Press, 1988.

[13] S. Samii, P. Eles, Z. Peng, and A. Cervin. Quality-
driven synthesis of embedded multi-mode control sys-
tems. In Proceedings of the 46th Design Automation
Conference, pages 864–869, 2009.

[14] P. Tabuada. Event-triggered real-time scheduling of
stabilizing control tasks. IEEE Transactions on Auto-
matic Control, 52(9):1680–1685, 2007.

[15] X. Wang and M. Lemmon. Self-triggered feedback con-
trol systems with finite-gain l2 stability. IEEE Trans-
actions on Automatic Control, 45(3):452–467, 2009.

[16] K. J. Åström. Event based control. In Analysis and
Design of Nonlinear Control Systems: In Honor of Al-
berto Isidori. Springer Verlag, 2007.

[17] K. J. Åström and B. Bernhardsson. Comparison of pe-
riodic and event based sampling for first-order stochas-
tic systems. In Proceedings of the 14th IFAC World
Congress, volume J, pages 301–306, 1999.

[18] K. J. Åström and B. Wittenmark. Computer-
Controlled Systems. Prentice Hall, 1997.

