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Abstract

Ensembles of aggregates are important in the areas of aerosols and combustion

physics. This paper presents one approach to the absorption and scattering

of light from aggregates where the individual primary particles are small com-

pared to the wavelength, whereas the aggregate can be large compared to the

wavelength. The method is related to the Rayleigh-Debye-Gans (RDG) the-

ory. The di�erence is that the near �eld interaction between primary particles

is included and that the primary particles can have arbitrary shape, overlap

each other and have a space dependent index of refraction. Closed form expres-

sions are presented for the absorption and scattered intensity of an ensemble

of aggregates with random position and orientation. These expressions give

fast and accurate numerical evaluations of the scattering and absorption from

ensembles of aggregates. The numerical results are compared with the ones

obtained from the T-matrix method and the discrete dipole approximation

method.

1 Introduction

The Rayleigh-Debye-Gans theory is an important tool for applications where waves
are scattered from objects that are small compared to the wavelength. As long as
the material properties are linear it applies to all wavelengths. Even though there
are more accurate methods, the RDG method is often still preferred since it greatly
simpli�es the analysis and is considered to be accurate enough for many applications.
The RDG method is also an important tool for understanding the physics of the
scattering problem [18]. In the RDG-theory the objects are considered to be non-
overlapping spheres. The reason for this is that it utilizes the analytic closed form
expression for the polarization of a sphere in a constant electric �eld. For soot parti-
cle aggregates, the RDG theory gives inaccurate results for the scattered intensities
and the absorbed powers and this inaccuracy increases as the wavelength decreases.
The absorption was analyzed in [11], where the RDG method was compared with the
generalized multi-sphere Mie-solution (GMM) [19], which is very accurate for aggre-
gates of non-overlapping spherical particles, and an approximate method referred to
as the electrostatic approximation (ESA) [14]. For a sphere radius of 15 nm and a
wavelength of 1064 nm the ESA and GMM give quite similar results, whereas RDG
gives 1-5% errors. When the wavelength decreased to 532 nm the error for ESA is
less than 6 % and RDG gives an error that is twice that of the ESA. The drawback
of the GMM and ESA methods are that they can only be applied to aggregates
that consist of non-overlapping homogeneous spheres. This is a severe restriction
since real aggregates consist of overlapping primary particles, see e.g., transmission
electron micrograph (TEM) images of soot aggregates in refs. [18] and [4]. A more
useful method for determining absorption and scattering from aggregates is the dis-
crete dipole approximation (DDA) [6]. It is not restricted to spheres and can handle
in principle any shape of the primary particles. The drawback with this method is
that the averaging over an ensemble of aggregates is very time consuming.

In the paper [9] the RDG method was generalized to particles of arbitrary shape
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and inner structure. The polarization is then determined by numerically solving a
quasi static problem with the entire object in an external constant electric �eld. The
near �eld interaction between the primary particles is thus included. In this paper
the method in [9] is referred to as the generalized RDG (G-RDG) method. The
method was in [9] compared with good agreement with the T-matrix method [3],
[17], [1], [12]. In the case of non-overlapping spheres the ESA method and G-RDG
method are very similar, even though they use di�erent techniques. The G-RDG
method is in this paper applied to absorption and scattering from an ensemble of
randomly oriented aggregates. The averaging over an ensemble of aggregates with
random orientation is bene�cial for the G-RDG method and it can be used for a large
class of aggregates and wavelengths. In the numerical section it is compared with
the discrete dipole approximation (DDA) [6], and the T-matrix method for the case
of non-overlapping spheres and to DDA for aggregates that consist of overlapping
spheres. The G-RDG is accurate for aggregates of overlapping and non-overlapping
particles with radius 10 nm and wavelengths longer than 532 nm.

The numerical section considers absorption and scattering from ensembles of
aggregates that are identical. In a real case one has to take into account the fact that
an ensemble consists of aggregates with di�erent number of particles and di�erent
fractal dimensions. It was shown in [10] that even a small deviation of the structure
of an aggregate leads to large variations in the averaged scattered intensity, whereas
the absorption is almost una�ected. A large number of di�erent types of aggregates
require a very fast solver, such as the one presented in this paper.

2 Prerequisetes

Assume an ensemble of a large number of randomly distributed and oriented ag-
gregates con�ned in a volume V . The volume is illuminated by a monochromatic
linearly polarized plane wave with a wavelength λ. The volume V has three length
scales. The �rst scale is the diameter of the volume, which is much larger than the
vacuum wavelength. The second length scale is the typical diameter of an aggregate.
This is considered to be in the range 0.1λ − 10λ. The third scale is the diameter
of a primary particle, or monomer, of an aggregate. In this paper the diameter of
the monomers is considered to be less than 0.05 λ. The mean distance between
aggregates is very large compared to the wavelength.

Let xyz be a cartesian coordinate system with its origin at one of the aggregates.
With the time convention e−iωt the incident �eld reads

Ei(r) = êiE0e
iki·r (2.1)

where êi is a unit vector, E0 is a real valued amplitude, ki = kk̂i is the vacuum
wave vector and k = ω/c. The scattered electric far �eld from the volume is given
by

Es(r) = −k
2eikr

4πε0r
r̂ ×

r̂ × ∫∫∫
V

P (r′)eiq·r′
dv′

 (2.2)
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where r = rr̂ and
q = k(k̂i − r̂) (2.3)

The induced polarization P (r′) is de�ned as

P (r′) = ε0 (εc(r
′)− 1)E(r′)e−iki·r′

whereE(r) is the total electric �eld in the object and where the complex permittivity

is related to the complex refractive indexm as εc = εr+i
σ

ωε0

= m2. The factor e−iki·r

is added in order to remove the phase of the incident �eld in the polarization vector.
In the rest of the paper the complex permittivity is considered to be constant in the
aggregate. It is straightforward to generalize to a space dependent permittivity.

The time average of the scattered power �ow density, or intensity, is given by
the Poynting vector in the far zone

Ss =
1

2
Re {Es(r)×Hs∗(r)} =

η0

2
|Es|2r̂

where |Es| is de�ned by |Es| =
√
Es ·Es∗ and η0 is the wave impedance. The

normalized scattering intensity is given by

I(r) =
|Es(r)|2

E2
0

(2.4)

2.1 Co and cross polarization

The intensity can be measured in two perpendicular directions. The vectors k̂i and êi
in Eq. (2.1) are perpendicular and hence the three vectors (k̂i×êi, k̂i, êi) = (f̂ , k̂i, êi)
de�ne a right-handed cartesian coordinate system. Now introduce spherical coordi-
nates (r, α, β) with unit vectors r̂, α̂ and β̂, where r̂ is directed to the �eld point
and α is the angle between êi and r̂, i.e.,

r̂ = sinα cos βf̂ + sinα sin βk̂i + cosαêi

α̂ = cosα cos βf̂ + cosα sin βk̂i − sinαêi

β̂ = − sin βf̂ + cos βk̂i

(2.5)

The intensity is the sum of the co and cross polarization intensities that are de�ned
as

I = Ico + Icross

Ico =
1

E2
0

|α̂ ·Es|2

Icross =
1

E2
0

|β̂ ·Es|2
(2.6)

In some papers, e.g., [18], the notation IV V is used for Ico and IV H for Icross.
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2.2 Absorbed power

The time average of the absorbed power in the ensemble is given by

Wa =
1

2

σ

|ε0(εc − 1)|2

∫
V

|P (r)|2 dv =
1

2

ωIm{m2}
ε0|m2 − 1|2

∫
V

|P (r)|2 dv (2.7)

where σ =conductivity.

2.3 The aggregates

The aggregates that are of particular interest in this paper are soot aggregates
formed during incomplete combustion, cf., [18] and [4], even though the method can
be applied to other structures. The primary particles of an aggregate are sphere-like
particles that overlap each other. A commonly used model is that the number of
primary particles, NA, of an aggregate increases with the radius of the aggregate
according to the formula, cf., [2] and [13],

NA = kf

(
Rg

a

)Df

(2.8)

Here Df is the fractal dimension, kf is fractal pre factor, a is the radius of a primary
particle and Rg is the radius of gyration, de�ned as

Rg =

√√√√ 1

NA

NA∑
n=1

|rn − rmean|2

rmean =
1

NA

NA∑
n=1

rn

where rn is the vector to the center of primary particle number n. These fractal
aggregates are considered in the numerical examples.

3 Polarization P (r) and dipole moment p

It is clear from Eqs. (2.2) and (2.7) that the absorption and scattering problems
are solved once the polarization P (r) is known in the aggregate. The full wave
methods, like DDA, determines P (r) with high accuracy, whereas the RDG method
gives an approximate closed form expression. In this paper the method presented
in [9] is utilized. The polarization is obtained by solving a quasi-static problem. It
provides a solution that is more accurate than the RDG method and more �exible
than the full wave solutions. The polarization vector P (r) in the aggregate for a
space independent external electric �eld E0êi = E0(eix, eiy, eiz) can approximately
be expressed in terms of a polarization matrix P(r) as

P (r) = P(r)

eixeiy
eiz

E0 (3.1)

The polarization matrix is symmetric.



5

3.1 Numerical determination of P(r)

The method introduced in [9] of determining the polarization matrix utilizes the
�nite element method. The aggregate is placed with its center close to the origin. A
su�ciently large sphere, or cube, is placed around the aggregate. The diameter of the
sphere should be large enough such that it does not a�ect P(r), i.e., on the order of
ten times the diameter of the aggregate. First a space independent �eld E = (1, 0, 0)
V/m is applied and (P11(r),P21(r),P31(r)) are determined. The simplest way of
applying E is to let the potential on the surface of the sphere, or cube, equal −x.
Next the �eld E = (0, 1, 0) V/m is applied and (P12(r),P22(r),P32(r)) are deter-
mined and �nally E = (0, 0, 1) V/m is applied to obtain (P13(r),P23(r),P33(r)).
By solving these three quasi static problems the polarization matrix is known in
the entire aggregate. In the numerical section P(r) was obtained by the commercial
�nite element method program Comsol. It is then very easy and fast to obtain P(r),
even for a complicated strucure.

3.2 The dipole moments of primary particles

An aggregate consists of NA primary particles, with volumes Vsn, n = 1 . . . NA.
There are no restrictions on the shapes of the primary particles and they can overlap.
A polarizability matrix can be de�ned for every primary particle as

pn =

∫
Vsn

P(r) dv

In some applications the notation α is used for the polarizability matrix. The dipole
moment for the primary particle for the incident �eld Ei(r) in Eq. (2.1) is given by

pn = pn

eixeiy
eiz

E0 (3.2)

3.3 Averages of P (r) and pn

Consider an aggregate with �xed orientation. Let the direction êi of the applied
electric �eld E0êi alter over all directions and determine the average of the polariza-
tion along êi. This is equivalent to keeping the direction of êi constant and rotating
the aggregate in all directions. It is quite straightforward to see that the average of
the polarization parallel to the electric �eld is

P̃ (r) = êi
1

3
tr{P(r)}E0 (3.3)

where tr{P(r)} = P11(r) + P22(r) + P33(r) is the trace of the matrix P(r). The
averaged polarization in a direction perpendicular to êi is zero. By introducing the
matrix P̃(r) as

P̃(r) =
1

3
tr{P(r)}I,
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where I is the unit matrix, the polarization matrix, for a �xed orientation of the
aggregate, can be decomposed as

P(r) = P̃(r) + ∆P(r)

The polarization vector for a single aggregate with �xed orientation in a �xed ex-
ternal �eld can be expressed as

P (r) = P̃ (r) + ∆P (r) (3.4)

where the average of ∆P (r) over all directions of the external �eld E0êi is zero.
The averaged polarizability matrix is de�ed as

p̃n =
1

3
tr{pn}I (3.5)

or, equivalently,

p̃n =

∫
Vsn

P̃(r) dv

where Vsn is the volume of primary particle n. The polarizability matrix is decom-
posed as

pn = p̃n + ∆pn

where ∆pnij = pnij for i 6= j and ∆pn11 + ∆pn22 + ∆pn33 = 0.
The average of the dipole moment for the incident �eld in Eq. (2.1) is

p̃n = p̃n

eixeiy
eiz

E0 = êi
1

3
tr{pn}E0 (3.6)

The dipole moment of primary particle n for a given orientation of the aggregate is

pn = p̃n + ∆pn (3.7)

where ∆pn has zero average value for an ensemble of aggregates and is, in general,
not parallel with the incident �eld.

4 Scattering and absorption from a single aggregate

Again consider an aggregate with �x orientation. Without approximations the far-
�eld amplitude and the intensity are obtained from Eqs. (2.2) and (2.4), respectively.

In order to speed up the calculations one can utilize the induced dipole moments
pn for each primary particle and write the scattered far-�eld as the sum

Es(r) = −k
2eikr

4πε0r
r̂ ×

(
r̂ ×

(
NA∑
n=1

pne
iq·rn

))
(4.1)
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where rn is the position of the center of the primary particle. In terms of the dipole
moments the co and cross polarization intensities are

Ico =
k4

(4πE0ε0r)2

∣∣∣∣∣
NA∑
n=1

α̂ · pneiq·rn

∣∣∣∣∣
2

Icross =
k4

(4πE0ε0r)2

∣∣∣∣∣
NA∑
n=1

β̂ · pneiq·rn

∣∣∣∣∣
2

(4.2)

The absorbed power is preferably obtained from Eq. (2.7). It is not appropriate
to express the absorbed power in terms of the dipole moments, since that introduces
errors.

5 Scattering and absorption from an ensemble of

aggregates

The main results of this paper are the closed form expressions for the scattered
intensity and the absorbed power of an ensemble of aggregates. These results are
presented here and are derived in the appendix.

Consider the volume V with an ensemble of M identical, but randomly dis-
tributed and oriented, aggregates. The mean distance between the aggregates is
much longer than the wavelength and hence the phase di�erences between the scat-
tered �elds from the di�erent aggregates are random. The total absorbed power
equals M times the average of the absorbed power of one aggregate, where the av-
eraging is over all rotations of the aggregate. Since the distance between aggregates
is large and random the total scattered intensity equals M times the average of the
intensity of one aggregate.

Each aggregate in the ensemble consists of NA primary particles. The coordinate
system introduced in Eq. (2.5) is used. Then the co and cross polarization intensities
are given by

Ico(r) =
Mk4

32π2ε2
0r

2

NA∑
n=1

[
2

9
sin2(α)

NA∑
n′=1

(
tr{p̃n}tr{p̃∗n′}

sin(|q|rnn′)

|q|rnn′

)
+

3 + sin2 α

15
tr{∆pn∆p∗n}

] (5.1)

and

Icross(r) =
Mk4

160π2ε2
0r

2

NA∑
n=1

tr{∆pn∆p∗n} (5.2)

where rnn′ = |rn − rn′ | =
√

(xn − xn′)2 + (yn − yn′)2 + (zn − zn′)2, α is the angle

between r and êi, and q is the vector de�ned in Eq. (2.3). Notice that r̂ · k̂i =
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cos γ, where γ is the angle between r̂ and k̂i and thus |q| = 2k sin
(γ

2

)
, which is a

commonly used expression. One may use an arbitrary orientation of the aggregate
when these intensities are calculated. The results are, as expected, independent
of the orientation. If one cannot decompose the volume into sub-particles with
corresponding dipole matrices, then one can obtain the intensities by integration as
in Eqs. (A.11) and (A.12).

The absorbed power is given by

Wa =
MσE2

0

6|ε0(εc − 1)|2

∫
Va

tr{P(r)P∗(r)}dv (5.3)

Since the matrix ∆pn is symmetric, the explicit expression for tr{∆pn∆p∗n} is

tr{∆pn∆p∗n} = |∆pn11|2 + |∆pn22|2 + |∆pn33|2 + 2
(
|∆pn12|2 + |∆pn13|2 + |∆pn23|2

)
The same expansion is valid for tr{P(r)P∗(r)}. This means that the average of the
absorbed power is the average of the absorbed power for an electric �eld in three
perpendicular directions.

Equations (5.1), (5.2) and (5.3) are the main results of this paper and are derived
in the appendix. By using a �nite element method program such as Comsol it is very
easy and fast to obtain the intensities and absorbed powers even for complicated
structures. It is obvious that one can generalize the expressions to an ensemble that
consists of many di�erent aggregates.

6 Numerical results

The present method, a generalized Rayleigh Debye Gans method (G-RDG), is an
approximate method that has limitations. There are restrictions on the diameter
of the primary particles compared to the wavelength and on the fractal dimension
of the aggregate. As will be seen a wavelength of 532 nm and a diameter of 20
nm or less gives errors in intensities and absorption that are less than a couple
of percent for an aggregate of 20 particles, fractal dimension 1.8 and an index of
refraction m = 1.61+i0.59, [5]. The size of the aggregate can be extended to at least
one hundred particles. The errors increase with increasing diameter to wavelength
ratio and with increasing fractal dimension, and at some stage it is wise to switch
to a more accurate method. In that case the discrete dipole approximation is a
good alternative since it can handle overlapping spheres. The calculations in this
section have been done using the free software DDSCAT [7], for the discrete dipole
approximation, MSTM [15] for the T-matrix method and the commercial program
Comsol for the �nite element method calculations in the G-RDG method.

First the absorption from an ensemble of identical aggregates with random ori-
entation is considered. The examples are similar to an example in [11]. The �rst
example, see Figure 1, shows the averaged absorption for aggregates with fractal di-
mension Df = 1.8 and kf = 2.3, cf., Eq. (2.8), and 1, 5, 10 and 20 non-overlapping
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Figure 1: A comparison between the averaged absorbed power for the RDG
method, the G-RDG method, the DDA method and the T-matrix method for an
ensemble of identical aggregates, with random orientation. Each aggregate consists
of N non-overlapping spheres with radius 10 nm, kf = 2.3 and Df = 1.8. The wave-
length is 532 nm. All of the results are normalized with the absorbed power obtained
by the RDG method. The results from the T-matrix method are considered to be
very accurate.

spheres. The absorbed power is normalized with the absorbed power using the RDG
approximation, i.e.,

WRDG =
9E2

0Vaε0ωIm{m2}
2|m2 + 2|2

where Va is the volume of the aggregate. The T-matrix method, the discrete dipole
approximation, the G-RDG method and the RDG method are compared for the
wavelength 532 nm. The T-matrix method is known to give very accurate results
and its values are assumed to be correct, cf., [16], [12] and [3]. It is seen that the
error for the RDG-method is on the order of 10% when N > 10 whereas the G-RDG
method and the DDA method both have errors on the order of 2%. It is somewhat
strange that the DDA method is not more exact since it gives very accurate values
for the scattered intensities.

In Figure 2 the G-RDG method is compared with the RDG-method, the DDA
method and the T-matrix method. Again the results from the T-matrix method are
assumed to be correct. The aggregate consists of N non-overlapping spheres with
radius 10 nm and with kf = 2.3 and Df = 1.5. At 1064 nm the G-RDG method is
very accurate but as the wavelength decreases the error increases. At the wavelength
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Figure 2: A comparison between the averaged absorbed power for the RDG
(Rayleigh) method, the G-RDGmethod, the DDAmethod and the T-matrix method
for an ensemble of identical aggregates, with random orientation. Each aggregate
consists of N non-overlapping spheres with radius 10 nm, kf = 2.3 and Df = 1.5.
The wavelengths are 1064 nm, 532 nm and 266 nm. All of the results are normalized
with the absorbed power obtained by the RDG method. The result for DDA is only
shown for 532 nm. The results from the T-matrix method are considered to be very
accurate. Notice that the three curves for G-RDG almost coincide.

532 nm the error is on the order of 3%, which in most cases can be accepted. At 266
nm the error is on the order of 5%. The curve of G-RDG levels out and is almost
constant for N > 10. This is the same behavior that was noticed in [11] for the
electrostatic approximation (ESA) method [14]. In fact, ESA and G-RGD are very
similar for non-overlapping spherical primary particles. As mentioned before, the
drawback with ESA is that it can only be applied to non-overlapping spheres. The
RDG approximation gives a quite large error even at 1064 nm, which in accordance
with the observations that it underestimates the absorbed power, cf., [11] and [14].
The DDA method is very time consuming and is for this reason only shown for 532
nm. It is then slightly more accurate than the G-RDG method.

In Figure 3 the G-RDG method is compared with the RDG method and the
DDA method for the absorbed power for an aggregate with overlapping spheres, see
Figure 4. The radius of the spheres are 10 nm and the distance between two adjacent
spheres is 13.3 nm. The wavelength is 532 nm. This case can not be analyzed by
the T-matrix method since the spheres overlap. As seen above, the accuracy of the
DDA method and the G-RDG method are roughly the same at 532 nm. For this
case the error in the RDG-method is on the order of 15-20%, which in many cases



11

0 5 10 15 20
0.95

1

1.05

1.1

1.15

Overlaping, Kf=1.25, Df=1.8, wavelength=532

N

N
or

m
al

iz
ed

 a
bs

or
be

d 
po

w
er

 

 

G−RDG
DDSCAT
RDG

Figure 3: A comparison between the averaged absorbed power for the RDG
(Rayleigh) method, the G-RDG method and the DDA method for an ensemble of
identical aggregates, with random orientation. Each aggregate consists of N over-
lapping spheres with radius 10 nm, kf = 1.25 and Df = 1.8, cf., Figure 4. The
distance between the centers of two adjacent spheres is 13.3 nm. The wavelength is
532 nm. All of the results are normalized with the absorbed power obtained by the
RDG method.

cannot be accepted. The large error is due to that the polarization vector in the
RDG method is the one obtained from a single sphere in a constant electric �eld,
and that di�ers from the polarization of overlapping spheres.

Two examples of averaged scattered intensities are presented in Figures 5 and 6.
The intensities are the total intensity in the plane perpendicular to the direction of
the electric �eld of the incident wave, i.e., for α = π/2, see Eq. (2.5). The angle
on the horizontal axis �gures is the angle measured from the direction of incidence.
The intensities are normalized with the intensity at θ = 0◦, i.e., the intensity in the
forward direction. In the case of non-overlapping spheres, Figure 5, it is seen that
G-RDG, DDA and the T-matrix method give the same results for an aggregate of
20 spheres. In the case of overlapping spheres, Figure 6, the T-matrix cannot be
used, but it is assumed that the result for DDA is very accurate. As seen from the
graph the G-RDG method is also very accurate, even at 532 nm.
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Figure 4: The aggregate with 20 overlapping spheres used in Figures 3 and 6. The
radius of the spheres is 10 nm, the distance between the centers of two adjacent
spheres is 13.3 nm, kf = 1.25 and Df = 1.8.
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Figure 5: The averaged normalized intensity for an an ensemble of identical aggre-
gates, with random orientation. Each aggregate consists 20 non-overlapping spheres
with kf = 2.3 and Df = 1.5. The wavelengths are 532 nm and 1064 nm. The

scattering plane is perpendicular to êi, the angle is the polar angle θ between k̂i and
r̂.
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Figure 6: The averaged normalized intensity for an an ensemble of identical ag-
gregates, with random orientation. Each aggregate consists 20 overlapping spheres
with kf = 1.25 and Df = 1.8. The wavelengths are 532 nm and 1064 nm, the radius
of the spheres is 10 nm and the distance between the centers of two adjacent spheres
is 13.3 nm. The scattering plane is perpendicular to êi, the angle is the polar angle
θ between k̂i and r̂.

6.1 Run-time

The run-time for the di�erent methods di�ers a lot when it comes to averaging
over an ensemble of aggregates. The G-RDG is approximatley 40 times faster than
DDA, and the T-matrix method is roughly 200 times faster than DDA. The reason
that DDA is time consuming is that it needs to redo the entire calculation for
each rotation of the aggregate, and at least 125 di�erent angles are needed in the
averaging. The T-matrix method calculates the T-matrix for the entire aggregate
and this matrix is indepandent of the incident �eld. The averaging can then be done
analyticaly and leads to very fast calculations.

7 Conclusions

There are a number of di�erent methods that can be applied to scattering and
absorption from aggregates and a large number of papers are devoted to these prob-
lems, cf., the reference list in [18], [12] and [8]. In this paper the T-matrix method,
the discrete dipole approximation method and the RDG method are compared with
the G-RDG method. The T-matrix method is fast and can handle large aggregates,
but is restricted to aggregates made of non-overlapping spheres, which is a severe
restriction. The discrete dipole approximation can handle any type of aggregate but
is very slow when it is applied to ensembles of aggregates. The approximate meth-
ods have their advantages of being fast and easy too implement. Thus the RDG
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method, is often used since the scattered intensities and absorbed powers are very
easy to calculate. The drawback is that the errors already at quite long wavelengths
can be unacceptably large. The method presented in this paper is a generalization
of the RDG method, and in a sense also a generalization of the ESA method [14].
It provides an easy and very fast way to calculate the absorbed power and scattered
intensity from ensembles of aggregates. Thus one can use the �nite element method
and apply an external constant �eld in three perpendicular directions to obtain the
scattered intensity and the absorbed power for an ensemble of identical, but ran-
domly oriented aggregates. The numerical examples in this paper were obtained
using the commercial FEM-program Comsol. One can use other methods like in-
tegral equation methods, or even the quasi-static discrete dipole approximation, to
obtain the same results. The main advantage is that the method leads to simple
closed form expressions for the averages of absorbed power and scattered intensity.
The expressions have simple physical interpretations, which is of interest in the in-
verse problem where the parameters describing the aggregates are to be determined
from scattering experiments.

Appendix A

The averages of the scattered intensity and absorption of an aggregate are derived
in this appendix. To do the averaging, the aggregate is kept in a �xed position
in an xyz-coordinate system and the direction of propagation, k̂i, is altered over
all directions and the direction of the electric �eld, êi, is altered over the angular
interval [0, 2π]. This corresponds to a rotation of the aggregate over all Euler angles.
Before one can take the average one needs to express the three vectors (êi, f̂ , k̂i),
cf., Eq. (2.5) in the cartesian unit vectors (x̂, ŷ, ẑ). This is done by introducing the
spherical angles θ, φ and the angle ψ for the direction of the electric �eld.

The wave vector of the incident plane wave is given by

ki = kk̂i = k(sin θ cosφ, sin θ sinφ, cos θ) (A.1)

where θ is the polar angle from the z-axis and φ is the azimuthal angle from the
x−axis. The direction êi of the electric �eld of the incident wave is given by

êi = (ex, ey, ez) = ξ̂ cosψ + η̂ sinψ (A.2)

The unit vectors ξ̂ and η̂ are given by

η̂ =
k̂i × ẑ
|k̂i × ẑ|

ξ̂ = η̂ × k̂i

(A.3)
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A.1 Derivation of the intensities in Eqs. (5.1) and (5.2)

The normalized scattered intensity is given by

I(r) =
|Es(r)|2

E2
0

=
1

E2
0

M∑
m=1

|Es
m(r)|2 (A.4)

where Es
m is the scattered electric far-�eld from aggregate number m. All other

terms in the right hand side of Eq. (2.4) sum up to zero.
Since all of the aggregates are identical, one can obtain the intensity by altering

the directions k̂i and êi over all angles θ, φ and ψ for one of the aggregates, i.e.,

I(r) = M < I1(r) >=
M

E2
08π2

2π∫
0

2π∫
0

π∫
0

|Es
1(r)|2 sin θ dθ dφ dψ (A.5)

The scattered �eld is expressed in terms of the dipole moments by utilizing
Eqs. (4.1) and (3.7)

Es
1(r) = −k

2eikr

4πε0r
r̂ ×

(
r̂ ×

(
NA∑
n=1

(p̃n + ∆pn)eiq·rn

))
(A.6)

The average of ∆pn for the ensemble is zero and it is plausible that also the average of
∆pn(r)eiq·rn is negligible. Also it is assumed that the average of ∆pn·∆p∗n′eiq·(rn−rn′ )

is negligible when n 6= n′. It is seen that

r̂ × (r̂ × p̃n) · r̂ × (r̂ × p̃∗n′) =
1

9
sin2(α)tr{p̃n}tr{p̃∗n′}

where α is the constant angle between r̂ and êi, cf., Eqs. (2.5) and (2.6). The
intensity can be approximated by the following expression

I(r) =M < I1(r) >=
2Mk4

(4π)4ε2
0r

2

[
1

9
sin2(α)

NA∑
n=1

NA∑
n′=1

tr{p̃n}tr{p̃∗n′}

2π∫
0

2π∫
0

π∫
0

eiq·(rn−rn′ ) sin θ dθ dφ dψ

+

NA∑
n=1

2π∫
0

2π∫
0

π∫
0

|r̂ × (r̂ ×∆pn)|2 sin θ dθ dφ dψ


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When the intensity is split up in its co and cross polarizations this leads to

Ico(r) =
2Mk4

(4π)4ε2
0r

2

sin2 α

9

NA∑
n=1

NA∑
n′=1

tr{p̃n}tr{p̃∗n′}
2π∫

0

2π∫
0

π∫
0

eiq·(rn−rn′ ) sin θ dθ dφ dψ

+

NA∑
n=1

2π∫
0

2π∫
0

π∫
0

|α̂ ·∆pn|2 sin θ dθ dφ dψ


Icross(r) =

2Mk4

(4π)4ε2
0r

2

NA∑
n=1

2π∫
0

2π∫
0

π∫
0

|β̂ ·∆pn|2 sin θ dθ dφ dψ

One can simplify this further. Since q has a constant length |q| = k

√
2(1− r̂ · k̂i)

and should cover all directions one may write q = |q|(sin θ̄ cos φ̄, sin θ̄ sin φ̄, cos θ̄) and
then

2π∫
0

2π∫
0

π∫
0

eiq·(rn−rn′ ) sin θ dθ dφ dψ = 2π

2π∫
0

π∫
0

eiq·(rn−rn′ ) sin θ̄ dθ̄ dφ̄

The identities
2π∫

0

eiA cos(φ̄+φ0) dφ̄ = 2πJ0(A)

and

q · (rn − rn′) = |q|
(
ρnn′ sin θ̄ cos

(
φ̄− arctan

(
yn
xn

))
+ (zn − zn′) cos θ̄

)
where ρnn′ =

√
(xn − xn′)2 + (yn − yn′)2, can now be utilized. This leads to

2π∫
0

2π∫
0

π∫
0

eiq·(rn−rn′ ) sin θ dθ dφ dψ = 4π2

π∫
0

J0(|q|ρnn′ sin θ̄)ei|q| cos θ̄(zn−zn′ ) sin θ̄ dθ̄

= 8π2

1∫
0

J0(|q|ρnn′
√

1− x2) cos(|q|x(zn − zn′)) dx

(A.7)

Also the last integral can be solved analytically. To do this one may �rst realize
that the integral must be independent of the orientation of the coordinate system.
Thus in a case where xn = xn′ = yn = yn′ = 0 one must have that

1∫
0

cos(|q|x(zn−zn′)) dx =

1∫
0

J0(|q||zn−zn′ |
√

1− x2) dx =
sin(|q||zn − zn′|)
|q||zn − zn′|

(A.8)
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Then consider the general case. One may rotate the coordinate system such that
zn = zn′ and then ρnn′ = rnn′ . The integral has to give the same value which means
that the integral in Eq. (A.7) equals

1∫
0

J0(|q|ρnn′
√

1− x2) cos(|q|x(zn − zn′)) dx =

1∫
0

J0(|q|rnn′
√

1− x2) dx

From Eq. (A.8) one gets

1∫
0

J0(|q|ρnn′
√

1− x2) cos(|q|x(zn − zn′)) dx =
sin(|q|rnn′)

|q|rnn′

By using a symbolic manipulator the following expressions are obtained:

2π∫
0

2π∫
0

π∫
0

|α̂·∆pn|2 sin θ dθ dφ dψ =

=
8π2

15

(
(1 + 2 sin2 α)

(
|∆pn11|2 + |∆pn22|2 + |∆pn33|2

)
−(1− 3 sin2 α)Re {∆pn11∆p∗n22 + ∆pn11∆p∗n33 + ∆pn22∆p∗n33}
+(3 + sin2 α)

(
|∆pn12|2 + |∆pn13|2 + |∆p2

n23|
))

and

2π∫
0

2π∫
0

π∫
0

|β̂ ·∆pn|2 sin θ dθ dφ dψ =
8π2

15

(
|∆pn11|2 + |∆pn22|2 + |∆pn33|2

−Re {∆pn11∆p∗n22 + ∆pn11∆p∗n33 + ∆pn22∆p∗n33}
+3
(
∆p2

n12 + ∆p2
n13 + ∆p2

n23

))
However, since ∆p11 + ∆p22 + ∆p33 = 0 then
Re {∆pn11∆p∗n22 + ∆pn11∆p∗n33 + ∆pn22∆p∗n33} = −0.5(|∆p11|2 + |∆p22|2 + |∆p33|2).
This leads to Eqs. (5.1) and (5.2), i.e.,

Ico(r) =
Mk4

32π2ε2
0r

2

NA∑
n=1

[
2

9
sin2(α)

NA∑
n′=1

(
tr{p̃n}tr{p̃∗n′}

sin(|q|rnn′)

|q|rnn′

)
+

3 + sin2 α

15
tr{∆pn∆p∗n}

] (A.9)

and

Icross(r) =
Mk4

160π2ε2
0r

2

NA∑
n=1

tr{∆pn∆p∗n} (A.10)
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If one cannot decompose the volume into sub-particles with dipole matrices, then
one can obtain the intensities by integrations, as

Ico(r) =
Mk4

32π2ε2
0r

2

[
2

9
sin2(α)

∫
Va

∫
Va

(
tr{P̃(r)}tr{P̃(r′)∗}sin(|q||r − r′|)

|q||r − r′|

)
dv dv′

+
3 + sin2 α

15

∫
Va

tr{∆P(r)∆P(r)∗} dv

]
(A.11)

and

Icross(r) =
Mk4

160π2ε2
0r

2

∫
Va

tr{∆P(r)∆P∗(r)} dv (A.12)

A.2 Derivation of the absorption in Eq. (5.3)

The absorbed power is the sum of the absorbed powers of the aggregates in the
ensemble. Also here one can get this sum by averaging as, cf., Eq. (2.7)

Wa =
M

(4π)2

σ

|ε0(εc − 1)|2

2π∫
0

2π∫
0

π∫
0

∫
Va

|P 1(r)|2 dV sin θ dθ dφ dψ

=
Mσ

2|ε0(εc − 1)|2

∫
Va

|P̃ (r)|2 dV +
1

8π2

2π∫
0

2π∫
0

π∫
0

∫
Va

|∆P (r)|2 dV sin θ dθ dφ dψ


(A.13)

The integrals over the angles θ, φ and ψ can be solved analytically. The results are

Wa =
M

(4π)2

σ

|ε0(εc − 1)|2

2π∫
0

2π∫
0

π∫
0

∫
Va

|P 1(r)|2 dV sin θ dθ dφ dψ

=
MσE2

0

6|ε0(εc − 1)|2

∫
Va

tr{P(r)P∗(r)}dV

One may notice that tr{P(r)P∗(r)} = tr{P̃(r)P̃
∗
(r)}+tr{∆P(r)∆P∗(r)}, but the

latter expression does not simplify the numerical calculations.

A.3 A comparison with the RDG approximation

In the RDG method all primary particles are considered to be identical spheres
with the same dipole moments as a single sphere. By introducing approximations
to Eqs (5.1), (5.2) and (5.3) one can get expressions that resemble the expressions
for intensities and absorption for the RDG approximation. It is then assumed that
all of the primary particles have approximately the same volume, Vsn, and the same

dipole moment. One then introduces pav =
1

NA

∑NA

n=1 p̃n and use the approximation
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pn ≈ pav. The RDG approximation neglects the cross polarization and thus the
intensity is the co polarization intensity given by

I(r) = Ico(r) =
N2
AMk4

(4π)3E2
0ε

2
0r

2
(|p̃av| sinα)2

2π∫
0

π∫
0

S(θ̄, φ̄) sin θ̄ dθ̄ dφ̄

=
Mk4(|p̃av| sinα)2

(4π)2E2
0ε

2
0r

2

NA∑
n=1

NA∑
n′=1

sin(|q|rnn′)

|q|rnn′

(A.14)

where S(θ̄, φ̄) is the structure factor

S(θ̄, φ̄) =
1

N2
A

∣∣∣∣∣
NA∑
n=1

eiq·rn

∣∣∣∣∣
2

(A.15)

One advantage with Eq. (A.14) is that it includes the structure factor and hence
the theory described in the review article by Sorensen [18] can be applied. The
approximation of the absorption reads

Wa =
MNAσ

2Vsn|ε0(εc − 1)|2
|pav|2 (A.16)

where Vsn is the volume of a primary particle. The drawback with Eqs. (A.15) and
(A.16) is that they are quite inaccurate, even though they give better results than
the sphere approximation used in the RDG method.
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