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1.8

ON THE ACHYEVABLE ACCURACY TN IDENTIFICATION PROBLEMS

KoJ, Astrim

Lund Ingtitute of Technology, Lamd, Sweden

DETRODUCTION

When solving an identification problem,
o things are of major interest: to-obtain a
rexdel of the system and o cbtain an estimste
of the actwesy of wodel, To cbtain accuracy
eatimstes It is necsssary To put the problem
in a statistical framework. The identifica-
ticn problem can then be stoted as a statis-
tical entinmation problem. Having done this,
there are many results from stavistical esti-
mation theory that can be applied to cobtain re-
sults of practical value. In particvlar a lower
beasd on the ascuracy of the model is given by
the Cremée-Fao inequality {5}, By exploiting
this wellikiwen imequality we can thus obtain
the acourscios that could possibly De achieved
in any given situation. In this paper we pre-
gont formulas for estimating the accuraty of
an identificetion problem based on the Cramdp-
Bzt theorem, The results are of interest when
planning experdments on industrdal processes.

The probles is stated and the solution
iz outlined in section 2 of the papey. In sec-
ticn 3 we give the solution for discrete time
systems. The problem iz discussed with refe-
rence to the medimm likslihood procedure.
However, we also show how the results can be
applied to generalized lesst squares and mo-
del adjustment procedures (7). Continuous time
aystems are covered in gection 4 and in seo-
tion § we summapdize the results, outline va-
riows peneralizations and pive some aspects
o the cholce of model structures. This dis-
awmsion will further illuminate the properties
gf mxtigm Likelihood and least squaves proce-
m‘

STAIEMENT OF THE PROBLEM AND AN OUTLINE OF ITS
SOLUTION

Problem Statement

Consider a dynamiczl syatem whose inputs
aned outputs are observad. For the sake of sime
plicity in the presentation we will enly con-
sider single-input single-output systers. We
will analyse the following. o

Assume that the input u and the corve-
gponding ewtpnt v over 4 time interval are gi-
ven. How accurate can the ocefficlents of a
andel relating the Input u to the outpat ¥ bs
determinedt

To solve this problem we will use the '
following bosie resuits of Cranfe and Rso ().

Theovem  {Cremr-Rao)

let & he & yamdom vertor whose damsavy
function £O30) containg a set of parsweters |
82 ol , couy 8 ). Asmme that £ is conti-
mnus in 3 and conbinususly, differentiable
with respect 10 8 ¢ &. Ist & be an wnbdased
exbinate of 4, then

BE - o) - o) 5 5t (2.1

where J is the information matydx defined by

" T

J = E Z_-s Le {2.2)
end L = log £{x;9) and L, denotes the gra- |
dient of L with respect 1o 8. If f(x;6} is
twice contimeusly differentiable with res~
pect to § we have further
. T .

Ely Ly =~ E Lyg (2,3}
where Lg danotes the matrix of second order
partial Berivatives.

This theorsm is ususlly stated for the
case that the conponents x, of x are inde-
perdent samples of a vandoh variable in which
case the Punction £(x;8) has & simple form,
Thie does ngt Gover cupr problem. The actwal:
proof as given in {8] do however contadn t§e
results given above. The restriction that
is an unbiased estimate can be remowed with a
alight modification of the result {8).

To ebtain a lower bound of the accuvecy
of an identification problem we will thus pro-
ceed as follows: By meking suitable assumptions
the problem is first formdated as a statis-
tical pavemetsy estimation preblem. The loga-
rithm of the likelihood function L = log £(x;8)
associated with the estimation problem is then
computed, The infermation mitrix J is then
evaluated by taking mathematical expectation of
derivatives of the likelihood functicn, In the
following sections we will show how this is
carried out in detail for partioular cases.

Minimum Vardance Fatimators

The Cramér-Rac theorem gives a lower
bound for the coverdance of an estimatoe, T
is of course of preat practical value to con-
struct estimators for which the Cramér-Rsa
lower bound is achieved, In many cases the
maximm likelihood estimators will, at least
asyiptotically, have this by« Thers is,
however, 1o proof of this which is general
snough to cover the situstions that cecur in
comnection with process idemtification. The
{asymptotic) mindmm variance operty thug
has to be estsblished in esch particulsr case.

DISCRETE THME SYSTEMS
Main Result

Censider a linesr single-input single~
output system which ig governed by the egua-
tion

A5y yiey = BGEY) uttk + A otz™h) ett)
(3.1




where u i the input, v the output ard {eltd,
t & l}, #l? *23 eouc.} a gﬁzﬁm Qf imie};%e
dewt normel (0,13 rendom vardsbles. The vard-
sble elt) im independent of els) for s ¢ ¢
ardi ot} is alzo independent of y{i) and
ult=k}, Introduce z to denate the shift opeve-
e

2 ulty = wlt + 1) ]
and the polynomiazle A, B and € defined by

Aur = L+ At e ¥ aﬂrfx
i B h bt e T

Bx) = b * By ¢ brf‘
i 28 4 OX Yt ccae T OE
Clny = 1 g% o7

»hﬁ#ﬁ

4t is asgumed, that the fincticns
FRGCRY and ®°CGT™) heve all zervs inside
the wit circle, % will now investigate how
acourvte the parvwters of the model (3.1}
can be determined from obeservations of inputs
and eartputs of the medel, We intpoduce the

gymbal ©
g = (al, cery By 1::0, bl" ey bng
a2 the verstor containing all pevemeters to be
datermined except . If some pavenmsters ave
lowam or related to other paremetery they are
simply deleted in the vector 6.

_ Now assume that a sequense of inputs
{ufrd, £ =1, 2, .., N} and corresponding
ohsmwations of the output {y(t), t =2 1, 2,
cvog N} ave loown. How sopurate can the ooef-
. ficients 6 of the model (3.1) then be deter-
mined.

For this particulsr case {2} the loga-
rithm of the likelihood fundtien is given by

Sy o ..ﬁcn}

1 Vo2
Lom et Eo¢{t) - N log & + conat (8.2)
23T =l
PAHELE
ezl ety = AN ) - BGH ulek)
(3.3
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By taking derdvatives of €3.3) with respect
to the parameters we find - '

1.8

2

o Belt) , -4 vzl = ] ulteke1) + & £ ate-4
say A A

2y
whine the argumenta of &, B ané C are L,
(arpare yefsvance {2}, NHow take nsthe-
maticsl expsotation and we find

L, L m

al X
2 .

7 Ewéuu =
aeiah

& P

aeiaej

E

N
i E
t=l

3('3i

gelt)

-3
A Bﬁj

Introduce the variables

Az
%, (1) @ )
Cle "%

As the functicns 2 Ala™D) and & Cz™h)
have all zercs inside the wndt circle n,(t)
ardd x%g;) ave gtationsyy rendow and
we find for 1,3 = 3,8
N
£ B ox vy
Ni=l o

1

xift*t) = E :-:i(t} x_j(t"t) &
Z X‘ij(f)
whare r,, (1) is the covardance finction of

%, () ®, (€} for i, = 3,4, We furthar
iftroduce ﬂmtatiam ’
M 1 . -
L fx) B = R ) .33 1,2
z‘l} {1} = " t:E. xz(t) xjtt*t i.3 .

and wa then £ind that the informstion matrix

for the paramiter estimacion problem asso-
ciated mthﬂmmdel (3.1} can be exprvssed

i Ny 6
T Yo as
g | & N g ¢ )
ba b
g, 0 i, O
0 8- o | Gw
R el




1.8

whern
M . «2_ N, . s 5
fvjm )ii = Nia ryy (433 + raa(l-wj))
B M =% Moo .
{Jab }ii ER Y Ty (i3

Woohis = = oy lieh)

Z

H - Ho, .
{, E3 3 -
(o }'.i.j R AT gy, (=30

ooty * TylieD)

&y
Y
Ypa * Yo

J "'Iat’x

How asoume that the quantities u(t)
and ult} (e + ) o Qesaro swmable i.e.
that e Sfollowing Yimbts exist

)il

dm = ¢ wly)
Hos N o}

1 ¥
Im = B oult) ult ¢ 1) {3.51
Wy H 4= :

e _fact that the functions 2'AC)
and 7 00z ) have sllvercs inside the wnit

oirdle then baplies that the limits
- K . s

I e “ = . & »)
p:.ﬁ ”"ig (%} .(’L,j{?} 3. = 142

exist,

Sumarizing the rasults and applying
the Cremfr-Roo theorem we find,

ihegrem 1

Azvume: that the Linits (3.5) exiet. The
covariance matrix of the estimstes of the
paremeters of the medel (3.1) is then boundad
by the insquality '

¢ ATy BRPTLIN

?:aﬁ; the information matrix J is given by

_ Hoties that the thecrem anly gives &
o hownd for the accuracy of the para-
mater estimates. Having obtained the in-
formation matrix, two problems then yemains:
o consbruct an estimator agd to investi-
gate whether the lower bound s actually
achieved for that egtimator. For the par-
ticular model (3.1} we bave in an earlier
paper {2} constructed an estimator which at
least asymptoticslly hae the mindmee varisncs.
The acourdey (standsrd deviation) of the
pevamster 8, ds thun bounded by the square
root of the™lith diagonal of the informatice

matpin J f.a, §J }ii‘

W

oyl = A

An analysis of the infermation matrix
gives a good insight into the identificaticn
problem. If the mayix is singular there arve
too many pavemeters in the problem and only
linear combinations of the paraneters can be
egtimated. :

Hotice that the slements of the infor-
mation matrdx ave corposed of two types of
terms. One term depends only on the charace
teristics of the disturbance ard the other
teym depends on the input sigral. I is thus
possible to dnvestigate the influence of dif-
ferant input signels on the accuracy of the
pareneters.

The infermation matrix can be computed
in gseversl different ways. For simple problems
involving systews of low order it ean be oo
puted by residue caloulus. We obaerve e.g. that

N Y T
2mi »

g 8l hy e b ag
%1 -

r..{rd &
3(3

3
r:m('f) =

Py () 2 ;%I $ el oy ¢ ae

2

For functions such that ohulti] <
Pargevals theoram i.a.
Eowlt) yle) s 2 g x0ey veeh ot g
=02 ) 'Zgi

vhepe

ey = &
. =0

¢

E.'“t wit)

is sometimes weful to compute the terms
Typs Pys and Toge 7
When analytical computatien iz not

feagible the information matrix can be com-
puted in a straight forward way if we chsarve
that it follews by Parsevals theovem that
raaltd & T alt) alt + v

't:‘:ﬂ -
where alt) iz the impulse response of the
dynarical system e

Azl ate) = 0

Bmple 1
Consider a stationsry normal rarviom

process {y(t)} generated by

zte

2+ &

et}

_ (3.8)

where {2(il) is a ssquence of independent
rormal N{0,1) rendom varisbles. lkw accurate
esn the paveneters a, ¢ and L be estimeted
from N olwervations of y?
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We have Introducing the numerdcal values a & ~0.5,
. “+ a c= 0,5 and A w1 we find
£{t) =SS wlt) r~ 3
zte i 133  -80 o |
s ; } g A0 g0 1m !
e p s ylg) 5 B alt 100 .
et z o 3+ L 0 ] 20.1‘;
, . - 7 -
"‘%E_ P __v_:g;w E(t) o - ‘..«.ll._m, ﬁ(t) - 100 0.612 0;007 1}
T Z+ e o \ 1 0,007 0.012 0
N ; e
et L 0 i) 9.00::-;:
ST N S G G For N = 100 ard N = 500 we thus get the fol-

2 J.n:mng standard uevxatmm of the minimum

s ei. © {a¥a)(ltaz) i-a srisnce estimates of the parameters
. . . 2 2
medEyedy 2 L Al A £ o 6 = 0.1 {0.05)
32 o 231 7 (ztal{litcsn} 1 - ao “
. 9 4, © 0.13%  (0.95)
S TN N S TR :
20 i 4 (Z*C}{l*ﬁm} 1 - c2 ﬂ)‘ = Q.07 {Gaﬂﬁ}

In table I we give the results of some rumeri-

ared the information metris becoves cal experimants.

LA -1 7, _’?g@}e I
i a?' 1 - e I dinimen veriance estimstes of the pare-
: , m‘cem af mdel (3.6}
e e —dy 0 smle N a8 i
Ploe oae le-a | HRIpSE i
i3 160 -0,35% 0.66% 3,850
a 1] " _l 3 100 i1, uhg 0,561 1.036
- 3 100 ~3.352 G.571 1.6ag
i ~ N
The covardiance matrix of the estimates is g ,‘;25 _g :gg’ g rzgg g’ggg
thus bounded by 8 100 ~0.387 0,571 1.058
I 7 104 (1 &LE G481 0.889
.2 Y - TR g 100 «0,522 0.54§ 0.91&
% él""\:ﬁ }{l“ciﬂ) (l"’ﬁ. }{«}-—"C ;{l"'l‘ic) IS I lUD "ﬂ."ﬁ%a 0,“4'&2 u‘gbg
| {a-c2® =) 10 00 0614 G4 0,972
ytd 3 5 it 500 -0.511  0.516  0.953
* b Llea 310"} (emnd (lmc }(lua(.i“ a :
: {amc"iz d~<.) Tre results of the numericsl evperdment
‘ ” are also illustrated in Fig. 1 where the es-
| g 3] 15/ timates are plotted tegether with the concwn-

- tration ellipsoid.

. fhe information matrix J can be diago-
The standard devistions of the pavemsters are naiized in the follmng Wy

thes bowmded by - B

60 o T 110

a—— ' 1 -1 of]ss

. 2 *
o » Eom.8C ho-g g1 1 0all o ;3 0 !»1 106
 ase N ow 200 ‘ '
: N 0 0 1 oaaan!snrﬂ
] [ 7" -
g, * ko ‘il“c , Tnis implies that the lirear cobina-
= a -~ "\i, M ?ma+canda-caanmestmg_tﬂm"h
eren standard deviations boamded by $200/53N and
e » 1 |2 {200/213N respectively. Compare Fig, 1.
A \!N We bave thus seen how theorem 1 ¢an be

applied to a lower bound of the accuracy of &
parameter estimation problem. We will new de-
mpstrate how the results can be applied to
wther idemtification provedures. -




fwpiication to fenmeralized Least Squares

In the gereralized least squares mro-
cechpe {73, {9}, {12} a linesr model is
fitted o filtered input-cutpot data in
such 4 way that the deviation between the
Filiered process output and the cutput of
the model is as mmall as possible in the
penge of least squares. let the input sig-
ral be u, the process output be y, dnd
let the filter e characterized by the
operator G. The gereralized leaslt squares
prossdures can then be fopwulated as fol-
lowz. Find the woefficients of the poly
roials A and B such that

E‘!
o1
in mindnum, wheve

S
L

g7t

(e = aleY) (567 yeed - Ba™h

Gz wtn) (2.7

a

Henee

G et = AT vt - Bz ulw

: {3.7)

If it is now assumed that the process
iz aribually governed by a linear model and
that the residuals are a sequence of inde-
pendent normsl N0,)) rardom veriables we
£ind that the genevalized least squares
procadures is identicsl te the paremster
estimtion preblan stated jn section 3.1.
We can further identify ¢ with €. Henee
estination of the paremeters of tha wmodel
(8.1} ia equivalent to a genevalized least
sguares method whare we simtltansously es~
timate the hest filter to be used in the
gevvralized least equares prvcedupe, With
The above assumption the resulis of seotion
3,1 can thus be applied to the generelized
least squares procedure,

fpplication to Model Adiustient Techwique

Coneider a modsl a&jmtﬁmé procedure
{4}, {7} vhere a linear model

=1
Bz 1 weo

v (1) = o
m Az "}

(3.8)

is adjusted to measured Input-output data.
The colafficients of the model A, B ae ad-
justad in such a way that the arror

6kl = y(ir - ymvc)

is 2z =ll os possible in the sense of least.

"eguarea. IF 1% 38 now apsummd that the in-
Pt cutput data is generated by @ process

of the type (3.8) and that the deviations.
between Pha cutputs of the process and the
nedel aee ir dent nogmal vandom verdshles
we Find thet the model adjustomt procedure
=an he interproted as the following pare~
matver entimation problem.

1.8

Conmider a process
ety = 2u) 41 e

where {e(t)} are noomal (0,1) rendar variables
Determined an estimate of the cosfFicients of
A, B from an chservation of the inputs {u(t),
t = 1,2... .M} and the corresponding cutputs

Aple¥, + = 1,2;...,H). Thiz is wever the

pereneter astimation problem that was discus-
sed in section 3.1 with € 5 A, and the results
of section 3.1 can thus be gpplied. If the
deviations between the cutput of the process
and that of the model are ot independent it
is possible o introduce a filter in the same
way a8 was done in the generwlized least
squares procadure. '

CONTIRUOUS TIME SYSTEMS

We will now extend the remults of sec-
tion § to continucus tine syetens. The model
(3.1) then has to be substituted by & stochas-
tie differential equation. In the analysis we
then have the usual difficuities assoviated
with those tions. Spave does not permit a
conmpletely i?;mus'analysz‘fsﬁ 80 we will pro-
ceed heuristically using delta funetions, Cone
sider g linsar single input single output sys-
tem governied by
Alp) w(t) = Blp) ult) + & C(p) eltd €%.13
where u s the imput, v the cutput ard 2 white
gaussicn noise )

Eelt) eft + 1) = &{x)

The gymbol p denores the derdvation opsvator

PROR e
L. at
and 4, B and C are polyrcomials
M + L,
Als) =8 + a8 o tag
- 3 n-1,
Blg} = bs' + by Pt b
.n 2 8 Y
Cle) =8 + o8 ~ % .0 ¥ g,

It is sssumed that functicns Als) and C(s) have
&1l zerus in tha left hall plane. We will now
investigate how accurate the paranmeters of tha
model (.1} can be determined frem cbserva-
tione of inputs {ul(t), 0 ¢ t # T} and outputs

“iydtd, 0 £ t 5 T, Following the procedurs,

outlined in section 2 we first have to deter-

‘mine the likelihood function., Acpording %o

- by

frato {1} and Striebel {11} we Find that the
logarithm of the likelihood fimction is given

T
f e2
el

"
n?

) dt ~ T og A+m§.
(4.2}




whers
Cip? eft) = Alpd yit? - B(pd uftd) .3

Mo proceeding in the sane way as we did
in section 3 we get

L. 3 2oty at + B
e " o
2‘ 7 T e f4}
L. :i,; P oty 2ESEL g (4,53
gaes, A 0 30,
L2 . T .
B .k ¢ Feln) | BeQiE o
56, 36, PR 88, 38,
A J
1 ¥ ] i:tf}
- £ oeled - {i5.5)
Ao o, aej

where 6 denvtes all parameters of (4.1}
eACEpt A.

e -3
opy £ = Py
8.
3
« e
elpr Ei = o~ @
Dy
2e =1
Dlpr T 2 g e
Aci
| where 9 = {8y 50 vast 1 b,;,..lhn,cl,..w 3.

If the stochistio différential equation is
defined properly the mathematical expecta-
tion of eguation (4.4} and of the last term
of (4.5} will vanish and we get

2

gL 22
Al 3
3Lk . g
3326,
1
2 1% aelt)  selt
o T = IR geLh)  SEMED
20, 36, PR 1) 20,
A Jd

Introduce the veriables

:{1 e _.,4}.3..(32}__.,_. w
Alp) Clp}

x’j = —wv:!-'-ﬂ v

” lp)

j{g = ..-:JT.-‘ @
Alpd

#y = A 2
141§5D]

Ag the functions Als) amd C(s) have zercs only
in the left half plane x are thus ste-
tionary gauseion prmessgs and 3& find

o\ _ s . s
E ! { n"lxk)( xh)dt = (-1 iy pzn‘l ]:‘M(m
k,2 & 3,4 {W,6

where

}\I'I) S E.xk(t) % {t % )

If we further introduce

1% T

7 ‘J;xket‘-:} xlit + 1) dt e iy 18]

we Find that the information mateix can be
expressed ds

© g 7 7]
S R B
T T ¢
i, 0 I, O
i 2
o 0 6 21

vhere the elemenis of subsatrices such as Jg,
are eaally camputed from (4,63 in full ana-
logy with the discrete time cage. This result
cures the obscurity of {10} for miltipars-
meter systens. Analogous to the discrete time
cane we can agsin use Parsevals theorem and
cplex function theory to evaluate the ele-
ments of the informeticn matrix.

CONCLUSY

Given a partioular model of a dynamical
system we have shoun how accursite the pare-
meters of the model can possibly be deter-
mined by an identification pmemmea Xt was
a congequence of the {ramiy-Rao mequal:zty
that a loser limit to the covarisnce of the
perameter estimates was given by the infor-
mation matrix. We have shown in detail how to

evaluate the information matrix in typical

cages. The results cbtained can also be ex-~
tended to ronlinear systems with a known
structure. Notice that the results ave given
in terms of lower limits. It then remains to
congtruct the estimators and to investigate
whether o not the lower limdts are actuslly
achieved for a particular estimator. Alzo no-
tice that the resul*s are hased on tha asswrw
tion that the model is lnown eig. from a prio-
i lowowledge or from results of procsss mea-
suremants. A sensitivity study often reveals
that the results do not depend critically on
the model terg. The results have been
sucoessfully applied to the determination of




procegs dynamics In cases where approximative
werdels have been avalilable from pilet ex~
rerdpente. Ia particular the results have
prswen useful to analyse the relative serits
of diffevent input signals in situations
where sxperirents st be performed durdng
newstasl. operation, and 3t iz of extreme im-
portence to keep process vardsbles within
strict Limits duping the J&?ﬂl‘l!mt.

It should alse be noticed that we
assume that the sbruchure of the systen
i given. This is peobably the most re-
stricting aseumption at least in the case
whare the rodel is determined by messure-
ments o the process. Henoe dn oarder to
apply the regults we mwet first ensure that
the system has the corvect structure. IF
this :s aot done properly s serioue mintakes
zan be made. We will not discuss this in
g&rmﬁl It we will illustwate what cah
happen in & particlar cage.

*'wr:gde** & sampled lm&er single-
inpat aingle-output aysten with 2 tine de-
lay that is an inveger of the sampling
interval. The Imput output relation can be
deseribed ag followa

(5.13

Bevsnga of Ammx’:..w the disturbences can
e represented ag an cguivalent digtue
banes d0t) in the output

L1 « =1 ‘
yixy = éi’gffl wlt - kK + afed (6.2}
A"z ")

IFf the disturbanoe d{t) is a etationary
vandom provess with & rationsl paer spec-
irel density it can always he yepresented as

Afty w ) Tt ef{t) (5.5}

where {elt), v = 0, =1, €2, ...} iz 4 ge-
guence of ngmdem* equaﬂ.y distwibuted
randomn vaiuables‘ The polynomials C”(z-)
and D70} can alyays bec.-}%emg-':‘thau the
Bmetions 20 7z and 2% D7(2™Y) have no
wexos outside the uwit circle.

”m‘::mue.mg 5.3} into (5.2} and
writing the two terms on common dencming-
tors we thus find that the input output
relation can be described by the following
wxdel

By wit-k} + A ¢ e(w)
(5.4)

als } wit) =

The special case € = 1 i.e. .
a0z y(t) = BGz™Ly utt-ky ¢ x ety (5.5)

can be interpreted as the special case of the
disturbance being an autoregression.

1.8

- For lineay systess we thus have at least

mo nodelstouctures mpr@sentad by {&.%) and

(5.5} vegpectively. As a spectral dm‘sity can
be appmx"j):mted by a vatignal fmct.m as well
as by a polynordal, there sre mo principsl
differencen between the models (&.4) and {5.57.
Consider e.g. the input output date sheem in
Fig, 2. This data was Lamvst@:‘x from the re-
sursive eguation

gty = L.5y{e-1) ¢ 0. 7y(4-2) = ult-1} +

3. 8ult-2) + alt) - aft-1} + 0.2el(t-2} (5.6}

If & seoond oxder model having the
structure (5.8} is identified wa get the
foliowing crefficients. The true paramters
values ave shewn in brackets.

a = - L25¢0.07 (~1.50)
a, = OM7 £ 0.07  (40.70)
by = 0.83 % 0.16  { 1.00)
B, =  0.80 # 037 (0.58)

Tz estimates of the ccefficients
and a, are weong and the accuracy eetmﬁt&,
are mich too low which is even more serious.
In this case we ke the reason, the least
squares estimate ig hiased if the data was
attually ted by (5.8). But suppese
that we did not Jonosr the scaees of the data
we could easlly make the wrong judgement.

The difficulty can be resolved by vary-
mg the opder of the model (5.5). To inves-
tigate the cmder required of a model with the
structure gzvm by the equation (5.8) we fit
merdels of, increasing orders to the input out-

. put data end test the significmce of the re-

sults, ket ¥y be the negative logarithm of

the li}wlmmd finction defined by equation

(3.2} vhen the model gdven by equation (5.5)°
containg ny parameters. For the model {5.5)
the Z-ztatmﬂe:: i

¥, ~ V., H-n
g2 el 2 (5.7

‘!2 Ay = nl

then has an F~distyibotion, F(n2 - 1 - nz).
See reference {8}, Evalvating §“for

of order 3, 4, 5 wa got £ = 9.7, &:z:G.u'f
andd £ = 106 respectively. w\? have n, - n; = 2,
N - n, = Bl and F(2, 81) = 3.1 at thd 5
level! In this case va thus fm—:i that if the
medelstructure (5,51 is wsed the ayatem is of
fourth arder. Thz coefficients are given hy

= - 0.7 ¢ 8,10 bl = .88 ¢ 0,13
Gy 6.03 * 0,13 b2 u 1325 & 0,17
Ay = - .12 = 0.2 b, = 0.78 ¢ 0,19
&, = 6.29 + 0.068 bl; = Q.45 = 0,17

-




fnalysing the results we find that
within the paremster asourety, the polyno-
ndeds Afz) and B(z) have a comen second
cader Factor, £7°(z). This wesns that tua
staves of ths fourth order system are not
controliable from v and that the system
bas the giyucturs
Bz 1 alt)

A"(z“:?) y{tl = Y ulty ¢ _.....m'}‘..w,
A7T

m(L_)

whore A7 = /477 and B = BAA™T axw of seoond
crdar. We s find that if the modelsirun
e (5.5} is used the order of the avetem

is of fourth order to account fop the oo~
louring of the residuale.

If we Identify o model with the sirue-
tpe (8.4} we find thet the system is of
geoond ovder (6 » 2%, E3 » 0.12) and the
coafficienty ave given by

8 £ . 1,58 & 0,08 y = G.73 = .03
}'::l z 0,89 # 0,12 2:2 = 005 ¢ 0,15
oy 2o G948 2 0,13 c? = 1,04 ¢ §.140

Compare gaction’ ¥ of reference {3}
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Fig, 1 - Pesults of nuerical sperimsnt with paﬁmw: identification dencribed
in evample I and the conventeation ellipsoid

123384 + 0.537 - 160€a % D.5)e - 0.5) + 123Ca + 0.537
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Fige 2 - Input output eignels for syetes of exemple Z.
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