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Abstract

The high Q-factor (low bandwidth) and low e�ciency make the design of

small antennas challenging. Here, convex optimization is used to determine

current distributions that give upper bounds on the antenna performance.

Optimization formulations for maximal gain Q-factor quotient, minimal Q-

factor for superdirectivity, and minimum Q for given far-�eld are presented.

The e�ects of antennas embedded in structures are also discussed. The results

are illustrated for planar geometries.

1 Introduction

There are many advanced small antennas designs, such as folded helices, folded me-
ander lines, and concepts based on metamaterials, fractals, and genetic algorithms.
The high Q-factor (low bandwidth) and low e�ciency make the design of small
antennas challenging as the Q-factor, e�ciency, and radiation resistance must be
controlled simultaneously [7, 19]. It is well known that the antenna performance
deteriorates with decreasing physical size (measured in wavelengths) of the antenna.
The fundamental trade-o� between performance and size is expressed by physical
bounds. Physical bounds are useful because they provide bounds on the performance
based solely on the shape and the size of the design volume.

Chu [8] used the stored and radiated energies outside a sphere that circumscribes
the antenna to determine physical bounds on the Q-factor, Q, see also [28] for an
overview. The stored energy in the interior of the sphere was added in [25]. Physical
bound on the directivity Q-factor quotient D/Q were introduced for arbitrary sized
and shaped antennas in [12, 13] under the assumption of Q � 1. Related bounds
on the Q-factor are investigated for small antennas in [27, 29] and for �nite sizes
in [7]. The bounds in [12�14, 27, 29] are similar for the case of small dipole antennas
composed of non-magnetic materials. In [14], optimal currents and physical bounds
on D/Q are formulated as an optimization problem using the expressions for the
stored energies presented by Vandenbosch [26], see also [9, 21]. The optimization
problem in [14] is solved with a Lagrangian formulation.

Here, convex optimization [5, 15] is used to reformulate the optimization problem
in [14]. This generalizes the optimization problem to include both the stored electric
and magnetic energies. Moreover, it is shown that convex optimization o�ers many
new possibilities to derive physical bounds on antennas. Here, we present results
for minimum Q of superdirective antennas and minimum Q for antennas with a
prescribed far �eld. We also illustrate how antennas embedded in metallic structures
can be included in the bounds. The presented results are for arbitrary shaped
structures but restricted to antennas composed of non-magnetic materials. The
convex optimization problems are also only valid for functionals that are positive
semide�nite. Here, we limit the size to approximately half a wavelength to obtain
positive semide�nite energy expressions, see also [14]. It is also important to realize
that the quality factor loses its practical meaning when Q is small. This restricts
the interpretation of the presented results to Q � 1 that coincides with the size
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restriction on the antennas considered in this paper.
Convex optimization is used in many areas [5] and it has been used extensively

to determine array patterns [6]. The formulation as a convex optimization problem
is advantageous as: it has a well-developed theory [5], there are e�cient solvers [10],
and the solution gives error estimates. Moreover, a local minimum is also the global
minimum, so there is no risk of getting trapped in local minima. This is very di�erent
from general global optimization problems and one can often state that a problem
is solved if it is formulated as a convex optimization problem [5].

This paper is organized as follows. The considered antenna parameters are in-
troduced in Sec. 2. The used method of moments formulation is presented in Sec. 3.
Sec. 4 contains the main results of the paper. It is divided into �ve subsections
containing various convex optimization formulations giving antenna bounds. The
results are also illustrated with bounds for planar rectangular geometries. The paper
is concluded in Sec. 5.

2 Antenna parameters

We consider antennas in a volume V composed of non-magnetic materials with
free space in the region exterior to V , see Fig. 1. The radiated �eld and stored
energies are expressed in the antenna current J in V . The radiation intensity in
the k̂-direction is P (k̂) = η0k2

32π2 |F (k̂)|2, where F is the tangential components of the
radiation vector [22]

F (k̂) = −k̂ ×
∫
V

k̂ × J(r)ejkk̂·r dV, (2.1)

η0 denotes the free space impedance, k = ω/c0 the wavenumber, c0 the speed of
light in free space, j2 = −1, and the time convention ejωt is used. The corresponding
electric �eld is E(r) = −jkη0

e−jkr

4πr
F (r̂), where r denotes the position vector, r̂ =

r/r, and r = |r|.
We also use the unit vector ê, with k̂ · ê = 0, to evaluate the partial radiation

intensity for the polarization ê. The �eld is linearly polarized for |ê × ê∗| = 0 and
circularly polarized for |ê× ê∗| = 1, where the superscript, ∗, denotes the complex

conjugate. This gives the partial radiation intensity P (k̂, ê) = η0k2

32π2 |ê∗ · F (k̂)|2,
where

ê∗ · F (k̂) =

∫
V

ê∗ · J(r)ejkk̂·r dV. (2.2)

The partial directivity, D(k̂, ê), is de�ned as [1]

D(k̂, ê) = 4π
P (k̂, ê)

Prad

, (2.3)

where Prad is the total radiated power. The corresponding partial gain, G(k̂, ê), is

G(k̂, ê) = 4π
P (k̂, ê)

Prad + Ploss

, (2.4)
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Figure 1: Structure in a region V with the antenna con�ned to V1 ⊂ V . The
antenna current J1(r) for r ∈ V1 induces the current density J(r) for r ∈ V with
a radiation pattern in the direction k̂ and polarization ê.

where Ploss is the dissipated power in the antenna structure. The quality factor (or
antenna Q), Q, is

Q =
2c0kmax{We,Wm}

Prad + Ploss

, (2.5)

where We and Wm denote the stored electric and magnetic energies, respectively.
Follow the approach in [14] and use the results by Vandenbosch [26], to express

the stored electric energy as We = W̃
(e)
vac = µ0

16πk2
w(e), where

w(e)(J) =

∫
V

∫
V

∇1 · J(r1)∇2 · J∗(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J∗(r2)

)
sin(k|r1 − r2|) dV1 dV2, (2.6)

and µ0 is the permeability of free space. The stored magnetic energy is Wm =
W̃

(m)
vac = µ0

16πk2
w(m), where

w(m)(J) =

∫
V

∫
V

k2J(r1) · J∗(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2J(r1) · J∗(r2)−∇1 · J(r1)∇2 · J∗(r2)

)
sin(k|r1 − r2|) dV1 dV2. (2.7)
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The corresponding expression for the total radiated power is Prad = η0
8πk
prad with

prad =

∫
V

∫
V

(
k2J(r1) · J∗(r2)

−∇1 · J(r1)∇2 · J∗(r2)
)sin(k|r1 − r2|)
|r1 − r2|

dV1 dV2. (2.8)

The normalized quantities, w(e), w(m), in (2.7) and prad in (2.8) are introduced
to simplify the optimization approach used in this paper. They have dimensions
given by volume, m3, times the dimension of |J |2, i.e., A2m−4. The corresponding
dimension of the radiation vector (2.1) is volume times the dimension of |J |.

3 MoM formulation

We use local basis functions analogous with ordinary Method of Moments (MoM)
solutions of the electric and magnetic integral equations [23] to approximate the
radiation vector (2.1), stored energies (2.6), (2.7), and radiated power (2.8). Expand
the current density in local basis functions

J(r) ≈
N∑
n=1

Jnψn(r) (3.1)

and introduce the N × 1 matrix J with elements Jn to simplify the notation. The
basis functions are assumed to be divergence conforming and having vanishing nor-
mal components at the boundary [23]. In this paper, we use piecewise linear basis
functions on quadrilateral elements. The discretization is non-equidistant to capture
edge singularities of the charge density.

The radiation vector projected on ê, cf., (2.2), de�nes the N × 1 matrix F from

ê∗ · F (k̂) ≈ FHJ =
N∑
n=1

Jn

∫
V

ê∗ ·ψn(r)ejkk̂·r dV, (3.2)

where the superscript, H, denotes the Hermitian transpose and the dependence
of matrix F on k̂ and ê is suppressed. The normalized stored electric energy is
approximated as

w(e)(J) ≈
N∑
m=1

N∑
n=1

J∗mw
(e)
mnJn = JHWeJ, (3.3)

where the N ×N matrix We has the elements

w(e)
mn=

∫
V

∫
V

∇1 ·ψm(r1)∇2 ·ψn(r2)
cos(k|r1 − r2|)
|r1 − r2|

− k

2

(
k2ψm(r1) ·ψn(r2)−∇1 ·ψm(r1)∇2 ·ψn(r2)

)
sin(k|r1 − r2|) dV1 dV2. (3.4)
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The normalized stored magnetic energy, w(m)(J) ≈ JHWmJ, and the normalized
radiated power, prad(J) ≈ JHPJ are de�ned analogously. The matrices We, Wm,
and P are real-valued and symmetric. It is observed that We can be inde�nite for
electrically large structures [14]. In the numerical examples in this paper, we restrict
the electrical size to be approximately less than half a wavelength. The eigenvalues
are also computed to verify that We and Wm are positive semide�nite. Here, it is
observed that there can be a few negative eigenvalues. These negative eigenvalues
are however due to the used �nite numerical precision and their relative amplitude
is 10−14 compared to the positive eigenvalues. We transform the matrices to become
positive semide�nite by setting these eigenvalues to zero.

4 Convex optimization

We use convex optimization [5] to determine fundamental bounds on the antenna
performance and their corresponding optimal current densities. We assume that
We, Wm, and P are positive semide�nite for the electrical sizes considered in this
paper. First, bounds on G/Q for small antennas as ka → 0 are analyzed. It is
followed by bounds on G/Q, Q for superdirective antennas, Q for antennas with
prescribed far �eld, and G/Q for embedded antennas.

4.1 Bounds on G/Q for small antennas

Explicit bounds on the directivity Q-factor quotient, D/Q, (and equivalently G/Q)
are presented for small antennas in [14]. The low-frequency expansion of the current
density is J = J (0) + kJ (1) + o(k) as k → 0, where ∇ · J (0) = 0 and ∇ · J (1) = −jρ.
The expansion simpli�es the energy expressions (2.6) and (2.7) for small antennas [9,
14, 27]. The G/Q bound separates into electric dipoles, magnetic dipoles, and mixed
modes antennas [14]. In [14], it is also shown that it is su�cient to consider surface
currents for small antennas. The gain Q-factor quotient for small electric dipole
antennas is bounded as [14]

Ge

Qe

≤ k3 max
ρ

∣∣∫
∂V
ê∗ · rρ(r) dS

∣∣2∫
∂V

∫
∂V

ρ∗(r1)ρ(r2)
|r1−r2| dS1 dS2

(4.1)

subject to the constraint of zero total charge
∫
∂V
ρ(r) dS = 0. Use that the quotient

is invariant for scalings ρ → αρ to rewrite the bound (4.1) as the optimization
problem

minimize

∫
∂V

∫
∂V

ρ∗(r1)ρ(r2)

4π|r1 − r2|
dS1 dS2

subject to

∫
∂V

ê∗ · rρ(r) dS = −1∫
∂V

ρ(r) dS = 0,

(4.2)

where 4π is included for convenience. Use basis functions similar to (3.1) to ap-
proximate the charge density as

∑N
n=1 ρnψn(r), let ρ denote the N × 1 matrix with
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elements ρn, andW
(0)
e , f , n the corresponding matrix representations for the integral

operators in (4.2), see also App. A. This gives the convex optimization problem

minimize ρHW(0)
e ρ

subject to fHe ρ = −1

nHρ = 0.

(4.3)

This is a convex optimization problem in the form of a linearly constrained quadratic
program [5] that e.g., can be solved using CVX [10]. It is illustrative to use Lagrange
multipliers [5, 24] to rewrite (4.3) as the linear systemW

(0)
e fe n

fHe 0 0
nH 0 0

 ρ
γ−1

−C

 =

 0
−1
0

 , (4.4)

where γ−1 and −C are the Lagrange multipliers. The linear system (4.4) is identical
with the MoM solution for the polarizability, γ = ê ·γe · ê using Galerkin's method,
see App. A. This illustrates that the convex optimization can be numerically iden-
tical to the solution of the integral equation in [14].

The G/Q bound for the magnetic dipole case is reduced to an integral equation
involving an arbitrary function in [14]. Here, we use a convex optimization problem
to derive a simple linear system for the G/Q bound. The gain Q-factor quotient for
a magnetic dipole antenna is bounded by

Gm

Qm

≤ k3

4π
max
J

∣∣∣∫∂V 1
2
((k̂ × ê∗)× r) · J(r) dS

∣∣∣2∫
∂V

∫
∂V

J(r1)·J∗(r2)
4π|r1−r2| dS1 dS2

, (4.5)

where ∇ · J = 0. We scale J to reformulate (4.5) as the optimization problem

minimize

∫
∂V

∫
∂V

J∗(r1) · J(r2)

4π|r1 − r2|
dS1 dS2

subject to
1

2

∫
∂V

(
(k̂ × ê∗)× r

)
· J(r) dS = 1

∇ · J = 0.

(4.6)

Use the basis functions (3.1) to get the convex optimization problem

minimize JHW(0)
m J

subject to fHmJ = 1

DJ = 0,

(4.7)

where W
(0)
m is a N ×N matrix for the stored magnetic energy, D a N1 ×N matrix

representation of the divergence operator on the basis (3.1) and fm the corresponding
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Figure 2: Upper bounds on the partial gain Q-factor quotient G(ŷ, x̂)/Q for cur-
rents con�ned to planar rectangles with sides `x and `y for small antennas using (4.4)
and (4.8). The bound is normalized with k3a3, where a is the radius of the smallest
circumscribing sphere, i.e., a = (`2

x + `2
y)1/2/2.

row matrix for the �rst constraint in (4.6). Use Lagrange multipliers, ν1 and ν2, to
transform (4.7) to the linear systemW

(0)
m fm DH

fHm 0 0
D 0 0

 ρν1

ν2

 =

0
1
0

 . (4.8)

In [14], it is also shown that the constraint on G/Q is relaxed for combined electric
and magnetic dipole antennas:

G

Q
≤

(√
Ge

Qe

+

√
Gm

Qm

)2

. (4.9)

We consider a planar rectangle to illustrate the physical bounds on G/Q for small
antennas, see Fig. 2. The rectangle has side lengths `x and `y with the radius a =
(`2

x +`2
y)1/2/2 of the smallest circumscribing sphere. The bound on the electric dipole

is identical to the results in [12�14] and many small dipole antennas perform close
to the bound [13]. The magnetic dipole case is more restricted. In particular, the
bound shows that it is di�cult to utilize the magnetic dipole for elongated structures.
The combined mode case (4.9) o�ers a substantially improved performance [14].

The bounds in Fig. 2 are computed using piecewise linear basis functions on
rectangular elements. We use a non-equidistant mesh for the electric dipole case,
where the mesh is constructed to have approximately equal charge on each element
for improved convergence. The magnetic dipole case is computed on an equidistant
mesh. We also use the constraint DJ = 0 to reduce the size of the linear system.
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4.2 Maximal G/Q

Maximization ofG/Q for �nite sized antennas is formulated as a convex optimization
problem. Combine (2.4) and (2.5) to express the gain Q-factor quotient as

G(k̂, ê)

Q
=

2πP (k̂, ê)

c0kmax{W̃ (e)
vac, W̃

(m)
vac }

. (4.10)

In [14], the D/Q quotient is maximized for the case with w(e) ≥ w(m) using a La-
grangian formulation. To instead obtain a convex optimization problem we rewrite
the quotient G/Q as a constrained optimization problem. We follow [14] and note
that G/Q is invariant for multiplicative scalings J → αJ with arbitrary complex
valued α 6= 0. It is hence su�cient to consider real-valued quantities ê∗ · F ≈ FHJ,
see (3.2). Moreover, maximization of P ∼ |FHJ|2 can be replaced by maximization
of Re{FHJ}. This gives the convex optimization problem

maximize Re{FHJ}
subject to JHWeJ ≤ 1

JHWmJ ≤ 1.

(4.11)

This is a quadratically constrained linear program (QCLP) giving the upper bound
on (4.10) as G/Q ≤ p2

1k
3, where p1 = Re{FHJ} and J a solution of (4.11). Note,

that the current matrix, J, is rescaled such that JHWmJ is dimensionless.
There are many alternative convex formulations to maximize (4.10), e.g., the

Lagrange dual or using that the maximum of two convex functions is convex [5] to
minimize the stored energy, i.e.,

minimize max{JHWeJ,J
HWmJ}

subject to Re{FHJ} = 1
(4.12)

giving G/Q ≤ k3p−1
2 , where p2 = max{JHWeJ,J

HWmJ} and J a solution of (4.12).
We consider currents con�ned to planar rectangles to illustrate the results. The

bound on G/Q and its corresponding Q and D for lossless antennas are depicted
in Fig. 3 for rectangles with side lengths `x and `y = {0.5, 0.2, 0.1, 0.001}`x. The

partial gain is evaluated for the polarization ê = x̂ and the directions k̂ = ẑ and
k̂ = ŷ. The two optimization formulations (4.11) and (4.12) give similar results
when solved using CVX [10]. The bound on G/Q is normalized with the electrical
size k3a3 to simplify comparison with the results in [13, 14], where a denotes the
radius of the smallest circumscribing sphere. The low-frequency limit for k̂ = ẑ is
given by the polarizability as shown in [14]. It is also observed that G/(Qk3a3) is
almost independent of the electrical size `x/λ for `x/λ < 0.33 or ka < 1.

The case with radiation in the k̂ = ŷ direction o�ers an increased G/Q. In
particular, the `y = 0.5`x case increases G/Q from 0.29 to 0.63. Here, we note that
the bound in [11�13] is sharper for this case. It is also important to realize that the
bound in [11�13] are for the bandwidth of the antenna and it is not guaranteed that
the optimal current distributions considered here can be generated from single-port
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Figure 3: Upper bounds on the partial gain Q-factor quotient G(k̂, x̂)/Q for cur-
rents con�ned to planar rectangles with sides `x and `y = {0.5, 0.2, 0.1, 0.01}`x for

k̂ = {ŷ, ẑ} using (4.11). The bound is normalized with k3a3, where a is the radius
of the smallest circumscribing sphere, i.e., a = (`2

x + `2
y)1/2/2. a) maximal G/Q. bc)

resulting D and Q for lossless antennas.
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antennas with a half-power fractional bandwidth B ≈ 2/Q, see also [16]. In Fig. 3a,
it is further seen that the improvement for the k̂ = ŷ direction diminishes as `y

decreases.
The corresponding partial directivities, D(k̂, x̂), and Q-factors for lossless struc-

tures are depicted in Figs 3bc, respectively. Here, it is observed that the directivity
di�ers between the k̂ = ẑ and k̂ = ŷ cases. There is also a decrease in the Q for the
k̂ = ŷ case except for the larger structures, `x/λ > 0.4, where Q is very low.

We expand the far-�eld in spherical modes to analyze the radiated �eld, see
App. B. It is noted that the radiation pattern for the k̂ = ẑ case is dominated by
mode number ν = 6, i.e., TMx or an x̂-directed electric dipole (B.3). There are also
small contributions from higher order modes as analyzed in Sec. 4.4. The improved
performance for the k̂ = ŷ case is due to the additional excitation of a ẑ-directed
magnetic dipole, ν = 3 (TEz). This is consistent with the explicit solution for small
mixed mode antennas in (4.9), see also [14].

4.3 Maximal G/Q for D ≥ D0

The Chu bound [8] shows that the radiation is dominated by dipole modes for small
antennas ka � 1. Consequently, the directivity is low, i.e., D ≈ 3/2 for single
mode antennas and in general bounded as D ≤ 3 for mixed electric and magnetic
dipole modes. Higher directivity requires higher order modes that imply a higher
Q, e.g., the Q of quadrupole modes is proportional to (ka)−5 for ka� 1. It is hence
interesting to investigate the G/Q bound for antennas with directivities D ≥ D0

for some D0 > 3/2. These bounds give an estimate of the increased Q-factor for
superdirective antennas [2, 3, 19].

The partial directivity (2.3) is included in the optimization problem (4.12) with
the constraint Prad ≤ 4πP (k̂, ê)D−1

0 giving

minimize max{JHWeJ,J
HWmJ}

subject to Re{FHJ} = 1

JHPJ ≤ k3D−1
0 ,

(4.13)

where the factor k3D−1
0 is due to the normalization of P and F.

The bounds are illustrated in Fig 4 for planar rectangles with `y = 0.5`x and
for the polarization ê = x̂. The constraints D0 = {1.7, 1.8} and D0 = {3, 3.2}
are considered for k̂ = ẑ and k̂ = ŷ, respectively. The addition of the constraints
reduce G/Q for small structures when the constraint is active. The resulting partial
directivities are seen in Fig 4b together with the modal distribution for `x/λ ≈ 0.15.
The superdirectivity for the D0 = {1.7, 1.8} cases are due to the excitation of electric
quadrupole terms. This also explains the increased Q-factors.

Fig. 5 illustrates the corresponding results for Q using D0 = 10 and radiation in
the k̂ = {x̂, ŷ, ẑ} directions with polarizations ê = {ŷ, x̂, x̂} for a lossless structure.
Here, the cost of superdirectivity is clearly seen. The Q-factor is highest for the
k̂ = ẑ case where the symmetry causes the current to radiate in both the ẑ and
−ẑ directions. The mode expansion indicates that many higher order modes are
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Figure 4: Upper bounds on the partial gain Q-factor quotient for antennas with
D(k̂, ê) ≥ D0 for a planar rectangle with side lengths `x and `y = `x/2. a) G/Q.
bc) resulting D and Q for lossless antennas.
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Figure 5: Lower bound on the Q-factor for lossless superdirective antennas having
D(k̂, ê) ≥ D0 = 10 constrained to a planar rectangle with side lengths `x and
`y = `x/2 using (4.13).

excited. The k̂ = {x̂, ŷ} cases have pencil beams and much lower Q factors. The
end-�re case k̂ = x̂ has the lowest Q with Q ≈ 100 for `x ≈ 0.4λ.

4.4 Minimal Q for given radiation pattern

Consider the case with a desired radiation pattern, F 0(k̂). We search for a current
density such that F ≈ F 0, with minimal stored energy. The deviation of F from
F 0 can be quanti�ed by the projection of F on F 0 or by some norm ||F −F 0||. We
start by maximizing F projected on F 0, i.e., the real valued part of∫

Ω

F 0(k̂) · F ∗(k̂) dΩk̂ =

∫
V

J∗(r) · J0(r) dV ≈ JHJ0, (4.14)

where Ω denotes the unit sphere and

J0(r) =

∫
Ω

F 0(k̂)ejkk̂·r dΩk̂ (4.15)

is the desired current density on the structure.
This gives the convex optimization problem

maximize Re{JH0 J}
subject to JHWeJ ≤ 1

JHWmJ ≤ 1.

(4.16)

It is common to expand the radiated far �eld in spherical vector harmonics, Aν , or
modes, see App. B, i.e.,

F 0(k̂) = 4π
Nν∑
ν=1

f0,νj
l+1−τAν(k̂), (4.17)
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where Nν is su�ciently large [18] and the expansion coe�cients are

f0,ν =
jτ−l−1

4π

∫
Ω

Aν(k̂) · F 0(k̂) dΩk̂ (4.18)

and similarly for the expansion coe�cients fν of F . Here, the multiindex ν =
{τ, s,m, l} for l = 1, 2, . . ., s = 1, 2, m = 0, 1, . . . , l, and τ = 1, 2 is introduced to
simplify the notation. The index, ν, is also ordered such that ν = 2(l2 + l − 1 +
(−1)sm) + τ , see App. B. The current in (4.16) is

J0(r) =
Nν∑
ν=1

f0,ν

∫
Ω

Aν(k̂)ejkk̂·r dΩk̂ =
Nν∑
ν=1

f0,νvν(kr), (4.19)

where vν(kr) denotes the regular spherical vector waves, see App. B.
We can also minimize the stored energy for a radiated �eld of the form F 0(k̂),

i.e.,
minimize max{JHWeJ,J

HWmJ}

subject to

(∫
Ω

|F (k̂)− F 0(k̂)|2 dΩk̂

)1/2

< 4πδ,
(4.20)

where δ quanti�es the deviation of the desired radiation pattern and the least-square
norm is used for simplicity. It is convenient to expand the radiated �eld in spherical
vector waves and rewrite the deviation as∫

Ω

|F (k̂)− F 0(k̂)|2 dΩk̂ = (4π)2

Nν∑
ν=1

|fν − f0,ν |2, (4.21)

where

fν =

∫
Ω

Aν(k̂) · F (k̂) dΩk̂ =

∫
V

J(r) ·
∫

Ω

Aν(k̂)ejkk̂·r dΩk̂ dV

=

∫
V

J(r) · vν(kr) dV. (4.22)

This gives the optimization problem

minimize max{JHWeJ,J
HWmJ}

subject to

(
Nν∑
ν=1

|fν − f0,ν |2
)1/2

< δ

fn =

∫
V

J(r) · vn(kr) dV.

(4.23)

It is noted that arbitrary weight functions and norms can be used in (4.23).
A planar rectangle with `y = `x/2 is considered to illustrate the results for given

far-�elds (4.16) and (4.23). The Q factors are depicted in Fig. 6 for projections (4.16)
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Figure 6: Q-factors for a lossless planar rectangle (side lengths `x and `x/2) with
electric (TMx) and magnetic (TEz) dipole radiation patterns using (4.16) and (4.23).

and norm bounds (4.23) for the cases of the x̂-directed electric dipole (TMx) and
ẑ-directed magnetic dipole (TEz) patterns.

We observe that the Q is lower for the electric dipole mode than the magnetic
dipole mode. The Q is also lowest for the projection cases (4.16). Moreover, Q
tend to increase as δ decreases, i.e., the lowest Q is for radiation patterns that are
close to but not exact dipoles. The radiation patterns are depicted for `x/λ ≈ 0.25.
It is hard to distinguish between the patterns for the TMx cases, but the partial
directivity for the projection case and δ = 0.1 is lower than for D(ẑ, x̂) for the
δ = 0.01 case in the region around `x/λ ≈ 0.25. The radiation patterns di�er more
for the TEz case, where again the projection formulation (4.16) o�ers the lowest Q.

4.5 Embedded antennas

It is useful to analyze the case when the antenna is embedded in a structure. In
this case the currents on the entire structure, V , contribute to the radiation but we
can only control the currents in the volume V1 ⊂ V , see Fig. 1. Here, we consider
the case where the structure V2 = V −V1 is perfectly electric conducting (PEC), see
Fig. 7. The induced currents on the surface of V2 are determined from the electric
�eld integral equation (EFIE) that has the matrix elements [23]

Zmn =

∫
∂V

∫
∂V

(
k2ψm(r1) ·ψn(r2)

−∇1 ·ψm(r1)∇2 ·ψn(r2)
)e−jk|r1−r2|

|r1 − r2|
dS1 dS2, (4.24)

where the similarities with (2.6), (2.7), (2.8), and (3.4) are noted. The integration
in (4.24) is over the PEC surface of the structure. The driving sources of the EFIE
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are con�ned to the region V1 and they are unknown. Moreover the EFIE is not
necessarily valid in V1. Decompose the current density as JT = [JT1 JT2 ], where Jn
is the current density in Vn, n = 1, 2. Assuming driving voltages V in the region V1

gives the linear system (
Z11 Z12

Z21 Z22

)(
J1

J2

)
=

(
V
0

)
. (4.25)

Here, the �rst row is unknown but the second row gives the constraint

Z21J1 + Z22J2 = 0 (4.26)

that can be added as a constraint to the convex optimization problems in this paper,
e.g., the G/Q bound in (4.11).

It is convenient to use (4.26) to express the induced current densities J2 in J1,
i.e.,

J2 = −Z−1
22 Z21J1 = Z′J1 (4.27)

and eliminate J2 in the optimization problem. Decompose the matrices We and
Wm according to

W =

(
W11 W12

W21 W22

)
(4.28)

that gives

JHWJ = JH1 W11J1 + JH1 W12J2 + JH2 W21J1 + JH2 W22J2

= JH1
(
W11 + 2 Re{W12Z

′}+ Z′HW22Z
′)J1 = JH1 W

′J1 (4.29)

and
FHJ = FH1 J1 + FH2 J2 = FH1 J1 + FH2 Z

′J1 = F′HJ. (4.30)

The optimization problem on G/Q becomes

maximize Re{F′HJ1}
subject to JH1 W

′
eJ1 ≤ 1

JH1 W
′
mJ1 ≤ 1.

(4.31)

We illustrate the bound on G/Q, normalized with k3a3, for embedded antennas
using the structures in Fig. 7. The strip dipole in Fig. 7a has length `x and width
`y = `x/100. Let the center, |x| ≤ ξ`x be the region, V1, where the currents are
optimized. We observe that the performance decreases with decreasing ξ except for
`x/λ ≈ 0.5, where the center fed strip dipole is self-resonant. This shows that the
induced currents are optimal for short dipoles. This is consistent with the analysis
of strip dipoles in [14].

The second example is for antennas embedded in a PEC planar rectangle with
length `x and width `y = `x/2. We consider the cases with feed currents in either
rectangular regions in the upper corner or in a strip on the side of the structure,
see 7b. The G/Q quotient is optimized for k̂ = ẑ and ê = x̂ using (4.31). We
observe that the performance deteriorates for small regions and small antennas.
There is however a region around `x/λ = 0.37 where performance is close to the
case of using the entire structure.
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Figure 7: Illustration of embedded antennas in planar metallic rectangles. Arbi-
trary currents J1(r) in V1 and induced currents J2(r) in V2. a) antenna region in
the center. b) antenna region in the upper corner.

5 Conclusions

We show that several performance bounds for antennas can be formulated as convex
optimization problems. Standard software [5, 10] is used to solve the convex opti-
mization problems. The results for D/Q are consistent with the bounds in [13, 14].
The new bounds o�er physical insight to the design of small antennas, see also [14].
They also o�er the possibility of systematic studies of how Q and directivity are re-
lated for small superdirective antennas. Moreover, properties of antennas embedded
in structures, such as mobile phones and other terminals, are discussed.

It is important to realize that the convex optimization problem determines an
optimal current distribution. This current is in general not unique although the
minimum of the convex optimization problems is unique. It is also not known if
there are antennas performing close to the bounds except for the case of electric
dipole type antennas [13]. Moreover, the optimal performance can be useful in
global optimization of antennas.

Appendix A Polarizability

The physical bounds on D/Q in [12, 13] are expressed in the polarizability of the
antenna structure. In [14], it is also shown that the bound on small antennas (4.1)
can be expressed in the polarizability. Here, we further show that the solution
of the convex optimization problem (4.3) using (4.4) is identical to computing the
polarizability [14] using Galerkin's method [24].

The polarizability for the polarization ê can be determined from the �rst moment
of the induced normalized charge density ρ as∫

∂V

ê∗ · rρ(r) dS = E0γ = E0ê
∗ · γe · ê. (A.1)
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Here, we keep the notation with complex conjugates on ê to simplify the comparison
with (4.4), although it is su�cient to consider real valued unit vectors ê to determine
the electrostatic polarizability. The charge density ρ is the solution of the integral
equation ∫

∂V

ρ(r)

4π|r − r′|
dS′ = E0ê · r + C, r ∈ ∂V, (A.2)

where the constant C is determined from the constraint of zero total charge∫
∂V

ρ(r) dS = 0. (A.3)

It turns out that it is convenient to set E0 = −γ−1 for comparison with (4.4).
Expand the charge density in basis functions ρ(r) =

∑N
n=1 ρnψ(r) = ψTρ, where ψ

and ρ are N × 1 matrices, to rewrite (A.1) as

fHρ = E0/γ = −1 where f =

∫
∂V

(ê · r)ψ(r) dS. (A.4)

Solving the integral equation (A.2) with the Galerkin's method [24] gives the linear
system of equations

W(0)
e ρ = −γ−1f + Cn, (A.5)

where the matrix W
(0)
e is

W(0)
e =

∫
∂V

∫
∂V

ψ(r)ψT(r′)

4π|r − r′|
dS dS′. (A.6)

Finally, the constraint (A.2) is

nTρ = 0 where n =

∫
∂V

ψ(r) dS. (A.7)
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on G/Q using (4.31). b) resulting Q for a lossless structure.

Written as a linear system, (A.4), (A.5), and (A.7) becomesW
(0)
e f n

fH 0 0
nH 0 0

 ρ
γ−1

−C

 =

 0
−1
0

 . (A.8)

We note that this system is identical to (4.4).

Appendix B Mode expansion

The radiated electromagnetic �eld E(r) is expanded in spherical vector waves [18]
(or modes) outside a circumscribing sphere. The corresponding far �eld is expanded
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in spherical vector harmonics as

E(r) ∼ jkη0
e−jkr

4πr
F (r̂) =

e−jkr

kr

∑
ν

bνj
l+2−τAν(r̂), (B.1)

giving fν = bν/(η0k
2) for the expansion coe�cients in (4.22), where r is the spa-

tial coordinate, r̂ = r/r, r = |r|, and k the wavenumber. The multi index
ν = {τ, s,m, l} for l = 1, 2, . . ., s = 1, 2, m = 0, 1, . . . , l, and τ = 1, 2 is in-
troduced to simplify the notation. The index, ν, is also ordered such that ν =
2(l2 + l − 1 + (−1)sm) + τ , see [17].

There are a few alternative de�nitions of the spherical vector waves in the liter-
ature [4, 18, 20]. Here, we follow [20] and use cosmφ and sinmφ as basis functions
in the azimuthal coordinate. This choice is motivated by the interpretation of the
�eld related to the �rst 6 modes as the �eld from di�erent Hertzian dipoles. For
τ = 1, 2, we use spherical vector harmonics

A1sml(r̂) =
1√

l(l + 1)
∇×

(
rYsml(r̂)

)
(B.2)

and A2sml(r̂) = r̂ ×A1sml(r̂) where Ysml denotes the spherical harmonics [4]. The
modes labeled by τ = 1 (odd ν) identify TE modes (or magnetic 2l-poles) and the
terms labeled by τ = 2 (even ν) correspond to TM modes (or electric 2l-poles).
Moreover, the dipoles corresponding to ν = 1, 2 are directed in the y-direction,
ν = 3, 4 in the z-direction, and ν = 5, 6 in the x-direction having the explicit
representation 

1, TEy, A1111 = β(θ̂ cosφ− φ̂ cos θ sinφ)

2, TMy, A2111 = β(θ̂ cos θ sinφ+ φ̂ cosφ)

3, TEz, A1201 = β(φ̂ sin θ)

4, TMz, A2201 = β(−θ̂ sin θ)

5, TEx, A1211 = β(−θ̂ sinφ− φ̂ cos θ cosφ)

6, TMx, A2211 = β(θ̂ cos θ cosφ− φ̂ sinφ),

(B.3)

where β =
√

3/(8π).
The regular, vν , spherical vector waves are given by

v1sml(kr) = jl(kr)A1sml(r̂) (B.4)

and v2sml = k−1∇× v1sml, where jl denotes the spherical Bessel function.
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