Investigation and Comparison Between Radiation Center and Phase Center for Canonical Antennas

Ehrenborg, Casimir; Fridén, Jonas; Kristensson, Gerhard

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Investigation and Comparison Between Radiation Center and Phase Center for Canonical Antennas

Casimir Ehrenborg1, Jonas Fridén2, Gerhard Kristensson1
1Electrical and Information Technology, Lund University, Lund, Sweden
2Ericsson Research, Ericsson AB, Göteborg, Sweden

Abstract—Radiation center, corresponding to minimized angular momentum, and traditional phase center calculations are compared for a set of canonical antenna elements. By using simulation results, the exact phase reference position of the complex-valued far-field pattern is considered exactly known. Influence of user inputs, e.g. angular truncation, on traditional phase center results are investigated. In addition, an analytic algorithm. The used angular truncation has a clear impact on angular region to use is not obvious, and automatic calculation of beam width is hard to implement as a robust numerical algorithm. The used angular truncation has a clear impact on the PC as is demonstrated in this paper. Especially, for a fixed angular truncation, an oscillation with frequency is observed. These computations were carried out using a least-square error average of three different PC calculations in planes, separated by 120\degree, and centered around the main radiation direction.

Index Terms—radiation center, phase center, antenna theory, angular momentum.

I. INTRODUCTION

The Radiation Center (RC) was introduced by Fridén and Kristensson in [1]. The need to define this parameter arose from the ambiguity of the Phase Center (PC) definition. The PC is traditionally calculated by manually selecting a region in the main lobe of the radiation pattern, and minimizing the phase of the co-polarized field component. The choice of angular region to use is not obvious, and automatic calculation of beam width is hard to implement as a robust numerical algorithm. The used angular truncation has a clear impact on the PC as is demonstrated in this paper. Especially, for a fixed angular truncation, an oscillation with frequency is observed. Hence, such a manual procedure, as well as the lack of a well-defined cost function, constitute a fragile calculation method. In contrast, the RC algorithm presented in [1] provides a unique point corresponding to the minimum of the squared angular momentum of the field.

This contribution investigates results from RC and PC calculations for canonical antennas with frequencies varying inside their operational bands. The two methods are compared and evaluated against the expected PC positions and the RC is investigated as a replacement parameter to the PC. In [1] the RC was calculated using measured data with inexact knowledge of the absolute position of the antenna in the coordinate system. Therefore, in this study the concept is applied to simulated far-field patterns wherein the position of the antenna is known.

II. THEORY

When calculating the RC the squared angular momentum, $L^2 = \iint_{\Omega} F^* \cdot L^2 F \, \text{d}\Omega$, where Ω is the unit sphere, is used as a cost function. The operator L^2 is the transverse part of the Laplace operator and it is an eigenoperator to the transverse components of the vector spherical harmonics [2, pp 1900–1901], in which the far field, F, can be conveniently represented [3]. The squared angular momentum L^2 provides a quantitative measure of the phase variations, that is continuous with respect to spatial translations. When the antenna is translated by the vector d the squared angular momentum L^2 takes the form

$$L^2(d) = a_0 + 2k a_1 \cdot d + k^2 d \cdot A_2 \cdot d,$$ \hspace{1cm} (II.1)

where $k = 2\pi/\lambda$ is the wavenumber, a_0 is a real non-negative number, a_1 is a real-valued vector, and A_2 is a positive definite dyadic [1], see also Fig. 1 for an explicit example. Explicitly, and in terms of the far-field amplitude $F = F_\theta + F_\phi$,

$$
\begin{align*}
\begin{cases}
a_0 = \iint_{\Omega} F^* \cdot L^2 F \, \text{d}\Omega, \\
a_1 = \iint_{\Omega} \text{Im}[F_\theta \nabla_\Omega F_\phi^* + F_\phi \nabla_\Omega F_\theta^*] \, \text{d}\Omega \\
A_2 = \iint_{\Omega} \cot \theta \text{Im}[F_\theta F_\phi^*] \, \text{d}\Omega,
\end{cases}
\end{align*}
$$ \hspace{1cm} (II.2)

Hence, Eq. (II.1) has a unique minimum d_{\min} which defines the RC $d_{RC} = -d_{\min}$.

III. METHODOLOGY

The analysed antennas were simulated at their operational frequencies using a time domain solver in Computer Simulation Technology (CST). The PC was calculated as the average of three different PC calculations in planes, separated by 120\degree, and centered around the main radiation direction. These computations were carried out using a least-square error
agreement with Muehldorf is best at lower frequencies, while at higher frequencies the largest truncation, 30°, gives the best match. This is in contradiction with the frequency behavior of the HPBW which decreases (∼ 1/f) as a function of frequency. Moreover, the PC descends below the horn apexes, see Figure 3.

In many antenna applications only the main lobe is of interest, which is reflected in PC calculations. By using the angular momentum as cost function, the contributions from the main lobe are implicitly given higher impact (II.2). Figure 4 also shows that the RC minimizes the phase by the same order as the PC.

V. CONCLUSIONS

For the simulated antennas the RC follows the expected PC behavior [5]. PC values also follow the expected trend, but the choice of angular truncation is contra-intuitive for the square horn antenna. For high frequencies, with a relatively narrow main lobe, a larger angular interval yields the best values, and for lower frequencies the situation is the opposite. In comparison with traditional results [4], the RC is in good agreement. It has also been demonstrated that the phase variations, in the main lobe, are of the same order of magnitude when the RC or the PC are used as far-field origins. These results imply that the RC algorithm is a viable candidate for PC calculations.

REFERENCES

