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Bounds on Metamaterials — Theoretical Results

G. Kristensson, C. Sohl, C. Larsson, and M. Gustafsson

Department of Electrical and Information Technology, Lund University
P.O. Box, SE-221 00 Lund, Sweden

Abstract— A dispersion relation for the combined effect of scattering and absorption of electro-
magnetic waves is presented for a large class of linear and passive material models. By invoking
the optical theorem, the result states that the extinction cross section integrated over all fre-
quencies is related to the static polarizability dyadics. In particular, it is established that the
integrated extinction is the same for all materials having identical static properties, irrespectively
whether the permittivity or the permeability have negative real parts at non-zero frequencies or
not. This condition implies bounds on scattering and absorption by metamaterials, and several
numerical illustrations that verify these results are presented in the paper.

1. BACKGROUND

In a series of papers [13–16], the holomorphic properties of the forward scattering amplitude have
been exploited and experimentally verified. As a result, a sum rule for the extinction cross section
is established. This outcome hinges on the physical principles of causality and energy conservations
— both well established and tested — and relates the (weighted) integrated extinction to the static
material properties of the obstacle. A rather intriguing consequence of this sum rule is that the
static properties measure the broadband scattering and absorption strengths of the obstacle. This
fact implies a renaissance for polarizability analyzes of obstacles, but also an appreciation of the
large efforts made in the past, and that now prove helpful, see e.g., [7, 17].

The extinction sum rule naturally introduces bounds on the scattering and the absorption fea-
tures of an obstacle — a component that is further developed and numerically illustrated in this
paper. This attribute has also been used in antenna applications to give new bounds on the product
of gain and bandwidth of antennas of arbitrary shape [4, 12]. The sum rule has been verified numer-
ically for single scatterers — with materials that show dispersion or not [13, 14]. It has also been
verified experimentally in several ways [15]. In this paper we employ a non-connected geometry,
which show multiple scattering and allow for two different materials to interact. As a result, new
interesting bounds on scattering and absorption are developed.

The paper also illustrates — in a non-trivial way — D. S. Jones’ rather unknown results [5, 6].
These results by D. S. Jones, which simply state that the eigenvalues of the polarizability properties
of a scatterer increase monotonically with increasing material parameters, deserve a wider attention.
In a series of numerical computations, using the null field approach [11], we verify these results.

2. A SUM RULE FOR EXTINCTION

This section sets the notation of the problem and states the main theoretical results used in this
paper, but no proofs are given. For proofs we refer to the pertinent published papers [13, 14].

Consider the direct scattering problem of a plane electromagnetic wave E exp{ikk̂ · x} (time
dependence exp{−iωt}) impinging in the k̂-direction on a target embedded in free space. The
wave number in free space is denoted by k = ω/c0. The target can be a single scatterer or it may
consist of several non-connected parts. The material of the scatterer is modeled by a set of linear
and passive constitutive relations which are assumed to be invariant under time translations (i.e.,
stationary constitutive relations). The scattering dyadic S is independent of E, and it is defined
in terms of the scattered electric field Es as [2, 9, 18]

S(k; k̂ y x̂) ·E = lim
x→∞xe−ikxEs(k; x)

where x = |x| denotes the magnitude of the position vector, and x̂ = x/x. A target’s overall
scattering properties are commonly quantified by the scattering cross section σs, defined as the
total power scattered in all directions divided by the incident power flux. The extinction cross
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section σext = σs + σa is defined as the sum of the scattering and absorption cross sections, where
the latter is a measure of the absorbed power in the target [2, 18]. The extinction cross section is
also determined from the knowledge of the scattering dyadic in the forward direction, x̂ = k̂, viz.,

σext(k; k̂, ê) =
4π

k
Im

{
ê∗ · S(k; k̂ y k̂) · ê

}
(1)

where an asterisk denotes the complex conjugate, and the electric polarization ê = E/|E|. Re-
lation (1) is known as the optical theorem or forward scattering theorem, and it is applicable to
many different wave phenomena such as acoustic waves, electromagnetic waves, and elementary
particles [16].

A dispersion relation for the combined effect of scattering and absorption of electromagnetic
waves is derived in Ref. 13 from the holomorphic properties of the forward scattering dyadic. One
of the underlying assumptions of the result is that the forward scattering is causal, i.e., the scattered
field must not proceed the incident field in the forward direction. The result is a sum rule of the
extinction cross section valid for a large class of linear and passive targets:1

∫ ∞

0

σext(k; k̂, ê)
k2

dk =
π

2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
(2)

where γe and γm denote the electric and magnetic polarizability dyadics, respectively [7, 17]. This
identity holds for all scatterers satisfying the assumption above, and it constitutes the main theo-
retical result used in this paper. This rather intriguing result has far-reaching consequences on how
much an obstacle scatters and absorbs, and it also quantifies the interaction between parts with
different materials.

The sum rule (2) can also be estimated from below by integrating over a finite frequency interval
K ∈ [0,∞), i.e.,

∫

K

σ(k; k̂, ê)
k2

dk ≤ π

2

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)

where σ denotes any of the cross sections σext, σs, and σa.
The extinction cross section σext measures the total interaction of the incident plane wave

with the obstacle, and the integral on the left-hand side of (2) provides a measure of the overall
scattering and the absorption properties of the obstacle. As a consequence of (2), large scattering
or absorption effects, i.e., a large left-hand side of (2), call for large electric and/or magnetic
polarizability dyadics. In other applications, like cloaking, the extinction effects must be small (at
least in a finite frequency interval) and the electric and magnetic polarizability dyadics have to be
as small as possible for a given volume. In both cases, the static properties act as a measure of the
dynamic effects. We also immediately conclude that all scatterers having the same right-hand side,
i.e., polarizability properties, have the same integrated extinction.

The effects of (2) are exploited in this paper, and in a few numerical examples we illustrate that
two materials with the same static properties have identical integrated extinction. Several of these
examples show metamaterial characteristics, i.e., the material has temporally dispersive material
parameters where both the real parts of the permittivity and the permeability are negative in the
same frequency interval. In all cases it is the static properties of the obstacle that determine the
integrated scattering properties of the obstacle.

3. MATERIAL MODELING

Material modeling plays an important role in making realistic computer simulations. This is es-
pecially important in modeling the broadband electric and magnetic behavior of the scatterer. In
particular, the models have to be consistent with the causality assumptions made above. As a
consequence, the material models have to satisfy the Kramers-Kronig relations [3, 8].

All materials show dispersive effects over a sufficiently large frequency interval. In this paper
we make frequent use of the Lorentz model, which models the resonance behavior of many solid
materials. The relative permittivity of the Lorentz model is:

ε(ω) = ε∞ − ω2
p

ω2 − ω2
0 + iων

= ε∞ − (ωpa/c0)2

(ka)2 − (ω0a/c0)2 + ika(νa/c0)
(3)

1A similar, but less developed, sum rule has been reported in the literature, see e.g., [10, p. 423].
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Figure 1: The real (blue curve) and imaginary (red curve) parts of the Lorentz and the Debye models,
respectively, as a function of the dimensionless frequency parameter ka. See Table 1 for the explicit numerical
values of the parameters.

The positive constant ε∞ is the optical response of the permittivity, and the constant ωp is the
plasma frequency that models the strength of the dispersion. The resonance frequency of the model
is determined by the angular frequency, ω0, and the collision frequency ν > 0. With appropriate
choice of the material parameters, the real part of the permittivity becomes negative. The explicit
value of the permittivity in the static limit (ω = 0) is

ε(0) = ε∞ +
ω2

p

ω2
0

A similar model is also used for the relative permeability µ. The Lorentz model employed in this
paper has the parameters given in Table 1, and it is illustrated on the left-hand side in Figure 1.

Lorentz
ε∞ 1
ωpa/c0 3
ω0a/c0 2
νa/c0 0.6

Drude
ε∞ 1
ωpa/c0 3
ω0a/c0 0
νa/c0 0.6

Debye
ε∞ 1
εs 5
τc0/a 1

Table 1: The material parameters used in the numerical illustrations.

The Drude model is a special case of the Lorentz model for which ω0 = 0, i.e.,

ε(ω) = ε∞ − ω2
p

ω(ω + iν)
=

ε∞(ω2 + ν2)− ω2
p

ω2 + ν2
+ i

ω2
pν

ω(ω2 + ν2)

This choice implies that the real part of the permittivity is negative over a large frequency interval,
i.e., ω2 ≤ ω2

p/ε∞ − ν2. This model is used to describe the dispersive behavior of metamaterials,
and at low frequencies it shows strong affinity with the conductivity model, i.e.,

ε(ω) = ε∞ + i
ς

ε0ω

In fact, the conductivity ς = ε0ω
2
p/ν can be identified from Drude’s model.

We also adopt the Debye model, i.e.,

ε(ω) = ε∞ +
εs − ε∞
1− iωτ

= ε∞ +
εs − ε∞

1− ika(τc0/a)
(4)

which is suitable for e.g., polar liquids. The positive constants ε∞ and εs are the high frequency
(optical response) and the static values of the permittivity, respectively. The relaxation time is
denoted by τ > 0. The Debye model used in this paper has the parameters given in Table 1, and
it is illustrated on the right-hand side of Figure 1.
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Figure 2: The geometry of the two spheres. The sphere with radius a is located at dẑ/2 and the sphere with
radius b is located at −dẑ/2. The direction of the incident wave in all examples is k̂ = ẑ.

4. NUMERICAL ILLUSTRATIONS — TWO SPHERES

In this section, we illustrate the theoretical results presented in Section 2 in a series of numerical
examples using the material models described in Section 3. The scattering geometry consists of
two spheres, radii a and b, respectively, and it is illustrated in Figure 2. This geometry, which is a
simple example of a non-connected scatterer, is motivated by its potential to have an independent
variation of the material parameters in its constitutive parts. In all examples, the plane wave
impinges along the symmetry axis of the scatterer with an electric polarization ê in the x-y-plane,
which can be either a real- or a complex-valued unit vector. All frequencies are measured in the
dimensionless parameter κ = ka, and all cross sections are scaled with 2πa2. The identity in (2),
then reads

∫ ∞

0

σext(κ; k̂, ê)
κ2

dκ =
π

3
1

4πa3/3

(
ê∗ · γe · ê + (k̂ × ê∗) · γm · (k̂ × ê)

)
(5)

The numerical computations in this paper utilize the null-field approach, which is an efficient
method to evaluate scattering by non-connected objects [11].
4.1. Computations of the polarizability dyadics
We have seen that the polarizability dyadics are of paramount importance in quantifying the inter-
action of the plane wave with the scatterer. The electric and magnetic polarizability dyadics are
obtained in the same way, so it suffices to employ a computational technique for the electric case
— the computations of the magnetic polarizability dyadic then follows analogously.

The electric polarizability dyadic is accessible as an analytic expression for a limited set of
canonical bodies, e.g., a homogenous, isotropic dielectric sphere of radius a with static permittivity
ε(0) has the polarizability dyadic γe [17]

γe = 3
ε(0)− 1
ε(0) + 2

4πa3

3
I

where I denotes the unit dyadic. Fortunately, for other more complex geometries, the polarizability
dyadic is easy to compute using e.g., an finite element (FEM) solver. In the dielectric case, (relative)
permittivity ε(x), a static boundary value problem has to be solved for the finite scattering volume
V , which might consist of several parts. For a given constant complex-valued direction ê, we solve
the following explicit problem for the dimensionless generic field F :




∇ · (ε(x)F (x)) = 0, x ∈ V

∇ · F (x) = 0, x /∈ V

F → ê as x →∞
and the projected part of the electric polarizability dyadic γe is then found by evaluating

γe · ê =
∫∫∫

V

(ε(x)F (x)− ê) dv

The high-contrast polarizability dyadic γ∞ is obtained by solving an exterior Dirichlet boundary
value problem for the (normalized) surface charge density ρS, under the condition that the total
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Figure 3: Left figure: The black curve shows the extinction cross section σext of a PEC sphere (radius
a) and a touching (d = 3a) non-magnetic Lorentz sphere (radius b = 2a) as a function of ka. The red
curve shows the extinction cross section of the two spheres without interaction, i.e., the sum of the two
individual cross sections, which are shown in green (PEC sphere, σPEC) and blue (Lorentz sphere, σLorentz)
curves. Right figure: The difference in extinction cross sections between σext and σPEC + σLorentz. All
cross sections are normalized with 2πa2.

charge on each isolated body is zero. The projected part of the electric polarizability dyadic γ∞ is
then obtained by computing

γ∞ · ê =
∫∫

S

x (ν̂(x) · ε(x)F (x)) dS

where S is the bounding surface of V and ν̂ its outward pointing unit normal vector. We refer to
e.g., [17] for details on these computations.

For an axially symmetric obstacle, the eigenvalues of the polarizability dyadic are degenerated.
Two eigenvalues — corresponding to a static excitation perpendicular to the symmetry axis —
are identical and denoted γ below, and one eigenvalue is in general different — corresponding to a
static excitation along the symmetry axis.
4.2. PEC and Lorentz spheres
The extinction cross section σext for a perfectly electric conduction (PEC) sphere, radius a, and
a Lorentz sphere, radius b = 2a, is illustrated in Figure 3. The distance between the spheres
is d = 3a, i.e., the spheres are touching each other. The Lorentz sphere contains a non-magnetic
material, µ = 1. The extinction cross section of this geometry is compared with the extinction cross
sections obtained for two non-interacting spheres (the sum of the extinction cross sections of the
two isolated spheres, red curve), as well as the extinction cross sections of each of the two spheres
alone, σLorentz and σPEC (blue and green curves, respectively). All cross sections are normalized
with 2πa2.

The contributions of the electric and the magnetic polarizability dyadics in this example are,
see also Section 4.1,

ê∗ · γe · ê = 12.65
4πa3

3
, (k̂ × ê∗) · γm · (k̂ × ê) = −3

2
4πa3

3
The magnetic part originates from the PEC sphere, which contributes with a factor −3/2 times
the volume of the sphere. With the normalization used in this paper, the right-hand side of (5)
then becomes π(12.65− 1.5)/3 = 11.68. This figure is retrieved with almost 3 digits (11.61) using
numerical integration on the left-hand side of (5) over the frequency interval in Figure 3. The
polarizability dyadic contributions from the PEC and Lorentz spheres alone are

ê∗ · γe · ê = 3
ε(0)− 1
ε(0) + 2

4πb3

3
=

72
7

4πa3

3
(Lorentz),





ê∗ · γe · ê = 3
4πa3

3

(k̂ × ê∗) · γm · (k̂ × ê) = −3
2

4πa3

3

(PEC)
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Figure 4: Left figure: The extinction cross section of two equal, touching (d = 2a) Drude spheres (radii
a = b) as a function of ka. The blue curve shows the extinction cross section for ε = µ, and the red curve
shows the extinction cross section in the case when both spheres are non-magnetic, µ = 1. Both cross
sections are normalized with 2πa2. Right figure: The polarizability, γ normalized with 4πa3/3, for the
same geometry as a function of the separation distance d. The circles illustrate the numerical values, and
the analytic expression at d/a = 2 is 9ζ(3)/2.

The integrated extinction of the right curve in Figure 3 then becomes 11.68−24π/7−π/2 = −0.66.
The corresponding numerically integrated value is −0.63.

We anticipate that the normalized extinction cross section curves σext, σLorentz + σPEC, and
σPEC at high frequencies all converge to 1, which is twice the projected geometrical cross section
area of the PEC sphere. This is in agreement with the extinction paradox [18], and it also shows
that the Lorentz sphere becomes invisible at high frequencies as predicted. The curves also clearly
illustrate the shadowing effects of the large Lorentz sphere in front of the PEC sphere, i.e., the
single PEC sphere assumes its asymptotic value at a much lower frequency than if the obstructing
Lorentz sphere is present.

The difference σext− σLorentz− σPEC is depicted to the right in Figure 3. This curve shows that
the interaction for some frequencies is larger than the sum of the two separate spheres, but at most
frequencies the interaction is smaller. This is in agreement with the fact that in the static limit,
the electric dipole moment of the Lorentz sphere has a depolarizing effect on the PEC sphere.
4.3. Two identical Drude spheres
In this example, the extinction cross section of two identical, touching Drude spheres (radii a = b
and d = 2a), is computed for two material settings. In the first setting ε = µ at all frequencies, i.e.,
a material that shows metamaterial characteristics at low frequencies, and in the second setting
both spheres are non-magnetic, µ = 1. The result is showed to the left in Figure 4. Explicit values
of the permittivities are given in Table 1.

The contribution to both the electric and the magnetic polarizability dyadics in the case ε = µ
is [19]

ê∗ · γe · ê = (k̂ × ê∗) · γm · (k̂ × ê) =
9
2
ζ(3)

4πa3

3
where ζ(z) is the Riemann zeta-function [1]. The non-magnetic spheres have no magnetic contri-
bution, but only an electric contribution. The right-hand side of (5) for the two curves in Figure 4
therefore assumes the values 3πζ(3) = 11.33 and 3πζ(3)/2 = 5.66, respectively. These figures are
retrieved using numerical integration over the frequency interval in Figure 4 with 3 digits (11.3
and 5.66, respectively). It is intriguing to conclude that these numbers are independent of all the
material parameters of the Drude spheres, i.e., independent of ε∞, ωp, and ν.

A further verification of the integrated extinction in (5) is presented to the right in Figure 4.
This figure shows the analytically computed polarizability, γ, of two identical Drude spheres [19]
as a function of the separating distance d. The values obtained by numerical integration are shown
with circles.
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Figure 5: The extinction cross section of a Debye sphere (radius a) and a Lorentz sphere (radius b = 2a)
with varying separation distances d = 3a (black curve), d = 4a (blue curve), d = 5a (red curve) as a function
of ka. The Debye sphere is non-magnetic µ = 1, while the Lorentz sphere has µ = ε. All cross sections are
normalized with 2πa2.

4.4. Debye and Lorentz spheres

The extinction cross section of a Debye sphere (radius a) and a Lorentz sphere (radius b = 2a) with
varying separation distance d = 3a, 4a, 5a is depicted in Figure 5. The two spheres have material
parameters given in Table 1. The Debye sphere is non-magnetic, µ = 1, and the Lorentz sphere
has the same permittivity and permeability, i.e., ε = µ.

The contributions of the electric and the magnetic polarizability dyadics are




ê∗ · γe · ê = 11.63
4πa3

3
, d = 3a

ê∗ · γe · ê = 11.83
4πa3

3
, d = 4a

ê∗ · γe · ê = 11.91
4πa3

3
, d = 5a

, (k̂ × ê∗) · γm · (k̂ × ê) =
72
7

4πa3

3
, d = 3a, 4a, 5a

The magnetic part has a contribution from the Lorentz sphere only. With the normalization used
in this paper, the right-hand side of (5) then becomes 22.95, 23.16, and 23.24 for the different
separation distances. These figure are retrieved using numerical integration over the frequency
interval in Figure 5 with almost 3 digits (22.8, 23.0, and 23.2, respectively).

In Figure 5, a box of the same weighted area as the black curve is inserted. This box displays
a restriction of the extinction cross section — no scatterer, with the same right-hand side of (5)
as the black curve, can lie above the box at all frequencies. To this end, the weighted areas under
the curves, which are determined by the static properties, restrict the scattering and absorption
strengths of the scatterer — large scattering or absorption can only occur in a small frequency
interval.

4.5. Two different materials with the same integrated extinction

We end the numerical illustrations by a computation of the extinction cross sections for two different
sets of material parameters with identical static values. Two touching, d = 3a, non-magnetic
Lorentz spheres, radii a and b = 2a, respectively, are used. The result is displayed in Figure 6.
The blue curve shows the extinction cross section when the two spheres have materials as given
in Table 1. The red curve shows the extinction cross section for two Lorentz spheres both having
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Figure 6: The extinction cross section of two touching Lorentz spheres as a function of ka. Both spheres
have identical material parameters and they are non-magnetic, µ = 1, with radii a and b = 2a. The data of
the blue curve is given in Table 1, and the data of the red curve is ωa/c0 = 4.5 and ω0a/c0 = 3. All cross
sections are normalized with 2πa2.

parameters ωa/c0 = 4.5 and ω0a/c0 = 3. These two sets of materials have a static permittivity of
ε(0) = 13/4, and therefore the same right-hand side of (5).

The polarizability dyadic contributions from the two Lorentz spheres are the same, i.e.,

ê∗ · γe · ê = 11.29
4πa3

3

The right-hand side of (5) then becomes 11.82 in both cases. The integrated extinction is computed
using numerical integration over the frequency interval in Figure 6. The results are 11.8 and 11.7,
respectively, for the two curves.

5. ILLUSTRATIONS OF D. S. JONES’ RESULTS

Sphere 1 ε(0) Sphere 2 ê∗ · γe · ê/(4πa3/3)
Lorentz 13/4 Lorentz 11.29
Debye 5 Lorentz 11.63
PEC ∞ Lorentz 12.65

Table 2: The eigenvalues of the electric polarizability of the Lorentz examples in Section 4. The second
Lorentz sphere has the same static permittivity ε(0) = 13/4 in all three examples.

The numerical examples shown in Section 4 can be used to illustrate the effect of altering the
static properties of the obstacle in a different way. In Table 2, we collect the electric polarizability
values of the Lorentz examples in Section 4. These values clearly illustrate D. S. Jones’ result [6],
which states that the polarizability eigenvalues increase with increasing static permittivity of the
scatterer. An immediate consequence of D. S. Jones’ result is that a scatterer with larger static
material parameters implies a larger right-hand side of (5), and, consequently, a stronger scatterer,
as measured by the left-hand side of (5).

The example in Section 4.2 also illustrates that the eigenvalues of the polarizability increase if
more material is added to the scatterer. The polarizability of the PEC and Lorentz spheres is 11.15
(in the units used above), whereas the PEC and Lorentz spheres alone have polarizability 1.5 and
72/7, respectively, which both are smaller values.
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6. CONCLUSIONS

The sum rule of the extinction cross section (2) have been exploited, and some of its consequences
have been discussed. This sum rule holds for a large class of linear and passive material models,
and assumes causality and energy conservation via the optical theorem. The result states that
the extinction cross section integrated over all frequencies is related to the static polarizability
dyadics. In particular, the integrated extinction is the same for all materials having identical
static properties, irrespectively of their dynamic properties, as long as they are passive and satisfy
causality. Several numerical illustrations verify this sum rule, and, in particular, we illustrate the
bounds on the scattering and the absorption properties of the obstacle. Moreover, D. S. Jones’ less
known results on the dependence of polarizability on the material parameters have been verified.
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