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Abstract

This paper treats the problem of calculating the macroscopic effective prop-
erties of dielectric mixtures where both the inclusions and the background
medium can be anisotropic. For this homogenization process, the Maxwell
Garnett -type approach is used where the inclusions are assumed to be spher-
ical and embedded in a homogeneous background medium. The anisotropy of
the background medium has to be described with a symmetric permittivity
dyadic but the inclusion may be fully anisotropic, in other words the inclusion
permittivity dyadic can contain an antisymmetric component. The effect of
the anisotropy of the background is such that the depolarization factors of
the spheres become different in different directions, even if the geometry is
isotropic. This effect has to be taken into account for the calculation of the
polarizability dyadic. As an example, numerical values are calculated for the
case of gyrotropic spheres in anisotropic environment, both for the polariz-
ability and effective permittivity dyadics. Finally, some thoughts are raised
concerning the physical interpretation of the anisotropy effect, as well as the
reciprocity of the materials and symmetry of their permittivities.

1 Introduction

Poisson, Faraday, Mossotti, Clausius, Maxwell, Lorenz, Lorentz, and Rayleigh are
famous names from the 19th century that are affiliated with the dielectric and optical
modeling of materials [6, 9]. The oldest mixing formula that explains dielectric
permittivities, however, carries the name Maxwell Garnett and dates from the first
years of the present century [2]. This Maxwell Garnett (MG) mixing rule

εeff = εe + 3fεe
εi − εe

εi + 2εe − f(εi − εe)

predicts the effective macroscopic permittivity εeff of a heterogeneous medium where
homogeneous spheres of isotropic permittivity εi are dilutely mixed into isotropic
environment with permittivity εe. The inclusions occupy a volume fraction f . This
seemingly simple expression is quite capable of predicting very special material ef-
fects that a mixing process can produce, for example, the well known fact that
materials may exhibit surprisingly different behavior in composites on one hand,
and in bulk form on the other.

Since Garnett’s times, the formula labeled after his name has been generalized in
many respects. Multiphase mixtures, non-spherical inclusions, and lossy materials
are but some of the more complicated problems where the MG result can be applied
today. Magnetoelectric and chiral materials are also one domain into which one has
succeeded in generalizing the MG rule, along with the present-day enthusiasm on
exotic and complex materials.

One regime of heterogeneous media exists, however, that has been left without a
correct and general Maxwell Garnett mixing formula. This is the situation when the
two media composing the mixture are both anisotropic. Although an anisotropic
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inclusion phase can be dealt with more easily — as a matter of fact, even the bi-
anisotropic inclusion case possesses an elegant solution [11] — the case when the
background medium is anisotropic has not been given solution in the literature; even
incorrect mixing formulas have been used for that problem. The core of the difficul-
ties in the anisotropic-background case is that a spherical inclusion in anisotropic
environment will become depolarized differently than in isotropic environment, and
consequently the spherical depolarization factors cannot be used. Recently, a cor-
rect way has been presented of calculating the internal field of a sphere (that can be
anisotropic) in anisotropic environment [14]. That result paves the way to the gen-
eralization of the Maxwell Garnett formula to mixtures where anisotropic spheres
are embedded in another anisotropic medium, which is the direction of the present
paper.

2 Theory

The aim is to try to describe the material in Figure 1 in macroscopic terms. To be
able to homogenize a heterogeneous dielectric medium, some analysis is needed on
the polarizability characteristics of a single inclusion of the mixture. This requires
solving the internal field of the inclusion when it is exposed to an external field.

2.1 Internal field of a sphere in anisotropic medium

Consider a spherical inclusion with an arbitrary permittivity1 dyadic εi. Let it be
located in an unbounded anisotropic environment that is described by a symmetric
permittivity dyadic εe. Because of the symmetry, this dyadic can be diagonalized.
Choose the coordinate axes along the orthogonal eigenvectors, and the background
permittivity dyadic can be written:

εe = εe,xuxux + εe,yuyuy + εe,zuzuz

where ui is the unit vector in the i-direction, and εe,i is the respective eigenvalue of
the dyadic.

In order to be able to calculate the polarizability of the anisotropic inclusion, the
electrostatic problem of this inclusion in a uniform field has to be solved. One can
follow the classical treatment of the corresponding isotropic problem [3, Sec. 4.4], and
it turns out [1] that the anisotropy of the inclusion does not create any complications.
However, the anisotropy of the environment is a problem because it causes the effect
that the potential outside the sphere does not obey the Laplace equation which is the
starting point for the polarizability calculations of classical dielectrics. One needs
to resort to an affine transformation to the external medium [7, Sec. 4.3]. Then the
Laplace equation holds for the potential in the transformed space. As a consequence
of the affine transformation of the space, the spherical surface of the inclusion has
become ellipsoidal. Thus the internal field Ei due to an external field Ee can be

1The permittivities are absolute permittivities, carrying units As/Vm.
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εe

εi

Figure 1: The homogenization problem: dielectrically anisotropic spheres embed-
ded in anisotropic environment.

written [14]:
Ei = [εe + N · (εi − εe)]

−1 · εe · Ee (2.1)

where N is the depolarization dyadic of the ellipsoid:

N =
∑

i=x,y,z

Niuiui (2.2)

The well-known depolarization factors [15, Sec. 3.27] are

Nx =
axayaz

2

∞∫
0

ds

(s + a2
x)

√
(s + a2

x)(s + a2
y)(s + a2

z)
(2.3)

for an ellipsoid with semiaxes ax, ay, and az.
2 For the ellipsoid in question, the

semiaxes are determined by the affine transformation:

ax =
a√

εe,x/ε0

, ay =
a√

εe,y/ε0

, az =
a√

εe,z/ε0

(2.4)

where ε0 is the free-space permittivity and a is the radius of the original sphere.
Another form for the depolarization dyadic (2.2) is

N =
a3

2

∞∫
0

ds
(sI + a2ε0ε

−1
e )

−1√
det(sεe/ε0 + a2I)

(2.5)

It is easy to see that for the case of isotropic environment (εe = εeI), the depolar-
ization dyadic3 becomes the familiar one-third multiple of the unit dyadic: N = 1

3
I.

2For Ny and Nz, change ax in the first term of the denominator of the integrand to ay and az,
respectively.

3In fact, the radius a is superfluous in Equation (2.5) and can be dropped.
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2.2 Generalized polarizability dyadic

As the inclusion material differs from its environment, it creates a perturbation
to the incident field. This “scattered” field due to an electrically small particle
can be thought as a result of a static dipole. In classical dielectric studies of the
polarizability behavior of particles, the dipole moment amplitude can be directly
written down from the expression of the scattered field. Alternatively, the amplitude
can be enumerated by integrating the polarization density P over the inclusion
volume V .4

In the present anisotropic case, the latter approach is simpler because then there
is no need for treating the dipole perturbation field in an anisotropic medium. The
integration is easy because the internal field is constant. The dipole moment p is

p =

∫
inclusion

P dV =

∫
inclusion

(εi − εe) · Ei dV = V (εi − εe) · Ei (2.6)

and because the polarizability dyadic α is the linear relation between the dipole
moment and the external field,

p = α · Ee

we can write, using (2.1) and (2.6):

α = V (εi − εe) · [εe + N · (εi − εe)]
−1 · εe (2.7)

Note that this result differs from the expected results for spherical inclusions [8] by
the appearance of the non-isotropic depolarization dyadic.

2.3 Maxwell Garnett model and the effective permittivity
dyadic

To construct the Maxwell Garnett model for the mixture in Figure 1 where anisotrop-
ic spherical inclusion particles are embedded in the anisotropic environment, the
concept of the Lorentzian field [16] has to be carefully regarded. Now that the
inclusions are — because of their anisotropy — not symmetric with respect to rota-
tion, their orientation distribution is an important parameter affecting the effective
permittivity. Let us assume in the following that all the inclusions are aligned, in
other words, they have the same permittivity dyadic, and the eigenvectors of the
symmetric part and the antisymmetric axis are the same for all inclusions.

Now a macroscopic consideration takes the medium homogeneous: an external
field Ee subjected on the mixture creates a background polarization density εe ·Ee

and in addition an average inclusion polarization density P = np where n is the
number density of the inclusions. But because of the permeated polarization, the
field EL exciting the dipole moment into an inclusion is greater than the external
field:

EL = Ee + ε−1
e · N · P (2.8)

4These two approaches have been called as the internal and external field methods [13].
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This expression differs from the classical case of isotropic media [6] in that the
Lorentzian correction term due to surrounding polarization density P is anisotropic.
This is again a consequence of the affine transformation to reduce the environment
isotropic whence the spherical surface becomes ellipsoidal.5

The dipole moment of an inclusion surrounded by the average polarization is

p = α · EL (2.9)

Multiplying the dipole moment vector with the number density of the inclusions
n gives the polarization density P and using (2.8), we can write the polarization
density in terms of the polarizability dyadic. Define the effective permittivity dyadic
by

D = εe · Ee + P = εeff · Ee (2.10)

where D is the electric flux density, and we can write

εeff = εe +
[
I − nα · ε−1

e · N
]−1 · nα (2.11)

This generalized Clausius–Mossotti relation can be also written into a generalized
Maxwell Garnett form where the permittivities of the mixture components appear
instead of polarizabilities, because the polarizability dyadic (2.7) is known:

εeff = εe + f (εi − εe) · [εe + (1 − f)N · (εi − εe)]
−1 · εe (2.12)

Here f = nV is the dimensionless quantity: the volume fraction of the inclusions.
In deriving this formula, one needs to be careful with dyadic algebra: the inclusion
permittivity dyadic εi does not commute in general with the other dyadics in the
expression. However, N and εe commute since both are symmetric dyadics with
the same eigenvectors.

3 Example:

gyrotropic spheres in anisotropic background

As an example to illustrate the theory presented above, let us treat the problem of a
gyrotropic sphere in an anisotropic environment and, furthermore, a mixture where
this type of spheres occupy random positions in the background medium.

The permittivity dyadics

Let us assume the gyrotropic dyadic of the inclusions to be of the following form
where the z-axis of the coordinate system is assumed to align with the gyrotropy
axis of the sphere:

εi = εi,tI t + εi,zuzuz + guz × I (3.1)

5In spite of the similarities of Equations (2.1) and (2.8), the field concepts are different: here
we treat a cavity in which the field is defined to be the local field that excites the dipole mo-
ment, whereas in the case when the field ratio (2.1) for a single inclusion was calculated, it was
the true field within the anisotropic inclusion material that was solved. Nevertheless, the same
depolarization dyadic applies in both cases.
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where the two-dimensional unit dyadic in the xy-plane is denoted by I t = I−uzuz.
Here g is the amplitude of the gyrotropy, and εe,t and εe,z are the permittivities in
the transversal and axial directions, respectively.

Let us further assume for simplicity that the host medium permittivity εe is
uniaxial, with the optical axis coinciding with the gyrotropy axis of the inclusion:

εe = εe,tI t + εe,zuzuz

with the two permittivity components εe,t and εe,z.

Operations on gyrotropic dyadics

Using the results of [7, Sec. 2.8.4], operations on gyrotropic dyadics can be used in
the following form. Denote by G a gyrotropic dyadic with arbitrary coefficients:

G(α, β, γ) = αI t + βuzuz + γuz × I

The determinant of a gyrotropic dyadic is

det {G(α, β, γ)} = β(α2 + γ2)

and the inverse of a gyrotropic dyadic is another gyrotropic dyadic

G−1(α, β, γ) = G

(
α

α2 + γ2
,

1

β
,

−γ

α2 + γ2

)

The dot product between two gyrotropic dyadics is again another gyrotropic dyadic:

G(α1, β1, γ1) · G(α2, β2, γ2) = G (α1α2 − γ1γ2, β1β2, α1γ2 + γ1α2)

From this expression it is easy to see that two gyrotropic dyadics commute with
each other.

The polarizability dyadic

And now, since the permittivity dyadic (3.1) of the gyrotropic sphere is

εi = G(εe,t, εe,z, g)

we can write the polarizability of this sphere in anisotropic medium with permittivity
(3) as

α = G(αpol, βpol, γpol) (3.2)

with

αpol = V εe,t
(εi,t − εe,t)[Ntεi,t + (1 − Nt)εe,t] + Ntg

2

[Ntεi,t + (1 − Nt)εe,t]2 + N2
t g2

(3.3)

βpol = V εe,z
εi,z − εe,z

Nzεi,z + (1 − Nz)εe,z

(3.4)

γpol = V εe,t
εe,t g

[Ntεi,t + (1 − Nt)εe,t]2 + N2
t g2

(3.5)

using (2.7). Note the appearance of the depolarization factors Nt and Nz in the
expression. These come from the dyadic (2.2), which is uniaxial in the present
example.
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The depolarization factors

The depolarization factors in the polarizability expression are those of an oblate
spheroid for the case of positive uniaxiality of the background medium, in other
words, when εe,z > εe,t. Then we have

Nz =
1 + e2

e3
(e − arctan e), where e =

√
εe,z/εe,t − 1

and Nt = (1 − Nz)/2.
In case of negative uniaxiality, the depolarization factors are those of a prolate

spheroid. Then εe,z < εe,t, and

Nz =
1 − e2

2e3

(
ln

1 + e

1 − e
− 2e

)
, where now e =

√
1 − εe,z/εe,t

and, again, Nt = (1 − Nz)/2.

The macroscopic permittivity

Using the anisotropic Maxwell Garnett mixing formula (2.12) and the gyrotropic
dyadic operations, the effective permittivity dyadic can be written for a mixture
where gyrotropic spheres with the permittivity dyadic (3.1) occupy a volume fraction
f in a heterogeneous medium. In the following, all spheres are assumed to be oriented
such that their gyrotropy axis aligns with the optical axis of the environment.

No wonder that the effective permittivity turns out to be a gyrotropic dyadic,
too:

εeff = G(εeff,t, εeff,z, geff) (3.6)

with

εeff,t = εe,t + fεe,t
(εi,t − εe,t)[εe,t + (1 − f)Nt(εi,t − εe,t)] + (1 − f)Ntg

2

[εe,t + (1 − f)Nt(εi,t − εe,t)]2 + (1 − f)2N2
t g2

(3.7)

εeff,z = εe,z + fεe,z
εi,z − εe,z

εe,z + (1 − f)Nz(εi,z − εe,z)
(3.8)

geff = fεe,t
εe,t g

[εe,t + (1 − f)Nt(εi,t − εe,t)]2 + (1 − f)2N2
t g2

(3.9)

A first look at the effective permittivity expression (and also at the polarizability
expression) would suggest that the axial and transversal components of the dyadics
are decoupled from each other. Only the z-components of the permittivities of the
phases appear in the z-component of the mixture permittivity. However, this is
only illusory because the depolarization factors Nz and Nt both depend, very non-
linearly, on the uniaxiality ratio of the background medium, which leads to the fact
that the mixture permittivity components cannot be calculated independently. This
non-linear dependence is weak if the uniaxial anisotropy is small (εe,t/εe,z ≈ 1).
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Figure 2: The three components (T: transversal (αpol), Z: axial (βpol), and G:
antisymmetric (γpol)) of the polarizability dyadic (3.2) of a gyrotropic sphere as
functions of the uniaxiality ratio of the background medium. The parameters of the
sphere are: εi,t = εi,z = 5ε0, and g = jε0. In the upper figures εe,t = 2ε0 and εe,z

varies; in the lower ones, εe,z = 2ε0 and εe,t varies. The polarizability components
are normalized with the magnitude V ε0.

Illustrations

Let us next illustrate the behavior of the polarizability and effective permittivity of
the gyrotropic spheres in uniaxial background medium.

Polarizability Figure 2 displays the dependence of normalized polarizability com-
ponents of a gyrotropic sphere. The parameters used in the calculations are εi,t =
εi,z = 5ε0, and g = jε0, where ε0 is the free-space permittivity. Note that the
gyrotropy parameter g is chosen pure imaginary; this leads to a lossless character
for the material.6 Shown are the components of (3.2): αpol/(V ε0), βpol/(V ε0), and
Im{γpol}/(V ε0), as functions of the axial ratio of the uniaxial permittivity of the
environment. One component is kept at 2ε0 while the other varies between ε0 and
3ε0.

From the upper curves of Figure 2 one can see that changing the axial component
of the background permittivity component will have the strongest effect on the axial

6For imaginary g and real εi,t, εi,z, the permittivity dyadic (3.1) becomes Hermitian, which
means that the medium is dielectrically lossless [4, p. 51].
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Figure 3: The axial component of the relative effective permittivity dyadic (3.6)
of mixture with gyrotropic spheres embedded in uniaxial background medium. The
parameters of the spheres are: εi,t = εi,z = 5ε0, and g = 3jε0. The background
permittivities are εe,t = 2ε0 and the curves represent different values of εe,z. Solid
curve: εe,z = 2ε0, long-dashed: εe,z = ε0, and short-dashed: εe,z = 3ε0.

polarizability. As the background permittivity component εe,z increases, the polariz-
ability component βpol decreases because the contrast between the inclusion and the
environment decreases. A similar effect can be noticed in the lower curves between
the transversal components of the background permittivity and polarizability.

On the other hand, the effect of the axial permittivity on the transversal polar-
izability (and transversal permittivity on axial polarizability) is small. However, as
discussed above, these are not independent but a slight increase can be noted.

The antisymmetric component of the polarizability is proportional to the gy-
rotropy parameter of the sphere, and its expression contains explicitly the transver-
sal permittivity components. Also the figure testifies the notable effect of εe,t on
γpol. But also a very slight effect of the axial permittivity εe,z can be seen, which
is due to the anisotropy effect through the depolarization factors differing from the
sphere values 1/3.

Effective permittivity The effective permittivity of gyrotropic spheres aligned
in uniaxial environment is also gyrotropic. The components of the permittivity
dyadic can be calculated using Equation (3.6), and are shown in Figures 3–5 for a
mixture where the inclusions have parameters εi,t = εi,z = 5ε0, and g = 3jε0 and
the background εe,t = 2ε0, with the axial permittivity having three different values:
εe,z/ε0 = 1, 2, and 3. The curves are given as functions of the volume fraction of the
inclusions, and the obvious property of a Maxwell Garnett prediction can be seen
from all three figures that for f = 0, the curves start from the background values,
stopping at the inclusion values for f = 1.

Figure 3 shows the rather uninteresting behaviour of the axial effective per-
mittivity values, for different values of the inclusion axial permittivity component.
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Figure 4: The same as Figure 3, for the transversal component of the effective
permittivity dyadic.

The strong direct effect between the axial permittivities masks all subtleties of the
non-spherical depolarizabilities. On the other hand, these finer structures display
themselves more visibly in Figure 4 which shows the effective transversal permittiv-
ity curves for three different values of the axial inclusion permittivity. For all three
curves, the background and inclusion transversal permittivities are the same, and
indeed all three curves are very close to one another. However, the small anisotropy
effect can be seen: the effective transversal permittivity is slightly smaller if the
axial inclusion permittivity is small (the curve with εe,z = ε0 is the lowest one), and
slightly higher if the axial inclusion permittivity is large (the curve with εe,z = 3ε0

is the highest).
The anisotropy effect that comes from the depolarization factors explains the

small differences of the three curves in Figure 5, too. There the gyrotropic compo-
nent of the effective permittivity dyadic is shown for the three different values of
the axial component of the inclusion permittivity dyadic. Equation (3.9) testifies
that the antisymmetric component of the effective permittivity does not explicitely
depend on the axial components of the permittivities of the two phases of the mix-
ture. The axial effect comes only through the depolarization factors Nt and Nz

which depend on the anisotropy of the background material. Again, the effect of
increasing the axial permittivity of the inclusion is an increase in the macroscopic
gyrotropy, albeit a small one.

4 Discussion

Let us discuss in some detail the anisotropy effect and the symmetries of the different
material dyadics treated above.
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Figure 5: The same as Figure 3, for the antisymmetric component of the effective
permittivity dyadic.

4.1 Physical interpretation of the anisotropy effect

The illustrations in the previous section have shown that the effective permittivities
in the axial and transversal directions cannot be calculated independently of the
knowledge of the other components, even in the case when the anisotropy axes
of the spherical inclusions and the environment coincide. The “anisotropy effect”
means that the anisotropy of the environment leads to the use of such depolarization
factors in the calculations that differ from the sphere values 1/3 [12]. Let us consider
the physical polarizability behavior of this effect in the case of a simple example:
let the background be uniaxial and the inclusion isotropic. Consider the following
two cases separately: electrically heavy spheres in uniaxial background with small
permittivity components (raisin pudding model), and electrically light spheres in
uniaxial background with large permittivity components (Swiss cheese model).

• Raisin pudding model. The spheres are of higher permittivity than the en-
vironment. Consider the permittivity component in the direction of the optical
axis, and assume positive uniaxiality: the axial component of the environment
permittivity is higher than in the transversal one. Then the anisotropy effect
is to lower the effective permittivity in this direction.

This can be understood in the following sense: the anisotropy effect flattens
the spherical shape into an oblate ellipsoid in the transformed space (see Equa-
tions (2.4)). And we are studying field excitation in the direction of the axis of
revolution of this ellispoid. The effect of flattening is to decrease the internal
field (it is known that the field ratio for a sphere is 3εe/(εi + 2εe) and for a
flat disk it is εe/εi, which is smaller than the sphere ratio because εe < εi).
Therefore the dipole moment component of the inclusion decreases and the
increase of the effective permittivity due to the polarizable inclusions is not as
large as it were, had it been calculated with the sphere depolarizabilities.
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• Swiss cheese model. The spheres are of lower permittivity than the envi-
ronment. Consider again the permittivity component in the direction of the
optical axis (the axial permittivity component of the environment is, as be-
fore, higher than the component in the transversal direction). What is now
the anisotropy effect? The effect is also in this case to lower the effective
permittivity in this direction!

Just like above, the anisotropy effect flattens the spherical shape into an oblate
ellipsoid in the transformed space. The effect of flattening is now to increase
the internal field (because the field ratio for a flat disk is now larger than for a
sphere, see the above ratios). Therefore the dipole moment component of the
inclusion increases in amplitude but is negative (because the inclusions had a
lower permittivity than the environment). Therefore the effective permittivity
component is smaller than it would be in the case of using the (incorrect)
spherical depolarization rule.

The above reasoning about increases and decreases can be turned around if
we treat the transversal effective permittivity components, and also in the case
of negative uniaxiality (axial permittivity of the environment is smaller than the
transversal) of the anisotropy of the environment.

4.2 Symmetry and reciprocity

Reciprocity is a concept of electromagnetic materials that has received increased
attention recently [5, 10]. Reciprocity is a certain manifestation of symmetry with
respect to the interchange of transmitter and receiver [4, Sec. 5.5]. The permittivity
dyadic of a reciprocal material is symmetric, although it can be anisotropic. It is
natural to accept that also a mixture composed of reciprocal materials must display
reciprocal electromagnetic behavior, in other words, the effective permittivity dyadic
should be symmetric:

εe = εT
e and εi = εT

i =⇒ εeff = εT
eff (4.1)

where T denotes the transpose operation. From the expression (2.12) for the effective
permittivity this symmetry property is not obvious because εi does not commute
with εe or N , even if it is symmetric.7 However, the property (4.1) can be more
easily seen to hold if the effective permittivity dyadic (2.12) is rewritten in the
following form:

εeff = εe + f
[
(εi − εe)

−1 + (1 − f)ε−1
e · N

]−1
(4.2)

This form of the Maxwell Garnett equation may be more practical than (2.12) in
some applications. The reciprocity of the mixture for reciprocal components is
obvious after using the fact that the inverse and transpose operations on a dyadic
commute.

7The eigenvector directions of εi may be different from those of εe and N .
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5 Conclusions

Dielectric anisotropy and its effect on macroscopic properties of mixtures has been
the topic of the present paper. Although the Maxwell Garnett formula has been
known for over 90 years, its correct form for anisotropic components, especially for
the case of anisotropic background media, has remained hidden. The important
feature in the correct form of the MG mixing formula, very much emphasized in
the present paper, is the so-called “anisotropy effect,” which means that in a certain
sense the spherical inclusions have to be treated like ellipsoids when their polarizabil-
ity characteristics are calculated. The deformation of the spheres is a consequence
of the affine transformation that has to be executed to render the environment
isotropic. The semiaxes of the sphere-deformed-into-ellipsoid are proportional to
the inverse of the square root of the permittivity components of the environment.

The results show that the anisotropy effect is not very large for small anisotropies
of the environment. This is a consequence of the above-mentioned square-root de-
pendence on the permittivity components, and the fact that the ellipsoidal depolar-
ization factors are quite slow functions of the eccentricity near the spherical case.
Nevertheless, the numerical curves in the previous sections showed visible effects
of this anisotropy as the uniaxiality ratio of the environment was allowed to range
between 1/2 and 3/2.

What are the limitations of the present model? As always for quasistatic mixing
formulas, the results apply for wavelengths much larger than the size of the scat-
terers. These are low-frequency approximations. The anisotropies of the problem,
however, are allowed to be quite general: there are no limitations for the inclusion
permittivity, and the environment anisotropy is described by an arbitrary symmetric
permittivity dyadic.

Concerning losses, the permittivity components of dissipative materials are de-
scribed by complex numbers in the frequency domain. Therefore the polarizability
and effective permittivity expressions retain their form also in the lossy case, now
only complex values have to be used, and losses are contained in the imaginary parts
of the results. The starting phases of the analysis in the paper made use of the affine
transformation that was determined by the permittivity dyadic of the environment,
and one may ask how that procedure is affected if the environment is lossy. The
first step was to diagonalize the symmetric permittivity dyadic of the background
medium. Then the eigenvalues become complex. This causes no problems for the
enumeration of the results using the expression in the paper. In general, the eigen-
vectors are complex, too. But these complex vectors are orthogonal, and we have
to choose a complex orthonormal coordinate system. Then it may hurt intuition to
use the familiar equations for the ellipsoidal depolarization factors (2.3) in complex
domain. However, there should be no reason why the analytical form for the depo-
larization dyadic (2.5) could not be used, even if the permittivity dyadic εe is an
arbitrary complex but symmetric dyadic.
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