
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Controller synthesis for application specific digital signal processors

Öwall, Viktor; Torkelson, Mats

Published in:
[Host publication title missing]

DOI:
10.1109/ASIC.1991.242899

1991

Link to publication

Citation for published version (APA):
Öwall, V., & Torkelson, M. (1991). Controller synthesis for application specific digital signal processors. In [Host
publication title missing] https://doi.org/10.1109/ASIC.1991.242899

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ASIC.1991.242899
https://portal.research.lu.se/en/publications/51109cac-8777-4096-bebd-9494cd7c3da5
https://doi.org/10.1109/ASIC.1991.242899

CONTROLLER SYNTHESIS FOR
APPLICATION SPECIFIC DIGITAL SIGNAL PROCESSORS

Viktor Owdl and Mats Torkelson

Department of Applied Electronics
Lund University, Sweden

To DP

Eval.

Abstract

A controller synthesizer, tha t is part of a design sys-
tem by which algorithms unsuitable for standard pro-
cessors can be implemented, is presented. A hierarchi-
cal controller architecture suitable for frame-based and
multi-sample-rate algorithms is synthesized. Synthesis
of a controller is based on micro instructions, specific for
each architecture, and assumes no use of predefined func-
tional blocks. The designer can affect complexity and
partitioning of the controller by changing the micro pro-
gram. Processors for speech scrambling and digital ad-
justment of quadrature modulators have been designed
and fabricated.

1 Introduction
Application Specific Digital Signal Processors (ASDSPs) require
a complex set of signals to control the data flow through the
processor. Various ASDSP architectures require different sets of
control signals and different complexity of the controller. Thus,
it is important to have a flexible tool for controller synthesis.
The presented Control Unit Synthesizer (CUS) is aimed a t dig-
ital radio communication applications where frame-based and
multi-sample-rate algorithms are frequently used. Therefore, our
CUS synthesizes controllers which have a hierarchical architec-
ture suitable for these kinds of algorithms [I].

The CUS Synthesizes a controller from a micro program and
is tightly coupled to a Data Path Compiler (DPC) [2]. The DPC
and the CUS put no restrictions on the processor architecture
which gives the designer the flexibility to develop an architecture
suitable for the algorithm. Algorithms with conditional state-
ments, subroutine calls, conditional subroutine calls, loops, etc.
can be implemented with the CUS.

In order to simulate and debug the micro program a Register
Transfer Level (RTL) simulator has been developed. The DPC
and the CUS together with the RTL simulator make it possible
to design complex ASDSPs in a short time.

2 System Overview
Because of the tailored architecture of an ASDSP the CUS has
to work closely with the DPC. The DPC generates data path
modules from structural descriptions, additionally the DPC gen-
erates a behavioral description of the processor. The behavioral
description consists of all micro instructions available for the
processor, status signals, and default levels to control signals.

The algorithm is described in a micro program with the micro
instructions defined by the DPC, memories (ROMs and RAMS)
can be declared for usage in the micro program. Subroutines,
case statements, and variable passing are used in a way similar
to high level programming to make scheduling and simulation
easier. A C program which performs an RTL simulation of the
micro code can be generated from the micro program. The RTL
simulation can be performed both in floating point representa-
tion and on bit level and allows the designer to debug the micro
code without generation, extraction, and simulation of the chip.

The CUS synthesizes a complete hierarchical controller and
specifies its interconnections to data paths and I/O-units. Mem-
ory modules, with a supporting Address Processing Unit (APU),
are generated by the CUS if such are declared in the input spec-
ification. Partitioning and complexity of the controller is de-
pendent on the structure of the micro program. Therefore, the
designer can try various strategies in partitioning of micro code
and memories, and complexity of APUs, to find a good solution.

The generated ASDSP is finally extracted and simulated a t
transistor level before fabrication. The tools have been modified
to enable the use of different cell libraries and to produce different
output formats.

3 Controller Architecture
The controller architecture contains one micro code level and one
or several sequencing levels. Each level controls the next lower
level, the data path for the micro code, and is controlled by the
next higher level, an external signal for the highest level. The
number of sequencing levels is decided by the partitioning of the
micro code.

The micro code level is the lowest hierarchical level and con-
sists of a micro code ROM, a program counter, and a pipeline
register, figure 1.

Figure 1: The micro code level.

91TH0379-8/91 /oooO-P13-5.1$01.OO Q 1991 IEEE
P13-5.1

The micro code ROM generates control signals which control
the data flow through the data paths and control signals to the
APU. The code is partitioned into blocks of micro instructions of
arbitrary length (subroutines). Micro instructions in a block are
executed in sequential order, controlled by a program counter,
where each time slot is one clock cycle. The sequencing of blocks
is controlled by the next higher level ROM. Pipeline registers
are implemented between all levels in the controller to avoid
clock cycle overhead on out-of-block transitions. At the end of
each block a n End Of Block (EOB) signal is set that resets the
program counter and loads a new block address into the pipeline
register. This EOB signal also increments the program counter
on the next higher level.

It is possible to select different micro operations or memory
locations with a case statement. Case statements use Boolean
conditions evaluated from status signals in a Decision Finite
State hlachine (DFSM). Status signals can be both data path
signals, and external signals from I/O-units. The evaluation of
conditions is controlled from the micro code ROM. A condition
should not be used before it has been evaluated. The DFSM can
be implemented in one or many PLAs depending on speed re-
quirements or floorplan considerations, partitioning of the DFSM
is controlled by the designer in the micro program.

The next hierarchical levels describe the sequencing of blocks.
Each level is divided into blocks and each block into time slots as
in the micro code ROM. In the sequencing levels, however, a time
slot is not one clock cycle but one block in the next underlying
level. Thus a time slot in higher levels is not a fixed number of
clock cycles but of arbitrary length decided by the designer. All
sequencing levels in the controller are implemented in the same
way and is controlled by a counter and by the next higher level,
the same way as for the micro code ROM.

The counter sequences through the block addresses for the
next lower level. The counter is incremented when an EOB signal
is received from the next lower level and reset with the EOB
signal from the same level. Loops are realized by disabling the
incrementing of the level counter until the required condition in
the DFShl is fulfilled. An example with micro code and two
sequencing levels is shown in figure 2.

Figure 2: Architecture for a three level controller.

The highest level is controlled by an external Start of 2 -
quence (SOS) signal. At the end of a program sequence (I-
controller will examine the SOS signal. If SOS is set the mi,:.
code will be executed once more, otherwise the controller w..
send default signals to the data path and wait for SOS t o be se:

The DFSM is connected to all levels in the controller arct.
tecture. Thus, it is possible to use the case statement for makir.6
decisions on every level in the hierarchy. On the micro code levt
case statements are used to choose different sets of micro ope::
tions and on higher levels to choose what block address to se:. :
to the lower level. Synchronization between different modules :I
a processor is taken care of by the DFSM.

The controller is partitioned into small modules in order :
make the controller faster and make it easier t o get a dense-
floorplan. To avoid one large micro code ROM it can be pal:
tioned into smaller and faster modules to be placed close to 1;:
controlled module.

The described controller architecture is best suited for n:
cro code with non nested case and while statements. However
replacing the counters with feedback registers results in a :
nite state machine implementation, more suitable for nested pr:
gramming 13, 4). Such an architecture, with kept hierarch!.. ..
currently under development, figure 3.

Level ROM
Cond.

Figure 3: Finite state machine implementation.

Communication between processors is important in large-
systems. The described system supports both communicatior
between processors on the same chip and communication wit:
external processors. Co-processors can be synchronized to e a c
other using the DFSM and to a host processor using the SOS
signal. Future work will be to investigate implementation of par-
allel processors and parallel controllers and how to synchroniz-
these, figure 4.

Figure 4: Parallel contrcllers

P13-5.2

4 Memories and Address
Processine: Unit

Memories, RAhls and ROA4s, with an Address Processing Unit
(APU) can be generated optionally. The CUS generates de-
scription files of declared memories to a memory generator and
routing descriptions for the DPC. Output of the memories can
be connected to any bus at any data path. If large memories
are needed in a design the CUS is prepared for handling exter-
nal memories. Address bus, read, and write signals are then
connected to I/O-units.

The address ROM is separated from the micro code ROM
and can be controlled from more than one of the hierarchical lev-
els. Thus, it is possible to execute the same micro code several
times with different memory locations by passing variables from
higher levels. Otherwise the micro code must be duplicated and
the size of the micro code ROh.1 will increase. Variable passing
require additional pipeline registers between higher sequencing
levels and tlie APU. Thus. there is a trade off between increns-
ing the size of the micro code ROM and adding registers. The
DFSM can be connected to the address ROhl as well and case
statements can be used to choose different memory location5
when the micro code is executed.

R d M

Figure 5: hlemories with APU

The APU can be implemented in two ways. Either with a
single address ROM, or with an address ROM and an address
processor. In applications with few memory references an ad-
dress ROM without an address processor is sufficient (RAhl in
figure 5).

If more memory references are used the size of the address
ROM will increase. The address processor implementation will
then significantly reduce the size of the address ROM (ROM in
figure 5). A memory address, either from the address ROM or
from another module, is stored in a register and is used to com-
pute following memory locations. The address processor is con-
trolled by operations specified by the CUS depending on the se-
lected implementation. Address processor operations are treated
in the same way as other data path operations and can be part
of case statements. Signals from the address processor, overflow
signal and sign bit from the adder, are used as status signals
to the DFSM. These signals can be used to control incremental
loops in a micro program.

An address processor can support several memories or one ad-
dress processor can be implemented for each memory. Different
memories in a processor can use various strategies for the APU
and different complexity of the address processor. The complex-
ity of the address processor, number of registers and number
of inputs to the multiplexers, is synthesized depending on the
application.

5 Application examples
The tools have been used to design a speech scrambler chip for
mobile telephones and a chip for digital adjustment of quadrature
modulators.

In the scrambler the speech is split into four frequency bands
which are transposed and mirrored before transmission. The
algorithm requires four 6th order IIR filters a t the input, followed
by a down-sampler, a multiplexer and an up-sampler. The same
filters are used at the output to add the different bands together,
figure 6. One data path is used for all of the filters.

Status

Figure 6: Principle of the speech scrambler.

Multiplexing and mirroring are controlled by external signals
connected to the DFSM. The multiplexing is handled by con-
trolling the APU to a data storage module. Depending on the
state of the DFSM different data will be sent to the output fil-
ters. The chip size is 7x6 mm in a two micron technology and
contains about 20 000 transistors , figure 7.

111111 '

-AIllllllIlIm"
7
lllllllllllllllllSllIl
llllltllllllltlllllllll

...........-.-.-. a...
.ru"--..l..----.."d

Figure 7: Die photo of speech scrambler chip.

P13-5.3

The other application is a post-processor to a waveform gen-
erator, either a DSP or a look-up table ROM. The designed
processor compensates for imbalances in Radio Frequency (RF)
quadrature modulators for digital communication 151. Tradi-
tional methods for correction of these errors usually involve im-
proving the R F section. An alternative method applies correc-
tions to the baseband signal, either digital or analog. The de-
signed digital chip should be placed between the waveform gen-
erator and the digital to analog converters, figure 8.

Figure S: Correction of quadrature modulators.

6 Conclusions

The Control Unit Synthesizer has been developed for synthesis
of controllers to arbitrary digital signal processors. A behavioral
description is read for each processor and no constraints are pu:
on the architecture.

Complexity and partitioning of the controller is dependent on
the structure of the micro program. Therefore, it is easy to tr)
different strategies to find a good solution. A complete controller
and its interconnections with the data path is synthesized witt
specified memories and an address processing unit. A controller
is synthesized with basic logic building blocks and interconnec-
tions are specified in a generated netlist. This is crucial in order
to be flexible and to interface to various vendors, cell libraries.
and CAD-systems.

Our applications are targeted at digital radio communica-
tion. Therefore, a hierarchical controller architecture suitable
for algorithms frequently used in these applications has been de-
veloped. A finite state machine architecture as an alternative to
the counter based architecture is currently under development.
Work is also presently performed at adapting the Control Uni t
Synthesizer to a C scheduler [6] and to further investigate ini-
plementation of parallel processors on one chip.

The Control Unit Synthesizer is a part of a complete desigr:

sign of two very different applications proves the flexibility and
the usefulness of the developed tools.

The controller handles not only the sequencing of the data

is performed by the DFSM, control signals
flow but also the communication with the host DSP. This inter- system specific digita1 processors. The de-

face
connected to I/O-units, and the start of sequence signal.

The algorithm requires only four micro instructions on the de-
signed processor architecture. A corresponding implementation
on a ThIS320C25 processor requires more than 20 instructions
for the same function. The chip size is 6x6 mm in a two micron
technology and contains about 18 000 transistors , figure 9.

References

[I] hlats Torkelson. Design of application specific digital sig-
nal processors. Technical Report LUTEDX/(TETGl004)/1-
158(1990), June 1990.

[2] L. Brange and M. Torkelson. A Basic CAD-tool for module
generation. In ESSCIRC'89, 1989.

[3] Khalid Azim. Application of Silicon Compilation Techniques
to a Robot Controller. PhD thesis, University of California.
Berkeley, Sep 1988.

[4] J. Rabaey, H. De Man, J. VanHoof, G. Goosens, and
F. Catthoor. Silicon Compilation, chapter 8. Addison-
Wesley, 1988.

[5] M. Faulkner, T . Mattsson, and clr. Yates. Adaptive Lin-
earisation Using Pre-Distortion. In 40:th ZEEE Vehicular
Technology Conference, 1990.

[6] Kenneth E. Rimey. A Compiler for Application-Specific Sig-
nal Processors. PhD thesis, University of California, Berke-
ley, Sep 1989.

Figure 9: Die photo of correction chip.

Pl3-5.4

