Comparison of Periodic and Event Based Sampling for First-Order Stochastic Systems

Bernhardsson, Bo; Åström, Karl Johan

1999

Link to publication

Citation for published version (APA):

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
COMPARISON OF PERIODIC AND EVENT BASED SAMPLING FOR FIRST-ORDER STOCHASTIC SYSTEMS

Karl Johan Åström and Bo Bernhardsson

Department of Automatic Control, Lund Institute of Technology
Box 118, S-221 00 Lund, Sweden
fax: +46 46 13 81 18, email: kja,bob@control.lth.se

Abstract: Event based sampling is an alternative to traditional equidistant sampling. This means that signals are sampled only when measurements pass certain limits. Systems with event based sampling are much harder to analyze than systems with periodic sampling because the time varying nature of the closed loop system cannot be avoided. In this paper we investigate some simple first order systems with event based sampling and compare achieved closed loop variance and sampling rate with results from periodic sampling. The analysis shows that event based sampling gives better performance than periodic sampling.

Copyright © 1999 IFAC

Keywords: Sampled Data Control, Stochastic Control, Optimal Control

1. INTRODUCTION

The traditional way to design digital control systems is to sample the signals equidistant in time, see ?. A nice feature of this approach is that analysis and design becomes very simple. For linear time-invariant processes the closed loop system becomes linear and periodic. It is often sufficient to describe the behavior of the closed loop system at times synchronized with the sampling instants. This can be described by difference equations with constant coefficients.

There are several alternatives to periodic sampling. One possibility is to sample the system when the output has changed by a specified amount. Such a scheme has many conceptual advantages. Control is not executed unless it is required, control by exception, see Kopetz (1993). This type of sampling is natural when using many digital sensors such as encoders. A disadvantage is that analysis and design are complicated. This type of sampling can be called event based sampling. Referring to integration theory in mathematics we can also call conventional sampling Riemann sampling and event based sampling Lebesgue sampling.

Because of their simplicity event based sampling was used in many of early feedback systems. An accelerometer with pulse feedback is a typical example, see Draper et al. (1960). A pendulum was provided with pulse generators that moved the pendulum towards the center position as soon as a deviation was detected. Since all correcting impulses had the same form the velocity could be obtained simply by adding pulses.

Event based sampling occurs naturally in many contexts. A common case is in motion control where angles and positions are sensed by encoders that give a pulse whenever a position or an angle has changed by a specific amount.

1 This project was supported by the Swedish Research Council for Engineering Science under contract 95-759.
Event based sampling is also a natural approach when actuators with on-off characteristic are used. Satellite control by thrusters is a typical example, Dodds (1981). Systems with pulse frequency modulation, Polak (1968), Pavlidis and Jury (1965), Pavlidis (1966), Skoog (1968), Noges and Frank (1975), Skoog and Blankenship (1970), Frank (1979), Sira-Ramirez (1989) and Sira-Ramirez and Lischinsky-Arenas (1990) are other examples. In this case the control signal is restricted to be a positive or negative pulse of given size. The control actions decide when the pulses should be applied and what sign they should have. Other examples are analog or real neurons whose outputs are pulse trains, see Mead (1989) and DeWeerth et al. (1990).

Systems with relay feedback are yet other examples which can be regarded as special cases of event based sampling, see Tsypkin (1949 1950), Tsypkin (1984) and ?. The sigma delta modulator or the one-bit AD converter, Norworthy et al. (1996), which is commonly used in audio and mobile telephone system is one example. It is interesting to note that in spite of their wide spread there does not exist a good theory for design of systems with sigma delta modulators. Traditionally systems with event based sampling were implemented as analog systems. Today they are commonly implemented as digital systems with fast sampling. Apart from their intrinsic interest systems with event based sampling may also be an alternative way to deal with systems with multi-rate sampling, see .

Analysis of systems with event based sampling are related to general work on discontinuous systems, Utkin (1981), Utkin (1987), Tsypkin (1984) and to work on impulse control, see Bensaoussan and Lions (1984). It is also relevant in situations where control complexity has to be weighted against execution time. It also raises other issues such as complexity of control. Control of production processes with buffers is another application area. It is highly desirable to run the processes at constant rates and make as few changes as possible to make sure that buffers are not empty and do not overflow, see Pettersson (1969). Another example is where limited communication resources put hard restrictions on the number of measurement and control actions that can be transmitted.

Much work on systems of this type was done in the period 1960-1980. It has not received much attention lately. It is often rewarding to reconsider old problems in the light of new theoretical development. Therefore we will analyze a simple example of event based sampling. The system considered is a first order system with random disturbances. In this case it is possible to formulate and solve sensible control problems, which makes it possible to compare Riemann and Lebesgue sampling. The control strategy is very simple, it just resets the state with a given control pulse whenever the output exceeds the limits. The analysis indicates clearly that there are situations where it is advantageous with Lebesgue sampling. The mathematics used to deal with the problem is based on classical results on diffusion processes, Feller (1952), Feller (1954a), Feller (1954b). An interesting conclusion is that the steady state probability distribution of the control error is non-Gaussian even if the disturbances are Gaussian.

There are many interesting extensions of the problem discussed in the paper. Extensions to systems of higher order and output feedback are examples of natural extensions.

2. AN INTEGRATOR

We will first consider a simple case where all calculations can be performed analytically. For this purpose it is assumed that the system to be controlled is described by the equation

\[dx = udt + dv, \]

where \(v(t) \) is a Wiener process with unit incremental variance and \(u \) the control signal. The problem of controlling the system so that the state is close to the origin will be discussed. Conventional periodic sampling will be compared with event based sampling where control actions are taken only when the output is outside the interval \(-d < x < d\). We will compare the distribution of \(x(t) \) and the variances of the outputs for both sampling schemes.

Periodic Sampling

First consider the case of periodic sampling with period \(h \). The output variance is then minimized by the minimum variance controller, see Åström (1970). The sampled system becomes

\[x(t + h) = x(t) + u(t) + e(t) \]

and the mean variance over one sampling period is

\[V = \frac{1}{h} \int_0^h Ex^2(t) \, dt = \frac{1}{h} J_e(h) \]

\[+ \frac{1}{h} (Ex^T Q_1(h)x + 2x^T Q_{12}(h)u + u^T Q_2(h)u) \]

\[= \frac{1}{h} (R_1(h)S(h) + J_e(h)), \]

(1)
where
\[Q_1(h) = h \]
\[Q_2(h) = h^2/2 \]
\[R_1(h) = h^3/3 \]
and
\[J_c(h) = \int_0^h Q_1\int_0^t R_1\,d\tau\,dt = h^2/2. \]
The Riccati equation for the minimum variance strategy gives \(S(h) = \sqrt{3}h/6 \), and the control law becomes
\[u = -\frac{1}{2} + \frac{\sqrt{3}}{2}x \]
and the variance of the output is
\[V_R = \frac{3 + \sqrt{3}}{6}h. \]

Lebesgue Sampling

We will now consider the case of Lebesgue sampling, i.e. the situation when control actions are taken only when \(|x(t_k)| = d \). When this happens, an impulse control that makes \(x(t_k + 0) = 0 \) is applied to the system. With this control law the closed loop system becomes a Markovian diffusion process of the type investigated in Feller (1954a).

Let \(T_{\pm d} \) denote the exit time i.e. the first time the process reaches the boundary \(|x(t_k)| = d \) when it starts from the origin. The mean exit time can be computed from the fact that \(t - x^2 \) is a martingale between two impulses and hence
\[h_L := E(T_{\pm d}) = E(x^2_{T_{\pm d}}) = d^2. \]
The average sampling period thus equals \(h_L = d^2 \).

The stationary probability distribution of \(x \) is given by the stationary solution to the Kolmogorov forward equation for the Markov process, i.e.
\[0 = \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(x) - \frac{1}{2}\frac{\partial f}{\partial x}(d)\delta_x + \frac{1}{2}\frac{\partial f}{\partial x}(-d)\delta_x. \]
with \(f(-d) = f(d) = 0 \) This ordinary differential equation has the solution
\[f(x) = (d - |x|)/d^2 \]
The distribution is thus symmetric and triangular with the support \(-d \leq x \leq d \). The steady state variance is
\[V_L = \frac{d^2}{6} = \frac{h_L}{6}. \]

Comparison

To compare the results obtained with the different sampling schemes it is natural to assume that the average sampling rates are the same in both cases, i.e. \(h_L = h \). This implies that \(d^2 = h \) and it follows from equations (3) and (2) that
\[\frac{V_R}{V_L} = 3 + \sqrt{3} = 4.7. \]

Another way to say this is that one must sample 4.7 times faster with Riemann sampling to get the same mean error variance.

Notice that we have compared event based sampling with impulse control with periodic sampling with conventional sampling and held. A natural question is if the improvement is due to the impulse nature of control or to the sampling scheme. To get some insight into this we observe that periodic sampling with impulse control gives and error which is a Wiener process which is periodically reset to zero. The average variance of such a process is
\[Ex^2 = \frac{1}{h}E\int_0^h x^2(t)\,dt = \frac{1}{h} \int_0^h t\,dt = \frac{1}{h} \]

Periodic sampling with impulse control thus gives
\[\frac{V_R}{V_L} = 3 \]
The major part of the improvement is thus due to the sampling scheme.

Approximate Lebesgue Sampling

In the analysis it has been assumed that sampling is instantaneous. It is perhaps more realistic to assume that that sampling is made at a high fast rate but that no control action is taken if \(x(t) < d \). The variance then becomes
\[V_{AL} = d^2(\frac{1}{6} + \frac{5}{6}h_a/d^2). \]
The second term is negligible when \(h_a \ll d^2 = h_L \). Approximate Lebesgue sampling is hence good as long as \(d \) is relatively large.

The results are illustrated with the simulation in Figure 1. The simulation was made by rapid sampling (h=0.001). The parameter values used were \(d = 0.1, h_R = 0.012 \) and \(\sigma = \sqrt{d} \). In the particular realization shown in the Figure there were 83 switches with Riemann sampling and 73 switches with Lebesgue sampling. Notice also the clearly visible decrease in output variance.
The sampled loss function is characterized by

\[J_e(h) = \int_0^h \int_0^t e^{2a\tau} d\tau dt = \left(\frac{e^{2ah} - 1}{2a} \right)^2 = R_1 \]

(8)

The sampled loss function is characterized by

\[Q_1 = \frac{e^{2ah} - 1}{2a} \]
\[Q_{12} = \frac{e^{ah} - e^{ah} + 1}{a^2} \]
\[Q_2 = \frac{h^3}{3} \]

The minimum variance control law is obtained by solving a Riccati equation for \(S(h) \). The formula which is complicated is omitted. The variance of the output is shown in Figure 2 for different values of the parameter \(a \). Notice that the increase of the variance with the sampling period increases much faster for unstable systems \(a > 0 \).

3. A FIRST ORDER SYSTEM

Consider now the first order system

\[dx = ax dt + ud t + dv. \]

(6)

Periodic Sampling

Sampling the system (6) with period \(h \) gives

\[x(t + h) = e^{ah}x(t) + \frac{1}{a}(e^{ah} - 1)u(t) + e(t) \]

(7)

where the variance of \(e \) is given by

\[J_e(h) = \int_0^h \int_0^t e^{2a\tau} d\tau dt = \left(\frac{e^{2ah} - 1}{2a} \right)^2 = R_1 \]

(8)

The sampled loss function is characterized by

\[Q_1 = \frac{e^{2ah} - 1}{2a} \]
\[Q_{12} = \frac{e^{ah} - e^{ah} + 1}{a^2} \]
\[Q_2 = \frac{h^3}{3} \]

The minimum variance control law is obtained by solving a Riccati equation for \(S(h) \). The formula which is complicated is omitted. The variance of the output is shown in Figure 2 for different values of the parameter \(a \). Notice that the increase of the variance with the sampling period increases much faster for unstable systems \(a > 0 \).

Lebesgue Sampling

For event based sampling we assume as in Section 2 that the variable \(x \) is reset to zero when \(|x(t_k)| = d \). The closed loop system obtained is then a diffusion process. The average sampling period is the mean exit time when the process starts at \(x = 0 \). This can be computed from the following result in Feller (1954a).

Theorem 1. Consider the differential equation

\[dx = b(x)dt + \sigma(x)dv \]

and introduce the backward Kolmogorov operator

\[(Ah)(x) = \frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik}(x) \frac{\partial^2 h(x)}{\partial x_i \partial x_k} + \sum_{i=1}^{n} b_i(x) \frac{\partial h(x)}{\partial x_i} \]

(9)

where \(h \in C^2(R^n) \) and \(a_{ik} = [\sigma \sigma^T]_{ik} \). The mean exit time from \([-d,d]\), starting in \(x \), is given by \(h_L(x) \), where

\[Ah_L = -1 \]

with \(h_L(d) = h_L(-d) = 0 \).

In our case the Kolmogorov backward equation becomes

\[\frac{1}{2} \frac{\partial^2 h_L}{\partial x^2} + ax \frac{\partial h_L}{\partial x} = -1 \]

with \(h_L(d) = h_L(-d) = 0 \). The solution is given by

\[h_L(x) = 2 \int_x^d \int_0^y e^{-\sigma(y^2-t^2)} dt dy, \]

which gives...
\[h_L(0) = \sum_{k=1}^{\infty} 2^{2k-1} (-a)^{k-1} (k-1)! d^{2k}/(2k)! \]
\[= d^2 - \frac{a}{3} d^4 + \frac{4}{45} a^2 d^6 + O(d^8). \]

Figure 3 shows \(h_L(0) \) for \(a = -1, 0, 1 \).

The stationary distribution of \(x \) is given by the forward Kolmogorov equation
\[0 = \frac{\partial}{\partial x} \left(\frac{1}{2} \frac{\partial f}{\partial x} - axf \right) - \left(\frac{1}{2} \frac{\partial f}{\partial x} - axf \right)_{x=d} \delta_x \]
\[+ \left(\frac{1}{2} \frac{\partial f}{\partial x} - axf \right)_{x=-d} \delta_x. \]

To solve this equation we observe that the equation
\[0 = \frac{\partial}{\partial x} \left(\frac{1}{2} \frac{\partial f}{\partial x} - axf \right) \]
has the solutions
\[f(x) = c_1 e^{ax^2} + c_2 \int_0^x e^{a(x^2-t^2)} dt. \]
The even function
\[f(x) = c_1 e^{ax^2} + c_2 \text{sign}(x) \int_0^x e^{a(x^2-t^2)} dt, \]
then satisfies (10) also at \(x = 0 \). The constants \(c_1, c_2 \) are determined by the equations
\[\int_{-d}^d f(x) dx = 1, \]
\[f(d) = 0, \]
which gives a linear equation system to determine \(c_1, c_2 \).

Having obtained the stationary distribution of \(x \) we can now compute the variance of the output
\[V_L = \int_{-d}^d x^2 f(x) dx. \]
The variance \(V_L \) is plotted as a function of \(d \) in Figure 4 for \(a = -1, 0, 1 \), and as a function of mean exit time \(h_L \) in Figure 5.

Fig. 5. Variance as a function of mean exit time \(T_{\text{ad}} \) for \(a = -1, 0, 1 \), with Lebesgue sampling.

Comparison

The ratio \(V_R/V_L \) as a function of \(h \) is plotted in Figure 6 for \(a = -1, 0, 1 \). The figure shows that Lebesgue sampling gives substantially smaller variances for the same average sampling rates. For short sampling periods there are small differences between stable and unstable system as can be expected. The improvement of Lebesgue sampling is larger for unstable systems and large sampling periods.

\[\frac{V_R}{V_L} \]

Fig. 6. Comparison of \(V_L \) and \(V_R \) for \(a = -1, 0, 1 \). Note that the performance gain of using Lebesgue sampling is larger for unstable systems with slow sampling.

Note that the results for other \(a \) can be obtained from these plots since the transformation \((x, t, a, v) \rightarrow (a^{1/2} x, at, a^{-1} a, a^{1/2} v) \) for \(a > 0 \) leaves the problem invariant.

4. CONCLUSIONS

There are issues in event based sampling that are of interest to explore. The signal representation which is a mixture of analog and discrete is interesting. It would be very attractive to have a system theory similar to the one for periodic sampling. The simple problems solved in this paper indicate that event based sampling
may be worth while to pursue. Particularly since many sensors that are commonly used today have this character. Implementation of controller of the type discussed in this paper can be made using programmable logic arrays without any need for AD and DA converters. There are many generalizations of the specific problems discussed in this paper that are worthy of further studies for example higher order systems and systems with output feedback.

5. REFERENCES

