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Abstract: Grade changes in polyethylene reactors, i.e., changes of operating conditions, are
performed on a regular basis to adapt to market demands. In this paper, a dynamic optimization
procedure is presented built upon the Modelica language extended with Optimica constructs
for formulation of optimization problems. A Modelica library for the Borstar R© multistage
polyethylene reactors at Borealis AB, consisting of two slurry and one gas phase reactor, has been
constructed. Using JModelica.org, a framework to translate dynamic optimization problems to
NLP problems, optimal grade transitions between grades currently used at Borealis AB, can be
calculated. Optimal inflows and grade key variables are shown.

Keywords: optimization, reactor control, polymerization, chemical industry

1. INTRODUCTION

Polyethylene reactors are able to produce different grades
by manipulating inflows of raw material. It is imperative
for polyethylene manufacturers to change product grades
to increase profitability as market demands change, but
also due to market competition and raw material pricing.
The result is product campaigns, varying in length be-
tween a few days up to weeks. During grade transitions it is
therefore of importance that production of off-specification
material, i.e., material that does not fulfill specification
of any grade, is minimized. On the other hand, there is
also a cost in raw material and time that has to be taken
into account when performing a grade change, see e.g., van
Brempt et al. [2004].

The grade transition problem has been the subject of
several papers. For gas phase reactors, McAuley and Mac-
Gregor [1992] uses the control variable parametrization
method (CVP) with control profiles approximated by se-
ries of ramps, while in Gisnas et al. [2003] optimization
results in bang-bang type solutions. A series of two slurry
reactors has been considered by Takeda and Harmon Ray
[1999], also using the method of CVP, and in Prata et al.
[2008] a grade change for a series of a slurry and a gas
phase reactor was performed with a discretization scheme
based on direct single and multiple shooting.

This paper presents an optimization procedure for a grade
change of a Borstar R© polyethylene plant including three
polyethylene reactors in series, two slurry and one gas
phase reactor, and is an extension of Larsson et al. [2010]
where one reactor was considered. The developed plant
model is encoded in the Modelica language and a simulta-
neous optimization method based on collocation is applied
using the optimization extension Optimica and the frame
work of JModelica.org.
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Pre-poly.

Loop GPR

Catalyst

Monomer

Diluent

Gas to
recovery

Flash

Polymer Product

outlet

Monomer

Co-monomer

Diluent

Fig. 1. Reactor chain of a Borstar R© process: pre-
polymerization, loop, and gas phase reactor.

2. BORSTAR R© POLYETHYLENE PLANT

The Borstar R© polyethylene plant incorporates in total
three polyethylene reactors, two slurry and one gas phase
reactor (GPR), see Figure 1. It is a bimodal plant and can
thus produce polymer with a two-peaked molecular weight
distribution. The pre-polymerization slurry reactors main
function is to induce the polymerization in a pre-specified
composition and has a negligible production compared to
the two other reactors. It has catalyst, monomer ethylene
and the chain transfer agent hydrogen along with the
diluent propane as inflows. Using the second reactor, i.e.,
the loop slurry reactor, polymer with low molecular weight
is shaped. The loop reactor has the same material inflow
as the pre-polymerization reactor except that no catalyst
is added. Temperature and pressure is high resulting in a
super-critical state of the polyethylene slurry. The slurry
stream from loop reactor is fed to a flash tank where
gases are separated from polymer, which are transported
to recovery area and the GPR, respectively. To the subse-
quent fluidized bed GPR, apart from the same type of raw
material added to the loop reactor, also the co-monomer
butene is added together with nitrogen. This gives the
high molecular weight polymer resulting in the bimodal
polymer product.



3. PLANT MODEL

Several assumptions are made when modeling, keeping
model complexity reasonable and usable for grade change
optimization. The two loop reactors are assumed to have
perfect temperature and pressure control, while control
systems for reactor content volumes are in regulatory
mode and incorporated in the model. Both loop reactors
have high volumetric circulation rates compared to outflow
rates. This results in recycle ratios well above 30, yielding
no considerable gradients of molecular species nor temper-
atures exists along the reactors, see Zacca and Ray [1993].
The latter is also supported by measurements along the
reactor. Thus, the loop reactors can be considered well-
mixed. The outtakes of polymer from the loop reactors are
settling legs, making the outflow have higher concentration
of polymer than the reactor contents, see Reginato et al.
[2003]. Hence, the approach of non-ideal CSTR for the
loop reactors is suitable, see Reginato et al. [2003] and
Touloupides et al. [2010], where the settling legs are mod-
elled using discharge factors.

The temperature in the GPR is assumed to be controlled
to a constant value and the regulatory system for bed
level is incorporated in the model, using the outflow as
control variable. The content in the GPR is assumed well
mixed and conversion per pass through is low, making
the gas composition approximately uniform in the bed,
see e.g., Xie et al. [1994] and McAuley and MacGregor
[1992]. Thus, the reactor may be modelled as a CSTR with
outflow and reactor contents concentrations equal.

The model, derived by Borealis AB and used today in
a non-linear model predictive controller of the plant, in-
cludes both first principles, semi-empirical, and empirical
relations. The main inflows are, as described in Section 2,
the raw materials, diluents and catalyst which gives a total
of 12 control inputs available for optimization at a grade
change. If the reactors are numbered from left to right with
index j, i.e., j ∈ {1, 2, 3}, then for every component i in
Table 1 that is a fluid, gas or catalyst, the mass balance
read

ṁij = qi,j−1 + uij − qij − rij , (1)

where qij and rij is the outflow and reaction rate of
component i, respectively, in reactor j and uij is the
controlled inflow of component i. Note that qij , rij or uij

might be zero depending on which reactor or component
that is considered.

For the polymer, i.e., polyethylene and incorporated
butene, it is important to indicate in what reactor it has
been formed due to the process bi-modality, and therefore
an extra index, k ∈ {1, 2, 3}, is supplied. For a solid
component in a reactor it is formed in, i.e., j = k, the
mass balance is

ṁijk = hij − qijk, (2)

where hij is the production rate of the polymer component
i in reactor j and is a function of the reaction rates of the
raw materials in Eq. (1). For a polymer component in a
reactor it has not been formed in, i.e., j 6= k, it reads

ṁijk = qi,j−1,k − qijk, (3)

which is a pure transportation of the component through
the reactor. For every fluid or gas component, the instan-
taneous molar concentrationXij may be calculated. Molar

Table 1. Components summary and abbrev.

Component i

Catalyst c

Ethylene e

Hydrogen h

Butene b

Component i

Propane p

Nitrogen n

Polyethylene pe

Incorp. butene pb

concentrations and all component masses for reactor j are
collected in vectors Xj and mj .

The reaction rates used above are calculated using ex-
tended Arrhenius expressions of the form

rij = Rij(cj , Pj ,mj ,Xj) exp

(

kij1
Tj

+ kij2

)

, (4)

whereRij is a non-linear function of the catalyst properties
cj , reactor pressure Pj and the component masses and
concentrations. The reaction rate is inversely proportional
to the temperature Tj in the exponent with two empirical
constant kij1 and kij2 for each component i and reactor j.
Analogously, reaction rates are collected in the vector rj .

The states of the Ziegler-Natta catalyst in reactor j, such
as mean activity and deactivated sites, have the non-linear
dynamics of a function Cj ,

ċj = Cj(cj , rj ,mj, qc,j−1, uc1), (5)

where the two last variables are the inflow of catalyst from
previous reactor and controlled input of catalyst to pre-
polymerization reactor, respectively.

By using reactor geometry, knowledge of the reactor con-
tent properties and empirical relations for a super-critical
state, the densities for fluids and solids in each reactor may
be calculated. In general, densities have dependencies as

ρj = ̺j(Xj , Pj , Tj), (6)

with the non-linear function ̺j , where ρj is a vector
containing densities for fluids and solids in reactor j.

Pressure in the GPR is given by reactor content properties
and temperature through the non-linear function P3

P3 = P3(X3,m3,ρ3, T3). (7)

The resulting polymer properties depend on the ra-
tios between monomer, co-monomer and hydrogen, see
e.g. McAuley and MacGregor [1991], and the model there-
fore also includes the following ratios,

Xhe1 = Xh1/Xe1, Xhe2 = Xh2/Xe2,

Xhe3 = Xh3/Xe3, Xbe3 = Xb3/Xe3.
(8)

Note that there is no butene-ethylene ratio in the pre-
polymerization and loop reactors since co-monomer is only
added in the GPR.

Due to the residence time in each reactor, also the bed
average of the concentrations and concentration ratios
defined above, emphasized with a bar, e.g., X̄ij , are con-
sidered. These indicate during what conditions, in average,
the polymer has been formed and are calculated by filter-
ing the instantaneous values using the ratio between mass
of solids and outflow of solids for considered reactor as
time constant.

The bi-modality of the polyethylene molecular weight dis-
tribution is formed by producing polymers with different
molecular weight in loop reactor and GPR. A measure of



the bi-modality is the split factor, calculated using masses
of polyethylene produced in the different reactors as

S =
mpb33 +mpe33

mpb33 +mpe33 +mpe32 +mpe31
, (9)

i.e., as the ratio of polymer mass in the GPR formed in
the GPR to the total mass of polymer in the GPR.

For economical reasons, the production rate of solids in
each reactor is considered when optimizing a transition,
which is defined as the sum of production rate of polyethy-
lene and incorporated butene in each reactor, i.e.,

Qj = hpe,j + hpb,j . (10)

The model contains, apart from Eqs. (1)–(10) also addi-
tional algebraic equations. If the inputs and outputs of the
model are denoted u and y, respectively, and the states
and algebraic variables are denoted x and w, the model
can be written in the general non-linear index 1 differential
algebraic equation (DAE) form

0 = F(ẋ,x,w,u)

y = g(x,w,u).
(11)

The model has ny outputs, used for defining a grade with
correct production rate, and nu = 12 inputs and nx = 55
states, nw = 180 algebraic variables and 225 equations,
disregarding g(·), and has been subjected for calibration
using plant measurement data in Andersson et al. [2011].

4. MODELINGAND OPTIMIZATION ENVIRONMENT

Modelica, a high level language for encoding of complex
physical systems aimed at simulation and supporting ob-
ject oriented concept is used for plant modeling. Main
features of the language are that text-book style declar-
ative differential and algebraic equations may be used and
mixed, but it lacks language constructs for formulating
dynamic optimization problems. Notations such as cost
functions, constraints and mechanism to select input and
parameters to optimize has been proposed in the Opti-
mica extension, see Åkesson [2008], enabling the user to
construct such problems based on Modelica models.

Numerical solver interfaces are typically written in C or
FORTRAN and the translation of Modelica models and
optimization problems are performed in the framework
JModelica.org, an open source project targeted at dynamic
optimization, see Åkesson et al. [2010]. It features com-
pilers supporting code generation of Modelica/Optimica
models to C, a C API for evaluating model equations and
their derivatives, optimization algorithms and supports
the Optimica extension.

The JModelica.org platform contains an implementation
of a simultaneous optimization method based on colloca-
tion on finite elements, Biegler et al. [2002]. In this method,
states, inputs and algebraic variables, are parametrized
by Lagrange polynomials based on Radau points of order
three, two and two, respectively. This corresponds to a
fully implicit Runge-Kutta method, and possesses well
known and strong stability properties. The dynamic opti-
mization problem is thus translated into a non-linear pro-
gram (NLP), which may be very large. To efficiently solve
the NLP, derivative information together with sparsity
patterns of the constraint Jacobians need to be provided to
the numerical solver. In JModelica.org, the simultaneous
optimization algorithm is interfaced with the large-scale

NLP solver IPOPT, see Wächter and Biegler [2006], par-
ticularly developed to solve NLP problems arising in si-
multaneous dynamic optimization. Simultaneous methods
handle non-linear systems well, and also, constraints on
state, input and algebraic variables are easily incorporated,
and is thus well suited for the optimization of a grade
transition treated in this paper.

Using the Modelica language, a library of necessary entities
was constructed, see Larsson et al. [2010]. The library
contains models both for simulation, experiments as well
as optimization models with Optimica constructs.

5. OPTIMAL GRADE TRANSITION

5.1 Grade Definition

Many measures may to be used when defining a grade,
such as densities, molecular weight, molecular distribution,
melt flow indices and raw material concentrations, which
are controlled by polymerization conditions. Commercial
practice is to give grade specifications by melt index and
density due to convenience in industrial settings, see Xie
et al. [1994]. Melt flow indices are measures of the molec-
ular weight distribution and may be used to calculate the
flow ratio, yielding a polydispersity measure. However, as
indicated in Xie et al. [1994], these measures only give rel-
ative properties and not detailed information about poly-
mer structure, which if desired, requires detailed models
not suitable for over all plant optimization as considered
in this paper.

In McAuley and MacGregor [1991], relations between
melt index, density and reactor concentration ratios, both
monomer and co-monomer, were presented based on reac-
tion kinetics. Only a limited number of products is pro-
duced, and thus only a few steady state operation points
exist where melt index may give measurement data. Thus,
using this operation data, which is taken with a two hour
interval, will give models with large uncertainties. There-
fore, the concentration ratios, verified with process data,
will be used when defining a grade. The concentration ratio
data are calculated from chromatography measurements,
i.e., component concentration measurements, with a sam-
pling interval of 1 minute.

Except from the concentrations above also the split fac-
tor is used when defining a grade. Additionally, also the
GPR pressure and the production rates are considered,
although not effecting polymer properties directly. Table 2
lists variable values from a grade transition performed
at Borealis AB, normalized by grade A. The reactant
concentrations are specified from polymer properties while
inert gases are given specifications from e.g., desired par-
tial pressures, heat removal from exothermic reaction and
other operating conditions. Note that e.g., specifying Xe1

and Xhe1 implicitly also specifies Xh1, and thus also the
remaining gas, i.e., Xp1, since reactor content volume is
constant at stationarity. Similar argument holds for Xp2

and Xn3. The split factor is set to give correct bi-modality
of the polymer. This, together with specifications of Q1

and Q2 implicitly defines production rate in GPR, and
thus also total production rate. GPR pressure is set to
nominal reactor value.



Table 2. Normalized grade definitions.

Grade A B

Xe1 1 1.000
Xhe1 1 0.37
Q1 1 1.064
Xe2 1 1.160
Xhe2 1 2.371
Q2 1 1.134

Grade A B

Xp3 1 1.009
Xe3 1 0.8828
Xhe3 1 1.846
Xbe3 1 1.279
S 1 0.9167
P3 1 1

5.2 DAE Initialization

A grade transition changes production from one steady
state to another, both representing on-specification pro-
duction. The DAE initialization and stationarity problem
for a specific grade requires the output y, containing all
variables defining a grade from the previous section, and
derivatives ẋ to be specified. The variables to solve for
are x, u, and w. Here, u is now an algebraic variable
instead of input and its size determines how many grade
specifications may be used, i.e., size of y, if the non-linear
equation system should have zero degrees of freedom. For
full flexibility, as used here, all variables in u will be
free. If constructing the extended algebraic variable vector
z = [w, u], the problem may be formulated as

0 = F̃(ẋ,x, z)

0 = ẋ

0 = g̃(x, z) − yspec.,

where F̃ and g̃ corresponds to F and g without input
u, and yspec. contains the grade definitions in Table 2.
The first equation has, as the DAE in Eq. (11), nx +
nw equations, and the second and third has nx and nu,
respectively, and thus, there is equally many equations as
variables to solve for, yielding zero degrees of freedom.

The problem is encoded with JModelica.org using the
Modelica models. Initial guesses may be set for all variables
to solve for and upper and lower limits helps the solver.
The solution time for each grade is less than 10 seconds.

Defining the two output vectors yA and yB, corresponding
to the two grades, and solving the initialization problem,
yields the inputs uA and uB, state vectors xA and xB,
and algebraic vectors wA and wB for stationary on-
specification production that may be used in the dynamic
optimization.

5.3 Dynamic Optimization of Grade Transition

The dynamic optimization problem solves for optimal
trajectories between the two grades A and B, satisfying
dynamics and constraints on states, algebraic variables,
inflows and outputs.

Initial conditions of the plant is the solution from DAE
initialization for grade A, i.e., xA, wA, and uA, and
a quadratic cost function that includes deviations from
grade B specifications in form of xB, wB and uB is used.
Introducing the deviation vectors

∆y = y − yB, ∆u = u− uB, ∆w = w−wB,

the dynamic grade transition optimization problem can be
formulated as

min
u̇

t2
∫

t1







∆y
∆u
∆w
u̇







T 





Q∆y 0 0 0
0 Q∆u 0 0
0 0 Q∆w 0
0 0 0 Qu̇













∆y
∆u
∆w
u̇






dt

subj. to 0 = F(ẋ,x,w,u), y = g(x,w,u),

ymin ≤ y ≤ ymax, umin ≤ u ≤ umax,

wmin ≤ w ≤ wmax, u̇min ≤ u̇ ≤ u̇max,

xmin ≤ x ≤ xmax,

The weight Q∆y may be used to emphasize importance
of the different grade defining variables, while Q∆w and
Q∆u are used to remove too large over- and undershoots of
algebraic variables and inflows. The optimization variables
are the inflow derivatives u̇, which gives possibility to
directly include them in the cost function using Qu̇ to
control inflow smoothness, and also in the constraints,
without any additional filtering of the inflows u. All
weights are chosen diagonal for simplicity.

Over- and undershoots are accepted up to a certain limit
for the instantaneous concentrations and ratios, i.e, Xij ,
set as constraints on y. However, for the bed average
concentrations and ratios, i.e., X̄ij , and the split S, no
over- or undershoots are accepted in the grade change. The
constraints on the algebraic variables w and states x are
for instance limits on volumes, pressures, reaction rates,
component masses and catalyst properties, while con-
straints on inflows, both magnitudes and rates of changes,
concern physical limits such as e.g., pump capacities.

5.4 Optimal Grade Transition Trajectories

For non-convex optimization it is advantageous to have
good initial values. Since a simultaneous method is used,
all variables at all discretization points are solved for at the
same time, hence, initial trajectories should be supplied.
Since the stationary points are known, i.e., solved for in
DAE initialization problem, one can generate initial tra-
jectories by ramping inflows from uA to uB and simulate
the response. This can be performed in JModelica.org
where simulation is available through SUNDIALS, see
Hindmarsh et al. [2005].

The transition time is normalized to 1 time unit (t.u.)
and the dynamic optimization problem have been solved
several times for different element lengths approximately
in the range 0.015-0.075 t.u. with 3 collocation points in
each element. Resulting optimal inflows have been used
as inputs in simulations, showing that the discretization is
fine enough, i.e., the difference between simulated response
and discretized response from optimization is negligible.
After discretization, the NLP problem contains approxi-
mately 20.000-200.000 variables depending on number of
elements. Using an Intel R© CoreTM2 Duo CPU@3.00GHz,
a solution is obtained in approximately 5-90 minutes de-
pending on number of variables and initial values.

Figures 2-3 show the resulting optimal inflows to the loop
reactor, key grade variables, and mass of polymer in loop
reactor, respectively, while figures 4-6 show the corre-
sponding for GPR. Note the scaling, i.e., the transition
is 1 time unit (t.u.) and all variables have initial value 1.

Since the production rate Q2 is higher in grade B than
in grade A, the inflow of ethylene is increased in total
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Fig. 2. Optimal inflows to loop reactor (−) and values for
grade A and B at stationarity (-·-).
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Fig. 3. Instantaneous (--) and bed average conc. and ratios,
production rate and polymer mass (−) for loop and
values for grade A and B at stationarity (-·-).

and at the same time inflow of the diluent propane is
decreased, making room for more ethylene and hydrogen,
as shown in Figure 2. This results in a larger mass of
polymer in the loop, see Figure 3. Both Xe2 and Xh2

are higher in grade B than in grade A and to meet the
hydrogen specification, the inflow of hydrogen is increased.
To reach the specification of the hydrogen-ethylene ratio
Xhe2 rapidly, the inflow of ethylene is initially decreased
and hydrogen overshot. Note that both the inflow of
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Fig. 4. Optimal inflows to GPR (−) and values for grade
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ethylene and hydrogen have their derivative constraints
active in the beginning, seen by the linear decrease and
increase, performing the transition of Xhe2 as fast as
possible.

From Figure 3 it is seen that the under- or overshoot
constraints on the averaged concentrations and ratios
are followed and the instantaneous measures have over-
or undershoots. The transition in the loop reactor is
completed after 0.5 t.u.
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The split S, see Figure 5, which indirectly depends on the
production rates, is decreased by increasing the production
rate Q2 but also lowering production rate Q3. This is per-
formed by decreasing the ethylene inflow ue3, see Figure 4,
and thus also the ethylene concentrationXe3. The ethylene
inflow has an undershoot giving a more rapid decrease
of production rate. The change in ue3 is not enough for
the specification on Xbe3 to be fulfilled and an increase
of butene inflow, ub3, is required, see figures 4 and 6.
Analogously, inflow of hydrogen is increased. Propane and
nitrogen are changed such that e.g., reactor pressure P3

is inside desired limits, specified to ±1% from nominal
pressure, see Figure 5.

All averaged concentrations and ratios in the GPR, and
also in the pre-polymerization reactor although not shown
here, together with the split, follow constraints of no
under- or overshoot. Corresponding instantaneous values
do have under- and overshoots, yielding faster transition.

6. SUMMARY AND FUTURE WORK

In this paper, modeling of multistage polyethylene reactors
has been performed in the high level language Modelica.
Optimal trajectories for transition between grades cur-
rently used at Borealis AB have been found by formulating
an optimization problem using Optimica constructs and
solved in the framework of JModelica.org.

Future work includes modeling of additional polymer spec-
ifications such as melt indices and densities and also eco-
nomic objectives in the optimization formulation.
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