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Abstract

In this paper, physical limitations on scattering of acoustic waves over a fre-
quency interval are discussed based on the holomorphic properties of the scat-
tering amplitude in the forward direction. The result is given by a dispersion
relation for the extinction cross section which yields an upper bound on the
product of the extinction cross section and the associated bandwidth of any
frequency interval. The upper bound is shown to depend only on the geome-
try and static material properties of the scatterer. The results are exempli�ed
by permeable and impermeable scatterers with homogeneous and isotropic
material properties.

1 Introduction
Linear acoustics with propagation and scattering of waves in air and water has been
a subject of considerable interest for more than a century. Major contributions
to the scattering theory of both acoustic and electromagnetic waves from bounded
obstacles was provided by Rayleigh in a sequence of papers. From a theoretical
point of view, scattering of acoustic waves share many features with electromagnetic
and elastodynamic wave interaction. For a comprehensive introduction to linear
acoustics, see, e.g., Refs. 5 and 11.

The objective of this paper is to derive physical limitations on broadband scat-
tering of acoustic waves. In more detail, the scattering problem discussed here
involves how a scatterer of arbitrary shape perturbs some known incident �eld over
a frequency interval. The analysis is based on a forward dispersion relation for the
extinction cross section applied to a set of passive and linear constitutive relations.
This forward dispersion relation, known as the integrated extinction, is a direct con-
sequence of causality and energy conservation via the holomorphic properties of the
scattering amplitude in the forward direction. As far as the authors knows, the inte-
grated extinction was �rst introduced in Ref. 7 concerning absorption and emission
of electromagnetic waves by interstellar dust. The analysis in Ref. 7, however, is re-
stricted to homogeneous and isotropic spheroids. This narrow class of scatterers was
generalized in Ref. 8 to include anisotropic and heterogenous obstacles of arbitrary
shape.

The present paper is a direct application to linear acoustics of the physical limita-
tions for scattering of electromagnetic waves introduced in Refs. 8 and 9. The broad
usefulness of the integrated extinction is illustrated by its diversity of applications,
see, e.g., Ref. 9 for upper bounds on the bandwidth of metamaterials associated
with electromagnetic interaction. The integrated extinction has also fruitfully been
applied to antennas of arbitrary shape in Ref. 2 to establish physical limitations on
directivity and bandwidth. The theory for broadband scattering of acoustic waves is
motivated by the summation rules and the analogy with causality in the scattering
theory for particles in Ref. 6.

In Sec. 2, the integrated extinction is derived based on the holomorphic properties
of the scattering amplitude in the forward direction. The derivation is based on a
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Figure 1: Illustration of the direct scattering problem: the scatterer V is subject to
a plane wave ui = eikk̂·x impinging in the k̂-direction. The incident �eld is perturbed
by V and a scattered �eld us is detected in the x̂-direction.

exterior problem, and is hence independent of the boundary conditions imposed on
the scatterer. The e�ect of various boundary conditions are discussed in Sec. 3, and
there applied to the results in Sec. 2. In the �nal section, Sec. 4, the main results
of the paper are summarized and possible applications of the integrated extinction
are discussed.

2 The integrated extinction
Consider a time-harmonic plane wave ui = eikk̂·x (complex excess pressure) with time
dependence e−iωt impinging on a bounded, but not necessary simply connected, scat-
terer V ⊂ R3 of arbitrary shape, see Figure 1. The plane wave is impinging in the
k̂-direction, and x denotes the position vector with respect to some origin. The
scatterer V is assumed to be linear and time-translational invariant with passive
material properties modeled by general anisotropic and heterogeneous constitutive
relations. The analysis includes the impermeable case as well as transmission prob-
lems with or without losses. The scatterer V is embedded in the exterior region
R3 \ V , which is assumed to be a compressible homogeneous and isotropic �uid
characterized by the wave number k = ω/c. The material properties of R3 \ V are
assumed to be lossless and independent of time.

Let u = ui+us denote the total �eld in R3\V , where the time-dependent physical
excess pressure p is related to u via p = Re{ue−iωt}. The scattered �eld us represents
the disturbance of the �eld in the presence of V . It satis�es the Helmholtz equation
in the exterior of V , see Ref. 11, i.e.,

∇2us + k2us = 0, x ∈ R3 \ V . (2.1)

The boundary condition imposed on us at large distances x = |x| is the Sommerfeld
radiation condition

lim
x→∞

x

(
∂us

∂x
− ikus

)
= 0, (2.2)

which is assumed to hold uniformly in all directions x̂ = x/x. The condition (2.2)
establishes the outgoing character of us, and provides a condition for a well-posed
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exterior boundary value problem. For a discussion of various boundary conditions
imposed on V , see Sec. 3.

From the integral representations in Ref. 10 it is clear that every solution to (2.1)
satisfying (2.2) has an asymptotic behavior of an outgoing spherical wave, i.e.,

us =
eikx

x
S(k, x̂) +O(x−2) as x →∞.

The scattering amplitude S is independent of x and describes the interaction of V
with the incident �eld. From a time-domain description of the problem it follows
that S is the Fourier transform of some temporal scattering amplitude St. Assume
St is causal in the forward direction in the sense that St(τ, k̂, k̂) = 0 for τ < 0,
where τ = ct − k̂ · x. Based on this condition, the Fourier transform of St reduces
to an integral over τ > 0, i.e.,

S(k, k̂) =

∫ ∞

0

St(τ, k̂, k̂)eikτ dτ. (2.3)

The convergence of (2.3) is improved by extending its domain of de�nition to
complex-valued k with Im k > 0. Such an extension de�nes a holomorphic func-
tion S in the upper half plane Im k > 0, see Sec. 1 in Ref. 6. Note that S in general
is not a holomorphic function at in�nity for Im k > 0 in the absence of the causality
condition.

The description of broadband scattering is simpli�ed by introducing a weighted
function % of the scattering amplitude in the forward direction. For this purpose,
let % denote the holomorphic function

%(k) = S(k, k̂)/k2, Im k > 0.

Since St is real-valued it follows from (2.3) that % is real-valued on the imaginary
axis, and that it satis�es the cross symmetry %(−k∗) = %∗(k) (the star denotes
complex conjugation) for complex-valued k. Assume that % vanishes uniformly as
|k| → ∞ for Im k ≥ 0. This assumption is justi�ed by the argument that the high-
frequency response of a material is non-unique from a modeling point of view. The
assumption is also supported by the extinction paradox Im %(k) = O(k−1) as k →∞
for real-valued k, see Ref. 8 and references therein.

An important measure of the total energy that V extracts from the incident �eld
in the form of radiation or absorption is given by the extinction cross section σext.
The extinction cross section is related to % via the optical theorem, see Ref. 6,

σext = 4πk Im %, (2.4)

where k ∈ [0,∞). The optical theorem is a direct consequence of energy conservation
(or probability in the scattering theory of the Schrödinger equation) and states that
the total energy removed from the incident �eld is solely determined by Im %. The
extinction cross section is commonly decomposed into the scattering cross section
σs and the absorption cross section σa, i.e.,

σext = σs + σa. (2.5)
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Here, σs and σa are de�ned as the scattered and absorbed power divided by the
incident power �ux. The scattering and absorption cross sections are related to us

and u on the boundary ∂V via, see Ref. 1,

σs =
4π

k
Im

∫

∂V

u∗s
∂us

∂n
dS, σa =

4π

k
Im

∫

∂V

u
∂u∗

∂n
dS,

where the normal derivative ∂/∂n is evaluated with respect to the outward pointing
unit normal vector. In the permeable and lossy case, the absorption cross section
σa represents the total energy absorbed by V . For a lossless scatterer, σa = 0.

Under the assumption that % vanishes uniformly as |k| → ∞ for Im k ≥ 0,
it follows from the analysis in Ref. 6 that % satis�es the Hilbert transform or the
Plemelj formulae

Re %(k′) =
1

π
P

∫ ∞

−∞

Im %(k)

k − k′
dk, (2.6)

where k′ is real-valued and P denotes Cauchy's principal value. It is particularly
interesting to evaluate (2.6) in the static limit. For this purpose, assume that
Re %(k′) = O(1) and Im %(k′) = O(k′) as k′ → 0, and that % is su�ciently regular
to interchange the principal value and the static limit. Based on these assump-
tions, (2.4) yields

lim
k→0

Re %(k) =
2

π

∫ ∞

0

Im %(k)

k
dk, (2.7)

where it has been used that Im %(k) = − Im %(−k) for real-valued k. The optical
theorem (2.4) inserted into (2.7) �nally yields

∫ ∞

0

σext(k)

k2
dk = 2π2 lim

k→0
Re %(k). (2.8)

The left hand side of (2.8) is referred to as the integrated extinction. The identity
provides a forward dispersion relation for the extinction cross section as a direct
consequence of causality and energy conservation. In fact, due to the lack of any
length scale in the static limit as k → 0, the right hand side of (2.8) is proportional
to the volume of V . Furthermore, the right hand side of (2.8) depends only on the
static properties of V , and is presented in Sec. 3 for a large class of homogeneous
and isotropic scatterers.

The weak assumptions imposed on % in the derivation above is summarized
as follows: %(k) → 0 uniformly as |k| → ∞ for Im k ≥ 0, and Re %(k) = O(1) and
Im %(k) = O(k) as k → 0 for real-valued k. In general, the integrated extinction (2.8)
is not valid if any of these assumptions are violated, as illustrated in Sec. 3.3. In fact,
the requirements above can be relaxed by the introduction of the Plemelj formulae
for distributions. The integrated extinction (2.8) can also be derived using Cauchy's
integral theorem, see Ref. 8.

The integrated extinction (2.8) may be used to establish physical limitations on
broadband scattering by acoustic waves. Since σext is de�ned as the sum of the
scattered and absorbed power divided by the incident power �ux, it is by de�nition
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non-negative. Hence, the left hand side of (2.8) is estimated from below by

|K|min
k∈K

σ(k)

k2
≤

∫

K

σ(k)

k2
dk ≤

∫ ∞

0

σext(k)

k2
dk, (2.9)

where |K| denotes the absolute bandwidth of any K ⊂ [0,∞), and σ represents
either σext, σs or σa. By combining the left hand side of (2.9) with the right hand
side of (2.8), one obtain the fundamental inequality

|K|min
k∈K

σ(k)

k2
≤ 2π2 lim

k→0
Re %(k). (2.10)

The interpretation of (2.10) is that it yields an upper bound on the absolute band-
width |K| for a given scattering and/or absorption cross section mink∈K σ(k)/k2.
From (2.10), it is seen that the static limit of Re % bounds the total amount of
power extracted by V within K. The electromagnetic analogy to (2.10) is, inter
alia, central for establishing upper bounds on the performance of antennas of arbi-
trary shape, see Ref. 2.

3 The e�ect of various boundary conditions
In this section, the static limit limk→0 Re % is examined for various boundary condi-
tions and applied to the integrated extinction (2.8). For this purpose, V is assumed
to be homogeneous and isotropic with su�ciently smooth boundary ∂V to guarantee
the existence of boundary values in the classical sense.

3.1 The Neumann or acoustically hard problem
The Neumann or acoustically hard problem corresponds to an impermeable scatterer
with boundary condition ∂u/∂n = 0 for x ∈ ∂V . The physical interpretation of
the Neumann boundary condition is that the velocity �eld on ∂V is zero since no
local displacements are admitted. From the fact that us only exists in R3 \ V , it
follows that the corresponding scattered �eld in the time-domain cannot precede the
incident �eld in the forward direction, i.e., the causality condition imposed on St in
Sec. 2 is valid for the Neumann problem. The static limit of S is derived in Refs. 1
and 3 from a power series expansion of ui and us. The result in terms of Re % reads

lim
k→0

Re %(k) =
1

4π
(k̂ · γm · k̂ − |V |), (3.1)

where |V | denotes the volume of V . Here, γm models the scattering of acoustic
waves in the low frequency limit. In analogy with the corresponding theory for elec-
tromagnetic waves in Ref. 8, γm is termed the magnetic polarizability dyadic. The
magnetic polarizability dyadic is proportional to |V |, and closed-form expressions of
γm exist for the ellipsoids.
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An expression of the integrated extinction for the Neumann problem is obtained
by inserting (3.1) into (2.8), viz.,

∫ ∞

0

σext(k)

k2
dk =

π

2
(k̂ · γm · k̂ − |V |). (3.2)

Note that (3.2) is independent of k̂ when γm is isotropic, i.e., γm = γmI where
I denotes the unit dyadic, corresponding to a scatterer which is invariant under
certain point groups, see Ref. 8 and references therein. The product k̂ · γm · k̂ on
the right hand side of (3.2) can be estimated from above by the largest eigenvalue
of γm, and associated upper bounds on these eigenvalues are extensively discussed
in Ref. 8. The static limit of Re % in (3.1) can also be inserted into the right hand
side of (2.10) to yield an upper bound on the scattering and absorption properties
of V within any �nite interval K.

The integrated extinction (3.2) takes a particularly simple form for the sphere.
In this case, γm is isotropic with γm = 3|V |/2, see Refs. 3 and 8, and the right hand
side of (3.2) is reduced to π|V |/4. This result for the sphere has numerically been
veri�ed using the classical Mie-series expansion in Ref. 5.

3.2 The transmission or acoustically permeable problem
In addition to the exterior boundary value problem (2.1) and (2.2), the transmission
or acoustically permeable problem is de�ned by the interior requirement that ∇2us+
k2

?us = 0 for x ∈ V with the induced boundary conditions u+ = u− and ρδ∂u+/∂n =
∂u−/∂n. Here, k? = ω/c? denotes the wave number in V , and u+ and u− represents
the limits of u from R3 \ V and V , respectively. The quantity ρδ is related to the
relative mass density ρrel = ρ?/ρ via ρδ = ρrel/(1− iωδ?κ?), where κ? and ρ? denotes
the compressibility and the mass density of V , respectively. The compressibility
represents the relative volume reduction per unit increase in surface pressure. The
conversion of mechanical energy into thermal energy due to losses in V are modeled
by the compressional viscosity δ? > 0, which represents the rate of change of mass
per unit length. In the lossless case, δ? = 0, the phase velocity is c? = 1/

√
κ?ρ? and

ρδ = ρrel.
The causality condition introduced in Sec. 2 is valid for the transmission prob-

lem provided Re c? < c, i.e., when the incident �eld precedes the scattered �eld in
the forward direction. Unless V does not ful�ll this requirement, % is not holomor-
phic for Im k > 0 and the analysis in Sec. 2 does not hold. Hence, the integrated
extinction (2.8) is not valid if Re c? ≥ c. This defect can partially be justi�ed by
replacing the de�nition of % by % = e2ikaS(k, k̂)/k2, where a > 0 is su�ciently large
to guarantee the existence of causality in the forward direction. The compensating
factor e2ika corresponds to a time-delayed scattered �eld, and for homogenous and
isotropic scatterers, a su�cient condition for a is 2a > diam V , where diam V de-
notes the diameter of V . A drawback of the introduction of the factor e2ika in the
de�nition of % is that the optical theorem no longer can be identi�ed in the deriva-
tion. Instead, the integrated extinction for scatterers which not obey the causality
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condition reduce to integral identities for Re % and Im %. Unfortunately, in this case
the integrands have not a de�nite sign and therefore the estimate (2.10) is not valid.

The static limit of the scattering amplitude S for the transmission problem is
derived in Refs. 1 and 3. The result in terms of Re % reads

lim
k→0

Re %(k) =
1

4π
((κrel − 1)|V | − k̂ · γ(ρ−1

rel ) · k̂), (3.3)

where κrel = κ?/κ denotes the relative compressibility of V , and γ represents the
general polarizability dyadic. In the derivation of (3.3), it has been used that possi-
ble losses δ? > 0 in V do not contribute in the static limit of Re %, which motivates
that the argument in γ is ρrel rather than ρδ. Analogous to γm, the general po-
larizability dyadic is proportional to |V |, and closed-form expressions for γ exist
for the ellipsoids, see Refs. 1, 3 and 8. From the properties of γ and γm in the
references above, it follows that γ(ρ−1

rel ) → −γm as ρrel → ∞, and hence the static
limit of Re % reduces to (3.1) for the Neumann problem as κrel → 0+ and ρrel →∞.
Another interesting limit corresponding to vanishing mass density in V is given by
γ(ρ−1

rel ) → γe as ρrel → 0+, where γe is termed the electric polarizability dyadic in
analogy with the low frequency scattering of electromagnetic waves, see Refs. 1, 3
and 8.

The integrated extinction for the transmission problem is given by (3.3) inserted
into (2.8). The result is

∫ ∞

0

σext(k)

k2
dk =

π

2
((κrel − 1)|V | − k̂ · γ(ρ−1

rel ) · k̂), (3.4)

Note that (3.4) is independent of any losses δ? > 0, and that the directional charac-
ter of the integrated extinction only depends on the relative mass density ρrel. For
ρrel → 1, i.e., identical mass densities in V and R3 \ V , the integrated extinction is
independent of the incident direction k̂, depending only on the relative compress-
ibility κrel. Furthermore, the integrated extinction (3.2) vanishes in the limit as
κrel → 1 and ρrel → 1, corresponding to identical material properties in V and
R3 \ V . Due to the non-negative character of the extinction cross section, this limit
implies that σext = 0 independent of the frequency as expected. Analogous to the
Neumann problem, (3.4) is also independent of the incident direcion k̂ for scatterers
with γ = γI for some real-valued γ. The product k̂ · γ · k̂ on the right hand side
of (3.4) is estimated from above by the largest eigenvalue of γ, and associated upper
bounds on these eigenvalues are discussed in Ref. 8. The static limit of Re % in (3.1)
can also be inserted into the right hand side of (2.10) to yield an upper bound on
the scattering and absorption properties of V over any �nite interval K.

For the isotropic and homogenous sphere, γ = 3|V |(1 − ρrel)/(2ρrel + 1), and
the right hand side of (3.3) is independent of the incident direction as required by
symmetry. Also this result for the sphere has been veri�ed numerically to arbitrary
precision using the classical Mie-series expansion.
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3.3 Boundary conditions with contradictions
The integrated extinction (2.8) and the analysis in Sec. 2 are not applicable to
the Dirichlet or acoustically soft problem with u = 0 for x ∈ ∂V . The physical
interpretation of the Dirichlet boundary condition is that the scatterer o�ers no
resistance to pressure. The Dirichlet problem de�nes an impermeable scatterer for
which us only exist in R3 \ V . Hence, the causality condition introduced in Sec. 2 is
valid. However, the assumption that Re %(k) = O(1) as k → 0 for real-valued k is
not valid in this case. Instead, Refs. 1 and 3 suggest that

Re %(k) = O(k−2) as k → 0

for real-valued k. The conclusion is therefore that the integrated extinction (2.8) is
not valid for the Dirichlet problem.

The same conclusion also holds for the Robin problem with impedance boundary
condition ∂u/∂n+ikνu = 0 for x ∈ ∂V . The Robin problem models an intermediate
behavior between the Dirichlet and Neumann problems, see Ref. 1. The real-valued
constant ν is related to the exterior acoustic impedance η (de�ned by the ratio of
the excess pressure and the normal velocity on ∂V ) via ην =

√
ρ/κ, where κ and ρ

denotes the compressibility and mass density of R3 \ V , respectively. In the limits
ν → 0+ and ν → ∞, the Robin problem reduces to the Neumann and Dirichlet
problems, respectively. For the Robin problem, the static limit of Re % for ν 6= 0
reads, see Refs. 1 and 3,

Re %(k) = O(k−1) as k → 0

for real-valued k. Hence, the assumption in Sec. 2 that Re %(k) = O(1) as k → 0
is not valid for the Robin problem either. The question whether a similar identity
to the integrated extinction exists for the Dirichlet and Robin problems with other
weight functions than 1/k2 in (2.8), is addressed in a forthcoming paper.

4 Conclusion
The static limits of Re % in Sec. 3 can be used in (2.10) to establish physical limi-
tations on the amount of energy a scatterer can extract from a known incident �eld
in any frequency interval K ⊂ [0,∞). Both absorbed and radiated energy is taken
into account. From the analysis of homogeneous and isotropic scatterers in Sec. 3,
it is clear that the integrated extinction holds for both Neumann and transmission
problems. However, the present formulation of the integrated extinction fails for the
Dirichlet and Robin problems since the assumption in Sec. 2 that Re %(k) = O(1)
as k → 0 for real-valued k is violated for these boundary conditions. In fact, the
eigenvalues of the polarizability dyadics γ, γe and γm are easily calculated using the
�nite element method (FEM). Some numerical results of these eigenvalues are pre-
sented in Refs. 8 and 9 together with comprehensive illustrations of the integrated
extinction for electromagnetic waves.



9

The integrated extinction (2.8) can also be used to establish additional infor-
mation on the inverse scattering problem of linear acoustics. One advantage of
the integrated extinction is that it only requires measurements of the scattering
amplitude in the forward direction. The theory may also be used to obtain addi-
tional insights into the possibilities and limitations of manufactured materials such
as acoustic metamaterials in Ref. 4. However, the main importance of the integrated
extinction (2.8) is that it provides a fundamental knowledge of the physical processes
involved in wave interaction with matter over any bandwidth. It is also crucial to
the understanding of the physical e�ects imposed on a system by the �rst principles
of causality and energy conservation.
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