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Abstract

The gravitomagnetic force is the gravitational counterpart to the Lorentz force

in electromagnetics. This paper presents a thought experiment from which

the gravitomagnetic force is obtained using the Newton theory of gravitation

and elementary knowledge in the special theory of relativity. The example

is suitable to present in an undergraduate course on basic electromagnetic

theory.

1 Introduction

The gravitomagnetic effect was discovered by Joseph Lense and Hans Thirring in
1918 when they studied solutions to the Einstein field equations in a rotating sys-
tem [3]. They found that a test mass that falls towards a massive rotating object
experiences a force perpendicular to its motion. The force tends to drag the mass
along the rotation of the object, a phenomena referred to as the Lense-Thirring
effect. It was later seen that the effect appears in the linearized form of the Einstein
field equations, cf., [1] and [2]. The linearized version of the field equations resembles
the Maxwell equations and are referred to as the gravitoelectromagnetic equations.
They are only valid in regions where the space can be considered to be flat. ln a
local rest frame the equations are

∇× g = −
1

c

∂b

∂t

∇× b =
1

c

(

−4πGJG +
∂g

∂t

)

∇ · g = −4πGρG

∇ · b = 0

(1.1)

A number of the quantities that appear in the equations need to be explained.
The proper mass density is denoted ρG(r), and the local rest-mass current density
is, JG(r) = ρG(r)v(r), where v(r) is the three velocity of the local rest mass.
Furthermore, G is the gravitational constant, g is referred to as the gravitoelectric
field and b as the gravitomagnetic field. The field g is the three acceleration in the
Newton theory of gravitation, whereas the field b is not present in Newton’s theory.
In some papers on gravitomagnetics the mass density ρG is not the proper mass
density but rather given by ρG = (T00 + T ii)/2c2, see [2]. The linearized equations
can be treated just like the Maxwell equations. Hence in a mass free region the
fields g and b satisfy the homogeneous wave equation. The waves are generated
from time varying mass flow densities, just as electromagnetic waves originate from
time varying current densities. A review of the gravitomagnetic effect is given in [2],
where also recent attempts to verify the effect are discussed.

Under the linear approximation the total force on a test mass m consists of two
terms

F g = mg + 2
m

c
v × b (1.2)
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Notice the similarity between this force and the Lorentz force for a charge moving
in an electromagnetic field. The second term 2m

c
v × b is the gravitomagnetic force.

This type of force gives rise to the Lense-Thirring effect. The purpose of this paper
is to present a thought experiment that can only be explained if a gravitomagnetic
force is introduced. For pedagogical reasons a similar experiment is first discussed for
the electromagnetic case. The electromagnetic example might be familiar to many
teachers in electromagnetic theory but the gravitomagnetic example is probably
novel.

2 The Lorentz force in electromagnetics

z

x q

I

v
0

Figure 1: The conductor with current I and the point charge q

An example that gives rise to curiosity among undergraduate students in electro-
magnetics is the Lorentz force on a point charge q that travels parallel to a straight,
infinitely long, cylindrical conductor with DC current I. The geometry is depicted
in figure 1. The example leads to the paradox that the conductor has no net charge
in a system that is in rest relative the conductor while in a system that is in rest
relative the point charge, the conductor has a net charge. The paradox can of course
be solved by the Lorentz transformation of the four vector (cρ,J). However, that
theory is unknown for the students and would require a lecture on the Lorentz trans-
formation of the electromagnetic fields. Instead it can be explained by using the
Lorentz contraction formula, which most students are familiar with.

Consider the two inertial systems A and B, where the system A is at rest relative
the conductor and the system B is at rest relative the point charge. In A the charge
density of the conductor is zero and the current can be viewed as two line charges
ρl and −ρl moving with the velocity v+ = v0ẑ and v− = −v0ẑ, respectively. The
resulting current in the conductor is I = 2ρlv0. The point charge is moving with the
constant velocity v = v1ẑ at a radial distance rc from the z−axis. The speeds v0 and
v1 are considered to be much smaller than the speed of light. Standard calculations
give the Lorentz force on the point charge in the system A

F = qv ×B = −qµ0v1
I

2πrc
r̂c (2.1)

where r̂c is radial unit vector and µ0 is the permeability in vacuum.
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Now move to system B and check out the force on q. Needless to say, the force on
q is the same in systems A and B. In B the charge has no velocity and the Lorentz
force is zero and hence the force must be an electric force F = qE(rc) where

E(rc) = −µ0v1
ρlv0
πrc

r̂c (2.2)

According to the divergence theorem this corresponds to a linear charge density

ρBl = −2ρl
v0v1
c2

= −
v0I

c2
(2.3)

along the z−axis. In a course on basic electromagnetic theory one can ask the
students if they have any clue from where this charge is coming. Giving some
hints a discussion can start where eventually the problem is solved by using the
special theory of relativity. Most students have heard of that lengths and time are
transformed between inertial systems and they easily accept the formulas for the
transformation of these quantities. The formula for length contraction implies that
the line charge density ρl is different in system B . Neglecting higher order terms
than (v0 ± v1)

2/c2 the Lorentz transformation to system B gives the density

ρ+l =
ρl

√

1−
(

v1−v0
c

)2
= ρl

(

1 +
v21 + v20
2c2

−
v0v1
c2

)

+ h.o.t (2.4)

Accordingly, the line charge −ρl is transformed to

ρ−l = −
ρl

√

1−
(

v1+v0
c

)2
= −ρl

(

1 +
v21 + v20
2c2

+
v0v1
c2

)

+ h.o.t (2.5)

Thus, in system B the total charge density of the conductor is

ρ+l + ρ−l = −2ρl
v0v1
c2

+ h.o.t (2.6)

which is the same result as in Eq. (2.3). A similar thought experiment is now
performed for gravitation.

3 The gravitomagnetic force

This gravitational thought experiment only assumes basic knowledge of the Newton
theory of gravitation and the special theory of relativity. When the experiment
has been discussed one can show that the outcome of it is in accordance with the
linearized equations (1.1) and the gravitomagnetic force in Eq. (1.2).

According to Newton the force between two point like masses m and M is given
by

Fm = −FM = G
mM

r2
r̂ (3.1)
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Figure 2: The two axisymmetric cylinders and the point-like test mass m seen from
system A. In this case the two cylinders have the same mass per unit length and
according to Newton’s theory the gravitational force on the mass m is zero .
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Figure 3: The two axisymmetric cylinders and the point-like test mass m seen from
system B. In this case the upper cylinder has a larger mass per unit length than
the lower one and there is a resulting gravitational force Fm on the mass m.
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where r is the distance between the masses and r̂ is the unit vector directed from
mass m towards mass M . According to the relation E = mc2 we interpret mass as
m = E/c2. The vector g = Fm/m is introduced as the counterpart to the electric
field. It satisfies Poisson’s equation

∇ · g(r) = −4πGρG(r) (3.2)

where ρG(r) is the mass density. According to the divergence theorem the field g

outside an infinitely long axisymmetric cylinder with mass ρl per unit length and
with the z−axis as symmetry axis is

g(rc) = −2G
ρl
rc
r̂c (3.3)

Next consider two infinitely long axially symmetric circular cylinders with radius a,
as depicted in figure 2. Each cylinder has a rest mass per unit length of ρl. One
cylinder has its symmetry axis along the line (x, y) = (−x0, 0), where x0 > a, and
is moving with the velocity v0 = v0ẑ relative a fixed coordinate system and the
other cylinder has its symmetry axis along the line (x, y) = (x0, 0) and is moving
with the velocity −v0ẑ. A point like test mass m is moving with speed v1 = v1ẑ
along the z−axis. Again two inertial systems are introduced: system A which is at
rest relative the coordinate system and system B which is moving with the same
velocity as the test mass. According to Newton’s theory the gravitational force on
the test mass is zero in system A, due to symmetry. In system B the mass per
unit length of the two cylinders is altered due to length contraction and the Lorentz
transformation of mass1. The mass per unit length of the two cylinders seen from
system B are

ρ+l =
ρl

1−
(

v0−v1
c

)2
(3.4)

for the cylinder moving with velocity v1ẑ and

ρ−l =
ρl

1−
(

v0+v1
c

)2
(3.5)

for the other cylinder. On the z−axis the corresponding gravitational fields are

g+ = −2G
ρ+l
x0

x̂

g− = 2G
ρ−l
x0

x̂

(3.6)

Neglecting higher order terms than (v0±v1)
2/c2 the force on the test mass in system

B is given by

Fm = m(g+ + g−) = 8mGρl
v0v1
x0c2

x̂+ h.o.t. (3.7)

1It is convenient to use the Lorentz transformation of mass. The mass is then not the proper

mass but defined by m = E/c2, where E is the total energy.
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Now the same force must act on the test mass in system A, but, as mentioned
earlier, in A that force is not caused by Eq. (3.1) and must be interpreted as some
other kind of force. The force is proportional to the speed of the test mass and is
perpendicular to the velocity of the test mass. Hence it is a vector product between
the velocity v1 and a vector field. This gives

Fm = 2
m

c
v1 × b (3.8)

where
b = −4Gρl

v0
x0c

ŷ (3.9)

The field b is the sum of the magnetic type fields from each cylinder. The conclu-
sion is that an infinitely long axisymmetric cylinder with the z−axis as symmetry
axis and mass ρl per unit length moving with the velocity v = v0ẑ generates a
gravitomagnetic field

b = −2G
v0
c

ρl
rc
ϕ̂ (3.10)

where ϕ̂ is the azimuthal unit vector, cf., figure 4 and rc is the distance from the
symmetry axis. Notice that the gravitomagnetic field is in opposite direction to the
corresponding magnetic field from a line current. It is easy to verify that the result
in Eq. (3.10) is in accordance with the second equation in Eq. (1.1).

v

b

Figure 4: A long cylinder moving with a velocity v along its axis of symmetry
creates a circular gravitomagnetic field b. The field b is a consequence of the Newton
theory of gravitation and the special theory of relativity.

4 Discussion

Without any knowledge in general relativity theory it is possible to derive the gravit-
omagnetic field from a long cylinder moving with constant velocity along its symme-
try axis. It is of interest to have discussions with students on the magnitude of the
gravitomagnetic force and how it can be experimentally verified. The ratio between
the force mg and the gravitomagnetic force is v0v1/c

2, an incredibly small number
at normal speeds v0 and v1. Even so, there seems to be successful verifications using



7

satellites [2]. A relevant question is why the difference between the Newton gravita-
tional force and the gravitomagnetic force is so huge, when the Lorentz force easily
can be made larger than the electric force? As one proceed in a basic course on
electromagnetics one can get back to the equations (1.1) and compare them with
the Maxwell equations. In the context of electromagnetic waves and antennas it
is interesting to discuss gravitational waves and antennas for gravitational waves.
There are still no experiments that prove that gravitational waves can be gener-
ated and detected. This lack of experimental proofs might start creative discussions
among the students.
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