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Abstract—The pathloss exponent and the variance of the large-
scale fading are two parameters that are of great importance
when modeling or characterizing wireless propagation channels.
The pathloss is typically modeled using a single-slope log-distance
power law model, whereas the large-scale fading is modeled
using a log-normal distribution. In practice, the received signal is
affected by noise and it might also be corrupted by interference
from other active transmitters that are transmitting in the same
frequency band. Estimating the pathloss exponent and large
scale fading without considering the effects of the noise and
interference, can lead to erroneous results. In this paper, we
show that the path loss and large scale fading estimates can be
improved if the effects of samples located below the noise floor are
taken into account in the estimation step. When the number of
such samples is known, then the pathloss exponent and standard
deviation of the large scale fading can be iteratively computed
using maximum likelihood estimation from incomplete data via
the expectation maximization (EM) algorithm. Alternatively, if
the number of samples below the noise floor is unknown, we
show that the pathloss and large scale fading parameters can
be estimated based on a likelihood expression for a truncated
normal distribution.

I. INTRODUCTION

Pathloss is the expected (mean) loss at a certain distance
between the transmitter (TX) and the receiver (RX). A number
of pathloss models have been developed for a variety of wire-
less communication systems, e.g., cellular systems, bluetooth,
wifi vehicle-to-vehicle dedicted short range communications
and mm-wave point-to-point communications, working over
different frequency bands ranging from hundreds of MHz
to tens of GHz [1]–[4]. These models have widely been
used for the prediction and simulation of signal strengths for
given TX-RX separation distances. Typically, pathloss models
are developed with the help of channel measurements in
realistic scenarios. The model parameters estimated from the
measurement data are thus typically valid only for a particular
frequency range, antenna arrangement, and environment for
the target scenario.

Measurement data often has limitations in one way or
another and thus there are a number of associated challenges,
which often makes the estimation and modeling of the pathloss
exponent from the channel measurement data non-trivial.
Therefore, special considerations must be taken into account
when modeling the pathloss exponent by measurement data.
The examples of associated challenges are;

1) Typically samples are recorded at equi-spaced time or
distance intervals. This makes the distribution of data sam-
ples to be non-uniform along logarithmic distance, i.e., the

data samples have higher concentration at larger logarithmic
distances, implying that the standard least-square (LS) or
mean-square-error (MSE) estimation approaches will have a
high weight for large distances and low weight for shorter
distances. This problem can be solved by using weighted
samples for improved prediction where weights are calculated
w.r.t. the logarithmic sampling density [5]. It is very important
to explicitly mention that if the linear or logarithmic distance
sampling is used for modeling, because sample distribution is
different for both cases and may lead to different estimates for
the same data set.

2) The pathloss exponent and the standard deviation of
the large scale fading are random variates that vary from
location to location as well for different antenna heights and
frequencies. It is important to understand these variations and
their physical motivation.

3) In practice, the observation of the received signal power
at the receiver is limited by the system noise, i.e., the sig-
nals with power below the noise floor can not be measured
properly. Moreover, the received signal power might also be
corrupted by interference from other active transmitters that
are transmitting in the same frequency band. Estimating the
pathloss exponent and large scale fading based on such data
set, without considering the effects of the noise floor and
interference, can lead to erroneous results. In this paper it is
shown that the path loss and large scale fading estimates can
be improved if the missing samples, which are located below
the noise floor, are taken into account in the estimation step.
Two different methods are provided that incorporate missing
samples to improve the parameter estimation, first when the
number of missing samples is unknown and second when the
number of missing samples is known.

In section II we describe the pathloss and basic modeling
assumptions. Section III explains the parameter estimation
methods. Section IV presents results for the synthetic as
well as for the channel measurement data. Finally, Section
V summarizes the discussion.

II. PATHLOSS MODELLING

A simple log-distance power law [6] is often used to model
the path loss to predict the reliable communication range
between the TX and the RX. The generic form of this log-
distance power law path loss model is given by,

PL(d) = PL0 + 10n log10

(
d

d0

)
+Xσ; d ≥ d0 (1)



where PL0 is an estimated (measured) reference level or
PL0 = 20log10(4πd0/λ) the theoretical path loss at a refer-
ence distance d0 in dB calculated using free-space propagation
model. Furthermore λ is the wavelength in meters, d is the
vector of distances between the TX and the RX, n is the
pathloss exponent, and Xσ is a random variable to represent
large scale fading about the distance dependent pathloss,
respectively. If the effect of small scale fading is removed
from the data set by averaging the data over the time samples
corresponding to a wide-sense-stationary region, then the
variations of the large-scale fading are typically modeled using
a zero-mean Gaussian distribution with standard deviation σ,
i.e., Xσ ∼ N (0, σ2). Hence, PL(d) ∼ N (µ(d), σ2) with
distance dependent deterministic expected value,

µ(d) = PL0 + 10n log10

(
d

d0

)
; (2)

The pathloss exponent n is an environment dependent
parameter commonly provided in modeling papers, which is
determined by field measurements. Usually, n is estimated by
simple linear regression of 10 log10(d) to the measured power
values in dB such that the mean square error (MSE) between
the measured and modeled points is minimized.

For peer-to-peer communication in line-of-sight (LOS)
propagation conditions it is often observed that a dual-slope
model based on two-ray ground model, as stated in [7],
can represent themeasurement data more accurately. We thus
characterize a dual-slope model as a piecewise-linear model
with the assumption that the power decays with path loss
exponent n1 until the breakpoint distance (db) and from there
it decays with path loss exponent n2. The dual-slope model is
given by,

PL(d) =


PL0 + 10n1 log10

(
d
d0

)
+Xσ1, if d0 ≤ d ≤ db

PL0 + 10n1 log10

(
db
d0

)
+ if d > db

10n2 log10

(
d
db

)
+Xσ2.

(3)
The typical flat earth model consider db as the distance at
which the first Fresnel zone touches the ground or the first
ground reflection has traveled db + λ/4 to reach RX. The db
can be calculated as, db = 4hTXhRX−λ2/4

λ , where λ is the
wavelength at carrier frequency fc, and hTX and hRX are the
height of the TX and RX antennas, respectively. Xσ1 and Xσ2

represent large scale fading before and after the break point.
For d < db, this model is the same as the log-distance power
law in (1).

III. ESTIMATION

To completely model the pathloss for a given data set, we
wish to estimate three main parameters of (1) or (3), i.e.,
n, PL0 and σ2. The data under consideration is implicitly
assumed to be Gaussian distributed because the large-scale or
large scale fading on top of distance dependent deterministic
pathloss is Gaussian, as mentioned above. Here, we will
consider parameter estimation only for (1) where the result

can easily be extended for (3). Using (1) the data set can be
modeled as,

y = Xα+ ε, (4)

where

y =


PL(d1)
PL(d2)

...
PL(dL)

 , X =


1 10log10(d1)
1 10log10d2)
...
1 10log10(dL)

, ε =


ε1
ε2
...
εL


and α =

(
PL0

n

)
By applying ordinary least squares, the parameter α can be

estimated as

α̂ =
(
XTX

)−1
XTy. (5)

Using the estimates contained in α̂, the variance σ2 can be
estimated as

σ̂2 =
1

L− 1
(y −Xα̂)T (y −Xα̂). (6)

A. Least-Square (LS) Estimation for Truncated Data

In order to estimate the pathloss exponent and fading
variance of data truncated by a noise floor, with an unknown
number of missing samples, it is possible to base the estima-
tion on a truncated normal distribution. Under this assumption,
each data observation follows a truncated normal distribution,

yi ∼ Nc(xiα, σ2), (7)

where c denotes the noise floor level. The likelihood expres-
sion for this distribution is given by

l(σ,α) =

n∏
i=1

1
σφ(yi−xiα

σ )

1− Φ( c−xiα
σ )

, (8)

where φ(·) is the probability density function for the standard
normal distribution and Φ(·) is its cumulative distribution
function, and hence the likelihood can be written as

l(σ,α) =

n∏
i=1

1√
2πσ

exp(− 1
2σ2 (yi − xiα)2)

1
2 (1− erf( c−xiα√

2σ
))

, (9)

where erf(·) is the error function. Using the log-likelihood
L(σ,α) = ln[l(σ,α)], the parameters σ and α are estimated
using

arg min
σ,α

{−L(σ,α)}. (10)

which is easily solved by numerical optimization of α and σ.

B. Expectation-Maximization (EM) Algorithm for Truncated
Data

To estimate the pathloss exponent and variance of the
incomplete data with a known number of missing samples, we
make use of the expectation maximization (EM) algorithm by
Dempster et al. in [8]. The iterative EM algorithm is developed
to estimate the mean and standard deviation of a truncated



data set by maximizing the likelihood function based upon
observed and missing samples.

The measured channel gains have a distance dependent
mean and a certain standard deviation along the distance.
Therefore, we divide the measured distance dependent channel
gains into log-spaced distance bins so that the mean and
variance for each bin can be estimated independently.

The data y′ ∼ N (µ, σ2) associated to each distance bin is
assumed to be Gaussian distributed, whereas the true mean µ
and standard deviation σ are unknown. Let y′1, y

′
2, ..., y

′
k−l be

the detected samples of y′ and y′(k−l)+1, y
′
(k−l)+2, ..., y

′
k be the

l undetected samples, if exist, lying below the noise floor c.
The mean, µ0, and standard deviation σ0 of observed (k − l)
truncated data values, without considering missing samples,
can then be estimated as,

µ0 =

k−l∑
i=1

y′i
(k − l)

, (11)

and

σ0 =

k−l∑
i=1

(y′i − µ2
0

(k − l)
. (12)

The likelihood expression for this truncated distribution is
given by

lnL(y′, µ, σ) = l ln Φ(L)− (k − l) lnσ −
k−l∑
i=1

(xi − µ)2/2σ2,

(13)
where Φ(L) is the cumulative distribution function of L =
c − µ/σ representing the probability that an observation is
less than c.

For such a left-truncated data set with a known threshold
and known number of missing samples, The EM-algorithm of
[8] makes use of these observed (k − l) samples to calculate
initial estimates of µ and σ. In each iteration the expectation
of the conditional likelihood function of the complete data
is maximized based on the type of truncation such as left-
truncation in our case. At (j + 1)th iteration, the estimates of
µ and σ are given by [9], as follows

µ̂j+1 =

[∑k−l
i=1 xi +

∑k
i=k−lEj(xi|xi ≤ c)

]
k

, (14)

σ̂2
j+1 =

[∑k−l
i=1 xi − µ̂j

2 +
∑l
i=1Ej((xi − µj)2|xi ≤ c)

]
k − 1

,

(15)
where

Ej(xi|xi ≤ c) = µ̂j − σ̂j [φ(Lj)/Φ(Lj)], (16)

Ej((xi−µj)2|xi ≤ N0) = σ̂j
2(1−Lj [φ(Lj)/Φ(Lj)]), (17)

with
Lj = (c− µ̂j)/σ̂j . (18)

Hence, the iterative EM-algorithm improves the estimation
of µ and σ in each iteration, where all of the non-detected
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Fig. 1. Path loss estimation based on synthetic data with a noise threshold
c = lnN0 = −95 dB.

samples are replaced by the same conditional expected value
as given by (16).

IV. ESTIMATION EXAMPLES

The significance of these estimation methods is shown by
the help of examples where the path loss parameter estimation
is performed for synthetic as well as for measured data.

A. Synthetic data

To make sure if both the estimation methods work fine we
first consider an example using synthetic data, where data is
generated according to (1) with known channel parameters.

The path loss parameters used to generate 2000 samples
of the synthetic data distributed uniformly along the distance
between 0− 1000 m are; fc = 5.6 GHz, n = 2, σ = 4 dB, and
d0 = 1 m. The noise threshold c = 10log10(N0) = −95 dB
is used to truncate the data, where N0 is the non-dB value
of noise floor. It is assumed that the samples lying below c
are missing or un-detected, though the exact count of those
samples is available.

The parameter estimation is done in two steps: 1) The
parameters of truncated data are estimated without considering
the effect of the noise threshold c by ordinary least-square
(LS) estimation as given in (5) and (6). 2) The parameters
of the truncated data are estimated by considering the effect
of noise threshold. Both of the above described estimation
methods, LS-estimation for truncated data and EM-Algorithm
for truncated data, are tested while taking into account the
unknown number of missing samples and known number of
missing samples, respectively.

The synthetic data is shown in Fig. 1 with the estimated path
loss slopes. It can be observed that the estimates are less accu-
rate when using an ordinary LS-estimation for truncated data
without considering the effect of missing samples. However,
when the missing samples are taken into account the estimated
values are very close to the true value. This means that, in the
prior case, the estimated values of the received power will



be larger than the true values. The path loss model based on
incorrect parameter estimates can thus lead to erroneous results
when performing network simulations.

The true and estimated values are listed in Table I for each
of the above described parameter estimation methods. The
table shows that, for this specific example, when estimation is
performed without considering the missing samples, n is over-
estimated whereas the standard deviation is underestimated.
However, when the effects of the noise floor or the number of
missing samples are considered, then the estimation results are
very similar to the true values. For the synthetic data in this
example, both the truncated LS-estimation and the truncated
EM-estimation methods have similar performance.

TABLE I
PATH LOSS PARAMETER ESTIMATION FOR SYNTHETIC DATA

n PL0 [dB] σ [dB]

True values 2 47.4 4
Ordinary LS-estimation 1.61 -53.5 3.46

Truncated LS-estimation 1.91 -48.8 3.86
Truncted EM-estimation 2.0 -46.6 3.84

B. Measurement data

The measurement data used here is collected for vehicle-
to-vehicle (V2V) communication channel characterization at
5.6 GHz, for details see [10]. The path loss model parameter
for the measurement data are estimated in the same way as it is
done in Section IV-A. The measurement data for two different
situation line-of-sight (LOS), when both the TX and RX has
visual sight between them, and obstructed-LOS (OLOS), when
a large object such as building, or another vehicle partly or
completely obstruct the LOS between the TX and RX. Both
the situations are significantly different from each other and
receiver power in LOS is typically better than that in OLOS.
These differences in the received power result in different
number of missing samples is both scenarios for a fixed noise
threshold c, i.e., more samples will be missing in OLOS
situation.

The measurement data and the estimated path loss slopes
for all three methods are shown in Fig. 2, where as the
estimated parameters are listed in Table II. Figure. 2(a) shows
that all three estimation methods have nearly similar parameter
estimates for the LOS measurement data, it is due to the fact
that only a few samples are missing. However, in Fig. 2(b)
this is not the case, where the ordinary LS estimation clearly
overestimates the pathloss exponent n and underestimates σ.
The results for truncated LS-estimation are not so different
from the ordinary LS-estimation because in OLOS case the
number of undetected samples, 2187, is almost equal to
the amount to detected samples 2722. Since, truncated LS-
estimation does not take the number of missing samples into
account it leads to unrealistic parameter estimates. The second
method, truncated EM-estimation, however takes the number
of missing samples into account and thus give more realistic
estimates of the statistics.
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Fig. 2. Path loss estimation based on measurement data, recorded for vehicle-
to-vehicle (V2V) communication in line-of-sight (LOS) and obstructed-line-
of-sight (OLOS) situation, with a noise threshold c = 10log10(N0) =
−95 dB.

TABLE II
PATH LOSS PARAMETER ESTIMATION FOR MEASUREMENT DATA

n PL0 [dB] σ [dB]

Ordinary LS-estimation 1.66 -65.3 4.3
LOS Truncated LS-estimation 1.67 -65.2 4.3

Truncted EM-estimation 1.63 -65.1 4.4

Ordinary LS-estimation 1.3 -73.5 4.4
OLOS Truncated LS-estimation 1.43 -72.8 4.6

Truncted EM-estimation 2.1 -71.2 7.2



V. SUMMARY AND CONCLUSIONS

In this paper, we present two novel ways of estimating
the pathloss model parameters for the measurement data set,
which is incomplete or truncated due to the influence of the
noise floor. We show that the estimates can be improved if
the effects of the noise floor are taken into account in the
estimation steps. In the truncated least-square (LS) estimation
based method, when the number of samples below the noise
floor is unknown, the noise floor is modeled with the help of a
truncated normal distribution and the parameters are estimated
based on a likelihood expression for this distribution. In the
second method, when the number of samples above and below
the noise floor is known, then both the noise floor information
as well as the number of samples below noise floor are
used to estimate the model parameters using the expectation
maximization (EM) algorithm for truncated data. It is found
that the EM-algorithm based method gives better estimates
compared to LS-estimation based method, given that a large
number of samples are below the noise floor and that number
is known. When the number of samples below the noise floor
is unknown, the trucated LS-estimation gives better parameter
estimates than the ordinary LS method. All three methods give
similar estimates when there are no samples below the noise
floor.
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