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Model Based Information Fusion in Sensor

Networks

Peter Alriksson and Anders Rantzer

Department of Automatic Control, Lund University, Sweden

Abstract: In this paper, a model based sensor fusion algorithm for sensor networks is presented.
The algorithm, referred to as distributed Kalman filtering is based on a previously presented
algorithm with the same name. The weight selection process has been improved yielding
performance improvements of several times for the examples studied. Also, solutions to both
optimization problems involved in the iterative off-line weight selection process are given as
closed form expressions. The algorithm is also demonstrated on a typical signal tracking
application.

Keywords: Distributed control and estimation, Sensor networks

1. INTRODUCTION

In recent years the increases in battery and processing
power of sensor nodes has made a wide range of sensing
applications possible. However as the number of sensors in
a network increase the need for efficient data aggregation
becomes more and more evident. For a small sensor
network routing measurements to a central node using for
example Ad hoc On Demand Distance Vector (AODV)
routing might be feasible, see Perkins et al. [2003]. However
as the network grows, the computational- and network
load both in the central node and in bottleneck nodes
throughout the network will be a major problem. Also
these nodes will drain their energy resources unnecessarily
fast.

There are numerous data fusion techniques in the sensor
network literature, but most fall into two categories: data
driven and model based. An example of a data driven
technique would for example be finding the maximum tem-
perature in an area. Each node compares its temperature
with its neighbors and only the maximum is transmitted.
In this paper we will focus on a model based approach. One
simple example would be to estimate the mean tempera-
ture in an area. The temperature could then be modeled as
a constant quantity that is observed through a number of
noisy sensors. In the model based approach the quantity of
interest is not required to be directly measurable but can
be estimated from previous measurements using a model.

2. PREVIOUS WORK

The technique used in this paper is often referred to
as distributed Kalman filtering. In a distributed Kalman
filter, nodes exchange estimates of the quantity of interest
possibly together with the their local measurements.

An early reference is Durrant-Whyte et al. [1990] where
a decentralized Kalman filter was proposed. However, this
algorithm requires every node to be able to communicate
with every other node, which is not possible in the setup
studied here.

One common technique is to apply consensus filters, see
Olfati-Saber et al. [2007], on various quantities such as the
measurements, covariances and/or state estimates. These
consensus filters usually operate at a faster rate than
the sampling rate, thus allowing the network to reach an
agreement before the state estimate is updated. Under this
assumption the choice of Kalman gain can be treated in
the same way as a centralized Kalman filter. Recent papers
in this area include Olfati-Saber [2007], Spanos et al.
[2005] and Xiao et al. [2005]. In Carli et al. [2007] it was
noted that if the assumption of agreement is not fulfilled
the optimal Kalman gain for a centralized filter does not
coincide with that of a distributed. This issue was also
addressed in Schizas et al. [2007]. In Speranzon et al. [2006]
the scalar case was studied under the assumption that
nodes communicate only once between each measurement.

In Alriksson and Rantzer [2006] a two step procedure for
distributed Kalman filtering was developed. This algo-
rithm consists of one part that is done online and one of-
fline part where parameters for the online part are selected.
This paper aims at improving the parameter selection step
of that paper.

This paper is organized as follows. In Section 3 we present
the mathematical problem studied and give necessary as-
sumptions. In Section 4 the online part of the algorithm
is given for clarity. Section 5 presents the improved offline
parameter selection process and in Section 6 three numer-
ical examples are given.

3. PROBLEM FORMULATION

Consider the following discrete-time linear system

x(k + 1) = Ax(k) + w(k) (1)

where x(k) ∈ Rn is the state of the system and w(k) ∈ Rn

is a stochastic disturbance. The disturbance is assumed to
be a white zero mean Gaussian process with covariance
defined in (3).

The process is observed by N agents each with some
processing and communication capability. The agents are



labeled i = 1, 2, . . . , N and form the set V . The com-
munication topology is modeled as a graph G = (V , E),
where the edge (i, j) is in E if and only if node i and
node j can exchange messages. The nodes to which node
i communicates are called neighbors and are contained in
the set Ni. Note that node i is also included in the set Ni.

Each node observes the process (1) by a measurement
yi(k) ∈ Rmi of the form

yi(k) = Cix(k) + ei(k) (2)

where ei(k) ∈ Rmi is a white zero mean Gaussian process.
The process- and measurement disturbances are correlated
according to

E







w(k)
e1(k)

...
eN(k)













w(l)
e1(l)

...
eN (l)







T

=







Rw 0 . . . 0
0 Re11 . . . Re1N

...
...

. . .
...

0 ReN1 . . . ReNN







δkl (3)

where δkl = 1 only if k = l. Note that this is a
heterogeneous setup where each agent is allowed to to take
measurements of arbitrary size and precision. Further the
disturbances acting on the measurements are allowed to
be correlated.

Each node is only allowed to communicate estimates with
its neighbors and only once between each measurement.
Further the only assumption made on the graph structure
is that it has to be connected, other assumptions such as
requiring it to be loop free are not necessary. No node
is superior to any other and thus no central processing is
allowed after deployment. This setup is somewhat different
from the setup used in for example distributed control
problems where each node in the graph also has dynamics
associated with it. The reader should think of the problem
studied here as for example a network of sensors trying to
estimate the position of an external object they observe.

The goal is to make sure that every node in the network
has a good estimate x̂i(k) of the state x(k).

4. ONLINE COMPUTATIONS

The algorithm consists of the two traditional estimation
steps measurement update and prediction, together with
an additional step where the nodes communicate and
merge estimates. We will refer to an estimate after mea-
surement update as local and after the communication step
as regional.

(1) Measurement update
The local estimate x̂local

i (k|k) is formed by the pre-
dicted regional estimate x̂reg

i (k|k − 1) and the local
measurement yi(k)

x̂local
i (k|k) = x̂reg

i (k|k − 1)

+ Ki[yi(k) − Cix̂
reg
i (k|k − 1)] (4)

where Ki is computed off-line. The predicted estimate
at time zero is defined as x̂reg

i (0| − 1) = x̂0 where x̂0

is the initial estimate of x(0).
(2) Merging

First the agents exchange their estimates over the
communication channel. This communication is as-
sumed to be error and delay free. The merged esti-
mate x̂reg

i (k|k) in node i is defined as a linear combi-
nation of the estimates in the neighboring nodes Ni.

x̂reg
i (k|k) =

∑

j∈Ni

Wij x̂
local
j (k|k) (5)

The weighting matrices Wij are computed off-line by
the procedure described in Section 5.

(3) Prediction
Because the measurement- and process noises are
independent the prediction step only includes

x̂reg
i (k + 1|k) = Ax̂reg

i (k|k) (6)

5. OFFLINE PARAMETER SELECTION

As the best estimate will be available after the merging
step we will focus on minimizing the estimation error
covariance after this step. First, let the estimation error
in node i be denoted

x̃i(k|k) = x(k) − x̂reg
i (k|k) (7)

and its (cross)covariance

P reg
ij (k|k) = Ex̃i(k|k)x̃T

j (k|k) (8)

Next introduce the stacked estimation error

x̃(k|k) =






x̃1(k|k)
...

x̃N (k|k)




 (9)

with covariance P reg(k|k). Using (5) and requiring that

Wij = 0 if (i, j) /∈ E (10)

the covariance after step 2) can be written as

P reg(k|k) = WP local(k|k)WT (11)

To keep the estimate unbiased we also need to require that
∑

j∈Ni

Wij = I ∀i ∈ V (12)

The covariance P local(k|k) after step 1) can be expressed
as

P local(k|k) =
[

I K̃
]
F

[

I K̃
]T

(13)

where

F =

[
I

−C̃

]

P reg(k|k − 1)

[
I

−C̃

]T

+

[
0 0
0 Re

]

(14)

and

K̃ =






K1

. . .
KN




 C̃ =






C1

. . .
CN




 (15)

After step 3) each block of the covariance matrix is
updated as

P reg
ij (k|k − 1) = AP reg

ij (k − 1|k − 1)AT + Rw (16)

with P reg
ij (0| − 1) = P0 where P0 is the initial estimation

error covariance. Equations (11), (13) and (16) form an
iterative procedure for computing the steady state covari-
ance as time approaches infinity for given values of W and
K̃.

Ideally, we would like to find values W and K̃ that min-
imizes the steady state value of tr P reg(k|k) as k → ∞
subject to the constraints (10) and (12). This non-convex
problem will be approximated in two steps. Instead of
minimizing the steady state covariance directly, an approx-
imate iterative procedure in analogy with the standard
Kalman filter will be used.



Combining (13) and (11) the minimization problem to be
solved in each iteration can be written as

min
K̃,W

tr W
[

I K̃
]
F

[

I K̃
]T

WT

s.t (10) and (12)
(17)

This problem will be solved using an alternating minimiza-
tion type method.

The algorithm is divided into three steps. The first two
steps correspond to the minimization problem (17) and in
the third step the covariance is updated. The procedure is
then iterated until convergence.

(1) K-step

K̃(k) =

argmin
K̃

tr W (k − 1)
[

I K̃
]
F

[

I K̃
]T

WT (k − 1)

(2) W-step

For all i ∈ V

Wi·(k) = argmin
Wi·

tr Wi·

[

I K̃(k)
]
F

[

I K̃(k)
]T

WT
i·

s.t (10) and (12)

(3) P-step

P reg(k|k) = W (k)
[

I K̃(k)
]
F

[

I K̃(k)
]T

WT (k)

P reg
ij (k + 1|k) = AP reg

ij (k|k)AT + Rw ∀i, j ∈ V

The algorithm is initialized with P reg
ij (0| − 1) = P0 and

W (0) = I. Note that in step 2) the minimization with
respect to Wi·, that is block row i, for each i ∈ V is
equivalent to minimization with respect to the full matrix
W .

Compared to the algorithm proposed in Alriksson and
Rantzer [2006] the K-step now takes into account the fact
that the estimates will be merged. Both the K- and W-
step are quadratic minimization problems with explicit
solutions which allows the algorithm to be applied to large
scale systems.

5.1 The K-step

In this section the optimization problem from the K-step
will be studied. To simplify notation time indices are
dropped:

min
K̃

tr W
[

I K̃
]
F

[

I K̃
]T

WT
(18)

In this section linear conditions that the optimal K̃ have
to fulfill will be derived. First partition F as in

[

I K̃
]
[
F11 F12

FT
12 F22

]
[

I K̃
]T

(19)

To isolate the free parameters in K̃ it is expressed as a
sum

K̃ =
N∑

i=1

UT
i KiVi (20)

where
Ui =

[
0n×n(i−1) In×n 0n×n(N−i)

]

Vi =
[
0mi×li Imi×mi

0mi×l̃i

] (21)

li =

i−1∑

j=1

mj and l̃i =

N∑

j=i+1

mj (22)

Using the decomposition (20) of K̃, conditions for opti-
mality of (18) are given by

UiW
T W

[

I K̃
]
[
F12

F22

]

V T
i = 0 ∀i ∈ V (23)

To simplify notation first introduce

Gij = UiW
T WUT

j and Hij = VjF22V
T
i (24)

Qi = UiW
T WF12V

T
i (25)

Now (23) can be rewritten as

N∑

j=1

GijKjHij = −Qi , ∀i ∈ V (26)

To solve this set of matrix equations vectorization of the
matrices will be used:

N∑

j=1

(HT
ij ⊗ Gij)K̄j = −Q̄i (27)

where

K̄j = vec(Kj) and Q̄i = vec(Qi) (28)

This can be written in matrix form as





HT
11 ⊗ G11 · · · HT

1N ⊗ G1N

...
. . .

...
HT

N1 ⊗ GN1 · · · HT
NN ⊗ GNN











K̄1

...
K̄N




 = −






Q̄1

...
Q̄N






(29)
Thus we have derived linear equations for the optimal K̄i

which gives the optimal K̃.

5.2 W-Step

Introducing the sparsity constraint (10) is equivalent to
removing rows and columns corresponding to weights that
are required to be zero. Thus for each i the optimization
problem can be written as

min
W̃

tr W̃ P̃ W̃T

s.t. W̃e = In

(30)

where e = [In . . . In]
T
. Here W̃ contains the non-zero

blocks of Wi· and P̃ the corresponding elements of the

matrix
[

I K̃(k)
]
F

[

I K̃(k)
]T

. Using Lagrange multipliers
it can be shown, see Sun and Deng [2004], that conditions
for optimality are

[

P̃ e
eT 0

]

︸ ︷︷ ︸

G

[

W̃T

Λ

]

=

[
0
In

]

(31)

The equation system (31) is in general underdetermined,
so to get a unique solution the following minimization
problem is introduced

min
W̃

tr W̃W̃T

s.t. (31)
(32)

All solutions satisfying (31) can be parametrized in terms
of V as [

W̃T

Λ

]

= G†

[
0
In

]

︸ ︷︷ ︸

d

+G0V (33)



where G† denotes the Moore-Penrose pseudo inverse and
G0 a matrix of vectors spanning the null space of G. Now
(32) can be rewritten as

min
V

tr

[
V
I

]T [
I (G0

1)
T d1

dT
1 G0

1 dT
1 d1

] [
V
I

]

(34)

where d1 and G0
1 are the parts corresponding to W̃T .

The solution to this unconstrained quadratic minimization
problem is given by V = −(G0

1)
T d1. Thus the optimal W̃

is given by
W̃ = dT

1 (I − G0
1(G

0
1)

T ) (35)

6. NUMERICAL EXAMPLES

In this section three numerical examples will be studied.
The first example is chosen to illustrate the performance
improvement gained by modifying the K-step compared to
the algorithm presented in Alriksson and Rantzer [2006].
The second example illustrates how varying the commu-
nication topology influences achieved performance. The
third example illustrates an application where a scalar
time varying signal, such as for example the temperature
in an area, is measured by a sensor network.

6.1 Performance Comparison

Ideally, when comparing two suboptimal algorithms one
would like to compare them to the results of the optimal
solution. However in this case the K̃ and W yielding the
optimal covariance P opt can only be computed for very
simple systems with special structure.

As a comparison we will use an observer scheme that relies
on communication of measurements rather than estimates,
but respects the imposed communication topology. For all
nodes to be able to maintain an optimal estimate, they
must have access to all measurements. The amount of
communication required to achieve this greatly exceeds the
required communication for the scheme in Section 4 and
in most cases is practically impossible. This scheme will
however yield a lower estimation error covariance Pmeas

than P opt because having access to all measurements is
clearly at least as good as having access to estimates
generated by these measurements. Thus we have

Pmeas ≤ P opt ≤ P (36)

where P refers to the scheme presented in Section 4.

As communication is only allowed to occur once every sam-
ple, the communication topology will impose a delay equal
to the graph distance to a particular node. If measurement
noise in different nodes is assumed independent, delayed
measurements can be incorporated in the current estimate
by extending the state space.

Note that the covariance will be different in different nodes
due to the imposed communication topology. To evaluate
overall performance the mean over all nodes in the network
will be used.

In Fig. 1 the relative performance tr P−tr Pmeas

tr Pmeas
is plotted

as a function of the process noise Rw for both weight
selection algorithms. The performance was evaluated for
843 randomly generated second order systems with a
communication topology described by graphs with 10
nodes and 5.95 neighbors on average. The shaded regions
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Fig. 1. Comparison of the relative difference tr P−tr Pmeas

tr Pmeas

for the algorithm presented in Alriksson and Rantzer
[2006] and the one presented here for 843 randomly
generated second order systems on a graph with 10
nodes with 5.95 neighbors on average. The shaded
regions are 95% confidence intervals for the mean over
all 843 systems.

are 95% confidence intervals for the mean over all 843
systems. The measurement noise covariance matrix Re was
chosen as the identity matrix.

Because estimates are used as information carriers and
communication is only allowed to take place once every
sampling interval the process noise parameter Rw deter-
mines the effective distance from which a node collects
information. Therefore one would expect the suboptimal
solution to deteriorate as Rw is decreases, this is also
confirmed by the results in Fig. 1.

6.2 Connectivity Dependencies

The effects on estimation performance of 1620 randomly
generated communication topologies with 20 nodes was
studied for a system with integrator dynamics. As a
measure of connectivity the average number of neighbors
was used. An alternative measure would be the algebraic
connectivity of the associated graph. Both these measures
give similar results but the average number of neighbors
is more intuitive.

As mentioned in Section 6.1 the effective radius from which
information is used increases as Rw decreases. Therefore,
choosing a small value, such as Rw = 0.001, of the process
noise parameter will make effects caused by different
communication topologies more evident.

In Fig. 2 the variance is plotted as a function of the average
number of neighbors for each of the 1620 topologies using
the algorithm presented in Alriksson and Rantzer [2006],
the one presented in Section 5 and the scheme with delayed
measurements presented in Section 6.1. The improvement
compared to the previous weight selection algorithm is
more evident for strongly connected graphs. However even
for very sparse graphs the improvement is more than 50%.
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Fig. 2. Variance plotted as a function of the average
number of neighbors for 1620 randomly generated
graphs of size 20 using the algorithm presented in
Alriksson and Rantzer [2006], the one presented in
Section 5 and the scheme with delayed measurements
presented in Section 6.1.

6.3 Signal Tracking

This example aims at demonstrating how the proposed
estimation scheme can be used in a situation where a
sensor network is used to estimate the mean of a time
varying signal in an area. Here 50 sensors are used to
measure a signal described by

x(k) = sin

(
2π

100
k

)

+ sin

(
4π

100
k

)

Each node measures x(k) corrupted by Gaussian white
noise with unit variance. Further, the noise is assumed
independent between nodes.

Two different signal models will be used: an integrator and
a double integrator. The reason for not using a fourth order
model capable of fully describing x(k) is that in general, an
exact model of the signal studied is hardly ever available.

Four different estimation schemes will be compared:

Centralized refers to a scenario where measurements are
fused in a central node without any communication
delay.

Delayed Measurements refers to the scenario described
in Section 6.1.

Distributed refers to the scheme described in Section 4
with the weight selection procedure of Section 5.

Local refers to a scenario where no communication is
used. Here each node runs a Kalman filter based on local
information only.

As both the integrator and double integrator model differs
from the true model describing x(k) the choice of process
noise covariance Rv is crucial for the performance. Here
two different ways of choosing Rv will be used. The first
involves making a maximum likelihood estimate of the
process noise covariance Rv for the centralized case and
then using that estimate as the true value. In the case of
a double integrator model the optimal ML-estimate is

R̂v =

[
0 0
0 0.001

]

and for the case of an integrator model R̂v = 0.03.

The second approach aims at making a fair comparison
between the four schemes. To this end, both the process
noise covariance and the model structure will be optimized
to yield the best performance (measured as the root
mean square (RMS) of the estimation error). The optimal
configurations are summarized in Table 1.

Signal Model R̂v

Centralized Double Integrator

[
0 0

0 0.001

]

Delayed Measurements Integrator 0.01

Distributed Double Integrator

[
0 0

0 0.002

]

Local Integrator 0.09

Table 1. Optimal configuration for the four
schemes.

The performance, measured as RMS of the estimation
error, for the four different schemes in the three different
model setups is presented in Fig. 3. In the two middle
cases the estimation performance will vary depending
on which node is studied, this is represented as shaded
boxes. As expected, using a more complex model generally
improves performance except for the case with delayed
measurements. A possible explanation for this is that to
make use of old measurements the model must be used
heavily, thus making the scheme very sensitive to modeling
errors.

In the distributed case the double integrator model im-
proves performance significantly. This shows the impor-
tance of allowing a more complex model structure than a
simple first order model that is often assumed.

Centralized Kalman Filter Delayed Measurements Distributed Kalman Filter Local Kalman Filter
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Fig. 3. RMS of the estimation error, for the four different
schemes in three different setups. In the cases referred
to as integrator and double integrator, the process
noise parameter was chosen as the ML-estimate with-
out time delays. In the optimized case, both the model
structure and parameters were optimized for the spe-
cific estimation scheme. The shaded regions represent
max- and minimum values among all nodes.
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Fig. 4. Typical trajectories for the four different estimation
schemes together with the true value of x(k).

In Fig. 4 typical trajectories are shown for the four
different estimation schemes together with the true value
of x(k).

7. CONCLUSIONS

In this paper an enhanced weight selection algorithm for
the distributed Kalman filter algorithm presented in Al-
riksson and Rantzer [2006] has been presented. Improve-
ments in terms of covariance reduction of several times
have been noticed for the examples studied. The algorithm
relies on the assumption that both the dynamics and
communication topology are time-invariant and known at
deployment. Slow variations in the communication topol-
ogy and dynamics can be handled by recomputing the
parameters on a regular basis. Fast variations in the com-
munication topology can be treated as packet loss, against
which the algorithm has proved robust.

Ideally both the weights for neighboring estimates, W ,
and local measurements, K̃, should be optimized jointly.
However this is a non convex problem in general. Instead
of a joint optimization in W and K̃, W is held constant
equal to the value from the previous iteration when K̃ is
optimized and K̃ is held constant while W is optimized.
This reduces both optimization problems to quadratic

optimization problems for which expressions in closed form
are derived. Compared to the previous algorithm, fewer
but bigger optimization problems are now solved.

The second contribution of this paper is to evaluate
performance of the estimation algorithm on a number
of numerical examples. The first two numerical Monte
Carlo studies conclude that a significant performance
improvement has been gained through the new weight
selection algorithm. In the third numerical example the
importance of allowing a more complex signal model
than for example the commonly used integrator model is
highlighted.
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