
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Parallel Solution of Large-Scale Dynamic Optimization Problems

Laird, Carl; Wong, Angelica; Åkesson, Johan

2011

Link to publication

Citation for published version (APA):
Laird, C., Wong, A., & Åkesson, J. (2011). Parallel Solution of Large-Scale Dynamic Optimization Problems.
Paper presented at 21st European Symposium on Computer Aided Process Engineering, 2011, Chalkidiki,
Greece.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/1e6b6345-7deb-43bc-9840-43f845c015e2

21st European Symposium on Computer Aided Process Engineering — ESCAPE 21
E.N. Pistikopoulos, M.C. Georgiadis and A.C. Kokossis (Editors)
c© 2011 Elsevier B.V. All rights reserved.

Parallel Solution of Large-Scale Dynamic
Optimization Problems
Carl D. Lairda1, Angelica V. Wonga1, Johan Akessonc2

aArtie McFerrin Department of Chemical Engineering, Texas A&M University, TX, USA
cDepartment of Automatic Control, Lund University, Sweden

Abstract
This paper presents a decomposition strategy applicable to DAE constrained optimization
problems. A common solution method for such problems is to apply a direct transcription
method and to solve the resulting non-linear program using an interior point algorithm,
where the time to solve the linearized KKT system at each iteration is dominating the to-
tal solution time. In the proposed method, the structure of the KKT system resulting from
a direct collocation scheme for approximating the DAE constraint is exploited in order
to distribute the required linear algebra operations on multiple processors. A prototype
implementation applied to benchmark models shows promising results.

Keywords: dynamic optimization, parallel computing, collocation

1. Introduction
Optimization of dynamic systems has proven to be an effective method for improving
operation and profits in the chemical process industry. The size and complexity of opti-
mization problems continue to grow, while the advances in computing clock rates that we
once took for granted have slowed dramatically. Computer chip design companies have
instead focused on development of parallel computing architetures, and there is a need for
the development of advanced parallel algorithms for dynamic optimization that can uti-
lize these architectures. Furthermore, the successful use of advanced solution approaches
within industrial settings requires that these algorithms are interfaced with effective prob-
lem formulation tools. Modern object-oriented modeling languages like Modelica and
Optimica allow for rapid creation of complex dynamic optimization problems and lessen
the burden of model development, optimization problem formulation, and solver inter-
facing. In this paper we make use of the Modelica-based open source software JModel-
ica.org, [1], to transform high-level descriptions of dynamic optimization problems into
algebraic nonlinear programming problems through a direct collocation approach. Apply-
ing a nonlinear interior-point method to solve this problem, the dominant computational
expense is the solution of the KKT system solved at each iteration to produce the step
in the primal and dual variables. The block-banded structure is decomposed by forming
a Schur-complement with respect to the state continuity equations. The computational
expense varies with the number of state variables and the number of processors used in
the decomposition, as seen the parallel scaling results. As expected, the approach is most
favorable for problems with fewer state variables than algebraic variables.

1Corresponding Author: carl.laird@tamu.edu. The authors gratefully acknowledge partial financial support
from the National Science Foundation (CAREER Grant CBET# 0955205)

2The author gratefully acknowledges financial support from the Swedish Science Foundation through the
grant Lund Center for Control of Complex Engineering Systems (LCCC).

2 Laird et al.

2. Model Transcription
We consider dynamic optimization problems based on differential algebraic equation
(DAE) models on the form

min
u

∫ t f

t0
L(x,y,u)dt (1)

subject to
F(ẋ,x,y,u) = 0, x(t0) = x0 (2)

where ẋ ∈ Rnx are the state derivatives, x ∈ Rnx are the states, y ∈ Rny are the algebraic
variables and u ∈ Rnu are the control inputs. It is assumed that the DAE is of index 1.

The optimization problem is discretized using a simultaneous collocation method
based on finite elements, with Radau collocation points. See, e.g., [2] for a recent mono-
graph. Lagrange polynomials are used to approximate the state, algebraic and control
input profiles. Using this strategy, the discretized optimal control problem can be written
on the form

min
z

f (z) (3a)

s.t. c(z) = 0 (3b)

where zT = [zT
1 , . . . ,z

T
ne] are the discrietized state, algebraic and input variables, and

c(z) =

Gz1
R(z1)

Gz1 +Gz2
...

Gzne−1 +Gzne

R(zne)

G =

[
I 0 . . . 0

]
G =

[
0 . . . 0 −I 0 0

] (4)

Here, Gzi−1 +Gzi = 0 are the coupling constraints linking individual finite elements in
time and ne is the number of finite element. R(zi) are the DAE residual equations and
collocation equations associated with each finite element i. It is important to note that
only the state variables are temporally coupled between elements (not the algebraic vari-
ables). Therefore, the dimension of these constraints (number of rows in G and G) is
dependent on the number of state variables only. It is this property that will be exploited
to decompose the problem and develop an efficient parallel solution approach.

3. Parallel Solution of the Dynamic Optimization Problem
Solution of this large-scale nonlinear programming problem is possible with a number of
potential algorithms. The dominant cost of an SQP-based or Interior-Point algorithm is
the solution of the linear KKT system at each iteration to find the full step in the primal
and dual variables. The structure of the objective and constraints in the optimal control
problem induces a block structure within the linear KKT system. This linear system can
be decomposed by selecting break-points in time between elements and performing a
Schur-complement decomposition with respect to the coupling constraints.

For the interior-point algorithm IPOPT [3], the linear KKT system (also called the
augmented system) solved at each iteration of the optimization algorithm can be written
in the following block-bordered structure. For simplicity of notation, the structure is

Parallel Solution of Large-Scale Dynamic Optimization Problems 3

written with a break-point at every finite element.
K1 AT

1
K2 AT

2
. . .

...
Kne AT

ne
A1 A2 . . . Ane −δcI

∆v1
∆v2

...
∆vne

∆vs

=

r1
r2
...

rne

rs

 (5)

where

K1 =

 H1+δH I GT
∇z1R(z1)

G
∇z1R(z1)

T

, Kk =

[
Hi+δH I ∇ziR(zi)

∇ziR(zi)
T

]
, i = 2, ...,ne,

(6)
Here, Hi is the Hessian of the Lagrangian for zi, and δH , δc may be zero or positive
depending on the need of the algorithm to handle non-convexity and/or singlularity in
the Jacobian. The ∆νi vectors include the primal and dual variables for element i, and
∆νs is the dual variables for the coupling constraints. In this permutation, the coupling
constraints (i.e. the Jacobian matrices G and G), contained in the matrices Ai, and their
corresponding dual variables have been permuted to the borders of the KKT system. The
step in these dual variables can be decoupled from the remaining variables by eliminating
the Ai matrices, resulting in the following Schur-complement decomposition,[

−δcI−∑
i

AiK−1
i AT

i

]
∆νs = rs−∑

i
AiK−1

i ri. (7)

This decomposition allows solution of the KKT system using the following algorithm.

Algorithm: Schur-Complement Solve of KKT System
1: for each i in 1, ...,ne

1.1: factor Ki (using MA27 from Harwell Subroutine Library)
2: let S = [−δcI]
3: let rsc = rs

4: for each i in 1, ...,ne

4.1: for each column j in AT
i

4.1.1: solve the system Kiq
< j>
i = [AT

i]
< j>

4.1.2: let S< j> = S< j>+Aiq
< j>
i

4.2: solve the system Ki pi = ri

4.3: let rsc = rsc−Ai pi

5: solve S∆νs = rsc for ∆νs

6: for each i in 1, ...,ne

6.1: solve Ki∆νi = ri−AT
i ∆νs for ∆νi

There are several levels of parallelism that can be exploited in this algorithm. If there
is one processor available for each element, then Steps 1, 4, and 6 can all be parallelized.
Furthermore, if more processors are available, individual column backsolves in Step 4.1
can be parallelized. Also, only a small number of columns in the matrices Ai contain
non-zeros, a property that is exploited in Step 4.1.

4 Laird et al.

The basic algorithm outlined above is described with one block for each individual
finite element. However, the actual implementation is able to decompose the problem
with multiple finite elements per block. For example, a problem with 128 finite elements
can be separated into two blocks of 64 finite elements each, 4 blocks of 32 finite elements
each, etc. At a minimum, there should be one processor available for each block.

The computational time of this algorithm is dominated by either Step 4 (forming the
Schur-complement), or Step 5 (solving the Schur-complement). The cost of forming the
Schur-complement scales linearly with the number of required backsolves (but is easily
parallelized), whereas the cost of solving the Schur-complement using a typical dense
linear solver is cubic in the size of the Schur-complement.

In previous work we have shown excellent parallel scalability using this strategy for
problems with complicating variables[4, 5] where the size of the Schur-complement is
determined by the number of coupling variables only. In the approach described here,
the size of the Schur-complement increases with the number of states and the number
of processors used. As the size of the Schur-complement grows, the increased cost of
solving the large Schur-complement system (Step 5) will erode parallel speedup.

4. Performance Results
The performance of this parallel decomposition approach is a function of the number of
state variables (i.e. the dimension of the coupling constraints), and the

Table 1: Case Study Characteristics

Case Study # State Vars. # Algebraic Vars.
1 3 97
2 5 95
3 10 90
4 25 75

number of processors used in
the decomposition. As we
increase the number of pro-
cessors, we have the potential
for greater parallelization, how-
ever, the size of the Schur-
complement (and hence the
cost of Step 5) also increases.
Therefore, we test the parallel

speedup of this approach on a straightforward scalable problem where we can easily vary
the number of state and algebraic variables, as well as the number of processors used in
solution. The DAE models used in the benchmarks are composed of compartment models
in series, where some compartments are approximated using a steady state assumption.

Four separate case studies are explored as we increase the number of processors as
indicated in Table 1. Timing results represent ideal parallel timing as the problem was
actually solved in serial and the time for Steps 1, 4, and 6 were divided by the number
of blocks (available processors). The top plot in Figure 1 shows the idealized speedup
using this approach as a function of the number of processors/blocks for each particular
case study. Here, we see significant potential for speedup when the number of state
variables is outnumbered by the number of algebraic variables. The bottom plot in Figure
1 shows the ratio of the time to solve the Schur-complement over the time to form the
Schur-complement in parallel. The deterioration of the overall speedup corresponds to
the point where the size of the Schur-complement increases such that the solution time is
dominated by the time to solve the Schur-complement. All timing results were obtained
on a 3.2 GHz Intel Xeon processor.

5. Conclusions and Future Work
This paper presents a decomposition approach that is applicable for parallel solution of
the linear systems resulting from an interior-point solution of dynamic optimization prob-

Parallel Solution of Large-Scale Dynamic Optimization Problems 5

lems formulated using the simultaneous approach. The dominant cost in this algorithm
are Steps 4 (forming the Schur-complement) and 5 (solving the Schur-complement).

!"

#"

$!"

$#"

%!"

%#"

&!"

!" $'" &%" ()" '(")!" *'" $$%" $%)"

!"
##
$%

"&
'(
)*
+,
&

!"

%"

("

'"

)"

$!"

!" $'" &%" ()" '(")!" *'" $$%" $%)"

-.
/
.0
1&
2(

3
+&

4%/5#,&+6&7,+)#88+,89:;+)<8&

&"+,-,./0"*1"2345"

#"+,-,./0"*#"2345"

$!"+,-,./0"*!"2345"

%#"+,-,./0"1#"2345"

Figure 1: Case Study Timing Results: The top figure
shows speedup results for different numbers of proces-
sors and state variables, while the bottom figure shows
the ratio of the time to solve the Schur-complement
over the time to form the Schur-complement.

For problems with few states
and many algebraics, this solu-
tion approach has the potential
for significant speedup, how-
ever, as the size of the Schur-
complement increases (more states
or processors), parallel speedup
is eroded. Nevertheless, this
approach can be improved sig-
nificantly. For blocks Ak of
arbitrary structure, the Schur-
complement may indeed be
dense. However, for the
dynamic optimization problem
studied here, the structure of the
Ak blocks is not arbitrary, and
the resulting Schur-complement
is both block structured and may
be sparse. For the case studies
using 32, 64, and 128 proces-
sors, the sparsity is below 10%,
5%, and 3% respectively. The use of an efficient sparse linear solver or even a par-
allel dense linear solver will dramatically decrease the time to solve the large Schur-
complement and allow for significantly improved speedup.

References
[1] Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and Hubertus

Tummescheit. Modeling and optimization with Optimica and JModelica.org—
languages and tools for solving large-scale dynamic optimization problem. Com-
puters and Chemical Engineering, 34(11):1737–1749, November 2010.

[2] Lorenz T. Biegler. Nonlinear programming: concepts, algorithms, and applications
to chemical processes. SIAM, 2010.

[3] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–58, 2006.

[4] Zavala, V. M.; Laird, C.D.; Biegler L.T. Interior-point Decomposition Approaches
for Parallel Solution of Large-scale Nonlinear Parameter Estimation Problems.
Chemical Engineering and Science. 2008, 63, 4834-4845.

[5] Zhu, Y.; Legg, S.; and Laird, C. D. Optimal Design of Cryogenic Air Separation
Columns under Uncertainty. Computers & Chemical Engineering, Volume 34, Issue
9, Selected papers from the 7th International Conference on the Foundations of
Computer-Aided Process Design (FOCAPD, 2009, Breckenridge, Colorado, USA.,
7 September 2010, Pages 1377-1384.

