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Abstract

An ensemble of LDPC convolutional codes with parity-check matrices composed
of permutation matrices is introduced. The convergence of the iterative belief
propagation based decoder for terminated convolutional codes in the ensemble when
operating on the erasure channel is analyzed. The structured irregularity in the
Tanner graph of the codes leads to significantly better thresholds when compared
to the corresponding LDPC block codes.

1 Introduction

Low-density parity-check (LDPC) block codes, invented by Gallager [1], have been shown
to achieve excellent performance on a wide class of channels. The convolutional counter-
part of LDPC block codes, LDPC convolutional codes, have been described in [2][3][4].
Both LDPC block and convolutional codes are defined by sparse parity-check matrices
and can be decoded iteratively using message passing algorithms (e.g., belief propagation)
with complexity per bit per iteration independent of the block length or constraint length.
This makes iterative decoding of LDPC codes with large block length or constraint length
feasible.

If all messages exchanged during the iterations are independent, it is possible to
analyze the performance of the decoder. For a simple hard-decision algorithm, an upper
bound on the bit error probability, as function of the number of iterations, was derived
in [1]. This can be used to find a lower bound on the maximum channel parameter
(convergence threshold) for which the error probability goes to zero as the number of
iterations goes to infinity. An analysis of iterative decoding for the binary erasure channel
was given in [5][6]. For this channel, the convergence threshold for the belief propagation
algorithm can be described analytically. The density evolution technique, proposed in
[7][8], generalizes the ideas in [1] and [6] to a wider class of channels and message passing
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algorithms. In general, however, numerical methods are required to determine tight
bounds on the convergence thresholds.

In [9], the existence of a sequence of (J,K) regular1 LDPC convolutional codes for
which an arbitrary number of independent iterations is possible was demonstrated. Based
on this result, it follows that the threshold of (J,K) regular LDPC block codes is a lower
bound on the threshold of (J,K) regular LDPC convolutional codes for any message
passing algorithm and channel. Moreover, simulation results on the additive white Gaus-
sian noise channel (see [3][4]) indicate the possibility that LDPC convolutional codes may
have better thresholds than corresponding LDPC block codes.

In this paper we consider a class of regular LDPC convolutional codes with parity-
check matrices composed of blocks of M × M permutation matrices. (A permutation
matrix P is a matrix consisting of zeros and ones such that each row and column has
exactly a single one.) Iterative belief propagation decoding of terminated convolutional
codes on the erasure channel is analyzed, where as will be seen, the termination leads to a
structured irregularity in the Tanner graph.We find that this structured irregularity leads
to significantly better thresholds compared to the corresponding randomly constructed
regular and irregular LDPC block codes.

2 Convolutional Code Ensemble

A rate R = b/c binary convolutional code can be defined as the set of sequences
v = (. . . ,v−1,v0,v1, . . . ), vt ∈ F

c
2, satisfying the equality vH

T = 0, where the infinite
syndrome former matrix H
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and each H
T
i (t + i) is a c × (c − b) binary matrix. If H

T defines a rate R = b/c
convolutional code, the matrix H

T
0 (t) must have full rank for all time instants t. In this

case, by suitable row permutations we can ensure that the last (c − b) rows are linearly
independent. Then the first b symbols at each time instant are information symbols
and the last (c − b) symbols the corresponding parity symbols. The largest i such that
H

T
i (t + i) is a nonzero matrix for some t is called the syndrome former memory ms.
LDPC convolutional codes have sparse syndrome former matrices. A (J,K) regular

LDPC convolutional code is defined by a syndrome former that contains exactly J ones
in each row and K ones in each column.

We now define the ensemble of LDPC convolutional codes of interest. Though the
ensemble can be defined more generally, in this paper we focus on the case K = 2J , J > 2.
We construct LDPC convolutional codes defined by syndrome formers H

T with syndrome
former memory ms = J − 1. For i = 0, 1, . . . , J − 1, the sub-matrices H

T
i (t + i) of the

syndrome former are the matrices
(

P
(0)
i (t + i),P

(1)
i (t + i)

)T

, where P
(h)
i (t+ i), h = 0, 1,

1(J,K) regular LDPC codes are defined by parity-check matrices having J ones in each column of
the matrix and K ones in each row of the matrix.
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Figure 1: Syndrome former matrix for a code in C(M, 2M, 3).

is an M × M permutation matrix. All other entries of the syndrome former are zero
matrices. Equivalently, each H

T
i (t + i), i = 0, 1, . . . , J − 1, is a c× (c− b) binary matrix,

where c = 2M and b = M . By construction it follows that each row of the syndrome
former H

T has J ones and each column K ones. Let C(M, 2M,J) denote this ensemble of
(J, 2J) regular LDPC convolutional codes. Note that the ensemble of codes C(M, 2M,J)
is time-varying. Figure 1 shows the syndrome former matrix of a (3, 6) regular LDPC
convolutional code in C(M, 2M, 3).

Since H
T
0 (t) consists of two non-overlapping permutation matrices, it has full rank.

Hence H
T defines a rate R = M

2M
code. Further, the constraint imposed by the syndrome

former, i.e.,

vtH
T
0 (t) + vt−1H

T
1 (t) + · · · + vt−ms

H
T
ms

(t) = 0, vt ∈ F
2M
2 , t ∈ Z (2)

can be used to perform a systematic encoding of the code [2]. The constraint length of
codes in C(M, 2M,J) is defined as ν = (ms +1) ·c = J ·2M = KM . Thus, the constraint
length of codes in the ensemble C(M, 2M, 3) is 6M .

The Tanner graph for a code in C(M, 2M,J) can be obtained from its syndrome former
matrix. The graph consists of symbol and check nodes, each symbol node corresponding
to a particular row and each check node corresponding to a column of the syndrome
former matrix H

T. There is an edge between a symbol node and a check node if the
corresponding symbol takes part in the respective parity-check equation. For the Tanner
graph of a convolutional code we can associate a notion of time. At each time instant t
the sub-matrices H i(t) of the syndrome former H

T (see (1)) lead to c− b check nodes in
the Tanner graph. Similarly, for each time instant t, we get c symbol nodes in the Tanner
graph. Observe that H i(t) is non-zero only from i = 0, 1, . . . ,ms, hence nodes in the
Tanner graph can be connected at most ms time units away. The Tanner graph of a code
in the ensemble C(M, 2M, 3) is comprised of c = 2M symbol nodes and c− b = M check
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Figure 2: Tanner graph connections of the 2M symbol nodes at time t.
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Figure 3: Tanner graph of a terminated convolutional code obtained from C(M, 2M, 3).

nodes for each time instant. Further, each node can be connected at most ms = 2 time
units away. Figure 2 illustrates how the information symbols v

(0)
t and parity symbols v

(1)
t

at time t are connected through different permutation matrices to parity-check equations
at time t, t + 1, and t + 2.

For practical applications, a convolutional encoder starts from a known state (usually
the all-zero state) and after the data to be transmitted has been encoded, the encoder is
terminated back to the all-zero state. It can be shown that for the ensemble C(M, 2M,J)
we need a tail for no more than ms time instants, i.e., msM information bits to return
the encoder back to the all-zero state [10].

Suppose that we wish to transmit LM information bits using a code from C(M, 2M,J).
It follows that the terminated code has rate R = L/2(L+ms) = 0.5/(1+ J−1

L
). Note that

for L >> J−1, the rate loss is negligible. In Figure 3 we show the Tanner graph of a ter-
minated code obtained from a convolutional code in the ensemble C(M, 2M, 3). Observe
that symbols are zero both before encoding begins, i.e., t = 1, and after termination, i.e.,



t = L + 2. Hence in obtaining the Tanner graph of the terminated convolutional code
edges connecting check nodes to any of the symbol nodes that are known to be zero can
be omitted. For example, we can disconnect the check nodes at time t = 1 from symbol
nodes at time t < 1, since these are known to be zero. It follows that, while all symbol
nodes in Figure 3 have degree three, the check nodes can have degree either two, four,
or six. Note that even though the convolutional code is regular, knowing bits perfectly
before encoding and after termination leads to a slight irregularity in the Tanner graph
of the terminated convolutional code.

3 Decoding Analysis on the Erasure Channel

Figure 4 shows the binary erasure channel. The probability of an erasure is p and
with probability 1 − p we receive the transmitted symbol correctly. In each iteration a
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Figure 4: Binary Erasure Channel

message passing decoder exchanges messages between the symbol nodes and the check
nodes. On the erasure channel, a symbol node can be recovered correctly if its channel
value or any of the messages from the check nodes to which it connects is not an erasure.
Thus convergence of belief propagation decoding on the erasure channel can be analyzed
by tracking the probability of erasure of the messages. This is straightforward to do as
long as the messages exchanged during the iterations are independent. The next theorem
guarantees that the number of independent iterations possible on the Tanner graph of the
block code, produced by terminating convolutional codes from the ensemble C(M, 2M,J),
can be made arbitrarily large.

Theorem 1 Let

`0 =

⌊

log 2JM + log ε − log a

2 log[(J − 1)(2J − 1)]

⌋

(3)

where

a =
2(2J − 1)J3

[(J − 1)(2J − 1) − 1]2
(4)

is a constant independent of M and 0 < ε < 1/2. Then there exists an M0 such that, for
all M > M0, the probability that the number of independent iterations `, for any symbol
in the block code with L ≥ J information blocks obtained by terminating a randomly
chosen code from C(M, 2M,J), satisfies ` < `0 is less than ε.

The proof of this theorem is based on an analogous theorem for LDPC block codes
given in [11]. Theorem 2 implies that the fraction of symbols for which the number of
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Figure 5: Illustration of the messages (a) to a symbol node and (b) to a check node for
the case J = 3.

independent iterations is less than `0 is at most ε. We then fix these symbols, for example
by setting them to bit value ’0’, and do not transmit them. Fixing these symbols leads
to a decrease in rate by a factor (1 − ε), but all remaining symbols are then guaranteed
to have at least `0 independent iterations. By making M sufficiently large ε can be made
arbitrarily small, and the rate loss is therefore negligible. The asymptotic growth in `0

indicated by (3) is exactly the same as obtained for LDPC block codes [1], except that
the block length is replaced by the constraint length ν = 2JM .

Consider now the `th iteration of the decoding procedure, where 1 ≤ ` < `0. The
message sent from a check node at time t to a connected symbol node is an erasure if at
least one of the symbols represented by the other neighboring nodes has been erased. As
shown in Figure 5 (a), these symbol nodes belong to different time instants. It follows

that the probability q
(`)
t,t−k that the message from a check node at time t to a symbol node

at time t − k is an erasure is equal to

q
(`)
t,t−k = 1 −

[

(

1 − p
(`−1)
t−k,t

)

∏

k′ 6=k

(

1 − p
(`−1)
t−k′,t

)2
]

, k, k′ ∈ {0,ms} . (5)

Here p
(`−1)
t−k,t denotes the probability that the message sent in the previous iteration ` − 1

from a symbol node at time t−k to a check node at time t corresponds to an erasure. For
` = 0 these values are initialized as p

(0)
t′,t = 0 for all t′ and t. For terminated convolutional

codes we also have p
(`)
t′,t = 0 if t′ < 1 or t′ > L + ms. This condition takes into account

the lower check node degrees at the beginning and the end of the Tanner graph. The
message from a symbol node to a check node is an erasure if all incoming messages from
the neighboring check nodes and that from the channel are erasures. The flow of these
messages is shown in Figure 5 (b). Thus we have

p
(`)
t,t+k = p

∏

k′ 6=k

q
(`)
t+k′,t , k, k′ ∈ {0,ms} . (6)

For regular LDPC block codes, the distribution of the messages exchanged in iteration
` are the same for all nodes regardless of their position within the graph. Likewise, for the
random irregular code ensembles considered in [5], the message distributions are averaged
over all codes and only a single mixture density has to be considered for all check nodes
and all symbol nodes, respectively. In our case, while nodes at the same time instant
behave identically, the messages from nodes at different times behave differently and must
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Figure 6: The first level of computation trees for t = 1, 2, 3 with J = 3.

all be tracked separately. Figure 6 shows the first level of the decoding computation trees
for the first three symbol levels in the case J = 3. Although only the first and last ms

levels of check nodes have lower degrees, their effect evolves through the complete Tanner
graph. To take this structure into account, in each iteration ` = 1, . . . , `0 − 1, first (5)
and then (6) is applied for all t = 1, . . . , L + ms. Finally, for ` = `0 the product in (6) is
taken over all k′ without exclusion of k.

4 Results

To obtain convergence thresholds for terminated codes from an ensemble C(M, 2M,J)
the recursive equations (5) and (6) can be evaluated numerically for all time instants.
For proving that the erasure probabilities of all symbols converge to zero, as described
in [11], it is sufficient to check if they reach a certain breakout value. The convergence
threshold for an ensemble of codes can be found by testing this condition for different
channel values p.

Note that in addition to the node degrees J and K the value L is another parameter
that influences the result. In Table 1 we present the thresholds obtained for different L
for the (3, 6) case. The first column shows L + ms = L + 2 (the number of information
bits per block is LM), the second column shows the rate of the terminated convolutional
code, and the third column gives the threshold p∗

conv.
2 For L + ms = 10, the threshold

is quite high, in fact larger than the capacity of rate R = 1/2 codes. However, in this
case there is a significant rate loss and the terminated code has rate only R = 0.35. For
larger L the threshold remains constant at p∗

conv = 0.488. Tracking messages becomes
increasingly difficult as we increase L but the behavior in Table 1 suggests that the rate of
the terminated code can be made arbitrarily close to 0.5 without affecting the threshold.

The fourth column of Table 1 shows the thresholds for random irregular LDPC block
codes having the same degree distributions as the terminated convolutional codes (see [5]

2Strictly speaking what we obtain is only a lower bound on the threshold.



L + ms Rconv p∗conv p∗irr-blk Iter.
10 0.400 0.504 0.501 161
25 0.460 0.488 0.456 3423
50 0.480 0.488 0.442 15912
100 0.490 0.488 0.436 40899
150 0.493 0.488 0.433 65884

Table 1: Thresholds for the ensemble C(M, 2M, 3) with different L and for the corre-
sponding irregular block codes.

or [8] for a definition of degree distributions). Note that the degree distribution of the
irregular code is determined by L and that they have the same rate as the terminated
convolutional codes. The thresholds of the terminated convolutional codes are better
than those of the irregular LDPC block codes. With increasing L the degree distribution
of the terminated convolutional code tends to that of a (3, 6) regular LDPC block code.
Therefore it is not surprising that the thresholds of the corresponding irregular LDPC
block codes tend to the threshold of (3, 6) regular LDPC block codes. However, the
thresholds of the terminated LDPC convolutional codes remain unchanged. Hence, the
improvement in threshold can be attributed to the structure imposed on the Tanner
graph by the convolutional nature of the code.

The fifth column in Table 1 shows for different L the number of iterations with density
evolution until the erasure probability of all messages reaches the breakout value. This
reflects that for larger L the messages from the stronger nodes at the ends need more
time to affect the symbols in the middle. Since for large L the required number of
iterations seems to grow linearly with L, according to Theorem 1, L cannot be increased
more than logarithmically with M to guarantee a certain target bit erasure probability
with density evolution. While the threshold itself is independent of the length L (if large
enough), we cannot prove that for a fixed M the effect from the ends of the Tanner graph
carries through for arbitrary lengths. On the other hand, the logarithmic relationship
between `0 and M is due to the independence assumption required for the particular
method of analysis and may be too restrictive in practice. For LDPC block codes, e.g.,
excellent performance can be observed with iteration numbers that exceed those given in
Theorem 1 by far.

In Table 2 thresholds are presented for different J . In each case L is chosen so
that there is a rate loss of 0.2%. The first column in Table 2 shows the values J and
K of the underlying convolutional code, the second column the rate of the terminated
code, the third column the threshold obtained, and the fourth column the threshold for
randomly chosen regular LDPC block codes with the same J and K as the convolutional
code. The thresholds of the terminated convolutional codes are much better than for the
corresponding block codes. This is reasonable since the constraint nodes at either end
of the terminated convolutional codes have lower degrees than in the block code. Our
observation has been that if the probability of erasure of symbol nodes at either ends
tends to zero then after a sufficient number of iterations the probability of erasure of
symbol nodes at all time instants tends to zero.

Interestingly, the terminated convolutional codes with higher J have thresholds better
than those with lower J . This behavior is different from that of randomly constructed
(J,K) regular LDPC block codes, where for a fixed rate increasing J usually worsens the



(J,K) Rconv p∗conv p∗blk

(3,6) 0.499 0.488 0.429
(4,8) 0.499 0.497 0.383
(5,10) 0.499 0.499 0.341

Table 2: Thresholds for the ensembles C(M, 2M,J) with different J .

threshold. This is the case since for maintaining the same rate it is necessary to increase
K accordingly. Note that symbol nodes with higher degrees are stronger than those with
lower degrees, however lower degree check nodes are stronger than higher degree check
nodes. For randomly constructed LDPC block codes larger check node degrees counteract
the gain resulting from higher symbol node degrees, adversely affecting performance.
However, in our case the codes with higher J still have strong check nodes of low degrees
at either ends. Thus, the symbols at the ends are better protected for codes with larger
symbol degrees and, hence, result in better thresholds.

Oswald and Shokrollahi have constructed LDPC block code ensembles from sequences
of right regular degree distributions3 for which the convergence thresholds of the bit
erasure probability approach capacity as the maximum symbol node degree tends to
infinity [12]. According to Table 2, with increasing J the convergence thresholds of the
terminated LDPC convolutional codes also seem to tend to the capacity limit of rate
R = 1/2 codes. However, in this case the degree distributions are not right regular but
left regular, i.e., all symbol nodes have the same degree. Further, following the analysis
in [11], for the terminated convolutional codes it can be shown that at the calculated
thresholds not only the bit but also the block erasure probability with iterative belief
propagation decoding goes to zero as M goes to infinity.

5 Conclusions

In this paper we show that terminated LDPC convolutional codes from the ensemble
C(M, 2M,J) have check nodes of different degree. The terminated codes obtained from
(J, 2J) regular LDPC convolutional codes have better thresholds than the correspond-
ing (J, 2J) regular LDPC block codes on the erasure channel. It was observed that the
thresholds of the terminated LDPC convolutional codes are even better than those of
random irregular block LDPC codes with the same degree distribution. Thus, the im-
provement in performance is not only due to the irregular graph structure but also due
to the special convolutional structure of the codes.

3with fixed check node degrees
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