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Abstract

A limitation on the extinction cross section, valid for all scatterers satisfying
some basic physical assumptions, is investigated. The physical limitation is
obtained from the holomorphic properties of the forward scattering dyadic.
The analysis focuses on the consequences for materials with negative permit-
tivity and permeability, i.e., metamaterials. From a broadband point of view,
the limitations imply that there is no fundamental di�erence between metama-
terials and ordinary materials with respect to scattering and absorption. The
analysis is illustrated by three numerical examples of metamaterials modeled
by temporal dispersion.

1 Introduction
Since the investigation of negative refractive index materials by V. G. Veselago in
Ref. 14, there has been an enormous theoretical and experimental interest in the
possibilities of such materials. These materials are often referred to as metamateri-
als, even though a metamaterial in general is a much broader concept of a structured
material, and not necessarily composed of materials with negative permittivity and
permeability values. Negative refractive index materials seem not to occur naturally,
and if they can be manufactured, they possess extravagant properties promising for
various physical applications, see Refs. 9 and 11, and references therein.

The scattering properties of obstacles consisting of metamaterials have been of
considerable scienti�c interest during the last decade. Mostly canonical geometries,
such as the spheres, see e.g., Ref. 10, have been employed, and the design of scatterers
that both increases and decreases the scattering properties have been reported.

The analysis presented in this paper shows that, from a broadband point of
view, the scattering and absorption properties of any material (not just metamate-
rials) that satisfy basic physical assumptions, are limited by the static electric and
magnetic behavior of the composed materials. In particular, we show that, when
these limitations are applied to low-frequency resonances on metamaterials, large
scattering e�ects have to be traded for bandwidth. Speci�cally, the lower the reso-
nance frequency, the higher its Q-value. For a single frequency, metamaterials may
possess exceptional characteristics, but, since bandwidth is essential, it is impor-
tant to study metamaterials over a frequency interval, and with physically realistic
dispersion models.

The results presented in this paper are independent of how the material that
constitutes the scatterer is constructed or produced. This broad range of material
models is a consequence of the fact that the analysis is solely based on the principles
of energy conservation and causality applied to a set of linear and time-translational
invariant constitutive relations.

The present paper is a direct application of the theory for broadband scattering
introduced in Ref. 12. In addition to material modeling, the theory has also been
applied successfully to physical limitations on arbitrary antennas in Refs. 1 and 3.
The underlying mathematical description for broadband scattering is motivated by
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the study of causality and dispersion relations in the scattering theory of waves and
particles in Refs. 7 and 8.

2 Derivation of the integrated extinction
Consider a localized and bounded scatterer V ⊂ R3 of arbitrary shape. The dy-
namics of the material in V is modeled by the Maxwell equations with general
heterogeneous and anisotropic constitutive relations. The constitutive relations are
expressed in terms of the electric and magnetic susceptibility dyadics, χe and χm,
respectively. Due to the heterogeneous character of χe and χm, V can be interpreted
both as a single scatterer and as a set of multiple scatterers. The present analysis
includes the perfectly conducting material model as well as general temporal disper-
sion with or without a conductivity term. The analysis can also be extended with
minor changes to bianisotropic materials with the same conclusions drawn.

The direct scattering problem addressed in this paper is Fourier-synthesized
plane wave scattering by V . Due to the linearity of the Maxwell equations, it is
su�cient to consider monochromatic plane waves with time dependence e−iωt. The
incident wave is assumed to impinge in the k̂-direction with an electric �eld Ei de-
pending only on the di�erence τ = c0t− k̂ · x, where x denotes the space variable.
Introduce the far �eld amplitude F via Es = F (c0t− x, x̂)/x +O(x−2) as x →∞,
where Es represents the scattered electric �eld. Under the assumption that the
constitutive relations of V are linear and time-translational invariant, F is given by
the convolution

F (τ, x̂) =

∫ ∞

−∞
St(τ − τ ′, k̂, x̂) ·Ei(τ

′) dτ ′.

Here, St is assumed to be primitive causal in the forward direction, i.e., St(τ, k̂, k̂) =
0 for τ < 0, see Ref. 8. Furthermore, introduce the forward scattering dyadic S as
the Fourier transform of St evaluated in the forward direction, i.e.,

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ, (2.1)

where k = ω/c0. The extension of (2.1) to complex-valued k with Im k > 0 improves
the convergence of the integral and implies that S is holomorphic in the upper half of
the complex k-plane. Recall that the cross symmetry relation S(k, k̂) = S∗(−k∗, k̂)
is a direct consequence of such an extension.

Introduce E0 as the Fourier amplitude of the incident wave, and let p̂e = E0/|E0|
and p̂m = k̂ × p̂e denote the associated electric and magnetic polarizations, respec-
tively. Recall that E0 is subject to the constraint of transverse wave propagation,
i.e., E0 · k̂ = 0. Under the assumption that p̂e and p̂m are independent of k, it
follows from the analysis above that also %(k) = p̂∗e · S(k, k̂) · p̂e/k

2 is holomorphic
for Im k > 0. Cauchy's integral theorem applied to % then yields, see Ref. 12,

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk. (2.2)
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Here, it is assumed that % is su�ciently regular to extend the contour to the real-axis
in the last integral on the right hand side of (2.2). Relation (2.2) is subject to the
limits ε → 0 and R →∞.

The long wavelength limit of % on the left hand side of (2.2) and the integrand in
the �rst integral on the right hand side can be derived from a power series expansion
of the Maxwell equations. The result is, see Ref. 4,

%(ε) =
1

4π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) +O(ε) (2.3)

as ε → 0, where γe and γm denote the electric and magnetic polarizability dyadics,
respectively. For the appropriate de�nitions of γe and γm, and some of their prop-
erties, see Ref. 12 and references therein.

The second integral on the right hand side of (2.2) vanishes in the limit as R →∞
according to the extinction paradox in Ref. 13. In terms of %, a generalization of
the extinction paradox states that %(k) = −A/(2πik) + O(|k|−2) as |k| → ∞. The
constant A is real-valued since S(ik, k̂) is real-valued for real-valued k. For a large
class of scatterers, A coincides with the projected area in the forward direction.
The disappearance of the second integral on the right hand side of (2.2) is also
supported by the fact that the high-frequency response of a material is non-unique
from a modeling point of view, see Ref. 2.

From the details above, it is clear that the real part of (2.2) when subject to the
limits ε → 0 and R →∞, yields

%(0) =
1

2
%(0) +

1

8π2

∫ ∞

−∞

σext(k)

k2
dk, (2.4)

where the optical theorem σext(k) = 4πk Im %(k) has been invoked, see Ref. 12. Here,
the extinction cross section σext is de�ned as the sum of the scattered and absorbed
power divided by the power �ow density of the incident wave. Recall that the optical
theorem is a direct consequence of energy conservation, see Ref. 7. Relation (2.3)
inserted into (2.4) using the wavelength variable λ = 2π/k �nally yields

∫ ∞

0

σext(λ) dλ = π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (2.5)

The left hand side of (2.5) is referred to as the integrated extinction. For additional
details on the derivation of (2.5), see Ref. 12.

Relation (2.5) is slightly modi�ed when an isotropic conductivity term iς/ωε0

is introduced in χe for some region of V , see Ref. 12. The scalar conductivity ς is
non-negative and assumed independent of ω. In the presence of a conductivity term,
the analysis in Ref. 4 shows that the right hand side of (2.5) should be evaluated
in the limit as the eigenvalues of χe approach in�nity independently of χm. The
perfectly conducting case is obtained as the eigenvalues of χm in addition approach
−1.

Electric and magnetic material properties are seen to be treated on equal foot-
ing in (2.5), both in terms of polarization and material description. Furthermore,
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the right hand side of (2.5) depends solely on the long wavelength limit or static
response of V , while the left hand side is a dynamic quantity which unites the scat-
tering and absorption properties of V . Recall that γe and γm only are functions of
the geometry of V and the long wavelength susceptibilities χe(0) = limω→0 χe(ω)
and χm(0) = limω→0 χm(ω). Here, χe(0) and χm(0) are real-valued in the case of
vanishing conductivity. For heterogeneous structures, the long wavelength suscepti-
bilities χe(0) and χm(0) also depend on the space variable x.

In many applications, the scatterer is randomly oriented with respect to an
ensamble of incident waves. For this purpose, the averaged extinction cross section
σ̄ext is conviniently introduced by averaging (2.5) over the unit sphere in R3, i.e.,

∫ ∞

0

σ̄ext(λ) dλ =
π2

3
trace(γe + γm). (2.6)

For non-spherical particles, (2.6) provides a neat veri�cation of (2.5) without spec-
ifying the orientation of V with respect to the incident wave, see Sec. 4.1.

3 Bounds on scattering and absorption
For applications to exotic material models such as metamaterials, it is bene�cial
to introduce the high-contrast polarizability dyadic γ∞ as the limit of either γe or
γm when the eigenvalues of χe(0) or χm(0) simultaneously become in�nitely large.
From the variational properties of γe and γm discussed in Ref. 12 and references
therein, it follows that both γe and γm are bounded from above by γ∞, i.e.,

∫ ∞

0

σext(λ) dλ ≤ π2 (p̂∗e · γ∞ · p̂e + p̂∗m · γ∞ · p̂m) . (3.1)

The right hand side of (3.1) is independent of any material properties, depending
only on the geometry and the orientation of V with respect to the incident wave.
The right hand side can, independent of p̂e and p̂m, further be estimated from above
by the eigenvalues of γ∞, see Ref. 12.

The integrated extinction can be used to derive various bounds and variational
principles for broadband scattering. Since the extinction cross section σext by de-
�nition is non-negative, the left hand side of (2.5) can be estimated from below
as

|Λ| inf
λ∈Λ

σ(λ) ≤
∫

Λ

σ(λ) dλ ≤
∫ ∞

0

σext(λ) dλ, (3.2)

where Λ ⊂ [0,∞) denotes an arbitrary wavelength interval with absolute band-
width |Λ|. Here, σ represents any of the scattering, absorption and extinction cross
sections, see Ref. 12 for their appropriate de�nitions. The quantity |Λ| infλ∈Λ σ(λ)
in (3.2) is particularly useful for box-shaped limitations, viz.,

|Λ| inf
λ∈Λ

σ(λ) ≤ π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (3.3)

From (3.2) and (3.3) it is clear that the long wavelength limit response of V also
provides upper bounds on scattering and absorption within any �nite wavelength
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interval Λ. Analogous to (3.1), the right hand side of (3.3) can also be estimated from
above by γ∞ and its eigenvalues. An important consequence of the fact that (2.5)
and (3.3) only depend on the long wavelength limit response of V is that they are
independent of any temporal dispersion.

The fact that (2.5) and (3.3) are independent of any temporal dispersion implies
that there is no fundamental di�erence in scattering and absorption (in a broadband
sense) between metamaterials and ordinary materials, as long as the static proper-
ties of the material are identical. In fact, it is well known that passive materials
must be temporally dispersive since the Kramers-Kronig relations imply that χe(0)
and χm(0) element-wise are non-negative in the absence of a conductivity term,
see Ref. 5. Recall that the Kramers-Kronig relations are a direct consequence of
primitive causality, see Ref. 8.

When an isotropic conductivity term iς/ωε0 is present in χe, the Kramers-Kronig
relations must be modi�ed due to the singular behavior of χe. As mentioned above,
the analysis in Ref. 4 shows that the introduction of such a term in χe implies that
γe should be substituted for γ∞ in the right hand side of (2.5) and (3.3).

Two popular models for temporal dispersion for metamaterials are the Drude
and Lorentz models, see (4.2) and Ref. 8, respectively. The Drude model is often
preferred over the Lorentz model since it provides a wider bandwidth over which
the eigenvalues of χe and χm attain values less than −1. However, based on the
arguments above, it is uninteresting from the point of view of (2.5) and (3.3) which
temporal dispersion model is used to characterize metamaterials as long as the model
satis�es primitive causality.

In summary, the physical limitations on scattering and absorption discussed in
Ref. 12 also hold for any metamaterials satisfying primitive causality. For a single
frequency, metamaterials may possess extraordinary physical properties, but over
any bandwidth they are with respect to scattering and absorption not di�erent from
materials with the eigenvalues of χe and χm non-negative.

4 Numerical synthesis of metamaterials
In this section, numerical results for three temporally dispersive scatterers are dis-
cussed in terms of the physical limitations in Sec. 3. The examples are chosen to
provide a �ctitious numerical synthesis of metamaterials. For convenience, the ex-
amples are restricted to isotropic material properties, i.e., χe = χeI and χm = χmI,
where I denotes the unit dyadic. A similar example for the Lorentz dispersive cylin-
der is given in Ref. 12.

4.1 The Lorentz dispersive prolate spheroid
The averaged extinction cross section σ̄ext for a homogeneous and non-magnetic
(χm = 0) prolate spheroid with semi-axis ratio ξ = 1/2 is depicted in Fig. 1. The
prolate spheroid is temporally dispersive with electric susceptibility given by the
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Figure 1: The averaged extinction cross section σ̄ext as function of the frequency
in GHz for a prolate spheroid with semi-axis ratio ξ = 1/2. Note the normalization
with πa2, where a = 1 cm denotes the radius of the volume-equivalent sphere.

Lorentz model, see Ref. 8,

χe(ω) =
ω2

p

ω2
0 − ω2 − iων

,

where (ω − ω0) Re χe(ω) ≤ 0 and Im χe(ω) ≥ 0 for ω ∈ [0,∞). Explicit values of
ωp, ω0 and ν for the two curves with peaks at 2 GHz and 10 GHz are ωp = ω0 =
4π · 109 rad/s, ν = 7 · 108 rad/s, and ωp = ω0 = 20π · 109 rad/s, ν = 1010 rad/s,
respectively. The third curve in Fig. 1a corresponds to the non-dispersive case with
χe = 1, independent of ω. Since the three curves in Fig. 1a have the same values
of χe in the long wavelength limit, i.e., χe(0) = 1, it follows from (2.5) that their
integrated extinctions coincide.

Closed-form expressions of the averaged integrated extinction (2.6) exist for the
prolate and oblate spheroids, see Ref. 12. For a non-magnetic spheroid with semi-
axis ratio ξ, ∫ ∞

0

σ̄ext(λ) dλ =
4π3a3

9

3∑
j=1

1

1 + Lj(ξ)
, (4.1)

where Lj(ξ) denote the associated depolarizing factors and a is the radius of the
volume equivalent sphere. For a prolate spheroid with semi-axis ratio ξ = 1/2, the
depolarizing factors are approximately given by L1(1/2) = L2(1/2) = 0.4132 and
L3(1/2) = 0.1736, see Ref. 12. For the prolate spheroid in Fig. 1, a = 1 cm, and the
right hand side of (4.1) is equal to 31.24 cm3. The integrated extinction 31.24 cm3 is
also numerically con�rmed with arbitrary precision for the three curves in Fig. 1a.

Fig. 1b is a close-up of the 2 GHz peak in Fig. 1a. The shaded box represents a
realization of an arti�cial scatterer with the averaged integrated extinction 31.24 cm3

centered around the peak. The integrated extinction for the boundary curve of the
box and the three curves in Fig. 1a coincide. Note that the width of the box is
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Figure 2: The extinction cross section σext as function of the frequency in GHz for
a strati�ed sphere which attains simultaneously negative values of the permittivity
and the permeability. Note the normalization with the geometrical cross section
πa2, where a = 1 cm denotes the outer radius of the sphere.

approximately equal to the bandwidth of the peak when evaluated at half amplitude.
The calculation in Fig. 1 is based on the implementation of the T-matrix approach
in Ref. 6. For a similar example given by the Lorentz dispersive cylinder, see Ref. 12.

4.2 The Drude dispersive strati�ed sphere
The extinction cross section σext for a strati�ed sphere with two layers of equal
volume is depicted in Fig. 2. The strati�ed sphere is temporally dispersive with
identical electric (` = e) and magnetic (` = m) material properties given by the
Drude model

χ`(ω) =
iς

ε0ω(1− iωτ)
, ` = e, m, (4.2)

where ς > 0 and τ > 0. The real and imaginary parts of (4.2) read

χ`(ω) =
−ςτ

ε0(1 + ω2τ 2)
+ i

ς

ε0ω(1 + ω2τ 2)
. (4.3)

Since Re χ`(ω) < 0 for ω ∈ [0,∞), the strati�ed sphere in Fig. 2 attains simulta-
neously negative values of the permittivity and the permeability. The calculation
in Fig. 2 is based on a Möbius transformation applied to the classical Mie series
expansion in Refs. 7 and 8.

The two curves in Fig. 2a with peaks at 0.97 GHz (dotted line) and 3.0 GHz
(dashed line) correspond to a homogeneous sphere with identical material properties
in the inner and outer layers. These two curves are characterized by the relaxation
times τ = 10−8 s and τ = 10−9 s, respectively, and with conductivity ς = 10 S/m in
both cases. For the third curve (solid line) with peaks at 0.67 GHz and 1.6 GHz, the
material parameters of the outer layer are τ = 8 · 10−9 s and ς = 10 S/m, while the
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inner layer is non-dispersive with χe1 = 10 and χm1 = 0 independent of ω. Fig. 2b
provides a close-up of the peaks at 0.67 GHz and 0.97 GHz.

Closed-form expressions of the electric polarizability dyadic γe exist for the strati-
�ed sphere, see Ref. 12. For a strati�ed sphere of two layers, the integrated extinction
can be expressed as

∫ ∞

0

σext(λ) dλ = 4π3a3
∑

`=e,m

χ`2(χ`1 + 2χ`2 + 3) + ζ3(2χ`2 + 3)(χ`1 − χ`2)

(χ`2 + 3)(χ`1 + 2χ`2 + 3) + 2ζ3χ`2(χ`1 − χ`2)
, (4.4)

where a denotes the outer radius, and χ`1 and χ`2 represent the long wavelength
susceptibilities of the inner and outer layers, respectively. Furthermore, ζ ∈ [0, 1]
denotes the quotient between the inner and the outer radii.

Since (4.2) is characterized by a conductivity term which is singular at ω = 0,
the discussion above implies that the right hand side of (4.4) is subject to the
limits χe2 → ∞ and χm2 → ∞. Based on this observation, it is concluded that
the integrated extinction for the three curves in Fig. 2 coincide and are equal to
8π3a3 or 248.0 cm3, where a = 1 cm has been used. In contrast to the limits χe1 →
∞ and χm1 → ∞, this result is independent of ζ as well as χe1 and χm1. Note
that (2.3) and (2.5) yield that the integrated extinction 8π3a3 is equivalent to the
long wavelength limit %(0) = 2a3. The integrated extinction 248.0 cm3 is numerically
con�rmed with arbitrary precision for the three curves in Fig. 2.

The physical limitation (3.3) is depicted by the shaded boxes in Fig. 2. These
boxes correspond to arti�cial scatterers with extinction cross sections supported at
the peaks 0.67 GHz, 0.97 GHz and 3.0 GHz. The integrated extinction of each box is
equal to 248.0 cm3 and coincides with the integrated extinction for any other curve
in the �gure. From Fig. 2 it is seen how the width of the box increases as the peaks
are suppressed in magnitude and shifted toward higher frequencies. Note that the
tiny peaks at 0.36 GHz (solid line) and 1.2 GHz (dashed line) constitute a large part
of the integrated extinction, thus implying that the peaks at 0.67 GHz and 3.0 GHz
do not �t the boxes that well in comparison with the box centered at 0.97 GHz.
Recall that the area of the boxes in Fig. 2 only depends on the properties of V in
the long wavelength limit, and is hence independent of any temporal dispersion for
ω > 0.

The extinction cross section for a non-magnetic strati�ed sphere with two layers
is depicted in Fig. 3. The strati�ed sphere is temporally dispersive with electric
susceptibility χe given by the Drude model (4.2). The two curves in Fig. 3a with
peaks at 0.96 GHz (dotted line) and 2.7 GHz (dashed line) correspond to the ho-
mogeneous case with identical material parameters in both layers: τ = 10−8 s and
τ = 10−9 s, respectively, with ς = 10 S/m in both cases. For the third curve with
peak at 1.4 GHz (solid line), the material parameters of the outer layer is ς = 10 S/m
and τ = 10−8 s, while the inner layer is non-dispersive with χe1 = 10 independent of
ω. Fig. 3a is a close-up of the peaks at 0.96 GHz and 1.4 GHz with the associated
box-shaped limitations.

Since the strati�ed sphere in Fig. 3 has the same electric long wavelength response
as the scatterer in Fig. 2 but in addition is non-magnetic, it follows from (4.4) that
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Figure 3: The extinction cross section σext as function of the frequency in GHz for
a non-magnetic strati�ed sphere which attain negative values of the permittivity.
Note the normalization with the geometrical cross section πa2, where a = 1 cm
denotes the outer radius of the sphere.

the integrated extinction of the scatterer in Fig. 3 is half the integrated extinction
of the scatterer in Fig. 2, i.e., 4π3a3 or 124.0 cm3. This observation is a direct
consequence of the symmetry of (4.4) with respect to electric (` = e) and magnetic
(` = m) material properties. The result is also supported by the fact that the
amplitude of, say, the peak at 0.97 GHz in Fig. 2 is approximately twice as large as
the corresponding peak at 0.96 GHz in Fig. 3.

5 Conclusions
The conclusions of the present paper are clear: independent of how the materials
in the scatterer are de�ned and modeled by temporal dispersion (i.e., irrespective
of the sign of the permittivity and permeability), the holomorphic properties of the
forward scattering dyadic imply that, from a broadband point of view, there is no
fundamental di�erence in scattering and absorption between metamaterials and or-
dinary materials. For a single frequency, metamaterials may possess extraordinary
properties, but with respect to any bandwidth such materials are no di�erent from
any other naturally formed substances as long as causality is obeyed. As a conse-
quence, if metamaterials are used to lower the resonance frequency, this is done to
the cost of an increasing Q-value of the resonance. The present analysis includes
materials modeled by anisotropy and heterogeneity, and can be extended to gen-
eral bianisotropic materials as well. For example, the introduction of chirality does
not contribute to the integrated extinction since all chiral e�ects vanish in the long
wavelength limit.

It is believed that there are more physical quantities that apply to the theory
for broadband scattering in Ref. 12. Thus far, the theory has been applied fruitfully
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to arbitrary antennas in Refs. 1 and 3 to yield physical limitations on antenna
performance and information capacity. Similar broadband limitations on cloaking
and invisibility using metamaterials and other exotic material models are currently
under investigation.
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