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Towards Intelligent PID Control*

K. J. ASTROM,t§, C. C. HANG,} P. PERSSONt and W. K. HO%

Dimensionless numbers characterizing open-loop process dynamics and

closed-loop PID behaviour are introduced and used in assessing perfor-

mance and tuning, relations between these numbers are derived using
analytical method and simulations

Key Words—Automatic tuning; conventional control; expert systems; industrial control; knowledge
engineering; PID control; process control; threeterm control.

Abstract—Autotuners for PID controllers have been
commercially available since 1981. These controllers
automate some tasks normally performed by an instrument
engineer. The autotuners include methods for extracting
process dynamics from experiments and control design
methods. They may be able to decide when to use PI or PID
control. To make systems with a higher degree of automation
it is desirable to also automate tasks normally performed by
process engineers. To do so, it is necessary to provide the
controllers with reasoning capabilities. This seems technically
feasible with the increased computing power that is now
available in single-loop controllers. This paper describes
some features that may be included in the next generation of
PID controllers.

1. INTRODUCTION

IN THE DESIGN of a knowledge-based feedback
controller (Astrom et al., 1986; Arzén, 1989), it
is desirable to incorporate the expert knowledge
of design engineers so that the controller can
make decisions on the choice of control
algorithm and provide diagnostics on the
effectiveness of the control system. For real-time
implementation, it is desirable to have as much
deep knowledge as possible. It is also desirable
that the controller to a limited degree could
explain its own reasoning, e.g. why derivative
action was used. It should also be able to tell if
PID control is appropriate and if not, suggest
alternative control schemes.

This paper attempts to develop tools to assess
what can be achieved by PID control of two
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broad classes of systems with a Ziegler—Nichols
(1942) like tuning formula. Based on empirical
studies and approximate analysis, we introduce
two parameters, namely, the normalized dead-
time and the normalized process gain to
characterize the open-loop process dynamics.
Two more parameters, the peak load error and
the normalized rise time are also introduced to
characterize the closed-loop response. Simple
methods of measuring these parameters are
proposed.

It is shown that the normalized deadtime and
the normalized process gain can be used to
predict the achievable performance of PID
controllers tuned by the Ziegler—Nichols for-
mula. Using these relations, the controller can
interact with the operator and advise him on the
choice of control algorithms. If desired, it can
also make the choice automatically and explain
its reasoning.

Useful relations, which can be used to assess
whether the PID controller is properly tuned are
also established. The relations give significant
insight into the properties of PID control. The
simplicity of the relations allows the develop-
ment of a first generation of intelligent
controllers using current technology.

The paper is organized as follows. Two classes
of processes are introduced in Section 2. Some
useful dimensionless numbers are introduced in
Section 3. In Sections 4 and 5, some relations
between the features are derived based on
approximate analysis and simulations. The
results are used in Section 6 to predict the
performance that may be achieved with PID
control based on Ziegler—Nichols tuning. Concl-
usions are presented in Section 7.

2. PROCESS CHARACTERISTICS
It is assumed that process dynamics can be
described with sufficient accuracy by linear
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models. Additional constraints on system dyna-
mics both in the time and the frequency domains
are also introduced. This will lead to two classes
of systems that are common in process control.

Time domain characterization

It will be assumed that the step response is
monotone or essentially monotone, i.e. mono-
tone except for a small initial part. Such
processes can be divided into two broad classes.
The first class corresponds to stable processes.
Their dynamics can be characterized by the
parameters K,, L and T, where K, is the static
process gain, L is the apparent deadtime and T
is the apparent time constant. These parameters
can be obtained from a step response experiment
(Fig. 1). The transfer function

K —s
GO =135 " @

is a crude analytical approximation of stable
processes.

The second class corresponds to processes
with integral action. The transfer function

K,

GO =TT ¢

—sL (2)
is a crude analytical approximation of such a
process. An even simpler model is

G(s) =—I§—”e"”‘. 3)

Notice that the transfer function (3) may be
regarded as the limit of (1) when K, and T go to
infinity in such a way that K,/T = constant = K.

The systems considered were used in the
classical works on Ziegler—Nichols tuning. In
traditional process control literature the classes
of systems are called processes with self-
regulation (stable process) and processes without
self-regulation (processes with integration).
Notice that systems with resonant poles are not
considered, such processes do not have essen-
tially monotone step response.

L T

F1G. 1. Graphical determination of mathematical model for a
stable process.

Frequency domain characterization

A frequency domain characterization of
process dynamics will also be introduced. It is
assumed that the Nyquist curve is monotone or
essentially monotone, i.e. both the phase and
the amplitude are monotone functions of
frequency. This condition also excludes proc-
esses with resonances. The main difference
between the two classes of processes is that at
zero frequency, stable processes have finite gain
whereas processes with integral action have
infinite gain. Both systems can be characterized
by the first intersection of the Nyquist curve with
the negative real axis. This defines the ultimate
gain, K,, i.e. the controller gain that makes the
process unstable under proportional feedback,
and the ultimate period T,. Lack of monotoni-
city can be accepted at frequencies where the
phase lag is larger than 180°.

3. FEATURES

Dimension-free parameters, like Reynold’s
numbers, have found much use in many
branches of engineering. They have, however,
not been much used in automatic control. This
section attempts to introduce some dimension-
free numbers that are useful in assessing control
system performance.

Normalized deadtime

A normalized deadtime can be defined for
stable processes as the ratio of the apparent
deadtime to the apparent time constant

6= @
This number can be estimated from a record of
the step response. It has been known from
practical experience that the normalized dead-
time can be used as a measure of the difficulty in
controlling a process. Processes with a small 6,
are easy to control and processes with a large 6,
are difficult to control. Fertik (1975) introduced
the name process controllability for the related
quantity 6,/(1+ 6,). Parameter 6; was actually
called the controllability ratio by Deshpande and
Ash (1981). To avoid possible confusion with the
standard terminology of modern control theory,
the words normalized deadtime will be used.

A ratio analogous to equation (4) can be
introduced for processes with integration. Let
G(s) be the transfer function of such a process.
The transfer function sG(s) belongs to the class
of stable processes. Its behaviour can then be
characterized by an apparent deadtime, L and
an apparent time constant, T,. The normalized
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deadtime for processes with integration

6= ©)

can then be introduced.

Since the transfer function (3) may be
regarded as the limit of the transfer function (1),
processes with integration may be considered as
a special case of stable processes with very small
values of normalized deadtime.

Normalized process gain

Parameter K, is the process gain for stable
processes. It is not necessarily dimension-free. It
can however be made dimension-free by
multiplying with a factor. The ultimate gain, K,,,
is a suitable normalization factor. The normal-
ized process gain, k,, is defined as

G
=——t—=K K 6

T iGhwg ©
where G(s) is the plant transfer function and w,
is the smallest frequency such that

arg G(iw,) = — .

This number k; is easily obtained from the
Nyquist curve. It also has a physical inter-
pretation as the largest process loop gain that
can be achieved under proportional control. This
number is useful for assessing control perfor-
mance. Roughly speaking, a large value
indicates that the process is easy to control while
a small value indicates that the process is difficult
to control.

Stable processes have a steady-state error
under proportional feedback. The error obtained
for a step command of size s, is

1 1
= s
1+ KK, 7 1+

So (7)

€s

where K, is the proportional gain used. The
inequality follows because K,K.<k;. The
number k; can thus be used to estimate the
minimum steady-state error under proportional
control and also to determine if integral action is
required in order to satisfy specifications on
static error.

For processes with integration, the product
K,K, has dimension frequency. The dimension-
free process gain therefore has to be defined
differently. The normalized process gain k, for
processes with integration is defined as

lim sG(s)
Ko = 5s—0 =K,_,Ku=KvKuTu (8)
Glw)| o, 2n

where G(s) is the plant transfer function and @,

is the smallest frequency such that
arg G(iw,) = —.

With constant set-point and no load disturbance,
processes with integration will not have a
steady-state error under proportional feedback.
With a ramp set-point of velocity v, the
steady-state error is

1

Load disturbance error

The response to step load disturbance is an
important factor when evaluating control syst-
ems. The effect of a load disturbance depends on
where the disturbance acts on the system. It will
be assumed that the disturbance acts on the
process input. With proportional control a step
load disturbance of magnitude /; gives the static
error

I = K,l, - K,l, ©)
1+ KK, 1+K
for stable processes and
{ Ko, K,y K,T/!
A to  ByWubo 0 _ 0 (10)

K, K,0, K. w,k, 210K,

for processes with integration. The quantities
LI(K,lp) and Lo,/(K,l,) are therefore
dimension-free.

When a controller with integral action is used

the static error due to a step load disturbance is
zero. A meaningful measure is then the
maximum error. To obtain a dimension-free
quantity for stable processes, the maximum error
is divided by K,. Thus the peak load error for
stable processes, 4, can be defined as

1

A=—rI
1 Kplo max

(11)
where [, is the amplitude of the step load
disturbance and [, the maximum error due to
the step load disturbance. For processes with
integration the corresponding quantity is

_ - 27 ]
Kulo max Ku Tulo max*

A (12)

Normalized closed-loop rise time

The closed-loop rise time, ¢, is a measure of
the response speed of the closed-loop system. To
obtain a dimension-free parameter it will be
normalized by the apparent deadtime, L, of the
open-loop system. Thus the normalized rise
time, 7, for both classes of processes are defined
as

£,

t=z.

(13)
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4. EMPIRICS

The Ziegler—Nichols closed-loop tuning pro-
cedure has been applied to a large number of
different processes and it has been attempted to
correlate the observed properties of the open-
loop and closed-loop systems to the features
introduced in Section 3. Results for processes
with the transfer functions

—sL

[S]
Gl(s)=m 0.1=L=3 (14)
1
G2(3)=(1+S)n 3=n=20 (15)
1—as
G3(S)=m I=a=2 (16)

will be used to illustrate the features of stable
processes and

e—sL

Gy(s) = P 0<L 17
e—sL
= 0.05=L=0.8 18
)= 7D (18)
1—uas
= 05=a=0.75 19
G(s) G+ 005=« (19)

for unstable processes. These models cover a
wide range of dynamic characteristics found in
typical process control applications.

The PID controller used had the form

1 d
uc=KC<ﬁy,—y +—fedt— Td—yf> (20)

T de
e=y, —y (21)
1
Yi(s) = TTsT/N Y(s) (22)

where u., y and y, are the controller output,
process output and set-point respectively. The
noise filtering constant, N, is usually in the range
of 3 to 20. The value N =10 was used in the
simulations. In conventional PID controllers
parameter f=1. It is often advantageous to
have a smaller value of f to reduce the
overshoot to set point changes. This is called set
point weighting (Astrém and Higglund, 1988).
The value =1 was used in all simulations.
Parameters of the PID controller were deter-
mined by straightforward Ziegler—Nichols
closed-loop tuning.

The results obtained are summarized in Tables
1-3 for stable processes and Tables 4-6 for
processes with integration. The overshoot “os”
and undershoot “us”, of the closed-loop step
response are also given.

5. RELATIONS

Normalized deadtimes, 6; and 6,, and the
normalized process gains, k; and k., have been
introduced to characterize the open-loop dyna-
mics. Peak load errors, A; and A,, and
normalized closed-loop rise time, 7, have been
introduced to characterize the closed-loop
response. Relations between these numbers will
now be established. In doing so an intuitive
interpretation of the numbers will also be
developed.

Normalized deadtime and normalized process
gain
From Tables 1-3, there appears to be a
relation between the normalized deadtime, 6.,
and the normalized process gain, k. For specific
processes it is possible to find the relation exactly
(see Astrom et al., 1988). For example, for first
order processes with deadtime we have
2
01=£=n atagVK1 1. (23)
T VKki—1
Similar expressions can also be derived for the
processes given by equations (14), (15) and (16).
The relations are shown in Fig. 2. It can be
approximated by the expression:

116, + 13
()
1=4%370,—4 (24)

(See Hang et al., 1991.) This formula is
important because it means that the normalized
deadtime, 6,, and the normalized process gain,
Ky, can be used interchangeably to assess
process dynamics.

A relation analogous to equation (23) can be
derived for processes with integration. Let G(s)

16

14}

12

10+

K1 8F 4
6f i
4t 4
2F 1
0 . .
0 0.5 1 1.5
9y
Fic. 2. Relation between 6, and x;. ——-— First order
process with deadtime, ——— process of (14), —s— process of

(15),  ° * process of (16), approximation.
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FiG. 3. Relation between 6, and k,. —~— process of (18),

—.— process of (19).

be the transfer function of a process with
integration. The transfer function sG(s) is of the
class of stable processes and can be characterized
by an apparent deadtime, L and an apparent
time constant, 7,. For a transfer function given
by (2), it can be shown that
2
62=£= /2 atzzinVKz 1. 25)
T, Vii—1

The calculation is the same as in Astrom et al.
(1988). This means that k, can be used as a
measure of the normalized deadtime, 6, (Fig. 3).

Normalized peak load error

Consider the closed-loop system obtained with
the controller G.(s) and the process G,(s).
Assume that the disturbance enters at the plant
input. The transfer function from the load
disturbance to the output is

1 G,(5)G.(9)
G.(5) 1+ G,(5)G.(s)

A PID controller with Ziegler—Nichols tuning
has the transfer function

Ga(s) = (26)

K.(s + a)?
G (s)=———=
<(s) o
and
Lo l_4
2T, T

This choice gives good rejection of load
disturbances as discussed in Hang (1989). With
Ziegler—Nichols tuning the closed-loop system
has a bandwidth ©=7.4/T, (Astrom and
Higglund, 1988). For frequencies less than o,

the transfer function (26) can be approximated
by

1 2as
G.(s) K.(s+a)

Gu(s) =

The response to a step of size [, is

2atly
I())=——e" "
(="
It has a maximum
o= 21, _ 0.741,
max e](C Kc
at
t= 2Td'

The normalized peak load for stable processes is
thus
1 0.74 1.23

M= by = =
YLK, ™ KK, K

(27)

The product k;A; can thus be expected to be
constant. An analogous calculation for processes
with integral action shows that x,A, can also be
expected to be constant. This is supported by the
experimental results given in Tables 1-6.
Consider the range where Ziegler—Nichols
tuning is applicable, ie. 0.15<6,<0.6 or
2.25 < K, <15 for stable processes (Hang et al.,
1991), and 6,>0.3 or K, <2 for processes with
integration. Tables 1-3 show that k;A; ranges
from 1.2 to 1.6 and Tables 4—6 show that k,4, is
close to 1.8. The following empirical relations
thus hold approximately

K1/11 = 1.4 (28)
KA =1.8. 29
It can also be shown that

K,
K}Al = Kz}.z = "‘l‘— lmax' (30)
0

Closed-loop rise time

The experimental results given in Tables 1-6
show that the normalized rise time for
Ziegler—Nichols tuning is approximately con-
stant. In the range where Ziegler—Nichols is
applicable, parameter 7 ranges from 0.8 to 1.2
for stable processes and 0.4 to 0.7 for processes
with integration. The following empirical rela-
tions thus hold

7 =~ 1 for stable processes 31)
7 =(.5 for processes with integration. (32)

This means that the actual rise time with
Ziegler—Nichols tuning is approximately equal to
the apparent deadtime for stable processes and
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TABLE 1. EXPERIMENTAL RESULTS FOR A SYSTEM WITH G(s) = e *F/(s + 1)?

L T, 0s us 0, Ky T Ay KAy
0.1 1.4 68 26 0.14 205 0.81 0.08 1.6
0.2 2.0 61 16 0.18 105 1.04 0.15 1.6
04 2.9 49 6 0.25 5.7 0.95 0.27 1.5
0.6 3.6 41 2 0.32 4.0 0.93 0.36 1.4
1.0 4.8 30 5 0.47 2.7 0.88 0.51 1.4
1.5 6.1 22 12 0.66 2.1 0.82 0.64 1.3
2.0 7.3 16 18 0.84 1.74  0.78 0.73 1.3
2.5 8.5 13 23 1.02 1.55 0.75 0.80 1.2
3.0 9.5 12 26 1.21 144 071 0.86 1.2

TABLE 2. EXPERIMENTAL RESULTS FOR A SYSTEM WITH G(s) = 1/(s + 1)"

n T, 0s us 6, T A KA
3 3.6 52 14 0.22 8.0 1.16 0.19 1.5
4 6.3 38 7 0.32 4.0 1.22 0.35 1.4
6 10.9 23 10 0.49 2.4 1.11 0.54 1.3
8 15.2 17 16 0.64 1.88 1.01 0.65 1.2
10 19.3 13 20 0.77 1.65 0.93 0.73 1.2
15 29.5 9 27 1.05 1.39 0.82 0.85 1.2
20 39.7 6 31 1.29 1.28 0.76 091 1.2

TABLE 3. EXPERIMENTAL RESULTS FOR A SYSTEM WITH G(s)=(1— as)/

s+1)°

o T, 0s us 0, K, T Ay KA
0 3.6 52 15 0.22 8.0 1.16 0.19 1.5
0.1 4.1 48 10 0.25 6.2 1.09 0.24 1.5
0.25 4.6 42 6 0.29 4.6 1.09 0.31 1.4
0.5 5.3 33 3 0.38 3.2 1.16 0.44 1.4
1.0 6.3 18 4 0.57 2.0 0.98 0.67 13
1.5 6.9 4 12 0.78 1.45 0.89 0.90 1.3
2.0 7.4 -7 22 1.0 1.14 0.84 1.08 1.2

TABLE 4. EXPERIMENTAL RESULTS FOR A SYSTEM WITH

G(s)=e*L/s
T, os u 8, kK, T A, Koy
4. 71 12 o 1 069 18 1.8

Notice that changes in L only change the time scale.
Hence, except for 7,, the rest of the values in the
table do not change with L.

half the apparent deadtime for processes with
integration. For stable processes, Ziegler—
Nichols tuning gives a closed-loop response with
the rise time equals to the deadtime. This
explains why the tuning rule does not work well
for processes with normalized deadtimes larger
than one.

6. ZIEGLER-NICHOLS TUNING

The results obtained will now be combined
with previous experience to evaluate Ziegler—
Nichols tuning. First notice that Ziegler—Nichols
tuning is very simple. It is based on a simple
characterization of the process dynamics from
the step response or from the critical point on
the Nyquist curve. The Ziegler—Nichols tuning
rules or modifications of them are also
commonly used in the industry.

When can Ziegler—Nichols tuning be used?

The results obtained show that Ziegler—
Nichols tuning gives good results under certain
conditions which can be characterized by 6; or
k, for stable processes and, 8, or k, for

TABLE 5. EXPERIMENTAL RESULTS FOR A SYSTEM WITH G(s) = e *F/s(s + 1)

L T, 0s us 8,=L Ky T Ay KAy
0.05 1.4 79 44 0.05 4.6 0.31 0.39 1.8
0.1 2.0 78 37 0.1 3.3 0.39 0.54 1.8
02 29 76 30 0.2 2.4 0.42 0.74 1.8
0.4 42 74 21 0.4 1.80 0.63 0.98 1.8
0.6 53 73 16 0.6 1.54 0.68 1.14 1.8
0.8 6.4 72 13 0.8 1.41 0.69 1.25 1.8
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TABLE 6. EXPERIMENTAL RESULTS FOR A SYSTEM WITH G (s) = (1 — as)/s(1 +5)

1
o T, = 27V 0s us 0,=«a K2 =g T Ay Kohy
0.05 1.4 80 44 0.05 4.5 0.26 0.40 1.8
0.1 2.0 79 38 0.1 32 0.34 0.57 1.8
0.25 31 79 29 0.25 2.0 0.45 0.90 1.8
0.5 4.4 79 23 0.50 1.41 0.50 1.28 1.8
0.75 5.4 79 21 0.75 1.15 0.51 1.56 1.8

TABLE 7. CHOICE OF CONTROLLER

Tight control is required

Low
Tight measurement
control High noise and high
is not measurement Low saturation saturation
required noise limit limit
1. (8, >1;k;<1.5) 1 I+B+C PI+B+C PI+B+D
2. (0.6<6,<1;1.5<x,;<2.25) T or PL I+A PI+A PI+A+Cor
PID+A+C
3. (0.15< 6, <0.6;2.25 <k, <15) PI PI PI or PID PID
4, (0,<0.15;x,>15
6,>0.3; x,<2) Por PI PI PI or PID PI or PID
5. (6,<0.3;k,>2) PD+E F PD+E PD+E

A = Feedforward compensation recommended, B = feedforward compensation essential, C = deadtime compensa-
tion recommended, D =deadtime compensation essential, E=setpoint weighting necessary, F=pole placement

tuning.

processes with integration. The conditions are
summarized in Table 7. Five cases are
introduced in the table. Cases 1-4 are applicable
to stable processes while cases 4-5 are applicable
to processes with integration. They are classified
as follows.

Case 1 (Stable processes with 6,>1, k; <
1.5): PID control based on Ziegler—Nichols
tuning is not recommended when normalized
deadtime 0, is larger than 1. This is partly due to
inherent limitations of PID controllers and partly
due to the Ziegler—Nichols tuning procedure.
Modified tuning rules to deal with this case were
proposed by Cohen and Coon (1953), Hang et
al. (1991) and Higglund (1991). By choosing
other tuning methods, it is possible to tune PID
controllers to work satisfactorily even for
6,=10; see Astrom (1991). Also notice that
feedforward control can be very beneficial since
tight feedback cannot be obtained for processes
with large deadtimes.

Case 2 (Stable processes with 0.6<6,<1,
1.5 < k; <2.25). Although the normalized dead-
time is smaller than in case 1, Ziegler—Nichols
tuning still gives poor results. This is easy to
understand if we recall that the tuning procedure
tries to make closed-loop rise time equals to the
apparent deadtime. Other tuning methods and
other controller structures like Smith predictors,
and pole-placement could be considered

(Astrom and Higglund, 1988). Feedforward can
also be beneficial.

Case 3 Stable processes with 0.15 <8, <0.6,
2.25<k,;<15). This is the prime application
area for PID controllers with Ziegler—Nichols
tuning. Derivative action often improves perfor-
mance significantly.

Case 4 (Stable processes with = 6;<0.15,
Kk;>15; processes with integration having
8,>0.3, Kk, <2). Processes with integration may
be viewed as the limit of stable processes when
the normalized deadtime, 6, goes to zero. A
process with integration may be regarded as an
approximation of a stable process with small
apparent deadtime but a large apparent time
constant. The gross behaviour of processes with
integration can be characterized by 6,, the
normalized deadtime obtained when the in-
tegrator or the large time constant is removed.
The behaviour of such processes can also be
characterized by the normalized process gain k,.

Tables 4, 5 and 6 indicate that Ziegler—Nichols
tuning gives systems with good damping
provided that 8, is large or equivalently k, small
i.e. the dynamics with the integrator removed is
deadtime dominant. This is not surprising since
the Ziegler—Nichols rules were derived for
processes of this type. Notice, however, that the
overshoot is in general too large. Set point
weighting (Astréom and Hagglund, 1988; Hang et
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al., 1991) is thus essential for processes of this
category.

Controllers with high gains can be used for
this case. For systems with moderate require-
ments, PI or even P control may be sufficient.
With high gain, measurement noise becomes an
important issue since it can result in saturation of
the control signal. In some cases performance
can be increased significantly by using derivative
action or even more complicated control laws.
Temperature control where the dynamics is
dominated by one large time constant is a typical
case.

Case 5 (Processes with integration having
0,<0.3, k,>2). This case corresponds to an
integrator with an additional dynamics that is lag
dominated. PD control can be used for this type
of processes. PID control with Ziegler—Nichols
tuning does not give good results; both damping
and overshoot are unsatisfactory. Design based
on direct pole placement is recommended
(Astrém and Higglund, 1988). Derivative action
is often essential for good performance.

Implications for intelligent controllers

There are several simple autotuners that are
based on the Ziegler—Nichols tuning procedure.
A drawback with them is that they are unable to
reason about the achievable performance. The
result of this paper indicates that performance
can be predicted from knowledge of parameters
0, or k; for stable processes and 6, or k, for
processes with integration. Furthermore, it is
easy to select the controller form: P, PI, PD or
PID based on Table 7 which also indicates if a
more sophisticated control law would be useful.

An autotuner based on the transient response
method can give 6, from its measurements of T
and L. For the correlation-based autotuner
(Hang and Sin, 1988), 6, and k; or 6, and k, are
readily computed from the impulse response
generated by the correlator. For the relay-based
autotuner (Astrom and Higglund, 1984) one
additional measurement has to be made to
determine k; or k,, the static gain for stable
processes or the integrator gain for processes
with integration. These gains can be determined
in closed-loop by introducing a small setpoint
change. For stable processes, the static gain and
the sum of deadtime and time constants can be
computed using the method of moments
(Astrom and Higglund, 1988). The normalized
deadtime, 6, can then be computed. A check
on the computed values of 6; and k; can be
made using equation (24).

Hang er al. (1991) have used 6, and k, to
improve on the Ziegler—Nichols tuning formula
for stable processes. The following modifica-

tions, expressed as a simple function of 6, and
ki, have been recommended to eliminate
manual fine tuning. For PID control, when
6, <0.6 or x;>2.25, the main drawback of the
Ziegler—Nichols formula is excessive overshoot
and hence setpoint weighting is recommended.
When 6,>0.6 or kx,<2.25 the integral time
computed by the Ziegler—Nichols formula is too
large and should be reduced. For PI control,
both the controller gain and the integral time
have to be modified. The refined tuning formula
is given in Appendix I. These modifications are
essential for obtaining high quality PID or PI
control without manual fine tuning. Tuning
formulas for processes with integration are given
in Ho (1990).

On-line assessment of control performance

The results of this paper can also be used to
evaluate performance of feedback loops under
closed-loop operation. Consider the relations
(31) and (32) for the normalized rise time. The
rise time can be measured when the setpoint is
changed. If the controller is properly tuned then
the closed-loop rise time should be equal to the
apparent deadtime for stable processes and half
of the apparent deadtime for processes with
integration. If the actual rise time is significantly
different, for instance 50% larger, it indicates
that the loop is poorly tuned. This is particularly
useful for assessing whether the control is too
sluggish. Similarly the relations (28) and (29) can
be used by introducing a perturbation at the
controller output. A maximum error that is
significantly larger than that predicted by
equation (28) and equation (29) indicates that
the loop is poorly tuned.

7. CONCLUSIONS

In this paper it has been attempted to analyze
simple feedback loops with PID controllers that
are tuned using the Ziegler—Nichols closed-loop
method. It has been shown that for processes
with essentially monotone step responses there
exist quantities that are useful for assessing the
achievable performance and selecting suitable
controllers. These quantities are the normalized
deadtimes, 6, and 6,, the normalized process
gains, x; and k,, the peak load errors, A; and
A,, and the normalized closed-loop rise time, .
Simple methods determine these parameters
have also been suggested.

It has been shown that 6, is related to x, and
6, to k, and that k; and 6; can be used
interchangeably to assess the control problem.
There are also relations like T =1 and x4, = 1.4
for stable processes, and 7=~0.5 and k,A,~1.8
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for processes with integration. These relations
may be used to assess the closed-loop response
time and the load rejection properties. The
results indicate that it would be useful to
determine at least 8, or k; for stable processes
and 8, or k, for processes with integration when
tuning controllers because these parameters can
be used to predict the achievable performance.
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APPENDIX: REFINED ZIEGLER-NICHOLS TUNING
FORMULA

For a PID controller of the form

1 d
uczxp(ﬁy,—wffedz—ay{) (A1)
e=y,—y (A2)
1
Y;(s) =mY(S) (A3)

where u,, y, y, are the controller output, process output and
set-point respectively, the refined Ziegler-Nichols tuning
formula for stable processes is as follows.

PID: Case 1 (2.25<k,<15;0.16 <8, <0.57)

B= ;—“2 J: ::1 for 10% set-point response overshoot (A4)
1
36 .
B= 7% 5k, for 20% set-point response overshoot. (AS)
1

Case 2 (1.5 <k;<2.25; 0.57<6,<0.96). 20% set-point
response overshoot

T,=0.5uT, (A6)
n= %Kl (A7)
B=71GK +1) ' (A8)

where p is defined as the ratio of the modified integral time
to the Ziegler—Nichols integral time.
PI: (1.2<k;<15;0.16 <8, <1.4)

K. 5(12+kK, >

K, 6 (15 + 14k, (A9)
Ti

=3+ 1), (A10)






