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Abstract

Various physical limitations in electromagnetic theory and antenna theory

have received considerable attention recently. However, there are no previous

limitations on the scattering of higher order electromagnetic vector spherical

waves, despite the widespread use of spherical wave decompositions. In the

present paper, bandwidth limitations on the scattering matrix are derived

for a wide class of heterogeneous objects, in terms of their electrical size,

shape and static material properties. In particular, it is seen that the order

of the dominating term in the Rayleigh limit increases with the order of the

spherical wave. Furthermore, it is shown how the limitations place bounds on

the antenna scattering matrix, thus introducing a new approach to physical

limitations on antennas. Comparisons to other types of antenna limitations

are given, and numerical simulations for two folded spherical helix antennas

and a directive Yagi-Uda antenna are included to illuminate and validate the

theory. The results in this paper are derived using a general approach to derive

limitations for passive systems: First, the low-frequency asymptotic expansion

of the scattering matrix of a general scatterer is derived. This gives a set of

sum rules, from which the limitations follow.

1 Introduction

Scattering of electromagnetic waves is essential to a wide range of applications, from
classical optics to wireless communication and radar. In many cases it is bene�cial
to decompose the �elds in electromagnetic vector spherical waves [28] (also referred
to as partial waves, TM- and TE-modes or electric and magnetic multipoles). For
instance, spherical waves are used for analysing scattering by spherical particles (Mie
theory) [6], in Waterman's T -matrix method [27], in antenna measurements [19], and
recently also for modelling wireless communication channels [12].

In the last few years, there has been an interest in physical limitations for elec-
tromagnetic scattering; several interesting attempts have been made to quantify the
intuitively obvious statement that objects which are small compared to the wave-
length can only provide limited interaction with electromagnetic waves [35]. Speci�c
issues addressed are e.g. radar absorbers [32], high-impedance surfaces [8, 18] and
metamaterials [13]. Various antenna limitations have received considerable atten-
tion recently (a review can be found in the book by Volakis et al. [39]). Despite the
widespread use of spherical wave decompositions, however, there are no previous
limitations on higher order spherical wave scattering.

The main results of the present paper are improved limitations for scattering
of higher order electromagnetic vector spherical waves (quadrupoles, octopoles and
so forth), originally derived for the dipole case in [3]. The limitations imply that
the diagonal elements of the scattering matrix, which relates the coe�cients of the
incoming and outgoing waves, cannot be arbitrarily small over a whole wavelength
interval; the bound depends on the fractional bandwidth as well as the size, shape
and static material properties of the scatterer.

The results of this paper pave the way for a new approach to physical limitations
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on antennas. In form, the sum rules and limitations derived here are similar to those
from optimal broadband matching of the spherical waves. Matching of ideal dipoles,
the lowest order spherical waves, was considered by Hujanen et al. [21], while higher
order waves was treated by Villalobos et al. [38], Nordebo et al. [29], as well as Kogan
(see [24] and references therein). One advantage that follows from the approach
adopted in the present paper is that the shape and static material properties of the
antenna are highlighted. Many previous publications on antenna limitations were
concerned with the quality factors (Q-factors) of the spherical waves, but it is in
general not straightforward to relate the Q-factor to the operating bandwidth of the
antenna [16, 36]. Recently, a di�erent method, based on sum rules for the extinction
cross section, has been proposed by Gustafsson et al. [14, 15, 34]. Unfortunately,
these results cannot handle antennas placed in a dielectric background or spherical
wave decompositions. Spherical waves are a useful tool e.g. for analysing multiple-
input multiple-output (MIMO) antenna systems [12, 17, 26].

The derivations in this paper follow a general approach to achieve sum rules and
physical limitations for passive systems presented in [4], cf. also [3, 29]. It relies on
the well-known connection between passive systems and Herglotz (or positive real)
functions [43, 44] in conjunction with a set of integral identities for that class of
functions. To use the approach, an intermediate result needs to be derived in the
paper: the low-frequency asymptotic expansion of the scattering matrix of a general
scatterer.

The outline of the paper is the following: Section 2 introduces the scattering and
transition matrices as well as the electromagnetic vector spherical waves. Their low-
frequency asymptotic expansions and static counterparts are also covered. The sum
rules and limitations for the scattering matrix are derived in Section 3. Implications
for the antenna scattering matrix are given in Section 4, and the results are compared
to the broadband matching limitations. Simulation results for two folded spherical
helix antennas and a directive Yagi-Uda antenna are also presented. Section 5
concludes the paper.

2 The scattering and transition matrices

This section presents the scattering problem considered in this paper. It is described
in terms of vector spherical waves and the scattering and transition matrices, which
are introduced in Section 2.1. Time-harmonic �elds and sources are considered
throughout this paper, and the time convention e−iωt, where i is the imaginary unit
and ω is the angular frequency, is used. The low-frequency and static cases, which
are essential to the further analysis in later sections, are treated in Section 2.2.

2.1 Scattering geometry

Consider an uncharged scatterer in free space. Let the scatterer be contained in a
hypothetical sphere of radius a, centered at the origin, as in Figure 1. The electric
and magnetic �elds can be written as sums of incoming (u(2)) and outgoing (u(1))
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Figure 1: The scatterer is placed in free space and circumscribed by a hypothetical
sphere of radius a, centered at the origin. The electric and magnetic �elds are written
as sums of incoming (u

(2)
ν ) and outgoing (u

(1)
ν ) electromagnetic vector spherical

waves, with index ν, outside the sphere. The scattering matrix S, with elements
Sν,ν′ , relates the coe�cients of the incoming and outgoing waves.

vector spherical waves outside the circumscribing sphere [28]. The scattering matrix
S relates the coe�cients of the incoming and outgoing waves, and is thus a measure
on the incoming power that is rejected by the scatterer.

The spherical wave decomposition of the electric and magnetic �elds outside the
circumscribing sphere is [28]

E(r, k) = k
√

2η0

∑
ν

b(1)
ν u

(1)
ν (kr) + b(2)

ν u
(2)
ν (kr). (2.1)

Here the free space parameters are wavenumber k = ω/c, speed of light c and
impedance η0. The spatial coordinate is denoted r, with r = |r| and r̂ = r/r.
The vector spherical waves are de�ned as in [7], see Appendix A. The multi-index
ν = 2(l2 + l − 1 + (−1)sm) + τ is introduced in place of the indices {τ, s,m, l} to
simplify the notation. It is de�ned so that τ = 1 (odd ν) corresponds to a magnetic
2l-pole (TEl-mode), while τ = 2 (even ν) identi�es an electric 2l-pole (TMl-mode).
Hence, l = 1 denotes dipoles, l = 2 quadrupoles, and so on. The corresponding
magnetic �eld is H(r, k) = 1

ikη0
∇ × E(r, k). With this normalization, the time-

average of the power passing out through a sphere of radius r > a is

〈P (t)〉 =

∫
Ωr̂

r̂ · Re

(
1

2
E(r, k)×H∗(r, k)

)
r2 dΩr̂ =

∑
ν

|b(1)
ν |2 − |b(2)

ν |2, (2.2)

where Ωr̂ = {(θ, φ) : 0 ≤ θ < π, 0 ≤ φ < 2π} is the unit sphere and dΩr̂ =
sin θ dθ dφ.

Alternatively, the �elds can be decomposed into outgoing and regular waves vν :

E(r, k) = k
√

2η0

∑
ν

d(1)
ν u

(1)
ν (kr) + d(2)

ν vν(kr). (2.3)

An incident �eld is regular at the origin, and so constitutes the sum over the regular
waves, while the scattered �eld makes up the sum over the outgoing waves in (2.3).

The in�nite dimensional scattering matrix S relates the coe�cients in (2.1):

b
(1)
ν =

∑
ν′ Sν,ν′b

(2)
ν′ . The counterpart for (2.3) is the transition matrix T: d

(1)
ν =
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∑
ν′ Tν,ν′d

(2)
ν′ . The scattering and transition matrices are related as S = 2T + I,

where I is the in�nite dimensional identity matrix. Note that it has now been
implicitly assumed that the constitutive relations of the scatterer are in convolution
form in the time domain [3]. The convolution form assumption is closely related to
the assumptions of linearity and time-translational invariance [44], and is commonly
used.

The main results of this paper are limitations for the diagonal elements Sν,ν
of the scattering matrix. A general approach to derive sum rules and physical
limitations for passive systems presented in [4] is used, cf. also [3, 29]. In order to
use it, expressions for the low-frequency asymptotic expansions of the scattering and
transition matrix elements are required, and this is the topic of Section 2.2.

2.2 Low-frequency asymptotics and statics

The low-frequency and static transition matrices have been considered by a num-
ber of authors. Peterson [31] introduced the transition matrices of the static �eld
problem, and noted that it is the low-frequency limit of the dynamic scattering prob-
lem. Waterman showed how the electric and magnetic components decouple in the
static limit [42], and Olsson treated the elastodynamic case similarly [30]. Recently,
Waterman has derived expressions for the low-frequency electromagnetic transition
matrix in two dimensions [40] and the acoustic counterpart in three dimensions [41].
A review of results on low-frequency approximations until 2006 can be found in the
book by Martin [25]. However, none of these previous publications provides the
necessary expressions for the scattering problem considered here.

To be able to derive the required low-frequency asymptotic expansions of the
scattering and transition matrix elements, consider a static electric �eld E. The
electric �eld is given by the electrostatic potential, E = −∇φ, and the potential can
be expanded in scalar spherical harmonics Ysml (de�ned in (A.3)) [28, 42]:

φ(r) =
∞∑
l=0

l∑
m=0

2∑
s=1

f
(1)
smlr

−l−1Ysml(r̂)− f (2)
smlr

lYsml(r̂). (2.4)

In this case, the electrostatic transition matrix T[2] relates the coe�cients: f
(1)
sml =∑

s′m′l′ T
[2]
sml,s′m′l′f

(2)
s′m′l′ , cf. [31, 42]. The magnetostatic transition matrix T[1] is de-

�ned analogously; since ∇×H = 0 outside the circumscribing sphere, a magneto-
static scalar potential φMS can be de�ned there such that H = −∇φMS. Note that
an applied external potential is regular at the origin and constitutes the sum over
the terms f

(2)
smlr

lYsml(r̂), while the scattered potential decays at in�nity and thus is

given by the terms f
(1)
smlr

−l−1Ysml(r̂).
To obtain expressions for the low-frequency expansions of the electrodynamic

transition matrix, consider the asymptotic expansions of the spherical waves (which
follow from the asymptotic expansions for the spherical Bessel and Hankel functions
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[2] appearing in their de�nitions, and some algebra, see Appendix A.1):

v2sml =
2l(l + 1)!

(2l + 1)!

∇(rlYsml(r̂))√
l(l + 1)

kl−1 +O(kl+1)

u
(1)
2sml =

i(2l)!

2l(l − 1)!

∇(r−l−1Ysml(r̂))√
l(l + 1)

k−l−2 +O(k−l),

(2.5)

while v1sml = O(kl) and u
(1)
1sml = O(k−l−1), as k → 0. For the electric case (τ = 2),

combining (2.5) with (2.3) and (2.4) readily yields

Tν,ν′=
i2l+l

′
(l − 1)!(l′ + 1)!

√
l(l + 1)

(2l)!(2l′ + 1)!
√
l′(l′ + 1)

δτ,τ ′T
[τ ]
sml,s′m′l′k

l+l′+1 +O(kl+l
′+3) as k → 0.

(2.6)
Here δτ,τ ′ is the Kronecker delta. The same equation holds also for the magnetic
case (τ = 1), which is seen by also making use of H = 1

ikη0
∇×E and (A.1). Recall

that the multi-index ν represents the indices {τ, s,m, l}.
Equation (2.6), which is needed in the following section in order to derive the lim-

itations for the scattering matrix, cannot be found in any previous publication. The
equation explicitly shows how the electrostatic and magnetostatic transition matri-
ces are the low-frequency limits of the electrodynamic counterpart, cf. [42]. Con-
sequently, the static transition matrices are crucial to the limitations. For dipoles
(l = l′ = 1), the elements of T[2] and T[1] for an uncharged body are (apart from
normalization) equal to the elements of the well-studied static electric and magnetic
polarizability dyadics, de�ned in [23]. The elements of T[2] and T[1] for higher or-
der spherical waves can be seen as generalizations of the polarizability dyadics in
spherical coordinates, see Appendix B for details.

3 Sum rules and limitations for the scattering ma-

trix

The limitations on the scattering matrix, which are the main results of the paper,
are derived in this section. First, in Section 3.1, it is shown that the low-frequency
expansion (2.6) implies that a set of sum rules, or integral identities, apply. The
sum rules, in turn, are used to obtain the limitations, or inequalities. Similarly
as in the case of optimal broadband matching [29, 38], the limitations presented
in this paper make up an optimization problem. Its solution is discussed brie�y.
After that, physical interpretations are given in Section 3.2. Further discussion on
interpretations for antennas is given later in Section 4.

3.1 Results

As mentioned in the introduction, the derivations in the present paper rely on a
general approach presented in [4] for deriving sum rules and limitations on passive
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systems. The approach relies on the connection between passive systems and Her-
glotz (or positive real) functions [43, 44], and it can be used here since ei2kaSν,ν′(k)
is a passive re�ection coe�cient corresponding to a real-valued and causal convolu-
tion kernel, under the assumption that the material of the scatterer is passive [3].
The limitations for scattering of dipoles were derived previously in [3], whereas [29]
derives matching limitations by relating the matching problem to scattering of spher-
ical waves by a high-contrast sphere (with in�nite static relative permeability and
permittivity). Both these references contain more mathematical background, and
the interested reader is referred there.

The following low-frequency expansion of the diagonal elements of the scattering
matrix is required:

−i log(ei2kaSν,ν) = 2ka+ 2k2l+1clT
[τ ]
sml,sml +O(k2l+3), as k → 0, (3.1)

where cl = [22l(l + 1)!(l − 1)!]/[(2l + 1)!(2l)!] is a constant. The equation (3.1) is a
straightforward consequence of the low-frequency expansion (2.6) for the transition
matrix T, the relation S = 2T + I and the asymptotic expansion log(1 + z) =
z + O(z2) as z → 0. The o�-diagonal elements of S tend to zero as k → 0, and
so the logarithms of them are not well-behaved in the low-frequency limit. For this
reason, only the diagonal elements are considered from now on.

Following (3.1), l + 1 sum rules can be derived [3]:
1
π

∫∞
0

1
k2

ln 1
|Sν,ν(k)| dk = a− βν,ν

2
+
∑

n Im 1
kn

1
π

∫∞
0

1
k2p

ln 1
|Sν,ν(k)| dk = 1

2p−1

∑
n Im 1

k2p−1
n

, for p = 2, 3, . . . , l
1
π

∫∞
0

1
k2l+2 ln 1

|Sν,ν(k)| dk = clT
[τ ]
sml,sml + 1

2l+1

∑
n Im 1

k2l+1
n

,

(3.2)

where kn are the zeros of Sν,ν(k) in the open upper half of the complex plane (Im k >
0). The parameter βν,ν ≥ 0 is expected to be zero if the circumscribing sphere
is chosen as small as possible [29]. Note the close likeness to Fano's matching
equations [11]. In [3], the asymptotic expansion (3.1) was only derived to order k3,
and hence only 2 sum rules were available in (3.2). Ref. [29] used the expansion
(3.1) to order k2l+1, but only for the simple case of an isotropic sphere.

To derive limitations, consider a �nite wavenumber interval [k0(1−B/2), k0(1 +
B/2)], where k0 is the center wavenumber and B the relative bandwidth. Denote
S0,ν = max[k0(1−B/2),k0(1+B/2)] |Sν,ν(k)|. The sum rules then give l + 1 limitations:

G1(B) lnS−1
0,ν

π
≤ k0a+

∑
n Im k0

kn
Gp(B) lnS−1

0,ν

π
≤ 1

2p−1

∑
n Im

(
k0
kn

)2p−1

, for p = 2, 3, . . . , l

Gl+1(B) lnS−1
0,ν

π
≤ k2l+1

0 clT
[τ ]
sml,sml + 1

2l+1

∑
n Im

(
k0
kn

)2l+1

,

(3.3)

where the bandwidth factor Gp(B) for p = 1, 2, . . . is de�ned by

Gp(B) =

∫ 1+B/2

1−B/2

1

x2p
dx =

1

2p− 1

(1 +B/2)2p−1 − (1−B/2)2p−1

(1−B2/4)2p−1
.
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Note thatGp(B) ≈ B in the narrowband approximation where B � 1. Furthermore,
seeing that B ≤ Gp(B) for all 0 ≤ B ≤ 2, the inequalities in (3.3) are valid with
Gp(B) replaced by B.

Although they place bounds on the scattering matrix rather than the mismatch,
the limitations (3.3) are in form similar to the limitations on optimal wideband
matching presented in [29, 38]. Note, however, that the last right hand side di�ers:

It includes an element of a static transition matrix T
[τ ]
sml,sml, which describe the shape

and static material properties of the scatterer. The limitations (3.3) coincide with
the corresponding limitations in [29, 38] in the simple case when the scatterer is

a high-contrast sphere, since then T
[τ ]
sml,sml = a2l+1 [37]. This fact was also noted

in [29].
The system of inequalities su�er from a drawback: they incorporate the unknown

zeros kn of Sν,ν(k). However, limitations not containing the zeros can be derived by
solving the constrained optimization problem given by (3.3), so that

B lnS−1
0,ν

π
≤ fν(T

[τ ]
sml,sml; k0a), (3.4)

where fν(T
[τ ]
sml,sml; k0a) is the solution to (3.3). For the dipole case (l = 1), it is suf-

�cient to consider a single complex zero kn, which gives the closed form solution [3]:

fν(T
[τ ]
sm1,sm1; k0a) =

k0a− 3
√
ι+ ξ + 3

√
ι− ξ for k0a ≤

√
a3

c1T
[τ ]
sm1,sm1

k0a otherwise,

where ξ = 3(k0a − k3
0c1T

[τ ]
sm1,sm1)/2 and ι =

√
1 + ξ2. For higher order waves, it

has been conjectured that l complex zeros are su�cient to obtain an optimal solu-
tion [38]. The computationally expensive numerical problem is solved by Villalobos
et al. in [38]. Alternatively, Kogan has shown that the solution can be found by
solving a polynomial equation of order 2l + 1, see [24]. However, upper bounds on

fν(T
[τ ]
sml,sml; k0a) can be derived by considering a single complex zero also for higher

order waves, which gives a problem that is straightforward to solve numerically [29].
For this reason, this procedure is chosen in this paper, and the results can be found
in Figure 2. The dominating term for small k0a (Rayleigh scattering) is [29]:

fν(T
[τ ]
sml,sml; k0a) =

(
gl +

clT
[τ ]
sml,sml

a2l+1

)
k2l+1

0 a2l+1 +O(k2l+3
0 a2l+3), (3.5)

as k0a→ 0, where the term gl > 0 is given by

gl = − min
1≤m≤2l−1

1

2l + 1

sin
(
mπ 2l+1

2l

)
sin2l+1

(
mπ 1

2l

) .
Equation (3.5) shows that the order of the dominating term in the Rayleigh regime
increases with the order of the spherical wave; something that is also evident from
the tangentials of the curves in Figure 2.
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(a) (b)

Figure 2: Upper bounds, B lnS−1
0,ν/π ≤ fν(T

[τ ]
sml,sml; k0a), for l = 1 . . . 5. The bounds

are for (a): T
[τ ]
sml,sml = a2l+1 (high-contrast sphere) and (b): T

[τ ]
sml,sml = 0.

Figure 3: Interpretation of the limitations (3.4). Bounds for a given wave index
ν and center wavenumber k0 are shown for three di�erent values of S0,ν (and thus
three di�erent values of B). The limitations state that |Sν,ν(k)| have to intersect
the boxes. The �gure also shows one attainable and one unattainable element Sν,ν .

3.2 Physical interpretations

The limitations (3.4) imply that the moduli of the scattering matrix elements Sν,ν
cannot be arbitrarily small over a whole wavelength interval, see Figure 3. How small
they can be is determined by the relative bandwidth B, as well as the electrical size
of the scatterer (center wavenumber k0 times radius a of the circumscribing sphere)
and its shape and static material properties (described by the static transition matrix
elements T [τ ]). Alternatively, any chosen value of S0,ν ∈ [0, 1] determines how large
the fractional bandwidth B may be.

The absorption e�ciency

ην(k) = 1−
∑
ν′

|Sν′,ν(k)|2 ≤ 1− |Sν,ν(k)|2 (3.6)

is the relative power of the incoming spherical wave with index ν that is absorbed
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by the scatterer [3]. Recall that the o�-diagonal terms Sν′,ν(k) tend to zero as
k → 0. The limitations (3.3) imply that ην(k) cannot be arbitrarily high over a
whole wavelength interval:

min
[k0(1−B/2),k0(1+B/2)]

ην(k) ≤ 1− e−2πfν(T
[τ ]
sml,sml;k0a)/B. (3.7)

Many applications concerned with electromagnetic scattering can make use of the
limitations (3.4) and (3.7). An example of the limitations (3.7) for the dipole case
applied to nanoshells can be found in Section 5.1 in [3].

The static transition matrix elements T
[τ ]
sml,sml are well understood for dipoles

(l = 1), see [3] and references therein. The higher order static transition matrix
elements are not as well-studied; there are, however, a few previous publications,
see [25, 31, 40, 42]. A couple of general remarks can also be made: Firstly, note
that the magnetostatic transition matrix T[1] vanishes when the scatterer is non-
magnetic. This gives the upper bounds fν(0; k0a) in Figure 2b. Secondly, variational

principles put forth by Sjöberg in [33] show that T
[τ ]
sm1,sm1 (l = 1) is bounded from

above by its value for the high-contrast sphere, i.e. T
[τ ]
sm1,sm1 ≤ a3. If the same holds

also for higher order modes, namely that T
[τ ]
sml,sml ≤ a2l+1, it means that the upper

bounds fν(a
2l+1; k0a) in Figure 2a are absolute upper bounds. Also recall that for

a high contrast sphere, the scattering matrix limitations (3.3) are identical to the
broadband matching limitations in [29, 38].

4 Interpretations for antennas

Since the limitations (3.4) can be interpreted as bounds on the absorption of power
from each spherical wave, they are well suited to study antennas. More precisely,
the limitations have implications for the antenna scattering matrix, de�ned in [19].
This is explained in Section 4.1. Furthermore, it was also mentioned above that
the limitations are similar in form to the broadband matching limitations presented
in [29, 38]. The interpretations, however, are di�erent, as discussed in Section 4.2.
Comparisons to Q-factor and gain-bandwidth limitations are given in Section 4.3.
Finally, simulation results for two folded spherical helix antennas (one linearly po-
larized and the other elliptically polarized) and a directive Yagi-Uda antenna are
presented in Section 4.4.

4.1 Limitations on the antenna scattering matrix

Consider an antenna as in Figure 4, connected to a local port through a match-
ing network. The antenna scattering matrix SA completely describes the antenna
properties: (

Γ RA

TA S

)
︸ ︷︷ ︸

SA

(
w(2)

b(2)

)
=

(
w(1)

b(1)

)
, (4.1)
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Figure 4: The antenna scattering matrix SA in (4.1) completely describes the
antenna properties.

Here b(1) = (b
(1)
1 b

(1)
2 . . .)T and w(1) are the coe�cients of the outgoing waves and

received signal, respectively, whereas b(2) = (b
(2)
1 b

(2)
2 . . .)T and w(2) are the coe�-

cients of the incoming waves and transmitted signal. The signals are normalized so
that their power content is |w(2)|2 and |w(1)|2, respectively. Recall that the spherical
waves are normalized similarly, see (2.2). Apart from the scattering matrix S, which
describes the scattering properties of the antenna, the antenna scattering matrix
SA also incorporates the antenna re�ection coe�cient Γ as well as the transmitting
coe�cients TA

ν in TA and the receiving coe�cients RA
ν in RA [19]. If the alternative

decomposition in (2.3) is used instead of (2.1), equation (4.1) becomes [19]:(
Γ 1

2
RA

TA 1
2
(S− I)

)(
w(2)

d(2)

)
=

(
w(1)

d(1)

)
. (4.2)

This is bene�cial for use in numerical simulations, see Section 4.4. The antenna
scattering matrix can also be generalized for multi-port antennas [17].

The limitations (3.4) place bounds on the antenna scattering matrix. The receiv-
ing coe�cients RA

ν are evidently bounded by the absorption e�ciency ην , de�ned in
(3.6):

|RA
ν | ≤ ην ≤ 1− |Sν,ν |2. (4.3)

The �rst inequality is an equality for lossless antennas. Consequently, from (3.7) it
follows that

min
[k0(1−B/2),k0(1+B/2)]

|RA
ν (k)| ≤ 1− e−2πfν(T

[τ ]
sml,sml;k0a)/B. (4.4)

For reciprocal antennas, the transmitting and receiving coe�cients are related as
RA
ν = (−1)sTA

ν [17] (recall the indices {τ, s,m, l}, see Appendix A), and therefore
(4.4) applies also with RA

ν replaced by TA
ν in this case.

Consequently, there is an upper bound on the maximum achievable bandwidth
of an antenna when it is receiving (or transmitting) a certain spherical wave. As
discussed in Section 3.2, the bound depends on the electrical size of the antenna
as well as its shape and static material properties. Furthermore, due to (3.5) it is
clear that it is increasingly harder to take advantage of the higher order spherical
waves for an electrically small antenna. This is also known previously due to the
high reactive energies associated with higher order spherical waves [10].
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(a) (b)

Figure 5: Comparison of the broadband matching limitations presented in [29, 38]
and the scattering limitations presented in this paper. (a): The matching limitations
place a lower bound on the antenna re�ection coe�cient Γν when the antenna is
designed to transmit a certain spherical wave with index ν. (b): The scattering
limitations place lower bounds on the scattering coe�cients Sν,ν and upper bounds
on the antenna receiving and transmitting coe�cients RA

ν and TA
ν due to (4.3).

4.2 Comparison to broadband matching limitations

The matching limitations in [29, 38] also place upper bounds on the maximum
achievable bandwidth of an antenna receiving or transmitting a certain spherical
wave. However, they are not directly comparable to the limitations presented in
this paper: The matching limitations place a lower bound on the antenna re�ection
coe�cient Γν when the antenna is transmitting a certain spherical wave with index
ν, see Figure 5a. Recall that the limitations (3.4) in this paper instead place lower
bounds on the scattering coe�cients Sν,ν and upper bounds on the antenna receiving
and transmitting coe�cients RA

ν and TA
ν due to (4.3), see Figure 5b.

One advantage thanks to the approach chosen in the present paper is that the de-
rived limitations highlight the shape and static material properties of the antenna,
and not just its electrical size as in [29, 38]. This can lead to sharper bounds in
some cases. If, for instance, the antenna is non-magnetic, the bounds for the mag-
netic spherical waves (TE-modes) are sharpened since the magnetostatic transition
matrix T[1] vanishes. Recall, though, that the limitations (3.4) coincide with the
corresponding limitations in [29, 38] for the simple case of a high contrast sphere.
Another advantage of the scattering approach to antenna limitations is that it is
directly applicable to other areas concerned with electromagnetic scattering, as dis-
cussed in Section 3.2 and [3].

4.3 Comparisons to Q-factor and gain-bandwidth limitations

It is hard to make a direct comparison between the scattering (or matching) limita-
tions for spherical waves with other bounds on antennas, but is still worthwhile to
make a consistency check. The various approaches reach di�erent conclusions, and
should therefore be considered as complementary rather than in competition; there
is not one approach that reaches the best result for every case.

Lower bounds on the Q-factor were �rst presented by Chu in [9], and closed
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form expressions for higher order waves were derived by Collin and Rothschild, see
equation (10) in [10]. Even though there is no general relationship between Q-factor
and bandwidth, for many antennas it can be argued that B lnΓ−1

0 /π ≤ 1/Q, where
Γ0 = max[k0(1−B/2),k0(1+B/2)] |Γ (k)| [16]. Hence the upper bounds on 1/Q in [10]
are on equal footing to the upper bounds on fν in (3.4) and Figure 2. A closer
comparison reveals that the numerical values are comparable for a high-contrast
sphere, and the Q-bounds also show the same asymptotic behaviour for small k0a.
For l = 1, the results are almost identical, whereas the Q-bounds are better for
l > 1; this is probably due to the simpli�ed optimization procedure adopted in this
paper, see Section 3.1. However, the results in [10] do not take shape and material
properties into account, as do (3.4).

Bounds on gain and bandwidth were derived by Gustafsson et al. using sum rules
for the extinction cross section, see equation (3.4) in [14]. Inserting the directivity
of a spherical wave (D = 1.5 for l = 1, D = 2.5 for l = 2, and so fort) yields an
upper bound on B(1− Γ 2

0 ), which can be compared to (3.4). The numerical values
are comparable for electric dipoles (τ = 2, l = 1) and non-magnetic materials; the
bounds in (3.4) are slightly sharper for narrow bandwidths, and the other way around
for wider bandwidths. The results in [14] do take shape and material properties
into account (in terms of the static polarizability dyadics), and provide sharper
bounds for non-spherical circumscribing geometries. However, the results presented
in this paper provide sharper bounds for the case of electric dipoles with magnetic
materials, magnetic dipoles without magnetic materials, as well as for higher order
waves (l > 1).

4.4 Numerical examples

To illustrate the limitations (3.4) and (4.4), two folded spherical helix antenna de-
signs proposed by Best [5] have been considered. These designs were chosen since
their quality factors are close to the Chu-bound [5]. Both antennas �t into a sphere
of radius a = 4.18 cm. The �rst design is linearly polarized, and it turns out that the
spherical wave with multi-index ν = 4 (i.e. {τ, s,m, l} = {2, 2, 0, 1}) is dominant.
This corresponds to an electric dipole (TM1-mode) in the z−direction. The antenna
geometry, scattering matrix element S4,4, re�ection coe�cient Γ , and transmitting
and receiving coe�cients TA

4 and RA
4 are depicted in Figure 6 along with the limita-

tions. The second design is elliptically polarized, and it radiates two spherical waves:
the electric dipole with multi-index ν = 4, and the magnetic dipole (TE1-mode) in
the z−direction with multi-index ν = 3 (i.e. {τ, s,m, l} = {1, 2, 0, 1}). The results
can be found in Figure 7. Note that the limitations are sharper for the magnetic
dipole, since the magnetostatic transition matrix T [1] vanishes for a non-magnetic
antenna. It can be seen that both spherical helices approach the limitations (3.4)
and (4.4).

An antenna with directivity greater than 3 must have a radiation pattern that
includes spherical waves of orders higher than dipoles, since an antenna radiating
only dipole modes must have directivity D ≤ 3 [20]. As a consequence of the
limitations (3.4), such an antenna must be narrowband and/or electrically large.
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Figure 6: Upper left: The geometry of the linearly polarized folded spherical helix
(the red circle marks the location of the feed). Upper right: The moduli of the
transmitting and receiving coe�cients, |TA

ν | = |RA
ν |, at the resonance frequency

f = 299 MHz. Lower left: Re�ection coe�cient Γ and scattering matrix element
S4,4 with the bound (3.4) for three di�erent values of S0,ν . Lower right: Square root
of the mismatch (1− |Γ |2), and receiving coe�cient RA

4 with the bound (4.4).

A design of a directive Yagi-Uda antenna recently proposed by Arceo and Balanis
in [1] has been simulated here (the speci�c dimensions labelled �C� in Table I in [1]
was used). It has a maximum directivity of D = 5.7, and the results for the antenna
scattering matrix can be found in Figure 8. It is seen that there are three dominating
modes: ν = 1 (magnetic dipole), ν = 4 (electric dipole), and ν = 14 (electric
quadrupole). This antenna is electrically large, (it has k0a = 1.42), and therefore
the numerical values of the limitations (3.4) do not give much useful information
and are not included in the �gure. The design of an electrically small antenna that
approaches the limitations (3.4) for higher order modes is an open problem.

It should be noted that the simulation results in this paper do not perfectly
match those from the references [5] and [1]. One reason is that the exact dimensions
of the antennas were not clear. Another is that the wires were modelled as per-
fectly conducting in this paper (the wire diameter is 2.6 mm for the spherical helices
and 3.0 mm for the Yagi-Uda), whereas the simulations and measurements in the
references are for realistic material parameters. Lastly, the Yagi-Uda antenna was
modelled as a dipole in this paper, rather than as a monopole over a ground plane.
However, the task was not to verify the results of the references, but to pick clever
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Figure 7: Upper left: The geometry of the elliptically polarized folded spherical
helix (the red circle marks the location of the feed). Upper right: The moduli of
the transmitting and receiving coe�cients, |TA

ν | = |RA
ν |, at the resonance frequency

f = 285 MHz. Lower left: Re�ection coe�cient Γ and scattering matrix elements
S3,3 and S4,4 with the bound (3.4). Note that the bound on S3,3 is tighter since
ν = 3 corresponds to a magnetic spherical wave (TE-mode), and the antenna is
non-magnetic. Lower right: Square root of the mismatch (1 − |Γ |2), and receiving
coe�cients RA

3 and RA
4 with the bound (4.4).

antenna designs to illustrate the theoretical results of this paper.
All simulations have been done in the commercial software E�eld (http://www.

efieldsolutions.com). For all antennas, two separate simulations had to be car-
ried out: In the �rst the antenna is transmitting, excited by a voltage source. This
allows calculations of the antenna re�ection coe�cient Γ and the far-�eld F . With
the far-�eld, the spherical wave coe�cients d

(1)
ν of the outgoing waves and the trans-

mitting coe�cients TA
ν in (4.2) can be calculated, see Appendix A.2. The integral

in (A.5) is solved numerically in Matlab. In the second simulation, the antenna is
receiving: The voltage source is replaced by a load, and the antenna is excited with
one regular spherical wave vν at the time. The scattered far-�eld is calculated, and
this in turn allows the coe�cients of the outgoing waves d

(1)
ν and hence the scattering

matrix elements Sν,ν′ in (4.2) to be determined. The receiving coe�cients RA
ν are

determined by calculating the power in the load. Recall that RA
ν = (−1)sTA

ν holds
for a reciprocal antenna; this is a good error-check. With the procedure described
here, the complete antenna scattering matrix SA in (4.1) can be determined.
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Figure 8: Upper left: The geometry of the directive Yagi-Uda antenna (the red cir-
cle marks the location of the feed). Upper right: The moduli of the transmitting and
receiving coe�cients, |TA

ν | = |RA
ν |, at the �rst resonance frequency f = 304 MHz.

Lower left: Re�ection coe�cient Γ and scattering matrix elements S1,1, S4,4 and
S14,14. Lower right: Square root of the mismatch (1 − |Γ |2), and receiving coe�-
cients RA

1 , R
A
4 and RA

14.

To see the in�uence of the complex zeros kn of Sν,ν in the sum rules (3.2),
the integrals in the left hand sides as well as the static transition matrix elements
appearing in the right hand sides have also been determined, see Table 1. The
integrals were determined numerically over the �nite frequency intervals in Figure 6
and Figure 7, respectively; this gives estimates from below, since all integrands are
positive. The electrostatic transition matrix elements were calculated with an in-
house Method of Moments code. Although only the results for the folded spherical
helix antennas are included here, the static transition matrix elements of other
antennas and higher order spherical waves can be determined in the same way.
Note that the magnetostatic transition matrices vanish since the antennas are non-
magnetic. The di�erence between the columns in Table 1 are due to the zeros kn.
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LP 1
π

∫∞
0

1
k2

ln 1
|S4,4(k)| dk ≥ 1.58 mm a = 41.8 mm

1
π

∫∞
0

1
k4

ln 1
|S4,4(k)| dk ≥ 40.2 · 103 mm3 c1T

[2]
201,201 = 42.7 · 103 mm3

EP 1
π

∫∞
0

1
k2

ln 1
|S3,3(k)| dk ≥ 0.658 mm a = 41.8 mm

1
π

∫∞
0

1
k4

ln 1
|S3,3(k)| dk ≥ 18.3 · 103 mm3 c1T

[1]
201,201 = 0

1
π

∫∞
0

1
k2

ln 1
|S4,4(k)| dk ≥ 1.37 mm a = 41.8 mm

1
π

∫∞
0

1
k4

ln 1
|S4,4(k)| dk ≥ 38.4 · 103 mm3 c1T

[2]
201,201 = 41.4 · 103 mm3

Table 1: The middle column presents the left hand sides of the applicable sum rules
in (3.2) for the linearly and elliptically polarized folded spherical helix antennas in
Figure 6 and Figure 7, respectively. The right column presents the respective right
hand sides without the complex zeros kn. The di�erences between the columns are
due to the zeros.

5 Conclusion

The limitations (3.4) on the diagonal elements Sν,ν of the scattering matrix, which
relate the coe�cients of the incoming and outgoing vector spherical waves, were
derived in this paper. The heterogeneous scatterer was assumed to be passive,
with constitutive relations in convolution form in the time domain. The limitations
state that the scattering matrix elements cannot be arbitrarily small over a whole
wavenumber interval; the bound depends on the fractional bandwidth B, as well as
the electrical size of the scatterer (wavenumber k times radius a of the circumscribing
sphere) and its shape and static material properties (given by the electrostatic and

magnetostatic transition matrix elements T
[τ ]
sml,sml). Speci�cally, it was seen that the

order of the dominating term in the bandwidth bound for electrically small scatterers
(Rayleigh scattering) increases with the order of the spherical wave, due to (3.5). A
physical interpretation of the limitations (3.4) is that the absorption of power from
each spherical wave is limited, as discussed in Section 3.2.

The derivations relied on a general approach for deriving sum rules and physical
limitations for passive systems presented in [4], cf. also [3, 29]. A crucial intermediate
result was the low-frequency asymptotic expansion (3.1) of the scattering matrix
elements, which implied a set of sum rules, given by (3.2), from which the limitations
(3.3) and (3.4) followed.

The limitations place bounds on the antenna scattering matrix SA, given by (4.1).
The limitations derived in the present paper are in form similar to the limitations
on optimal broadband matching derived in [29, 38], although the interpretations are
di�erent, as discussed in Section 4.2. One advantage of the approach presented in
this paper is that the limitations (3.4) incorporate the shape and static material
properties of the antenna, and not just its electrical size as in [29, 38].

Finally, the antenna scattering matrix SA was calculated numerically for two
folded spherical helix antennas and a directive Yagi-Uda antenna in Section 4.4. It
was seen that the folded spherical helix antennas, which radiate dipole-patterns,
performed close to the limitations. The electrically large Yagi-Uda antenna, with
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directivity D = 5.7, had a quadrupole contribution in the far-�eld. Due to the
limitations, such an antenna must be narrowband and/or electrically large.
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Appendix A Details on vector spherical waves

The de�nitions of the incoming (j = 2) and outgoing (j = 1) vector spherical
waves are those of Boström et al. [7], which only di�ers in normalization from those
employed by Morse and Feshbach [28]:

u
(j)
1sml(kr) = h

(j)
l (kr)A1sml(r̂) =

∇× u(j)
2sml(kr)

k
.

u
(j)
2sml(kr) =

(krh
(j)
l (kr))′

kr
A2sml(r̂) +

√
l(l + 1)

h
(j)
l (kr)

kr
A3sml(r̂)

=
∇× u(j)

1sml(kr)

k
.

(A.1)

The same de�nitions are also used in [3], where more details can be found. Here

h
(j)
l denotes the spherical Hankel function [2] of the j:th kind and order l, and a
prime denotes di�erentiation with respect to the argument kr. The regular vector
spherical waves vν contain spherical Bessel functions jl instead. The vector spherical
harmonics Aτsml are de�ned by

A1sml(r̂) =
1√

l(l + 1)
∇× (rYsml(r̂))

A2sml(r̂) =
1√

l(l + 1)
r∇Ysml(r̂)

A3sml(r̂) = r̂Ysml(r̂).

(A.2)

Here Ysml are the (scalar) spherical harmonics

Ysml(θ, φ) =

√
2− δm0

2π

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (cos θ)

{
sinmφ
cosmφ

}
(A.3)

where δmm′ denotes the Kronecker delta and P
m
l are associated Legendre polynomials

[28]. The polar angle is denoted θ while φ is the azimuth angle. The upper (lower)
expression is for s = 1 (s = 2), and the range of the indices are l = 1, 2, . . .,
m = 0, 1, . . . , l, s = 2 when m = 0 and s = 1, 2 otherwise.
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A.1 Low-frequency asymptotic expansion

To derive the low-frequency asymptotic expansion (2.5), consider the following low-
frequency asymptotic expansion of the spherical Bessel and Hankel functions [2]:

jl(z) =
2ll!zl

(2l + 1)!
+O(zl+2)

h
(1)
l (z) = −i

2l!

2ll!zl+1
+O(z−l+1)

as z → 0.

Inserting these into (A.1) gives
v2sml =

2l(l + 1)!

(2l + 1)!
kl−1rl−1

[
A2sml(r̂) +

√
l

l + 1
A3sml(r̂)

]
+O(kl+1)

u
(1)
2sml =

i(2l)!

2l(l − 1)!
k−l−2r−l−2

[
A2sml(r̂)−

√
l + 1

l
A3sml(r̂)

]
+O(k−l),

as k → 0. Due to (A.2), this is equal to (2.5). In the same manner, it is straightfor-

ward to show that v1sml = O(kl) and u
(1)
1sml = O(k−l−1) as k → 0.

A.2 Far�eld to spherical wave coe�cients

In the numerical simulations, there is a need to extract the coe�cients of the out-
going spherical waves from a calculated far-�eld. The electric �eld of a transmitting
antenna or the scattered �eld of a receiving antenna consists of only the outgoing
spherical waves u(1) in (2.3). In the far-�eld zone, this becomes

E(r) =
eikr

r

(
1 +O((kr)−1)

)√
2η0

∑
ν

i−l−2+τd(1)
ν Aν(r̂)︸ ︷︷ ︸

F (r̂)

as kr →∞, (A.4)

where F is the far-�eld. Here the following expression was used [2]:

h
(1)
l (z) =

eiz

il+1z

l∑
n=0

(l + n)!

n!(l − n)!
(−2iz)−n.

The coe�cients are given by [3]

d(1)
ν =

il+2−τ
√

2η0

∫
Ωr̂

F (r̂) ·Aν(r̂) dΩr̂. (A.5)

Appendix B More details on the static transition

matrices

It was mentioned in Section 2.2 that the electrostatic and magnetostatic transition
matrices for an uncharged scatterer can be seen as generalizations of the electric and
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magnetic polarizability dyadics, de�ned in [23]. This statement is clari�ed here. The
electric polarizability dyadic γe relates the induced Cartesian electric dipole moment
p =

∫
rρ(r) dv in the scatterer to the applied electrostatic �eld E as p = ε0γe ·E,

where ε0 denotes the permittivity of free space. Similarly, the magnetic polarizability
dyadic γm gives the induced Cartesian magnetic dipole momentm = 1

2

∫
r×J(r) dv

in the scatterer caused by an applied static magnetic �eld H : m = γm ·H . Here
the induced charge and current densities in the scatterer are denoted ρ and J ,
respectively.

To see in what way the electrostatic transition matrix is a generalization of
the polarizability dyadic, use the static free space Green's function to describe the
scattered electrostatic potential [22]:

φ(r) =
1

ε0

∫
ρ(r′)

4π|r − r′|
dv′.

The Green's function can be expanded into a sum of spherical harmonics; outside
the sphere circumscribing the scatterer (where r > r′) it is [28, 31]

1

4π|r − r′|
=
∞∑
l=0

l∑
m=0

2∑
s=1

1

2l + 1
r′lYsml(r̂

′)r−l−1Ysml(r̂).

Multiply φ(r) with Ysml(r̂) and integrate over the unit sphere. This results in the

following expressions for the coe�cients f
(1)
sml in (2.4):

f
(1)
sml =

1

ε0

1

(2l + 1)
psml,

where the electric multipole moment is [28]

psml =

∫
rlYsml(r̂)ρ(r) dv.

Consequently, a scatterer subject to the external potential

φ(r) = −rl′Ys′m′l′(r̂)

gets an induced multipole moment given by [28]

psml = ε0(2l + 1)T
[2]
sml,s′m′l′ .

For the dipole case (l = l′ = 1), this reduces to the relation [3]

T
[2]
sm1,s′m′1 =

1

4π
n̂sm · γe · n̂s′m′ .

where

n̂sm =


x̂, for s=2, m=1

ŷ, for s=1, m=1

ẑ, for s=2, m=0
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and x̂, ŷ, ẑ are the Cartesian unit vectors.
Likewise, an applied magnetostatic potential

φMS(r) = −rl′Ys′m′l′(r̂)

induces a magnetic multipole moment

msml = (2l + 1)T
[1]
sml,s′m′l′ ,

where [28]

msml =
1

l + 1

∫
(r × J(r)) · ∇

(
rlYsml(r)

)
dv.

The dipole case is [3]

T
[1]
sm1,s′m′1 =

1

4π
n̂sm · γm · n̂s′m′ .
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