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EFFICIENT APPROXIMATION OF THE INDUCTANCE
OF A CYLINDRICAL CURRENT SHEET

by

Richard Lundin

This report comprises the article "Efficient approxi-
mation of the inductance of a cylindrical current
sheet" and two supplementary sections. The first
section treats the question of how to calculate the
inductance of a coil. The second section is aimed at
providing a theoretical background to the computed
approximations of the article. The second section is
also intended to demonstrate that the efficiency of the
computed approximations is the result of a systematic

approach.
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EFFICIENT APPROXIMATION OF THE INDUCTANCE
OF A CYLINDRICAL CURRENT SHEET

R. Lundin

Abstract - The exact formula for the inductance of a
right circular cylindrical current sheet was first
given in 1879 by Lorenz. The formula includes, apart
from simple factors, a function of the shape ratio.
This function was tabulated by Nagaoka. This paper
investigates how to‘efficiently approximate the Nagaoka
coefficient. Two analytical functions are selected for
approximation and Chebyshev series expansions of these
functions are given. A computer program based on such
expansions will produce full-precision values for all
input arguments at a small cost in terms of the total
number of elementary arithmetic operations needed. 2
new short "handbook formula" for the inductance is also

given.

INTRODUCTION

A constant surface current jS forms a right circular
cylindrical current sheet. The sheet is divided into N
equal circular strips. Each strip is carrying a current
I. The sheet is characterized by its radius a, length b

and number of turns N. See Figure 1. The relation

CD Js U

Y Uz 2a

)
J
'%

Fig. 1 A cylindrical current sheet



between jS and I 1is

A closely-wound, single-layer circular coil of thin
wire can be idealized +to a «cylindrical <current
sheet[1]. The length b of the current sheet should then

be chosen as
b = N.p,

where p is the pitch of the coil and N is the number of
turns. The exact formula for the inductance of a
cylindrical current sheet was first given by Lorenz[2].

Lorenz’s formula involves a function of the shape ratio
(22)
o
approximate this function.

This paper demonstrates how to efficiently

THE EXACT SOLUTION

The inductance L is

_ N%ma? 2a
L=vy 5 B (1)
_ -7
where y, = 4m-10 H/m
Let k = —2a , then
a2 +b?
—k2 2_
£=4 {”‘ g + 2K2-1 E—k}, (2)
T Vik2' U k2 k2 J

in which K and E are the complete elliptic integrals of

the first and second kind,
m/2 n/2

K = j do L E =j Vi-k2sin2¢ dog.
L 2cin2
0 V1 k“sin“g 0

The function f was tabulated for routine calculation by

Nagaoka[3]. See Figure 2.
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Fig. 2. The Nagaoka coefficient
ANALYTICAL PROPERTIES
It is obviously possible to rewrite (1) as
- 2 * b
L=y, N a f (55). (3)

The asterisk is used here as an index to distinguish

different functions. The reader should associate each

asterisk-marked function with one of the arguments ;% ’

b2

R or K? . Substituting the series for XK and E
gives
(£ = P, (k) (4)
* 1 * LI
£ = 1In(—) P.(K°) + P_(k?) (5)
J&Z 1 2
L kK? =1 - k2,

* *
P1 ’ P1 and P2 are expressed as power series,
convergent within the unit circle and thus for all
current sheets. A change of independent variables

yields (formally)



_ 2a

£ = PZ(TT) (6)

£* = 2a, * b? * b2 (7

= () Bylggr) + Bylger) )

* *

where P2 ' P3 and P4 also are expressed as power
* *
series. P, converges only 1if %§~§ 1, P3 and P,

converge only if %% < 1 .The general terms given by
Butterworth[4] verify this.

According to his formula (H)

1 -1 4a°

2a
2F1(§' -

4
5121'—?2_)—‘3‘7’17?, (8)

where 2F1(a,b;c;z) is Gauss”® hypergeometric function.

The following statement is now made by the author:

* b2 1 1 b?
Palggs) = oFql3r = 3727 = g7 (9)

It is .possible to derive (9) from (8),(6),(1),(3)
and (7) using the theory of homogeneous linear differ-
ential equations ( see ref.[5]). The same derivation
may be carried out by refering. to an appropriate
transformation formula. Such a formula is (15.3.14) in

"Handbook of Mathematical Functions"[6].

Combining (8) and (9) gives ( see Figure 3 )
Pi(x?) = P.(x) + &+ x 0<x <1 (10)
3 2 3m ! = = -
A
1.2 1
4 2a
.My\%‘
1.01
»
] A
0.84

T T T v L T T

0.4 08 10 o038 0.4

o

0
bag? L b2 N
b? T La? it

* *
and P

Fig. 3. It is sufficient to approximate P3 4



APPROXIMATION

Formulas (6) and (7) involve the dimensions as a
simple ratio and cover together the whole range of
possible current sheets. However, if 2a ~ b ,the speed
of convergence is low. The remedy is conversion from
the given point-expansions to interval-expansions. A
reasonable alternative 1is to convert into series of
Chebyshev polynomials[7]. The practical value of (10)
now beccmes evident. The expansions corresponding to
(6) and (7) are '

= Sreor(4a%y _ 4 2a |
£ = £ chn(b2 P 2a < b (11)
n=0
* 2a . b . b2
£ = 1n(——)n£0 nTn(27) + 27a T (£5) 2a > b, (12)
where

*

T, (x) = cos(n arccos(2x - 1)), 0 <x <1,

and the prime on the summation indicates that only half
of the first term is used. The coefficiints cn*and dn
are thus the Ehebyshev coefficients of P3 and P4 . The
asterisk in Tn is only standard notation. Identifica-

tion of (7) and (5) gives the following equations

* 2 *
b

= 2
P3(4a2) 2 P1(k ) (13)
* 2 2 * *
L _— b—. z e
P, la57) In(1+ 157 P, (K2) + P2(k2), (14)
where

. b2

2 = 2"
K2 = Tprrgan)

These equations were used to evaluate Pg and PZ when
calculating the  Chebyshev coefficients given in
Table I . The general terms of PT(EZ) and P;(kz) may be
obtained from Butterworth or from the series for K and
E.

The following conclusions may now be drawn. The

inductance of long current sheets (2a<b) 1is approxi-
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mated through (1) and a truncation of (11). The
inductance of short current sheets (2a>b) is approxi-
mated through (3) and a truncation of (12). Only two
sets of coefficients is needed due to (10). The
approximation is efficient since the magnitude of the
coefficients 1is decreasing rapidly with increasing
polynomial order.
Table I

Chebyshev ‘coefficients

n ch dn

0 +2.115 527 6261 +1.969 841 7429

1 +0.056 340 9312 +0.097 495 7309

2 - 1 339 8845 - 1 085 2334

3 + 76 4023 + 42 7413

4 - 5 9760 - 2 5886

5 + 5544 + 1970

6 - 573 - 173

7 + 64 + 17

8 - 8 - 2

9 + 1
<. n <. n 1
nio c, (-1) 1 nzo dn (=1)7 = 1n(4) 5
I c_ = 1.112 835 7889 ;' d = 1.081 371 7029
n=0 I : n=0 "

A HANDBOOK FORMULA

The following "handbook formula" is asymptotically

correct and produces the inductance with a maximum

relative error less than 0.3 10°°.
If 2a < b then
U N27a?2 2
- _ 0 4a _ 4 2a
else 2a > b and
b2 b?
L=y Nal[1n82) _ 1 7¢ (2 45 ¢ )}(16)
Yo { b T2 1 4a? 2 4a?



where

1 + 0.383901 x + 0.017108 x2
£y(x) T + 0.258957 x ' (17)
£, (x) = 0.093842 x + 0.002029 x* - 0.000801 x°. (18)

The coefficients in (17) and (18) were computed
by a program based on [8]. The relationship of f1

and f2 to previously defined functions is

b2 _ * b2 .

£1(qz7) = Pylgzg7) (19
b2 | _ %, b2 1, p* b2

f2(ZgT) = P4(ZET) - [ In(4) - 5 ] p3(257) (20)

This choice was made in order to display the asymptotic

behaviour.

DISCUSSION

Long before the advent of the high-speed computer
several point-expansions were given by a number of
authors[9]. In a more recent article Fawzi and
Burke[10] present an efficient algorithm which produces
the self-inductance of a cylindrical current sheet as a
special case. A computer program based on this algori-
thm or on (1), (2) and library routines for K and E
will suffer from a loss of significant figures caused
by subtraction if 2a >> b . Such a program will also be
slower than a program based on interval-expansions and
the standard function for the natural logarithm. It
could, however, be argued that with a computer and a
couple of guard digits these drawbacks are of little
significance.

The inductance is calculated to six figure accuracy
through the "handbook formula” (15-18). The same degree
of accuracy is obtained by interpolation in Nagaoka ‘s
table[3]. Thus Nagaoka’s table (160 function values) is
contained in "the handbook formula".

In order to facilitate design work, a number of
nomograms of the Nagaoka coefficient have been pub-

lished in the electrotechnical 1literature. A compact



approximation formula like the "handbook formula"

can be considered as a powerful alternative to a

nomogram.
RESULT

The main result presented is equation (10). This

equation is a consequence of (8) and (9). Equation (8)

is Butterworth’s formula (H) and (9) is implicit in
Butterworth’s formula (L).

The observation (10) leads to approximation formulas
with a minimum number of coefficients.

An easy to use "handbook formula" has been presen-
ted.
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1. The low frequency inductance of a closely-wound,

single-layer, air-core, circular coil of thin wire

1.0 Introduction

This is the first of two sections supplementing the
article "Efficient approximation of the inductance of a
cylindrical current sheet". A definition of inductance
is given (1.2). If the current sheet is an idealization
of an actual coil, the current sheet inductance, of
course, differs from the actual inductance (1.1). A
formula to compute a more accurate inductance value is
given (1.9). The concepts used in the following are
after the literature[1].

1.1 The inductance of a closely-wound,

single-layer, circular coil of thin wire

O O O @

0 1 2 N-2 N-1 N
Fig. 4 A helix

The actual coil has the form of a helix of mean
radius a, pitch p and a certain number of turns N.
The wire is supposed to have circular cross-section.
The helix can be idealized to a cylindrical current

sheet. The 1length of the equivalent current sheet
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should be chosen
b = N-«p. (1.11)

The exact inductance of the current sheet can be
calculated (1.33) and used as an approximation for
the inductance of the actual coil. The helix can
also be idealized to a set of coaxial tori. The induc-
tance of this set of coaxial tori can then be cal-
ulated (1.94) and used as another approximation for
the actual inductance. Although the latter calculation
is not exact the tori-idealization generally (but
not always) results in a more accurate inductance
value than the current-sheet alternative. This 1is
so because the current-sheet idealization takes no
account of the «cross-sectional dimensions of the
wire. As an illustration to this the following numeri-

cal example is given:

radius of wire = 0.25 mm
pitch of helix =1 mm
number of turns = 400

radius of helix = 150 mm .

The wire is assumed to have a circular cross-section.

The current-sheet formula (1.33) gives
L, = 2.656 8401 1072 Henry. (1.12)
The tori-formula (1.94) gives

L, = 2.655 3423 10”2 Henry. (1.13)

A helix formula by Snow[14] gives

L, = 2.655 3486 10 ° Henry. (1.14)
If we assume Lh to be the best value the relative

errors of L_ and Ly may be estimated as
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0.6 10—3’ (1.15)

1l

~0.2 10°°. (1.16)

il

If the radius of the wire 1is varied from a small
value up to half the pitch we may calculate the curve
given in Figure 5. The current-sheet value is indepen-
dent of this radius and is obviously an wunder-
estimation when the radius of wire is small compared
to the pitch, and an over-estimation when the coil

is closely-wound with thin wire isolation.

2

L(10 “H)
A
2.68 +
2.67F
2.66 1
L
\ S
2.65 %1
L,
]
|
% e R(10W)

0.1 0.2 0.3 0.4 0.5

Fig. 5 The sheet-idealization is independent

of the wire radius

1.2 Definition of inductance

Consider a current system consisting of n circuits.
See Figure 6. The circuits are fixed in space. There
is no magnetic material present, i.e. the relative
permeability is everywhere unity. Assume further
the currents to be direct currents or alternating
currents of low frequency. This could also be stated
as assumptions of quasi-stationariness and negligble

skin-effect.
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Fig. 6 A current system

A distribution of current density j generates a vector
potential

u -
=01, [E (11,31)]% (1.21)

where Mg is the permeability of vacuum.

The time-dependent magnetic energy of the system is

W =f-;-§-x av . [H (18,38)] (1.22)

The mutual inductance between circuit p and circuit v
is denoted Muv' The self-inductance of circuit u is
M or L, . M and I, are under the given assumptions
(SR Y] uu HV HU

constant scalar quantities.

The inductance is defined by the Neumannn formula

_ 1 - 5
MU\) T I1I J Iy A\) dv , [H (18,66)] (1.23)
U v
Mop = My - (1.24)
Ly =My, 2 0. (1.25)
yu pu =

n
51 vl MUVIUIV. (1.26)

* Ref. [19] : E. Hallén, "Electromagnetic theory"
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If all currents are equal (the circuits are connected

in series) then

M 12 (1.27)

n
) M (1.28)

gives the inductance L of the whole system.

The SI inductance unit‘is

_ Vs
1 H= 1 Henry = 1 iy

1.3 The inductance of a cylindrical current sheet

2a

£

a & 4
Pr— v -1

- b > a

Fig. 7 A cylindrical current sheet

A constant surface current jS forms a right circular
cylindrical current sheet. The sheet is divided into
N equal circular strips. Each strip is carrying a

current I. The relation between jS and I is

i = . (1.31)

NeT
S b

The inductance is (1.23)
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_ 11_9 (E)z cos(cp1—<pz) dS1dS2 (1.32)
41 'b ff r :
12 12
. _ _ 2
with £y, = [ (a cosg, a cosmz) +
. . 2 2 3
+ (a sing, - a 51n¢2) + (21—22) ] 2.

The integration is from the current sheet to itself

and results in

L = ngjjii £(5) [ H(17,25)] (1.33)
o ) ’ .
The function f is called the Nagaoka coefficient.
The exact expression for f, involving elliptic integrals,
is given in the article.

A new algorithm for the calculation of the mutual
inductance of coaxial circular cylindrical current
sheets was presented by Fawzi and Burke[10]. The Nagaoka
coefficient is obtained as a special case. According
to Fawzi-Burke

£ = %§A[ Ci(a,b) - g% 1, (1.34)

where Ci(a,b) is evaluated by an iterative algorithm.

There will be a loss of significant figures if 2a >> b
due to the subtraction in (1.34).

1.4 Mutual inductance of coaxial circular filaments

Two coaxial circular filaments have radii a, and
a, respectively. The distance between their planes
is denoted by d. The exact formula for the mutual

inductance is

(M, = 1, Va3, g(k) [ H(17,63)] (1.41)
g(k) = (£ - k) K(k) - 2 E(k) [ H(17,64)] (1.42)

172 [
2 2
d +(a1+a2)

H(17,62)] (1.43)
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Fig. 8 Two coaxial circular filaments
If a, ~a, ~a and d << a then k < 1 and

al[ In(=—=) -21, (1.44)

=
u
3
I

. _ 2 _ 2
with r 5 = /& +(a1 a2) .

1

More precise | m_-M., | + 0 when r,, >0
a, »-a>>~0,
. 1 16 1
since | K - 7 1ln — | 0 when k> 1- .
1-k?

1.5 The mutual and self-inductance of

coaxial tori with equal radii

A

L3
~N

O ©

Fig. 9 Two coaxial tori

If 2R <K a and p << a then

_ ] : - -
"oy T TI JI Mo 3,948,398, v = 1e2. (1.5T)
VY

The formula (1.44) for m, and the assumptions
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I
j =X po=1,2 give
L
|9
Muv = Uga [ 1n(8a) - 2 - 1n(G v) ], (1.52)
with
(1.53)

_ 1
In(G,) = g5 [ in(x ) as ds, .
u-v
uv
The integrals are determined by the shape and separation
of the cross-sections. Circular cross-sections give

- - — -1/4
G, =P and G"1 = G22 =R e . (1.54)
The calculation of these "geometric mean distances"

is performed in the next three paragraphs.

Now
L., = Hoa [ ln(%?) -7 ], compare [ H(19,25)], (1.55)
and

8a, _ 2 1. (1.56)

M12 = Hya [ 1In(

1.6 Geometric mean distance of point from a circle

gs
o+ g
]

Fig. 10 GMD of point from a circle

The GMD of the point P from the circle is denoted G.
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2T
1n(G) = f(a,b) = %F j 1n ( ya2+ b2- 2ab cosg)de .
0
Now f(a,b) = f£(b,a) and

In( see ) = Re [ log(z-b) ]

- = Jje -8z , _
f(a,b) = [ z = a e, do z3 ] =
_ 1 - dz _ 1
= 57 § Re [ log(z-b) ] Z5 = 7n Re | é ]
=§%Re[2nj;—9%(——b)]=ln(b) ) (1.61)

If a > b then

f(a,b) = f(b,a) = 1n(a) . (1.62)

Evidently G = b if the point is outside the circle

and G = a if the point is inside.

1.7 Geometric mean distance between two circular areas

Fig. 11 GMD between two circular areas

The GMD of one circular area from another equals
the distance between their centers. This is an immediate
consequence of the result of the preceding paragraph.
The two circular areas are here taken to be separated.
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1.8 Geometric mean distance of circular area from itself

1 =
0" r a
Fig. 12 GMD of point P within circular area
The radius of the circular area is a and the GMD

of it from itself is G. We first calculate the GMD

g of a point P within the circular area.

a
In(g(r)) = #52( tr2ln(r) + j In(t) 2wt dT )
r
r? 1
In(g(xr)) = Engln(a)— 5

and now we are ready to calculate G

a
2
1n(G) = T:—az f ( 522 + In(a) -% ) 21T dT
0
1In(G) = 1n(a) - +
G = a e—1/4. (1.81)

1.9 The inductance of a set of coaxial tori with equal radii

The summation formula for the inductance gives

N
L= X
u:

Muv {1.91)

[T S =4

1 v=1

See Figure 13. We now assume 2R << a .
Assume further the current to be uniformly distributed

over the cross-sectional area.
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p 2R

DO 00 --- olcXelonm
a

i

C’EOOO - - = OOO@
e ’ (N-1)p N
Fig. 13 A set of coaxial tori
If w = v then (1.55) gives

My =Ly, =Ly =weal (8 -7, (1.92)

If v+ v and |u-v] p << a then (1.56,1.44,1.41) give

Muv =M, = Hpd g(k) , (1.93)
with

n=1+ |uy-v] and k = 2a

v/lu—v|2p2+4a2
If not ( |u-v| p << a ) then the tori are far apart
and it is obvious that (1.41) provides a good approximation
if %? is sufficiently small.
We can now calculate L as:
N
L =NL,, + 2n£2(N+1—n) M, . (1.94)

This formula is asymptotically correct when 2R - 0+ ,

(a = constant, Nep = b = constant, N may tend to infinity).
The meaning of "asymptotically correct" is that the relative
error of (1.94) tends to zero when 2R + 0+ . Nothing has
been stated concerning the degree of correctness of (1.94)

when applied to a given set of coaxial tori.
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2. Rational approximation and expansion

into series of Chebyshev polynomials

2.0 Introduction

In the "handbook formula" for the inductance of a
current sheet a certain rational appproximation of the
function f1 is given. See equation (17) in the article.
The purpose of this second section is to provide a
background to this ‘approximation. The concept of
rational approximation 1is presented (2.4) and the
mentioned rational approximation is computed (2.5). The
or P* since f, = P* , is also expanded

17 3 1 3
into a series of Chebyshev polynomials. See equations

function £

(7) and (12) in the article. The convergence is rapid
as monitored in Table 1. A definition of Chebyshev
polynomials is given (2.7) and also a simple sufficient
condition for rapid convergence (2.10).The concepts

used in the following are after the literature{16].

2.1 The approximation problem

A metric space is a set X in which a real-valued
distance function d is defined for pairs of points.
This distance function must satisfy the following

postulates for all x,y,z in X

(1) d(x,x) = 0,

(2) d(x,y) > 0 1if x % vy,
(3) dix,y) = dly,x),

(4) d(x,y) < d(x,z) + d(z,y).

Consider now a point g and a set M in a metric space.
The approximation problem is to determine a point of M
of minimum distance from g. Such a closest point may or
may not exist. There may also be several or an infinite
number of closest points. A closest point may possess
some special property. This 1leads to theorems of
existence, uniqueness and characterization of best app-
roximations. The question of how to find a closest

point leads to the construction of algorithms.
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2.2 A normed linear space

A normed linear space is a linear space E of vectors

equipped with a real-valued function denoted

defined on these vectors. This function, having the

following properties, is called a norm.

(1) €]l > 0 f € E  unless f£=0,
(2) IAEl = | ~lEl A € R,
(3) I£+gll < 1€l + lgll £,9 € E.

A normed linear space 1is also metric through the

formula

d(f,g) = ||f-g].

Let C[a,b] be the space of all continuous real-valued
functions defined on the compact interval [a,b].
Addition, scalar multiplication and a norm is defined

in the following way

(f+g) (x) = £(x) + g(x),
(AE) (x) = Xf(x),

_  max
Il = jexen  TEGO].

Now Cl[a,b] is a normed linear space. The norm chosen
for the moment is called the minimax or uniform norm.
Another norm of frequent use is the weighted least-

sguare norm

b
1
lel =1 [ g% eweax 17,
a
where w(x) is a positive and continuous weight func-

tion.
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2.3 Rational functions

We wish to approximate a given function g € Cla,b]

by a rational function R = P where

Q
P(x) = a, + a, x + a x2 + +a_ xU
0 1 2 . n !
_ 2 m
Q(x) = b0 + b1 X + b2 X7+ ...+ bm X .

P and Q should have no common factors other than
constants and since .our object 1is to approximate,
in the uniform norm, a continuous function on a compact
interval, we may also require Q(x) > 0 on [a,b]. The
set R_[a,b] is now defined :

R[a,b] = { c:8P<n, 8Q<m, Qlx) >0 }.
Here 8P and 6Q denote the degree of P and Q respectively.
Obviously Rg[a,b] is a subset of the metric space
Cla,b].

2.4 Rational approximation

A function (point) g and a set Rg[a,b] is posited
in the metric space C[a,b]. When approximating g
by R € R; let the error E be

max

E = [IR-gll = | 5%

‘W(R-g) l r
where w is a positive and continuous weight function
in [a,b]. We take from the 1literature[16][17] the

following existence and uniqueness theorem.

(T1) To each function g € C[a,b] there corresponds
one and only one best rational approximation
from the set R;[a,b].

There is also the following characterization theorem.

(T2) 1In order that the irreducible rational function
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P
Q

be a best approximation to g from the set

R;[a,b], it is necessary and sufficient that

the error have at least 2 + max(n+8Q, m+dP)

alternations.
The error function e = R-f has p+1 alternations
if e(xi) = —e(xi_1) = + e with x0< eo. < xp and
X € [a,b].

2.5 A numerical example of rational approximation

The function f1 is defined by the equations (19)

and (9) in the article:

f1(x) = P3(x), 0 <x<1,
P*(x) = _F (l - 1-2- - Xx) 0 < x <1
3 2712 2% ! - - !
where 2F1(a,b;c;z) is Gauss’® hypergeometric function

and consequently

£,(0) = 1,

1 1

I'(2) o '(= + n) T(- = + n) n
£ (x) = 1 1 5 2 2 (-x) )
F(i) (- 5) 0 T'(2 + n) n!

The convergence for this series is slow when x < 1.
Therefore we use the transformation formula (15.3.4)
in "Handbook of Mathematical Functions"[6] to produce

the alternative representation

1

T1+x

1 X
22T O

IN
»

IN
-

= 2

The graph of f1 is given in Figure 14.

We now pose the following practical approximation
problem. Seek a rational(1) approximation R1 which
produces f1 with a certain weighted error 1less than

0.5 107°

(3) and which 1is exactly correct at the
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left endpoint(2). The number of coefficients should

be minimal(4).

p
ao+a1x+...+apx
(1) R1(X)= o
1 + b1x + ... + bmx
(2) R1(0) = 1
R, - £
max 1 1 -5
(3) _ < 0.5 10
0<x<1 £ - 4/
1 3w
(4) (m+p) minimal

The background to condition (3) is that the relative
error of the current sheet inductance should be less
than 0.5 107°.

To solve this problem we have at our disposal an
8-digit high-speed computer and a program (routine
IRATCU, library 1IMSL) which computes best rational
approximations. We begin by concluding that a, = 1.
Then we compute best approximations corresponding
to different (m,p) combinations. The arguments put

into the computer are

A
1.5 4 w
f1
1.0 +—
0.5
g
. —>
0.5 1.0

Fig. 14 f1(x), g(x) and w(x)
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f1 -1 bl
X £, - 4V x
1 3m
and the computer output is the coefficients in
_ _ _ m-1 p-1
. (a1 b1) + (a2 b2) X+ ... + (am bm) X + ...+ apx

1 +b,x + ... + b_x™
1 m

The form of the numerator depends on whether p < m
or p > m . The weight function is here zero at the
left endpoint. See Figure 14. The computer minimizes

the maximum value of

W(R_g) = . 0o e = _‘I—_4}§_ r
£, - 37

which is exactly the weighted error of our problem.
In order to inspect the computed minmax weighted

errors we arrange them in a "Walsh Table". See Table 2.

p=1 =2 p=3
n=0 n=1 n=2
m=0 0.25 1072 0.13 1073 0.92 107°
=1 0.73 107% 0.25 107°
=2 0.47 107°

Table 2 A "Walsh Table"

A solution to our problem is the approximation

2
1T + a,x + a~.x

( R. = 1 2
1 + b1x

0.38385243
0.017102801
b, = 0.25890369 ’

5

with an error of 0.249 10 ~. We now reduce the coefficients
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to 6 decimal digits and test within the following

range
a; = 0.383 852 + 0.000 050
a, = 0.017 103 + 0.000 050
b1 = 0.258 904 + 0.000 050 .
5

An error of 0.250 10 ° is achieved when

1= 0.383 901
a, = 0.017 108
b, = 0.258 952 .

A new test with these coefficients as starting points

107
A R -f

0.30 - S
£ - X
1 3

0.20 -

0.10 A

3%0. 1
T > <

0.5 1.0

~0.10 -

~0.20 -

~0.30 A

Fig. 15 The error curve
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produces no smaller error and the final approximation

is therefore chosen as

1 + 0.383 901 x + 0.017 108 x°

1T + 0.258 952 x

The error curve 1is plotted in Figure 15. The curve
has 4 alternations. Denote the x-coordinate of the
first point of maximum error with B. Obviously the
curve has four alternations on every interval [a,1]
with 0 < a < B. The computed approximation is therefore
the best approximation‘on every such interval according
to (T1) and (T2). Then it must also be thebest approxi-

mation on the interval [0,1].

2.6 An inner-product space

In the space Cla,b] of all continuous real-valued
functions defined on the compact interval [a,b] we
define the inner product of two vectors f and g as

b
<f,g> = j fegew-dx ,
a
where w(x) is a positive and integrable weight function.
This 1is an inner-product space since the following

postulates are fulfilled

(1) <£,f> > 0 unless £=0,
(2) <f,9> = <qg,f>,
(3) <£,Xg+uh> = A<f,g> + u<f,h> .

In a linear space equipped with an inner-product

the following equation defines a norm
IEll = V<£,£8> .

The norm corresponding to our inner-product is then
b
2
£ = T j £%ewedx ]

a

1
2
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A set of vectors {g1,g2, ... } is orthonormal if
<gi'gj> = 6ij ’
where (§,.. = 1 =3
1]
Gij = i+ 3

A useful theorem[16] of approximation is

(T3) Let {91,92, cee gn} denote an orthonormal
set in an inner-product space with norm
defined by |h|l = v<h,h> . The expression

n
H? c;9; - ff| will be minimum if and only

if c; = <f,gi>

2.7 The Chebyshev polynomials

The Chebyshev polynomial of degree n on the interval
[-1,1] is defined

Tn(x) = cos(n@) n=20,1, ...
cos(®) = x -1 < x < 1.

The Chebyshev polynomials form an orthogonal set

with respect to the weight function

N

wix) = (1-x2?)

The following orthonormal set is easily formed

{/%To '{%T1 '{%Tz ' }

and we may expand a given continuous function f into

a series of Chebyshev polynomials:

n-
Snf = g ciTi n=20,1, ... ’

where
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+1
2

c, = = £T,ewedx .

i ™ i

-1

The prime on the summation indicates that only half
of the first term is wused. According to (T3) Snf
is the best approximation to f from the subspace
spanned by { Tb ' T1 ’ ' Tn}- with respect to
the metric induced by this special weighted least-
square norm. But Snf is also a nearly minmax polynomial
approximation to f. Since this is an important aspect
in numerical practice we cite the following theorem[18].

Let

m _  max m _
Eh = a<x<b |pn(x) E(x) |,
w _ max _

E = a<x<b |Snf(x) £(x)| ,

where pg(x) is the minmax polynomial approximation

to £ of degree n. Then

(T4)

=3 | t
08l beE
IN
o
o
3
]

o

The function u(n) is independent of f and the interval
[a,b]. The value of u(n) for some n is given in Table 3.

The asymptotic behaviour of u(n) is

u(n) ~ %2 1n(n)

n >> 1 . n u(n)

1 2.436
Table 3
5 2.961
The "worst case" ratio

10 3.223
100 4,139

1000 5.070
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2.8 Shifted Chebyshev polynomials

The basic range -1 < x < 1 is transformed to the
range 0 <y < 1 with the change of variable

y:

x+1
= -
The Chebyshev polynomials then transform into shifted
Chebyshev polynomials. The standard notation prescribes

an asterisk:

T (y) = Tn(2y - 1) 0 <y < 1.

1 % V2 % /2 _* .
The set-{/F TO ,/?-T1 '/F'Tz ;e } 1s orthonormal_gn
[0,1] with respect to the weight function [x(1-x)] 2.
We may expand a given function according to (T3) and

the analogue of (T4) is valid with the same function

u(n).
2.9 Truncation of an infinite power series
Let f be analytic in a neighbourhood of zZ = a
and thus
f=%al(z-a),
v
v=0

with a positive radius of convergence R.

If 0 < r, < r, < R then

lim a r\)l = 0
Vo> 4wl Tyl T
and consequently

-V
]av} <Mr, v=20,1,
We seek an upper bound to the minmax error when approxi-

mating £ by a truncation

Vv
av(z—a) ’

f =
\Y

I M3

0

within the circular disc [z-a| < r, .
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Imz

Fig. 16 A power series expansion

@ co r
|e§| = |f§ -f]l =]z av(z—a)vl < I M (El)v =
v=n+1 v=n+1 2
r, ntl o r r
+
=M (=) R I iy L
2 v=0 "2 2 1 - 1
2

An upper bound for the error is evidently

t
n

1. n+1

| <M (r2

le

)

This is, of course, also a upper bound to the error

m m
E, = r, max : | £(x) - p(x)]
a-2—5X§a+—2—-

where pg(x) is the minmax polynomial of degree n.
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2.10 A numerical example of expansion into

series of Chebyshev polynomials

Re z

Fig. 17 The function f1 is analytic within

a certain circular area

The function

_ 1 51 ,. .z
B2l = — oF(3gi2iT)
is analytic within the circular disc |z - %| < 1.

We intend to approximate f1(x) on the real interval
[0,1]. See Figure 17. According to the preceeding

paragraph the minmax polynomial error Eg is less
than

., 51 n+
()
2

M

The error E? is obviously decreasing at a geometric
rate or perhaps faster. The asymptotic "worst case"

relation between this error and the Chebyshev expansion

w o, . .
error En 1s as previously given
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Y ~ E %2 1n(n)

Thus we have at least an asymptotic upper bound for
the rate of convergence when expanding f1 into a
series of Chebyshev polynomials. The actual rate of
convergence is probably substantially better as Table 4
suggests. The "worst case" ratio ﬁﬁ/Eg is given
in the fourth column. The Chebyshev coefficients
are given in Table 1 in the article. The last two
paragraphs lead us to the following conclusion. Rapid
convergence is in a ‘sense guaranteed when expanding
an analytic function into a series of Chebyshev poly-
nomials. A sufficient condition is that the interval
in question is well inside a circular area in which
the function is holomorphic (i.e. analytic at every

point).

w m
n En En u(n)
-1 1
0 0.58 10 0.56 10 2
1 0.14 1072 0.13 102 2.436
2 0.83 10 4 0.77 10”4 2.642
5 0.65 10/ 0.58 107/ 2.961
9 0.14 10”10 0.12 10”10 3.183

Table 4 The rate of convergence
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