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ABSTRACT

Existing time-frequency representations are usually too noise-
sensitive or has too bad resolution for studying multiple tran-
sient signal components of biosonar signals. In this paper
we calculate reassigned spectrograms using the first Hermite
function as window. The optimal length Hermite function
giving the perfectly localized reassignment for a Gaussian
function is combined with a novel technique which includes
the reassigned spectrogram using another length of the Her-
mite window function. For this window function the reassign-
ment is rescaled to achieve perfect localization. The geomet-
ric mean of the two reassigned spectrograms is taken as the
final estimate. The proposed method is evaluated for localiza-
tion properties and noise reduction and is applied to synthetic
echolocation data.

Index Terms— time-frequency, reassignment, localiza-
tion, Hermite function, transient, biosonar, dolphin

1. INTRODUCTION

The reassignment principle was introduced in [1], but was
not applied to a larger extent until it was reintroduced in [2].
The idea of reassignment is to keep the localization of a sin-
gle component by reassigning mass to the center of gravity.
For multi-component signals, the reassignment improves the
readability as the cross-terms are reduced by a smoothing of
the specific distribution and the reassignment then squeezes
the signals terms. However, the reassignment technique can
be sensitive to noise disturbances and reassigned multitaper
spectrograms has also been proposed for noise reduction, [3].
Recently, the theoretical expressions for the reassigned Ga-
bor spectrograms of Hermite functions have been derived in
[4, 5]. Based on these, we propose a novel technique using a
half-length optimal Hermite function window, where the reas-
signment procedure is rescaled to achieve the perfectly local-
ized spectrogram. The geometric mean of the reassigned op-
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timal window spectrogram and the rescaled reassigned half-
length window spectrogram is taken as the the final estimate.
The proposed method is robust for noise disturbances and has
good resolution properties.

Previous studies have shown that time-frequency repre-
sentations of transient biosonar signals are valuable tools
when analyzing details in the signals generated by for in-
stance bottlenose dolphins, [6], and that localization and
time-frequency resolution are important factors to optimize.
This is relevant in marine biosonar studies when comparing
component azimuths of echolocation signals (clicks) recorded
in different positions within the echolocation beam. Recent
biosonar studies have also shown that the measured echolo-
cation signals from bottlenose dolphins, (Tursiops truncatus)
and beluga whales, (Delphinapterus leucas) may also contain
more than one transient component, [7, 8]. Existing time-
frequency representations are usually too noise-sensitive or
has too bad resolution for studying these possibly multiple
transient signal components. A better method would be useful
when trying to establish whether certain echolocation signals
originate from one or two sound sources, a current topic of
debate in this field of research, e.g., [8, 9, 10].

In section 2, the novel technique of rescaled reassigned
spectrogram of a Hermite function windowed Gaussian signal
is presented. Section 3 evaluates the performance of the new
method and Section 4 presents the results for an example of a
synthetic two-component signal composed of short Gaussian
windowed linear chirps that is constructed to be similar as
a real data measured from a bottlenose dolphin. Section 5
concludes the paper.

2. REASSIGNED SPECTROGRAMS

A Gaussian windowed constant frequency signal

x(t) = g(t− t0)e−iω0t, (1)

where the unit-energy Gaussian function is

g(t) = π−
1
4 e−

1
2 t

2

, −∞ < t <∞ (2)



is often used to model a short non-stationary signal. The
quadratic class of distributions obey time-frequency shift-
invariance Sx(t − t0, ω − ω0) = Sg(t, ω), meaning that the
further analysis can be restricted to x(t) = g(t). The mag-
nitude of the short-time Fourier transform for the signal in
Eq. (2) applying a Hermite function window is, [4],

Mhk
g (t, ω) =

1√
2k−1(k − 1)!

(t2 + ω2)
(k−1)

2 e−
1
4 (t

2+ω2),

(3)
and the spectrogram is found as

SPhk
g (t, ω) = |Mhk

g (t, ω)|2. (4)

The corresponding reassigned spectrogram is

ReSPhk
g (t, ω) =

=
1

2π

∫∫ ∞
−∞

SPhk
g (s, ξ)δ(t− t̂(s, ξ), ω − ω̂(s, ξ))dsdξ, (5)

where for spectrograms based on the Hermite function win-
dows of a Gaussian signal the more recent formulation, [5],
can be used, i.e.,

t̂(t, ω) = t+
∂

∂t
logMhk

g (t, ω) (6)

ω̂(t, ω) = ω +
∂

∂ω
logMhk

g (t, ω). (7)

Only the first Hermite function leads to perfect localization
when the reassignment technique is applied. For all Hermite
functions k > 1, the reassigned spectrograms will be circles,
[4]. Therefore we restrict to the first Hermite function for fur-
ther use in the reassignment procedure. For the first Hermite
function

h1(t) =
1√√
2π
e−

t2

2

circular symmetry gives

SPh1
g (t, ω) = e−

1
2 (t

2+ω2) (8)

and perfect localization using the reassignment operator, [4].
The reassignment procedure using the optimal Hermite func-
tion h1(t) is named (ReSP1).

2.1. A refined reassigned spectrogram

We illustrate the rescaling approach by using a window of half
the length of the original one, i.e.,

h′1(t) =
1√
2
√
2π
e−

t2

8 ,

and calculate the corresponding spectrogram of the Gaussian
function as
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The scaling of the time-axis is 5/2 and the frequency axis
5/8. For the Gaussian function in Eq. (2), the reassignment
of Eq. (5) will not be perfectly localized. But as we now have
knowledge of the actual error in the time-frequency domain
introduced by the scaled Hermite function, the reassignment
procedure can be compensated accordingly. Compensating
with these factors in the reassignment,

ReSP
h′1
g (t, ω) =

=
1

2π

∫∫ ∞
−∞

SP
h′1
g (s, ξ)δ(t− 5

2
t̂(s, ξ), ω− 5

8
ω̂(s, ξ))dsdξ, (10)

will give us a another perfectly localized spectrum using
the half-width window (ReSP2). The two window functions
h1(t) and h′1(t) both give reassigned spectra that are perfectly
localized. However, they have different properties regarding
the resolution as well as reassignment of noise components.
An old spectrogram approach presented in [11], suggests
that the geometric mean of spectrograms increase the res-
olution when different lengths of the spectrogram windows
are applied. Similarly, we suggest here a geometric mean of
reassigned spectrograms with different scaling of the Hermite
function window. Of course, a solution to Eq. (10) could be
found for any other length and we could certainly combine
more than two windows and in different ways for the final
multiplied reassigned spectrograms. However, we limit the
investigation in this paper to using the geometric combination
of two reassigned spectrograms, i.e.

MReSPg(t, ω) = ReSPh1
g (t, ω) ·ReSPh

′
1

g (t, ω), (11)

named as Multiple Reassigned Spectrograms (MReSP).

3. SIMULATIONS

We illustrate the performance of the proposed method for a
time- and frequencyshifted Gaussian function with t0 = 256
and ω0 = 2π0.125. The corresponding optimal Hermite func-
tion is applied as the window h1(t) and the half-width Her-
mite function as the window h′1(t). Stationary white Gaus-
sian noise giving an total SNR of 0 dB is added to the signal.
In Figure 1, examples of the resulting time-frequency spectra



are seen. The localization of all the reassigned spectrograms
(ReSP1, ReSP2 and MReSP) are clearly seen compared to the
usual spectrogram method using the window h1(t), (SP). The
difference in localization of some of the noise components be-
tween ReSP1 and ReSP2 is seen and the combination of these
two spectra to the MReSP keeps the localization from these
methods but does also reduce the contributing noise.

Fig. 1. Example of the performance of the different methods
for a Gaussian signal disturbed by white Gaussian noise with
SNR=0 dB.

We evaluate the performance of the different algorithms for
different SNR. The focus is on concentration and the evalua-
tion is made in the square limited by the axes seen in Figure 1,
i.e., time-interval 128 to 384 and frequency interval 2π0.075
to 2π0.175 using the Rényi entropy of order α,

Rα(P ) =
1

1− α
log2

∫ t1

t0

∫ ω1

ω0

(P (t, ω))αdtdω, (12)

for α > 0, and any energy normalized time-frequency distri-
bution P (t, ω), [3, 12, 13] . The Rényi entropy is calculated
for the often used α = 3. We estimate the spectrograms for
100 different realizations of the signal disturbed by noise. The
Rényi entropy is computed for each estimate and the average
is depicted in Figure 2. The results clearly show that the best
concentration is given from the MReSP, which also can be
seen to be more robust for a higher noise disturbance (lower
SNR) than the ReSP1 and ReSP2. The ReSP1 outperforms as
expected the ReSP2 as the window function h1(t) is more op-
timal to the specific Gaussian signal than the window function
h′1(t). The usual spectrogram (SP) has as expected a concen-
tration that is not comparable to the reassigned techniques.
The optimal result in Figure 2 will be degraded if the model
assumption of the Gaussian function is wrong compared to
the actual signal. To evaluate this degradation, a simulation
is performed where the resulting difference between the as-
sumed Gaussian function of the methods and the actual one
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Fig. 2. The average Rényi entropy (α = 3) from 100 simula-
tions for the different methods and different SNR for a Gaus-
sian function disturbed by white noise.

in the estimate is investigated. The performance is evaluated
for the Gaussian function without disturbance. For the scal-
ing factor SC = 1, the optimal Hermite function windows,
h1(t) and h′1(t), are applied in the estimation procedure. All
reassigned methods will give a Rényi entropy that is zero,
i.e., all values are reassigned to a single point. Assuming
the Gaussian signal to be half the actual length, (SC=0.5), or
twice as wide, (SC=2), show that the performance degrades
even for smaller deviations. However, the MReSP still gives
a smaller value of the Rényi entropy than using the ReSP1 or
ReSP2. The usual spectrogram (SP) is quite robust to the scal-
ing which is natural as a narrow window in time contributes
with additional widening of the window in frequency.

0.5 1 1.5 2
0

2

4

6

8

10

12

14

SC

R
e
n

y
i

 

 

SP

ReSP1

ReSP2

MReSP

Fig. 3. The Rényi entropy of the different methods applied to
the noise-free Gaussian function when the assumption of the
signal length changes from half, (SC=0.5), to twice, (SC=2),
the length that it actually has.



4. APPLICATION TO TRANSIENT BIOSONAR
SIGNALS

The test signal illustrated in Figure 4 is a synthetic two-
component signal composed of short Gaussian windowed
linear chirps that is constructed to be similar as a real data
measured from a bottlenose dolphin. We focus on to resolve
the two components in a disturbance of white Gaussian noise.
The results of the example signal are shown in Figure 5 for
the different methods where also a comparison is made to
the result of the Choi-Williams distribution (CW), [14], and
the Reassigned Smoothed Pseudo Wigner-Ville Distribution
(ReSPWVD), [2]. For all methods, the parameters giving the
smallest Rényi entropy are chosen.
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Fig. 4. A synthetic two-component signal composed of Gaus-
sian short windowed linear chirps that is constructed to be
similar as a real data measured from a bottlenose dolphin. A
disturbance of SNR=-3 dB.

Fig. 5. Example of different time-frequency spectra for the
signal in Figure 4.
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Fig. 6. The performance of the methods for the signal in Fig-
ure 4 for different SNRs. The Rényi entropys are averages
from the results of 100 simulations.

The Rényi entropies of the example signal are measured for
the low frequency component localized in the lower left cor-
ner of the time-frequency plots limited by the white lines in
each figure and is evaluated for different amounts of white
noise disturbance. We estimate the spectrograms for the sig-
nal disturbed by 100 different realizations of the noise and
calculate the Rényi entropy for each simulation. The aver-
age is shown in Figure 6 for different SNR. The spectrogram
(SP) and the Choi-Willams distribution (CW) both have bad
performance followed by the ReSPWVD. Both ReSP1 and
ReSP2 give similar Rényi entropy but the lowest values are in
all cases given by MReSP, showing the advantage in localiza-
tion as well as robustness against disturbances.

5. CONCLUSIONS

The results indicate that the refined reassignment technique,
exemplified by the MReSP, can be used to precisely local-
ize multiple signal components in both time and frequency
in noisy environments. It thus holds great potential to be a
valuable tool in e.g., biosonar research where small time and
frequency differences between multiple echolocation signal
component needs to be characterized. It will also be useful to
incorporate this method in applications where voice tracking
of individual dolphins is necessary, e.g. where the individual
echolocation behavior is studied in large groups of animals,
echolocating concurrently at closely spaced objects.
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