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Abstract

A generalized Green functions technique for wave propagation of transient
fields in one-dimensional media is developed. The medium is partitioned into
an arbitrary number of subslabs for which Green operators, that map the
incident field to the internal fields, are defined. Relations between the Green
operators for the entire medium and the Green operators for the subslabs
are derived. The technique leads to fast numerical algorithms which are es-
pecially efficient for dispersive media. The numerical examples focus on the
comparison between wave propagation in dispersive and non-dispersive media.

1 Introduction

Wave propagation of transient waves in one-dimensional inhomogeneous media is
an area where time-domain techniques are often superior to frequency domain tech-
niques. In a recent paper [1] a new solution technique in the time domain, called
the Green function technique, was developed for wave propagation in non-dispersive
inhomogeneous media. In this method Green operators are introduced that map an
incident field to the internal fields. The Green operators are represented by kernels
that satisfy hyperbolic equations. The hyperbolic equations are suitable for numer-
ical treatment and can be used for the solution of the direct scattering problem as
well as the inverse scattering problem. The technique has been applied to different
types of dispersive media for both direct and inverse scattering problems, cf. [2]- [4].
The Green functions technique is related to the invariant imbedding technique which
also has been applied to several direct and inverse scattering problems, cf [5], [6]
and [7]- [9]. Both methods are based upon a wave splitting technique. A review of
other time domain methods that are related to the Green functions technique and
the invariant imbedding method can be found in [10].

In the present paper the Green functions technique is generalized to a one-
dimensional medium partitioned into an arbitrary number of inhomogeneous sub-
slabs. In this new technique, Green operators for the subslabs are introduced and
relations between the Green operators for the whole medium and the Green oper-
ators for the subslabs are derived. This technique leads to algorithms suitable for
parallel processing. Two different relations are found, whose basic difference lies in
the choice of boundary conditions used for the subslabs. The first relation is obtained
by a technique analogous to the imbedding technique, cf [5]. The second relation
uses the Redheffer star product, cf [11] and [9]. The new technique can be applied
to wave propagation in any one-dimensional linear medium, but only dispersive in-
homogeneous media will be considered in this paper. Computationally the original
Green functions technique is very memory requiring for wave propagation problems
for dispersive media, so that the class of dispersive problems that this technique
can be applied to is limited. In the partitioning technique developed in this paper
the memory requirements are considerably smaller and therefore a much larger class
of wave propagation problems for dispersive media can be handled numerically. In
the numerical examples the new technique is applied to dispersive wave propagation
problems for which the original technique is too memory requiring.
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The outline of the paper is as follows. In section 2 the wave equation is derived
for dispersive media and the wave splitting is defined. In section 3 the Green op-
erators and kernels for the entire medium are introduced and the equations for the
Green kernels are derived. The corresponding equations for the non-dispersive case
will not be presented, cf [1]. In section 4 the scattering medium is partitioned in
subslabs and the corresponding Green operators for these imbedded slabs are intro-
duced. The connection between the Green operators for the imbedded slabs and the
Green operator for the whole medium is also given in this section. The numerical
section contains a presentation of the most common models for dispersive media and
numerical examples of wave propagation in these media. The new technique makes
it possible to study wave propagation in these dispersive media as their properties
approach those of non-dispersive dielectric media. Numerically these wave prop-
agation problems require high accuracy and serve as good tests for the numerical
algorithms.

2 The wave equation and wave splitting

The solution technique described in the two following sections is general and may be
applied to any linear one-dimensional medium. For the sake of clarity the method
will only be exemplified explicitly for a dispersive medium. The constitutive re-
lations, the wave equation and the corresponding wave splitting for a dispersive
medium will be given in this section.

Linear isotropic dispersive media can mostly be described by the electric sus-
ceptibility kernel, χ

e, and the magnetic susceptibility kernel, χ
m, in the following

manner

D(r, t) = ε0(E(r, t) +

∫ t

−∞
χ
e(r, t− t′)E(r, t′) dt′), (2.1)

B(r, t) = µ0(H(r, t) +

∫ t

−∞
χ
m(r, t− t′)H(r, t′) dt′). (2.2)

The constitutive relations in the time domain follow from arguments based upon
invariance under time translation and causality, cf Ref. [12]. There are more general
constitutive relations if the media are chiral or biisotropic, cf Ref. [12], but these are
not to be addressed in this paper. In the paper only non-magnetic materials will be
considered and thus χ

m(r, t) = 0. From now on the electric susceptibility kernels
will simply be called susceptibility kernels and will be denoted as χ. A discussion
of two specific models for the susceptibility kernel is given in the numerical section.

The medium varies with depth z only and the incident wave is planar and nor-
mally incident. Without lack of generality the electric field can be considered to
have only one component, denoted E(z, t). It is assumed that the electric field in
the medium is zero prior to t = 0. The wave equation for the electric field for a
dispersive medium is obtained from the Maxwell equations and the relation in Eq.
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(2.1), it reads

∂2
zE(z, t)− 1

c2
0

{
∂2
tE(z, t) + [χ ∗ ∂2

tE](z, t)
}

= 0, (2.3)

where c0 = (µ0ε0)
−1/2 is the speed of light in vacuum. The following notation for

convolution integral has been introduced:

[f ∗ g](z, t) =

∫ t

0

f(z, t− t′)g(z, t′) dt′. (2.4)

The wave equation, rewritten as a system of first order PDE:s, then reads

∂z

(
E

∂zE

)
=


 0 1

1

c2
0

{
∂2
t + [χ ∗ ∂2

t ]
}

0


 (

E
∂zE

)
= A

(
E

∂zE

)
. (2.5)

The wave splitting is now done according to the principal part, ∂2
z − c−2

0 ∂2
t , of

the wave equation. Thus the following change of basis is introduced:

E±(z, t) =
1

2

{
E(z, t)∓ c0

∫ t

0

∂zE(z, t′) dt′
}

. (2.6)

In vacuum, the split fields E± correspond to left (negative z direction) and right
(positive z direction) moving waves. In a matrix form the change of basis reads(

E+

E−

)
=

1

2

(
1 −c0∂

−1
t

1 c0∂
−1
t

) (
E

∂zE

)
= P

(
E

∂zE

)
(2.7)

where ∂−1
t denotes integration in time. Thus the split fields E+ and E− satisfy the

following relations {
E+ + E− = E
E− − E+ = c0∂

−1
t ∂zE.

(2.8)

The inverse of the matrix operator P reads

P−1 =

(
1 1

−c−1
0 ∂t c−1

0 ∂t

)
. (2.9)

The wave equation may now be written in terms of the new basis E± as

∂z

(
E+

E−

)
= PAP−1

(
E+

E−

)
=

(
α β
−β −α

) (
E+

E−

)
(2.10)

where 


α = − 1

c0

∂t −
1

2c0

χ ∗ ∂t

β = − 1

2c0

χ ∗ ∂t
(2.11)
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3 The Green functions method

In this section the Green operators, that map the incident field to the internal fields,
are introduced and the corresponding PDE:s for the Green kernels are derived. Sim-
ilar presentations are found in, e.g. [1], [4] and [3]. The advantage of introducing
Green operators is that they are fundamental solutions to the wave equation, inde-
pendent of the incident field and are thus given solely by the medium.

Consider a slab extending from z = 0 to z = L of dispersive media. Outside
the slab there is vacuum. For a wave propagating in the positive z−direction and
incident at z = 0 the following relations may be verified by arguments based upon
invariance under time translation and causality:(

E+

E−

)
(z, t + z/c0) =

(
G+(z)
G−(z)

)
E+(0, t) = (3.1)

=

(
a(0, z)

0

)
E+(0, t) +

[(
G+(z, ·)
G−(z, ·)

)
∗ E+(0, ·)

]
(t),

where

a(z0, z1) = exp

(
−

∫ z1

z0

χ(z′, 0) dz′/2c0

)
. (3.2)

is the attenuation of the wave front. The operators G+(z) and G−(z) are called the
Green operators and the kernels G±(z, t) are referred to as the Green kernels. The
time dependence in the operators is suppressed in the argument.

One also may introduce Green operators F± and Green kernels F±(z, t) for a
wave propagating in the negative z−direction and incident at z = L. Thus(

E+

E−

)
(z, t + (L− z)/c0) =

(
F+

F−
)

E−(L, t) = (3.3)

=

(
0

a(z, L)

)
E−(L, t) +

[(
F+(z, ·)
F−(z, ·)

)
∗ E−(L, ·)

]
(t).

In the representations in Eqs. (3.1) and (3.3) wave front time is used. This
means that t = 0 at a point z when the wave front passes that point. Thus time
is shifted an amount τ = z/c0 and τ = (L − z)/c0, respectively, compared to an
absolute time where time is zero when the incident wave hits the respective surface
of the slab.

The equations for the kernels G± are now derived. The derivation of the cor-
responding equations for the kernels F± is analogous. Differentiation of Eq. (3.1)
with respect to z gives(

∂z +
1

c0

∂t

) (
E+

E−

)
(z, t +

z

c0

) =

(
∂za(0, z)
0

)
E+(0, t) +

+

[(
∂zG

+(z, ·)
∂zG

−(z, ·)

)
∗ E+(0, ·)

]
(t). (3.4)
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The z−derivative of E+ and E− are eliminated by the dynamics in Eq. (2.10) and
thus

− 1
2c0

{[
∂tχ(z, ·) ∗ (E+ + E−)(z, ·+ z

c0
)
]
(t) + χ(z, 0)(E+ + E−)(z, t + z

c0
)
}

=

= ∂za(0, z)E
+(0, t) + [∂zG

+(z, ·) ∗ E+(0, ·)] (t) (3.5)

1
2c0

{[
∂tχ(z, ·) ∗ (E+ + E−)(z, ·+ z

c0
)
]
(t) + χ(z, 0)(E+ + E−)(z, t + z

c0
)
}

+

+ 2
c0
∂tE

−(z, t + z
c0

) = [∂zG
−(z, ·) ∗ E+(0, ·)] (t) (3.6)

By using the representation in Eq. (3.1) it is seen that E− can be eliminated
giving

− 1

2c0

{
a(0, z)[∂tχ ∗ E+] + [∂tχ ∗ (G+ + G−) ∗ E+] + χ(z, 0)a(0, z)E++ (3.7)

+χ(z, 0)[(G+ + G−) ∗ E+]
}

= ∂za(0, z)E
+ + [∂zG

+ ∗ E+],

1

2c0

{
a(0, z)[∂tχ ∗ E+] + [∂tχ ∗ (G+ + G−) ∗ E+] + χ(z, 0)a(0, z)E++ (3.8)

+χ(z, 0)[(G+ + G−) ∗ E+]
}

= [∂zG
− ∗ E+]− 2

c0

([∂tG
− ∗ E+] + G−(0)E+)

where it is understood that the arguments of E± are (0, t) and the arguments of
χ and G± are (z, t). Identification of the terms proportional to E+(0, t) and of
the terms expressed as convolutions with E+(0, t) give the following equations and
initial condition:




2c0∂zG
+(z, t) = −∂t {a(0, z)χ(z, t) + [χ ∗ (G+ + G−)](z, t)}

2c0∂zG
−(z, t)− 4∂tG

−(z, t) = ∂t {a(0, z)χ(z, t) + [χ ∗ (G+ + G−)](z, t)}
(3.9)

G−(z, 0) = −1

4
a(0, z)χ(z, 0) (3.10)

∂za(0, z) +
χ(z, 0)

2c0

a(0, z) = 0. (3.11)

It has then been utilized that E+(0, t) is an arbitrary incident field. From the
representation in Eq. (3.1) it is seen that a(z, z) = 1 and thus Eq. (3.11) is
consistent with Eq. (3.2).

The corresponding equations and initial conditions for the kernels F± read{
2c0∂zF

−(z, t) = ∂t
{
a(z, L)χ(z, t) + [χ ∗ (F+ + F−)](z, t)

}
2c0∂zF

+(z, t) + 4∂tF
+(z, t) = −∂t

{
a(z, L)χ(z, t) + [χ ∗ (F+ + F−)](z, t)

}
(3.12)

F+(z, 0) = −1

4
a(z, L)χ(z, 0). (3.13)
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The boundary conditions of the kernels G± and F± are needed to solve the
equations (3.1) and (3.3) uniquely. These boundary conditions follow from the
representations in Eqs. (3.1) and (3.3) and read


G+(0, t) = 0
G−(L, t) = 0
F+(0, t) = 0
F−(L, t) = 0.

(3.14)

It also should be noted that the boundary values G−(0, t), and F+(L, t) are the
reflection kernels and G+(L, t) and F−(0, t) the transmission kernels of the medium.

4 The Green operators of a medium from Green

operators of imbedded media

The objective of this section is to introduce relationships that allow one to construct
the Green operators of a stratified medium from the Green operators of its imbed-
ded media. Two different approaches are presented. In both approaches the slab
is partitioned into subslabs. The approaches differ due to the different boundary
conditions used for the Green kernels of the subslabs.

The first approach is referred to as the imbedded approach. Local Green kernels
are then calculated for a sequence of subslabs. The local Green kernels of each
subslab depends, via boundary conditions, on the local Green kernels of the previous
subslab in the sequence. The approach is analogous to the imbedding method used
in invariant imbedding techniques, [5].

In the other approach, the composite approach, the total medium is viewed as
being a composite of independent subslabs. The local Green kernels of the subslabs
are calculated assuming the subslab is imbedded in vacuum. The Green kernels
of the entire medium are then constructed by combining these disjoint local Green
kernels via the Redheffer star product, [11].

The disjoint approach is more complicated in its structure than the imbedded
approach. The major advantage of it is that the local Green kernels are properties
of the individual subslabs. Thus from a set of local Green kernels the scattering
kernels of different composite media can be obtained.

Both approaches are suitable for implementation on a parallel processing com-
puter. An algorithm based upon the imbedded approach has successfully been im-
plemented on a N-cube machine using 128 nodes. The algorithm assigns one node of
the computer for each subslab. A node only communicate with its neighbours and
the only information that is transferred is the boundary conditions of the subslabs.

In the first subsection the sequential approach is discussed for the simple case
of a medium partitioned in two subslabs. This subsection should be seen as an
introduction to the general cases treated in the other subsections.
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4.1 The imbedded approach: The simple case of two sub-
slabs

In this subsection a slab is partitioned into two subslabs and the Green operators
of the whole slab are obtained from the Green operators of the subslabs. The
whole slab will be denoted M0 and as in the previous section it occupies the region
0 ≤ z ≤ L. In the regions z < 0 and z > L there is vacuum. The slab is divided
into two subslabs S0 = [0, z1] and M1 = [z1, L]. Local Green operators g±(z,M1)
are introduced for the subslab M1. These operators map a field, E+(z1, t), incident
on the subslab M1 to the internal fields of M1. From the representation in Eq. (3.1)
it follows that(

g+(z,M1)
g−(z,M1)

)
E+(z1, t) =

(
a(z1, z)

0

)
E+(z1, t) +

+

[(
g+(z,M1, ·)
g−(z,M1, ·)

)
∗ E+(z1, ·)

]
(t), z ∈M1. (4.1)

The initial and boundary conditions of the kernels g±(z,M1, t) are the same as for
G±(z, t) in the previous section, i.e.,

g−(z,M1, 0) = −1

4
a(z1, z)χ(z, 0) (4.2)

{
g+(z1,M1, t) = 0
g−(L,M1, t) = 0

(4.3)

Thus g± are the Green operators for M1 when M1 is imbedded in vacuum. The
kernels g±(z,M1, t) satisfy the same equations as G±(z, t), i.e., Eq. (3.9).

A relation between the Green operators of the entire slab, G±(z), and the Green
operators of the subslab M1, g±(z,M1), can be found by the following arguments.
Given E+(0, t) as the input on M 0, the input on M1 is given by E+(z1, t + z1/c0) =
G+(z1)E

+(0, t). From this, the internal fields for z ∈ M1 are given by

E±(z, t + z/c0) = g±(z,M1)G+(z1)E
+(0, t) (4.4)

and thus
G±(z) = g±(z,M1)G+(z1), z ∈M1. (4.5)

This relation is fundamental for the partitioning techniques developed in this paper.
If the material parameters are continuous across z1, equation (4.5) can be written
explicitly in terms of its kernels as

G+(z, t) = a(z1, z)G
+(z1, t) + a(0, z1)g

+(z,M1, t) +

+
[
g+(z,M1, ·) ∗G+(z1, ·)

]
(t) (4.6)

G−(z, t) = a(0, z1)g
−(z,M1, t) +

[
g−(z,M1, ·) ∗G+(z1, ·)

]
(t), z ∈M1. (4.7)

As a first step in an algorithm to obtain G±(z, t), the kernels g±(z,M1) are
determined from Eq. (3.9) using the boundary conditions in Eq. (4.3) and the
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Figure 1: The partitioned medium.

initial condition in Eq. (4.2). From Eq. (4.7) it is seen that the boundary condition
for G−(z, t) at z = z1 reads

G−(z1, t) = a(0, z1)g
−(z1,M1, t) + [g−(z1,M1, ·) ∗G+(z1, ·)](t). (4.8)

From this boundary condition and the initial condition in Eqs. (3.10) the kernels
G±(z, t) can be solved for the region 0 < z < z1 from Eq. (3.9). As a last step
G±(z, t) has to be determined for the region z ∈ M1. This is done from Eq. (4.5)
for z ∈M1, since both operators on the right hand side are known at this stage.

It is straightforward to partition the slab into three subslabs. This is done by
dividing the region M1 into two regions, S1 = {z : z1 < z2} and M2 = {z : z2 < z <
L}. The Green operators for M1, i.e. g±(z,M1), will then be determined from the
Green operators for M2, i.e., g±(z,M2), by using Eq. (4.5) again. To continue the
partitioning process the region M2 is divided into two regions, and so on. Thus it is
straightforward to generalize the technique described in this subsection to the case
of an arbitrary number of subslabs. This is done in the next two subsections.

4.2 Green operators for the subslabs

In the rest of this section the imbedded approach and the composite approach are
presented for the general case of an arbitrary number of subslabs. In this subsec-
tion the general medium is described and the Green operators of the subslabs are
introduced. The medium in question (denoted M0) occupies the region 0 ≤ z ≤ L
with vacuum in the regions z < 0 and z > L. The input on M0 will be from the left
only, but all results will carry over for the case of input from the right.

An imbedded slab of M0 is any region [ζ1, ζ2] = {z : 0 ≤ ζ1 ≤ z ≤ ζ2 ≤ L}.
Assume first that the medium is partitioned into N + 1 regions [zi, zi+1], where
z0 = 0 and zN+1 = L, see Fig. 1. The imbedded slabs [zi, zi+1] are denoted Si
and the imbedded slabs [zi, L] are denoted Mi. Defining the notation Si ∪ Si+1 as a
subslab defined in the region [zi, zi+2] it follows that

Mi =
N
∪
k=i

Sk (i = 0, N), (4.9)

Mi = Si ∪Mi+1 (i = 0, N − 1). (4.10)
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The Green operators of M0 for input from the left are given in Eq. (3.1). The
operators g+ and g− of an imbedded slab [zi, zj] are introduced accordingly as(

g+(z, [zi, zj])
g−(z, [zi, zj])

)
E+(zi, t) =

(
a(zi, z)

0

)
E+(zi, t) +

+

[(
g+(z, [zi, zj], ·)
g−(z, [zi, zj], ·)

)
∗ E+(zi, ·)

]
(t), z ∈ [zi, zj](4.11)

and (
f+(z, [zi, zj])
f−(z, [zi, zj])

)
E−(zj, t) =

(
0

a(z, zj)

)
E−(zj, t) + (4.12)

+

[(
f+(z, [zi, zj], ·)
f−(z, [zi, zj], ·)

)
∗ E−(zj, ·)

]
(t), z ∈ [zi, zj],

where the arguments (z, [zi, zj]) indicate z as the point of evaluation and [zi, zj] as
the domain of the operators and kernels. The initial and boundary conditions of the
kernels g± and f± are the same as for G± and F± in the previous section, i.e.,{

g−(z, [zi, zj], 0) = −1
4
a(zi, z)χ(z, 0)

f+(z, [zi, zj], 0) = −1
4
a(z, zj)χ(z, 0)

(4.13)




g+(zi, [zi, zj], t) = 0
g−(zi+1, [zi, zj], t) = 0
f+(zi, [zi, zj], t) = 0
f−(zi+1, [zi, zj], t) = 0.

(4.14)

If there is vacuum for z > zj then (g+(z, [zi, zj]) + g−(z, [zi, zj])E
+(zi, t) is the

internal field at z ∈ [zi, zj] from an incident field E+(zi, t). If there is not vacuum
for z > zj then that part of the medium will generate an incident field from the
right, which will contribute to the internal field.

The relation in Eq. (4.5) also holds for the operators G±(z) and g±(z,Mi) and
thus

G±(z) = g±(z,Mi)G+(zi), z ∈Mi. (4.15)

Since the material parameters are assumed to be continuous across zi, equation
(4.15) can be written explicitly in terms of its kernels as

G+(z, t) = a(zi, z)G
+(zi, t) + a(0, zi)g

+(z,Mi, t) +

+
[
g+(z,Mi, ·) ∗G+(zi, ·)

]
(t) (4.16)

G−(z, t) = a(0, zi)g
−(z,Mi, t) +

[
g−(z,Mi, ·) ∗G+(zi, ·)

]
(t), z ∈Mi.(4.17)

Realizing that Mi+1 is an imbedded part of Mi and also of M0 the relation given
in Eq. (4.15) can be generalized so that for z ∈ Mi+1, g±(z,Mi) is expressed in
terms of g±(z,Mi+1) via

g±(z,Mi) = g±(z,Mi+1)g
+(zi+1,Mi), z ∈Mi+1. (4.18)

Equation (4.18) is the underlying structure for the algorithms presented below.
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Figure 2: A flowchart of the algorithm to generate G±, where the boxes 1, 2 and 3
correspond to the respective steps below.

4.3 The imbedded approach: An arbitrary number of sub-
slabs

An algorithm based upon Eq. (4.15) with i = N includes three steps. First
g±(z,MN) is determined for z ∈ MN . The kernel g−(zN ,MN , t) is then used as
a boundary condition when G±(z) is determined for z ∈ [0, zN ]. Finally, G+(zN) is
used to obtain G±(z) for z ∈ MN using Eq. (4.15).

The region [0, zN ] can now be broken into smaller pieces by using Eq. (4.18)
recursively. A flowchart for the algorithm is given in Fig. 2, where the recursive
part is indicated by the dotted lines.

In an iterative form the algorithm reads:

1. Start with the boundary condition g−(zN+1,MN , t) = 0 and determine g±(z,MN , t)
for z ∈ SN from Eq. (3.9)

2. Do the following steps for i = N − 1 to i = 0

Generate g±(z,Mi, t), z ∈ Si, from Eq. (3.9) using

g−(zi+1,Mi, t) =

=a(zi, zi+1)g
−(zi+1,Mi+1, t) + [g−(zi+1,Mi+1, ·) ∗ g+(zi+1,Mi, ·)](t)
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as the boundary condition at z = zi+1 according to Eq. (4.18).

3. Since g±(z,M0, t) = G±(z, t), the Green operators for z ∈ S0 are done at this
stage. To obtain the Green operators for z ∈M1 the following steps are done
for i = 1 to N according to Eq. (4.15)

G+(z, t) = a(zi, z)G
+(zi, t) + a(0, zi)g

+(z,Mi, t) +

+
[
g+(z,Mi, ·) ∗G+(zi, ·)

]
(t), (4.19)

G−(z, t) = a(0, zi)g
−(z,Mi, t) +

[
g−(z,Mi, ·) ∗G+(zi, ·)

]
(t), z ∈ Si (4.20)

4.4 The composite approach

The last subsection showed that one can find G±(z, t) from the Green operators of
the imbedded slabs Mi. In this subsection, a modification is made to the algorithm
so that one can find G±(z) from g±(z, Si) and f±(z, Si). That is to find G±(z) from
the Green operators of subslabs Si imbedded in vacuum. This method is appealing
in the construction of the Green operators of composite media. The Green operators
for each Si can be generated and then stored. With such a data base, the Green
operators for different composite media M0 can be created by permuting the order
of the subslabs. Also, calculating the Green operators for disjoint Si gives a way
to parallelize the numerical code. The derivation of the algorithm is based upon
arguments used in the Redheffer star product, cf. [11] and [9].

It is possible to generate the Green operators g±(z,Mi) from the operators of
Si and Mi+1, i.e., g±(z, Si), f±(z, Si) and g±(z,Mi+1). This is realized when one
views g−(zi+1,Mi+1) operating on E+(zi+1) as the input from the right on Si. The
input from the left and from the right on Si are mapped to the internal fields by the
operators g±(z, Si) and f±(z, Si). Thus for z ∈ Si

E±(z, t +
z − zi
c0

) = g±(z, Si)E
+(zi, t) + L±(z,Mi+1)E

+(zi, t +
z − zi
c0

), (4.21)

where L±(z,Mi+1)E
+(zi, t + z−zi

c0
) is that part of the field that is induced by Mi+1.

Since from Eq. (3.1)

E±(z, t +
z − zi
c0

) = g±(z,Mi)E
+(zi, t) (4.22)

the following fundamental relation is obtained

g±(z,Mi)E
+(zi, t) = g±(z, Si)E

+(zi, t) + L±(z,Mi+1)E
+(zi, t +

z − zi
c0

), z ∈ Si.

(4.23)
The operator L can be expressed in terms of the Green operators. To do this it is
first observed from Eq. (4.12) that

L±(z,Mi+1)E
+(zi, t) = f±(z, Si)E

−(zi+1, t +
z − zi+1

c0

) (4.24)
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where E−(zi+1, t) is related to E+(zi, t) by

E−(zi+1, t) = g−(zi+1,Mi+1)
(
g+(zi+1, Si)E

+(zi, t− (zi+1 − zi)/c0)+

+f+(zi+1, Si)E
−(zi+1, t)

)
. (4.25)

By a formal operation the field E−(zi+1, t) can be eliminated and since E+(zi, t) is
an arbitrary incident field the expression for L is obtained

L± (z,Mi+1) = (4.26)

= f±(z, Si)
[
1− g−(zi+1,Mi+1)f

+(zi+1, Si)
]−1

g−(zi+1,Mi+1)g
+(zi+1, Si).

From the expressions in Eqs. (4.21)-(4.26) it is seen that the contribution

L±(z,Mi+1)E
+(zi, t +

z − zi
c0

) (4.27)

in Eq. (4.21) reaches the point z a time 2(zi+1 − z)/c0 later than the contribution
g±(z, Si)E

+(zi, t), as expected. The time delay (z − zi)/c0 in the second term of
the right hand side of Eq. (4.21) was introduced to avoid explicit time delays in the
operator expression in Eq. (4.26).

The inverse operator appearing in Eq. (4.26) can be expressed in terms of a
resolvent kernel Ki+1(t) as

[
1− g−(zi+1,Mi+1)f

+(zi+1, Si)
]−1

E(t) = E(t) + [Ki+1(·) ∗ E(·)] (t) (4.28)

from which it is seen that the kernel Ki+1(t) satisfies the Volterra equation of the
second kind

Ki+1(t) −
[
g−(zi+1,Mi+1, ·) ∗ f+(zi+1, Si, ·)

]
(t)− (4.29)

−
[
g−(zi+1,Mi+1, ·) ∗ f+(zi+1, Si, ·) ∗Ki+1(·)

]
(t) = 0.

The kernel Ki+1(t) also may be obtained by expanding the inverse operator in Eq.
(4.26) in a power series

[
1− g−(zi+1,Mi+1)f

+(zi+1, Si)
]−1

E(t) = (4.30)

= E(t) +
∞∑
n=1

(g−(zi+1,Mi+1)f
+(zi+1, Si))

nE(t) =

= E(t) +

[ ∞∑
n=1

(g−(zi+1,Mi+1, ·) ∗ f+(zi+1, Si, ·)∗)nE
]

(t)

thus

Ki(t) =

[ ∞∑
n=1

(g−(zi,Mi, ·) ∗ f+(zi, Si−1, ·)∗)n−1g−(zi,Mi, ·) ∗ f+(zi, Si−1, ·)
]

(t).

(4.31)
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From a general convergence proof for functional power series given in [13] it is seen
that the series in Eq. (4.31) converges for all times if the kernels g−(zi+1,Mi+1, t)
and f+(zi+1, Si, t) are bounded. The rate of convergence depends on the behavior
of the kernels g−(zi+1,Mi+1, t) and f+(zi+1, Si, t) and might be hard to analyze a
priori.

The relations in Eq. (4.26) are a generalization of the Redheffer star product [11]
used to find the reflection and transmission operators of Mi, from the respective
operators of Si and Mi+1.

The numerical implementation of these ideas involves the following three steps:

1. First generate g±(z, Si) and f±(z, Si), z ∈ Si for i = 0 to i = N by numerically
solving Eqs. (3.9) and (3.12). Notice that g±(z,MN , t) = g±(z, SN , t) for
z ∈ SN .

2. Use the “gluing” procedure described by Eq. (4.26) i.e., do the following steps
for i = N to i = 1

Solve Eq. (4.29) for Ki(t) or use the series in Eq. (4.31) to obtain Ki(t)

Introduce the kernel I−i (t) as
I−i (t) = a(zi−1, zi) (g−(zi,Mi, t) + [Ki(·) ∗ g−(zi,Mi, ·)] (t)) +

+ [g−(zi,Mi, ·) ∗ g+(zi, Si−1, ·)] (t)+
[g−(zi,Mi, ·) ∗ g+(zi, Si−1, ·) ∗Ki(·)] (t)

Generate g±(z,Mi−1, t) for z ∈ Si−1 via

g+(z,Mi−1, t) = g+(z, Si−1, t) +
[
f+(z, Si−1, ·) ∗ I−i (·)

]
(t− 2(zi − z)/c0)

g−(z,Mi−1, t) = g−(z, Si−1, t) + a(z, zi)I
−
i (t− 2(zi − z)/c0)+

+
[
f−(z, Si−1, ·) ∗ I−i (·)

]
(t− 2(zi − z)/c0)

3. Update G± for the region z ∈ M1 by doing step 3 in the algorithm in the
subsection above, i.e., for i = 1 to N

G+(z, t) = a(zi, z)G
+(zi, t) + a(0, zi)g

+(z,Mi, t) +

+
[
g+(z,Mi, ·) ∗G+(zi, ·)

]
(t), (4.32)

G−(z, t) = a(0, zi)g
−(z,Mi, t) +

[
g−(z,Mi, ·) ∗G+(zi, ·)

]
(t), z ∈ Si (4.33)

This method assumes that the impedance is continuous across the interfaces.
That is always the case when the media are dispersive and described by the con-
stitutive relation in Eq. (2.2). The continuity is manifest in that g−(z,Mi, t) =
g−(z, (zi, L], t) where (zi, L] then denotes the region zi < z ≤ L. These kernels are
not equal to each other if two dissimilar materials are interfaced at z = zi such that
there will be an impedance mismatch at that point. To see how this comes about
assume that two stratified media of arbitrary composition are interfaced together.
Assume the following general boundary conditions for the Maxwell equations char-
acterized by an operator valued matrix B(

E
∂zE

)
(z−i , t) = B

(
E

∂zE

)
(z+
i , t). (4.34)
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Applying the respective splitting of each medium to the above equation (they might
not be a vacuum splitting) one has as the interfacing operator(

E+

E−

)
(z−i , t) = P(z−i )BP−1(z+

i )

(
E+

E−

)
(z+
i , t) = T

(
E+

E−

)
(z+
i , t). (4.35)

The reflection properties of the interface will now be extracted from Eq. (4.35).
Noting that E−(z+

i , t) = g−(z+
i , (zi, L])E+(z+

i , t) and using Eq. (4.35) the following
relation is formed

E−(z−i , t) =
[
T21 + T22g

−(z+
i , (zi, L])

] [
T11 + T12g

−(z+
i , (zi, L])

]−1
E+(z−i , t),

(4.36)
Since E−(z−i , t) = g−(z−i , [zi, L])E+(z−i , t) it follows that

g−(z−i , [zi, L]) =
[
T21 + T22g

−(z+
i , (zi, L])

] [
T11 + T12g

−(z+
i , (zi, L])

]−1
. (4.37)

It is assumed that the inverse of the operator expression in the above equation does
exist. The actual validity of that statement will be taken on a case by case basis.

As an example consider an interface that has a dielectric medium on the left and
a dispersive medium on the right. The wave equation for the dielectric medium is

∂z

(
E

∂zE

)
(z, t) =


 0 1

1

c(z)2
∂2
t 0


 (

E
∂zE

)
(z, t) (4.38)

and is put into normal form via the splitting

P(z) =

(
1 −c(z)∂−1

t

1 c(z)∂−1
t

)
. (4.39)

From the boundary conditions of the Maxwell equations it is shown that(
E

∂zE

)
(z−i , t) =

(
E

∂zE

)
(z+
i , t), i.e.B = I, (4.40)

and by applying the splittings for the respective media one obtains

(
E+

E−

)
(z−i , t) =

1

2


 1 +

c(z−i )

c0

1− c(z−i )

c0

1− c(z−i )

c0

1 +
c(z−i )

c0




(
E+

E−

)
(z+
i , t). (4.41)

Using Eq. (4.37) as motivation one obtains

E−(z−i , t) =
[[

r + g−(z+
i , (zi, L], ·)∗

] [
1 + rg−(z+

i , (zi, L], ·)∗
]−1

E+(z−i , ·)
]
(t),

(4.42)
where the reflection coefficient is given by

r =
c0 − c(z−i )

c0 + c(z−i )
. (4.43)
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The inverse operator that appears in Eq. (4.42) may be expressed in terms of the
resolvent kernel J(t) as[[

1 + rg−(z+
i , (zi, L], ·)∗

]−1
E+(z−i , ·)

]
(t) = E+(z−i , t) +

[
J(·) ∗ E+(z−i , ·)

]
(t).

(4.44)
The kernel J(t) then satisfies the resolvent equation

rg−(z+
i , (zi, L], t) + J(t) + r

[
g−(z+

i , (zi, L], ·) ∗ J(·)
]
(t) = 0. (4.45)

5 Numerical examples

In this section the generalized Green functions technique described in section (3) and
(4) is applied to an inhomogeneous dispersive medium. In section 4 two different
ways to relate the Green operators of a dispersive medium to the Green operators
of the subslabs of the medium were described. One was based upon the imbedding
technique and the other on the Redheffer star product. In the examples presented in
this section only the technique based upon the imbedding technique has been used.
The other technique is expected to give identical results.

The two most commonly used models for dispersion in electromagnetics are the
Debye model and the Lorentz model, cf eg. [14] and [15]. First these two models
will be discussed and for this purpose the following notations are introduced:

q = electron charge

m = electron mass

N = electron density

ω0 = the harmonic frequency for an electron bound to an atom

ν = the collision frequency for an electron

τ = the relaxation time for the molecular polarization

ωp =

√
Nq2

ε0m
= the plasma frequency.

The resonance or the Lorentz model is appropriate for most solid materials. The
basic assumption in this model is that the electron is affected by a restoring harmonic
force and a friction force proportional to the velocity of the electron. The explicit
expression for the susceptibility kernel then follows from the equation of motion for
the electron

χ(r, t) = ω2
p(r)

sin ν0(r)t

ν0(r)
e−ν(r)t/2 (5.1)

where ν2
0(r) = ω2

0(r)− ν2(r)/4.
The second type of susceptibility kernel is appropriate for liquids. The basic

assumption in this model is that the polarization of the medium is caused by the
permanent polarization of the molecules. These molecules align to an electric field
E(r, t) with a rate α(r) and the relaxation of the polarization is modeled by the
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relaxation time τ(r). From this assumption the relaxation model or Debye model
follows

χ(r, t) = α(r)e−t/τ(r). (5.2)

Normally the susceptibility kernel for a medium is the sum of several Lorentz or
Debye kernels, cf Ref. [14].

If the variation in time of the electric field is slow compared to the variation of the
susceptibility kernel, the approximate constitutive relationD(r, t) = ε0εr(r)E(r, t).
can be used. From Eqs. (5.1) and (5.2) it follows that in a first order approximation

εr(r) = 1 + (ωp(r)/ω0(r))
2 (5.3)

εr(r) = 1 + α(r)τ(r) (5.4)

for the Lorentz and Debye model, respectively. Thus if ω0 is a high frequency in
a Lorentz medium and if τ is a short time in a Debye medium then propagation
of transient waves in these media is expected to resemble that in non-dispersive
dielectric media. That this is the case will be shown by some numerical results in
this section.

In the examples all media considered are of length L = 1 m. Outside the medium
there is vacuum. Wave propagation in the following media will be considered:

medium 1: dielectric; εr = 1 + 1.25 sin(πz)

medium 2: Debye; τ = 6× 10−11 s, α =
1.25

τ
sin(πz) s−1

medium 3: Debye; τ = 2× 10−10 s, α =
1.25

τ
sin(πz) s−1

medium 4: Lorentz; ν = 0 s−1, ωp =
√

1.25 sin(πz)10−10 s−1, ω0 = 1010 s−1

The permittivity profile is seen in Fig. 3. The values of the parameters in the three
dispersive media are chosen so that the permittivities in Eqs. (5.3) and (5.4) are
identical with the permittivity for the dielectric medium. It will be seen that the
two Debye media respond almost as the dielectric medium even for an incident delta
pulse. The Lorentz medium is seen to be completely different from the dielectric
medium for an incident delta pulse, whereas they respond almost identical to an
incident ramp.

In the graphs the fields and times are normalized with the speed of light in
vacuum. Thus one unit of the normalized time equals the travel time through
one meter of vacuum. Two roundtrips of data have been calculated, as seen from
the figures. For the dispersive media the same discretization has been used in all
examples. The media were divided in 32 slabs, where every slab was discretized in
32 steps in z and 2048 steps in time using a constant stepsize. The equations for the
Green kernels, Eq. (3.9), as well as the convolutions in Eq. (2.1) were calculated
by the trapezoidal rule. The original Green functions method using the trapezoidal
rule for the discretization of the equations would need a grid with 1024 by 2048
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Figure 3: The permittivity profile, εr = 1+1.25 sin(πz), used for the non-dispersive
media in Figs. 4-12.

Figure 4: Reflected fields due to an incident delta pulse (Debye and dielectric) for
the media 1,2 and 3.
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Figure 5: Internal fields in the middle of the slab due to an incident delta pulse for
the media 1, 2 and 3.

Figure 6: Transmitted fields due to an incident delta pulse for the media 1, 2 and
3.



19

Figure 7: Transmitted fields due to an incident step function for the media 1, 2
and 3. The curves are the time integrals of the corresponding curves in Fig. 6.

Figure 8: Reflected fields due to an incident delta pulse for the media 1 and 4.
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Figure 9: Reflected fields due to an incident ramp for the media 1 and 4. The
curves are obtained by integrating the curves in Fig. 8 twice.

Figure 10: Transmitted fields due to an incident delta pulse for media 1 and 4.



21

Figure 11: Transmitted fields due to an incident ramp for media 1 and 4.The curves
are the time integrals of the corresponding curves in Fig. 10.

Figure 12: The early time behavior of the transmitted field due to an incident
ramp for the Lorentz medium, medium 4, and the dielectric medium, medium 1.
The curves are a blowup of the early part of the curves in Fig. 11. The curve for
the Lorentz medium is the Sommerfeld precursor.
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points. That would require an internal memory of about 20 Mbyte, whereas the
new technique only requires approximately 2 Mbyte.

It should be pointed out that using the Green functions method for Debye or
Lorentz media one can use a trick to save memory and increase speed. The trick is
to write the convolution integrals in Eq. (3.9) as

χ
d ∗G = e−t/τ

∫ t

0

et
′/τG(t′)dt′

χ
l ∗G =

e−νt/2

ν

(
sin(ν0t)

∫ t

0

eνt
′/2 cos(ν0t

′)dt′ − cos(ν0t)

∫ t

0

eνt
′/2 sin(ν0t

′)dt′
)

.

By using these expressions, the Green kernels do not have to be saved at all grid-
points. It is enough to save them at the last time step for all z− points. Also the
convolution from the previous timestep is then used to get the convolution at the
next time step and that increases the speed considerably. However, these tricks have
not been used in the numerical examples.

In the first example, Fig. 4, the reflection kernels for media 1, 2 and 3 are
presented. The reflection kernels correspond to the reflected field generated by an
incident delta pulse. It is interesting to see that even here the reflected fields for
the Debye media are close to the one for the dielectric. The discontinuity in the
reflection kernel for the dielectric is due to the discontinuity of the derivative of the
wave velocity at z = L, cf [1]. The delta pulse response, i.e., G+ +G−, at z = 0.5m
and z = 1m is given in Figs. (5) and (6), respectively. It should be noticed that
the total wave for the dielectric medium has a delta pulse contribution at the wave
front that of course is not shown in Figs. (5) and (6). The transmitted fields from
an incident step function of unit height are given in Fig. 7. These fields are simply
the integral of the fields in Fig. 6 except that the integrals over the delta function
contributions were added.

The comparison between the Lorentz medium and the dielectric medium is shown
in Figs. (8)-(12). Figure (8) gives the reflection kernels for the two media. These
kernels do not resemble each other too well. If the kernels are integrated twice the
resulting fields are the responses for an incident ramp, i.e., Ei(0, t) = t, and then the
fields are almost identical, as seen in Fig. 9. In Figs. 10 and 11 the transmitted fields
from an incident delta pulse and ramp, respectively are shown. The difference in
the delta pulse responses is then significant and yet the same fields integrated twice
are almost identical. The difference that can be seen in Fig. 11 is due to numerical
errors and could have been eliminated by reducing the step size by a factor of two.
The last example, Fig. 12, is a blowup of the part of the transmitted field in Fig.
11 that arrived before the main signal arrives. This is the precursor. As expected
it has the same behavior as the Sommerfeld precursor for a homogeneous medium,
cf [15]. It would be very intersesting if also the second (Brillouin) precursor could be
seen. The authors have tried to obtain also this precursor by the present technique.
To clearly see the second precursor it should be separeted from the first precursor
in time. This is the case if the medium is long enough. However when the medium
is made longer the first precursor oscillates more rapidly and thus a smaller gridsize
has to be used in both time and space. Quite soon the limit of the capacity of the
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computer is reached, even using the partitioning techniques discussed in this paper.
So far the authors have not been able to produce a case where the second precursor
is clearly seen. An extensive survey of precursors and wave propagation in dispersive
media using frequency domain methods is found in [16].

Conclusions

The technique developed in this paper may be viewed as a tool for problems con-
cerning transient wave propagation in linear media. From the technique, algorithms
for wave propagation problems can be obtained that are fast and do not require
large internal memories. An advantage is that these algorithms can be implemented
on computers using parallel processors. An important class of problems to which
the technique in this paper is directly applicable is wave propagation in composite
media. The media can then be composed of slabs of different types of materials,
such as isotropic, anisotropic and chiral materials. A subclass of composite media is
periodic media. For periodic media the partitioning technique in this paper uses the
periodicity of the media in a smart way to solve the wave propagation problems in
these media. A project concerning this application is currently under development.
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