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Abstract—An approach to constrained resource allocation for gap between average and worst case performance, this is &
real time software components executing on nondeterminist growing concern when designing consumer devices. Unit cost

hardware is considered. A model for resource consumption s g griving factor and over-provisioning of resources ighity
based on execution rate is investigated together with an eme undesirable

based measurement and parameter estimation scheme. Fingll . )
an algorithm for real time constrained optimization of resources Another reason why classic results are hard to employ is

is presented together with results from a case study with syhetic  that they rely on knowing many of the software properties
software components. in advance. This becomes especially difficult to handle for
media type application such as video decoders or games, as
|. INTRODUCTION the software behavior is very much determined by the specific
The consolidation of telephony, media and general utilitysage. For instance, a low resolution video can consumesorde
computing into modern smart phones has led to increasgfdmagnitude less computational power to decode than one
focus on managing limited resources to make devices flexitite high definition. Designs derived from a-priori knowledge
while also robust, powerful and yet efficient. A large numbeare often static in nature and a sudden change in available
of components are integrated to make up a complex platforgsources or resource need, could render such solutiorss unu
that must function in a variety of use cases and in differeable.
working environments. More and more often, functionality The combination of uncertainty and time variability sugges
is implemented in software running on a general purpogesolution based on feedback and estimation techniquesat.in
CPU rather than as discrete hardware components. Adegdback controllers, which are most commonly used, aré wel
consequence, the method for allocating the CPU resourcestited for situations with unconstrained dynamics. Howeve
competing subsystems becomes central to the performancéhéf type of system discussed in this paper will be working
the product. close to or on the limit of resource availability, something
A CPU is normally seen as a resource where utilizatidhat is difficult to handle using purely linear designs. In-
must be multiplexed, but recently reservation based sdimgdu stead, optimization-based schemes are often employed for
techniques have led to models more related to fluid resougnstrained dynamics. Particularly convex optimizatiends
sharing. This approach allows for more component orientégelf well to online use, as the convexity properties make i
design and simplifies testing and integration. In most caseasier to design efficient and robust solvers.
however, the underlying framework still utilizes classie-r  This paper presents a framework for constrained resource
altime scheduling results, depending on conservative twopganagement for real-time computer systems, with focus on

case properties of the concerned software. With the inzrgasresource heavy applications that perform some repeated com
putation, such as media playback or Model Predictive style

control. These types of applications can be calteding
sensitive meaning that they have timing constraints but rather
Audio than break down if a constraint is not met, performance is
Encoder | degraded.
Video The framework consists of three parts:

Encoder « a component-based system model,

« an event-based parameter estimation scheme and

« a convex programming-based allocation scheme.
The paper will demonstrate how feedback control and convex
optimization theory can be used to pose the allocation prabl
for an uncertain computation platform running software eom
ponents with time varying parameters. A model for uniform
rate components, which can be considered the analogue to pe-
riodic tasks in traditional realtime theory, is preseniegkther
with a technique for online parameter estimation. Provided

Application | | 0OS | |
CPU Scheduler

GSM
Stack

3rd Party
Software

Fig. 1. Overview of the intended target system displayinghnadypical
components.



proof of concept are also experimental results from runnimgsources are converted into results. As it is assumedtikat t
the framework on an unmodified Linux kernel. components have unknown characteristics a-priori, it rbest
The intended target system is a cellular phone with mulfpossible to estimate the parameters online.
media functionality or similiar embedded device.
A. Rate-based processing
Il. RELATED RESEARCH . o . )
The ideas presented in this paper rely on the existence of 6|1:or media applications, the quality of the output is strgng|

. . . _connected to the processing rate. Higher frame-rates means
reservation based scheduling layer that can be used tdiqrarti S ; . :
. X more fluid video playback, higher bit-rates means more infor
the CPU-resources predictably. Theory for reservations c

%ation in each frame. Similarly, in a control system, cohtro
be derived from traditional EDF scheduling, resulting im fo Y, y '

: . _performance is related to sample-rate. Control systems and
instance the Constant Bandwidth Server (CBS) formuIatu?n . P y
adla can be seen as a special cases of data flow or strean

proposed by Buttazzo in [2]. The concept has been extendg cessing. Data is often contained in packets or tokerts tha

: . L f
to mclud_e co_nstramed resource S|tuat_|ons_ through '.ﬂasﬁre processed by a network of computational elements. The
Reservations in [4] and [5]. The work in this paper differs

A ) i rate at which data tokens are processed is a tangible metric
primarily in that it allows a more general formulation of th

or the application performance. This supports making rate

resource tradeoff and puts more focus on online estimation g . . s .
an basis for resource allocation decisions in heterogenous
unknown parameters.

U L stems.
Resource allocation is often posed as a optimization prob- . . '
: . . . ) In this paper, rate is defined as the number of occurrences of
lem, with a prominent example in R. Rajkumar’s work on

Q-RAM, which was originally described in [14]. This hasSOme event per time period. The pertinent choice of event and

. : : . unting period is highly situational. Consider for instan
since been extended to include multi-resource cases in [9]." . S : : .

) - : . e difference between digital audio and video. The ear is
This paper takes a similar approach, but special care isitake

T . . much more sensitive to audio jitter than the eye is to frame
so that the optimization is solvable in realtime and alsufes .. . ) o .
T jitter. The audio stream is sampled at a significantly higher
more on parameter estimation.

Historically, allocation is often seen as knapsack- or birqEite than the typical video stream (16 kHz vs 25 Hz). Loosing

i - - a few movie frames during a second may not be noticeable
packing problems (see e.g. [10]), but the difficulty of sobyi for the viewer, while loosing the same percentage of audio

thesg types of problems makes the formulation il suited fc%Eamples will make the audio sound very distorted. In order
use in embedded systems.

o . Lo fo make resource allocations in time to preserve quality, th
A promising approach, using convex optimization in real-

time, has been discussed in recent publications by S B dio stream will need to be monitored using a much shorter
[12]. While these algorithms can be used to solve much morgxztlsgn?esgzg:znafnoé ?:a:]?r\:'e :érhe(:jrgiin arameters in-
general problems, they rely on code generation to produce P ging 9p

- o L roduces latency in the control loop, it can even be necgssar
specialized solvers. This imposes restrictions on how the

. éo introduce predictive filters. In both the case of audio and
structure of the problem can vary over time. The proposed L
video, the events are expected to be evenly distributed over

framework in this paper allows the problem to be modlfletége counting period. This is not required in general, but
n

over time by adding or removing components and makes ver ) AN . :
y 9 9 b -uniform distributions will make the rate estimator mor

few assumptions on the individual utility functions, aliiogy : . o : :
P y complex to design. Section 11I-C will discuss in more detail
heterogeneous problems to be solved.

Using control theory for computer systems is a stronréjoW to pose the estimation problem.

emerging trend. This has successfully been done by e.ngaée
Abdelzaher, who treats it in several publications, inahgdi ~°
[1]. This work is very relevant for the problem studied insthi The typical model of media processing or control appli-
paper, but more focused on computer server farms than ttadion is a periodic real-time task. The constant job releas
embedded space. interval T and completion deadling correspond to a uniform
rate of completed calculations. In the scheduling fornmaorat
. SYSTEM MODEL of the problem, knowledge about job worst case executioa tim
Consider a system of software componefifshat are part w is assumed in order to test if all jobs meet their deadlines
of a computational system and executing on the same CRlshder some assumptions on the scheduler and task dependan
as exemplified in Figure 1. A component can be monolithies. The price one pays for this very strong guarantee is
and correspond to a single operating system thread or gocdisat w needs to be a true upper bound, which on uncertain
or it can be an aggregate set of other components. From tre@dware and highly data dependent software can be very
outside, the component is opaque and is assigned resoupessimistic. It has been demonstrated that feedback dasitro
as a single entity. The component produces some relevastbust to jitter in sampling and setting of control signads
results of work and it is assumed that each component usgeg. [6]). Similarly, a video playback can suffer both jitte
all assigned resources for that. In order to make decisioasd the occasional frame loss without significant degradati
regarding how to allocate resources, a model is needed of hiomquality [7]. In this paper, these types of applicationdl wi

Uniform rate component model



be considered timing sensitive rather having than hard re 0 for righ-res me
time timing properties. Using these properties and relgxi
the requirement that all deadlines must be met, it is inste as| ] ast
possible to formulate a desired average completion interv
which would in turn correspond to a rate of execution.

Mean fps for righ-res movie Mean fps for low-res movie

Piecewise linear apprg
+  Datapoints

40

A rate-based processing task is then modeled by the follo 25l ] -
ing parameters:
o 7 - desired execution rate & 20 1 &aof

« y - actual execution rate

e p - assigned CPU share (bandwidth)
Depending on the application, the units of these parame 1o 1 1o
vary. For a video playback system running on a Consta

Bandwidth Server (CBS) resource schedutlegnd y would ) )
be the desired and actual frame rate of the video stre: o o
respectively, ang would be a real number in the intervél 1], e T

denoting the quota between budget and perdpdl’. If instead

the resource scheduler would be the Completely Fair Scheduig. 2. Experimental results of throttling CPU-share fa MPlayer decoder
(CFS) now part of the Linux kerneh would be an unsigned using Linux 2.6.27 and Control Groups. The diagrams show ti@vframe
integer value use as a weight in the proportional sharebadfe,ber Econd () debende on e amount of CPL Sharatatos e
scheme. This paper makes the assumption that the processHag at encoded rate.

system consists of a sét, ..., C'y of independent CPU-bound

components, which means that the mean execution yate

of the component depends primarily on the allocated CPU IV. EVENT BASED ESTIMATION

resourcep; and can be approximated by a functigi(p; ). This section will discuss two approaches to form an estimate
In resource management this is called thiity functionand of the ratey and the parametet from (1). The following
is a positive monotonically increasing function with paeter properties are considered important for the resultingrittyo
domainR*. For most rate-based applications, utility gains will , Time complexity

decrease when the amount of afforded resource grows very Space requirements

large and it is reasonable to assume thas a concave func- . Sensitivity to noise

tion. In the case where the task repeats the same calculatiop How fast it can detect a change in rate

over and over again, a simple piecewise linear (PWL) modghe foliowing assumptions will be made on the component

such as (1) can be sufficient. o The rate is constant over a small interval of time
kipi 0<p; <r;/k;, e k can int, be considered to be the mean of a weak
filpi) = yi = v ps>mifks @) stationary stochastic process.

Figure 2 shows two cases which were produced using MPE&- Sliding window event counting

4 video streams and the free MPlayer software. The videoUsing the definition of rate (events/time period) it is natur
streams are encoded at a fixed rate, in this case 30 framestparonsider an approach where the number of events occurring
second (fps). When throttling the CPU bandwidth availablever a predetermined time period is mechanically counted.
to the player below what is required for full rate playbadk, iGiven a suitable window length, the method is straight fadva
starts to skip frames to keep up. in implementation, but suffers from needing an unknown
amount of memory to keep the events and that the time com-

C. Event based estimation o : .
L , , plexity is proportional to the rate, i.e. unknown beforethan
Estimating the parameterk; in (1) would be straight

forward if the ratey was a continuous signal that could bd3. Event based filtering
sampled. As it is, there is only new information about the An alternative approach is to see the problem as a prediction
execution rate when a calculation cycle completes or whefoblem, where the objective is to at any given time estimate
an expected event is missing. There are two main alterisatifBe time between the last and the yet not arrived event. If
to estimate the execution rate from this, sliding time w'wdoA(k) denotes the time between evéntaind k — 1, using the
event counting and event based filtering. It is worth notingssumed stationarity stochastic properties,ai predictor can
that a benefit from measuring the rate through the completiga written on the discrete time shift operator form

events is that this poses a very mild requirement on the R B(g1)

software. Since in cellular phone design, it is common to use Alk+1) = q_l A(k) 2

3rd party components, this is highly desirable as it reduces Alg™)

the cost and complexity of the components. The methods of (k) :¥
event based estimation is discussed further in the chayter | A(k+1)

®3)



The selection of the polynomialB8 and A makes it possible system designer. In this paper, some restrictions are pmsed
to filter out specific noise components of the sequence ati# selection of aggregate in order to fit the target platform
as long as the filter has unit stationary géam(1)/A(1) = 1) The primary restriction is on the component utility functio
the proper mean will be obtained. There is one caveat howeuerthat is should fit the convex framework presented in
when dealing with a decreasing rate. If the prediction stateection V-A. This allows for simplified solver algorithm dgs
that an event should occur but there is none, the estimate muihout putting too severe limits on the choices availalde t
be updated to reflect this. In this work the update is dortee designer. A secondary restriction is numerical siniglic
through noting that ift time has passed since the last evefffomputing the value of the function and its derivative must
occurred and > A(k + 1), then the highest possible currenbe relatively inexpensive on a limited precision platfoffor
rate would be sustained if an event would arrive at the timayaluation purposes, one such choice will be suggesteckin th
t + e A way to check for this is to tentatively update thenext section.

prediction as if an event had occurred at the tinend check 5 A convex Formulation

if the estimated rate would be lower. 4f denotes the arrival
time of eventk and A.(k) denotes the extended sequence
{..; A(k—=1),A(k), (t —t)}, the resulting estimator fay(t)
would then be

The proposed problem structure in this paper is

N
minJ = Z U)ij(pz)
i=1

. B(q™* )
Ak +1) :AéglgA(k) P20
_ Pi <pto
A1) =B A 1y @) . .Z o -
e T Al H™e under the restriction that/;(p;) is a convex differentiable

) 1 function. Assuming that a componefit have a known desired
= = = execution rate;, let e; = r; — y; denote the rate error. It is

max(A(k +1), Ac(k +1)) then assumed that it is desirable to minimize the aggregate
Advantages with this approach is that the filter is fixed imate error, resulting in the cost function
time and space complexity. There is also the added degree of N N
freedom in selecting the filter polynomials, but the dowes&l J = Z wie? = Z wi(r; — fi(p))?
that badly chosen polynomials can yield a very noisy esémat i=1 =1

where f;(p;) is taken as (1). While the rate erref is
a convex function ofp; and thus fits in the framework, it

is perfectly possible to use a mix of utility functions when
models for more complex components have been derived. This
formulation is much like the water filling problem (see [3, pp
245]) used for power allocation in communications theory,
with the main difference in that the set of utility functiooan
Unfortunately, this estimate assumes that the amount of f# heterogenous.

source fed to the component is constant. Due to scheduleAs previously stated, an important property of the problem
dynamics and control actions, this is rarely the case and tisethat the parameters are expected to change over time. It is
estimate would have bad convergence properties. Instsadtherefore not possible to solve for the optimal allocatioice
accumulated resource use for any specific component canael leave it at that. Changes to the setup can come in many
measured directly through system calls, a better estimator different ways, including

() e @ new component becomes active

(8)

C. k-parameter estimation

Given an estimate of the current execution r@t8, falling
back on the model (1) results in the following estimate:

(5)

k(t) =

(6)

« acomponent changes its internal structure thereby chang-
uacc(tl) - uacc(tO)

if uace(t) is the accumulated amount of resource at tinaaed
to andt; are such that the events used to foffm) occur in
the interval(to, t1).

V. CONSTRAINED ALLOCATION

Allocating resources under constrained conditions regar

compromise in performance for the component set. To evaluat 1)
such a compromise, a global performance metric is needed?)

ing its utility function
« the total amount of resources decreases due to e.g. CPU
becoming too hot and needs to be throttled
« properties of the data processed lead to changes in utility
function parameters
The solver thus needs to run continuously, making it dekgrab
that it
takes minimal system resources,
accounts for changing parameters as quickly as possible,

For a set of independent components, a natural choice would

be an aggregate of the individual utility functions. Finglin

an aggregate that well represents the user perceived systef)
performance will be situation dependent and the task of the

3) produces results in deterministic time and memory and
can improve upon a previous allocation even if aborted

before optimum was computed



V1. INCREMENTAL OPTIMIZATION depend on the specific transfer sequence. As the intended

In response to the properties 1 - 4, it seems that an increm@fmain is real-time allocations, an efficient strategy iedesl.
tal approach is suitable, meaning that the algorithm coempuf! iS desirable that each step reduck#) as much as possible
the answer as a sequence of relatively simple operatioremNhand from (9) it is evident that the size of the gain depends on
each operation improves the solution a bit. As parameterse the difference iny(p) between the two tasks and
can change at any time, it makes sense to try to use smalt the amount of resource available to redistribute.
increments so that as little work as possible is wasted The two criteria can be in conflict, particularly if there is a
parameters change in mid increment. A guiding principiirong correlation between low;(p;) and low but non-zero
behind the proposed solution is that computers are gewperadl. It will in this paper be assumed that the components require
good at doing simple things over and over again. This h&gsources of the same magnitude. A conflicting situation
implications on cache usage, compiler optimizations aadkst should then only exist initially before the allocation eseut.
memory requirements. An intuitive strategy would be to sort the components
Assume that two components, C; are picked from the set according tay;(p;) and select the two furthest apart, skipping
during thek:th step of the algorithm. Lef (k) be the cost at the ones with zero resources on the lower end. The proposed
the beginning of the step and ;(k) denote the contribution implementation uses a red-black tree that makes finding the
by C;, C; to J(k). Consider now what happens if an amount dpair an O(1) operation and inserting them back after the
resource’ is transferred fronC; to C; so that their combined transfer anO(logn) operation (see e.g. [8] for complexity
contribution to.J(k 4 1) is minimized, i.e. by solving analysis of red-black trees). As the algorithm uses antitera
. loop and the persistent data allocated scales linearly thigh
min Jij(k +1) =wiJi(pi(k) +0) +w;Jj(p; (k) = 9) (9) Problem size, memory need for a system with a known max
sit.—pi(k) <6 < pj(k) size can easily be calculated.
To illustrate the workings of the algorithm, consider a
case with three components. Let componéht be repre-
J(k+1) < J(k) (10) sented by the tuplgr;, ki, pi, 0.J;/0p;), unit weights are
In other words, by in each step solving a subproblem gssumed for all components. In the example, the components
the original allocation problem, performance will imprové€o = (25,30,1,300), C1 = (25,40,0,-2000), C> =
incrementally. Solving this minimization problem for gen{15,20,0,—600) will be used. _ .
eral convex functions/;(p;) can be done by modifications Step 1,J = 875.0. The algorithm finds that the highest
to unconstrained methods such as Newton-Rhapson or ef@Aponentig’, (with ¢y = 300) and the lowesf component

This ensures that

bisection. In the case of components modeled by (1), ndarC1 (With ¢y = —2000). The subproblem to solve then
closed form expressions can be obtained for some comnfffomes
cost function, see [11] for some. min Jy 1 =(25 — 40(1 — §))? + (15 — 200)* (13)

Selecting the paiC;, C; for each step is the last element 1>6>0 (14)
of the algorithm. The proposed strategy is derived from the - =
Karush-Kuhn-Tucker (KKT) conditions (see e.g. [3]). Pasinwhich gives the new allocatiof, = (25, 30, 0.540, —528),
(7) on standard form, the Lagrangian becomes C1 = (25,30,0.460, —528), Cy = (15,20,0, —600).
N N N Step 2,J = 346.0. Cy is now the worst of compo-
_ T oy . nent while ¢9 = ;. The implementation used for this
Lip, A v) = ;wsz(pl) * ; Aipi ¥ V;pz (1) paper uses the component index as secondary sorting crite-
" . _ ria, so Cy is selected. After solving the new subproblem,
Thg KKT—condlyons state thaﬁ7L(p, A,v) is 0 in an optimal the allocation become€, = (25,30,0.512, —578), ) —=
point. By studying the expression (25,30,0.460, —528), Cy = (15,20,0.0277, —578).
OL(p, \,v) aJi(pi) Subsequent steps are done in the same way, resulting in the

S =g nv=0 (12) seqice | | |
. . . . . o J (pOadJO) (phwl) (P27¢2)

' can e seen that in an optimal point, eiiier = 0 OF 3255 0512, ~579) | (0.418, —569) | (0.0401, —505)
—widJi(pi)/Opi = v. Let gi(pi) = —widJi(pi)/Opi. 344.7| (0.514,—574) | (0.445,—574) | (0.0401, —568)

pi = 0 and therefore\; > 0, then;(p;) must be less than
v. In other words, a point wherg; (p;) > ¢;(p;) andp; >0
does not minimize (9).

344.7| (0.514,—574) | (0.447,-569) | (0.0390, —569)

Note that whileJ seems to have converged, the real criteria

« If the algorithm tries to seleof’;, C; so thaty;(p;) > L ) . .
. P for termination must be the difference ins, as derived from
¥;(p;) andp; > 0, solving (9) results i (k+1) < J(k). the KKT-conditions.

« If there is no such pair to select, then that point satisfies
the KKT-conditions of (7) and the allocation is optimal. VIl. | MPLEMENTATION ASPECTS

It follows that such a strategy will make the algorithm con- For experimental purposes, an implementation of the frame-
verge to the optimum. The convergence speed will obviouslyork has been done for Linux 2.6 using the CFS scheduler



| Estimated rate using sliding time window (1s)

k PARAMETER ° ‘ ‘ — ‘ estimat‘ed rate

601 1

A
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—* ALLOCATOR TASKSET
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rate (events/s)

Fig. 3. Proposed control structure.

and control groups [13] for resource allocation. The résglt
experiment platform can be said to consist of three majdaspat

14
time (s)

A. Component Set
. . i Fig. 4. Event based estimation using a sliding time windohe Estimated
The components are in this case Linux processes runnii@ameterk is used in feedforward control to show that the model can be

code to emulate the behavior of periodic tasks that can adagsd to accurately control the process.
to varying resource availability by reducing executionerat

They communicate the completion of a calculation cycle k-
sending a unix datagram packets with the current time stai 2o
and accumulated resource usage. The reason the samplin — estimated rate
resource usage is done by the process and not some other -~ - bw/setpoint
of the system is to better synchronize the two measuremet |
Each packet is annotated with the sending process id, so t
the estimator can distinguish the data. By means of the /pi
file system, other process parameters are discovered, sucl
control group membership. The processes are multi-thceac
in order to support command signals for changing paramete
but the cost of receiving these commands is negligible.

Estimated rate using FIR-estimator (m=15)

rate (events/s)

B. Parameter Estimator

The estimator is an application with a data collection sbck
that receive the incoming completion events. Upon colterti 105 ‘
an event, the event based estimation algorithm updates time (s)
relevant parameter estimate.

Fig. 5. Event based estimation using an event filter with Rigcgure. The
C. Allocator estimated parametér is used in feedforward control to show that the model

. . . . L can be used to accurately control the process.
The allocation algorithm is in this application execute asS Y P

a thread in the same process as the estimator application.
Periodically, it uses the current estimates to calculate an
updated allocation by means of the algorithm described in \af events to form the estimate (the middle section where the
rate is around 15 events/second), it seems a lot more stable.
(4) suggests that the filter could have other structures, but
A. Event based estimation that would require a model of the process noise and sensor

In order to validate the parameter estimation scheme g4namics to exploit.
experiment was run where the objective was to control the rat
of a single component. A comparison between a sliding tinl?’e
window approach and an FIR-structure event filter approachThe optimization problem solver was implemented in ANSI
can be seen in Figure 4 and Figure 5. The sliding time windd®/ using an of the shelf implementation of a red-black binary
is less noisy for high rates, which is to be expected as it fiee. The correctness of the solver has been verified against
using a larger number of events to form the estimate. Howevire QP-solver available in MATLAB (quadprog). A simulated
the quantization noise can be troublesome when running simple case with 3 components can be seen in Figure 6 The
low rates. The FIR-estimator on the other hand is more noialgorithm has been benchmarked using large sets of random
on high rates, but at a rate where the two use the same amarorhponents. The algorithm was run 10 times for each set. The

VIII. SIMULATION AND EXECUTION RESULTS

Optimization solver performance
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Fig. 6. Solver running over a set of 3 random components with dp
baseline solution computed by MATLAB as a baseline and tireaflocation

provided for comparison.
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Fig. 8. Optimization time as a function of components in feob

30

25f

20

15f

rate (events/s)

101

s5H — 11263
— 11267
— 11264
0 2 7 6 8 10 12 14
time (s)

Fig. 9. 3 random components running in a constrained resameironment.
Each component changes its dynamics every 3 seconds afteh whakes
about 1 second for the estimator to converge and a new atladatcalculated.

fluctuations in completion times is most likely due to sagtin
artifacts and cache misses. Figure 7 shows how the iteration
time increases as the number of components in the problem
grows, while Figure 8 displays how long it takes to complete
the optimization. Even for a fairly large number of tasks th
time is reasonable and running it as part of a periodic ctiatro

is deemed reasonable.

C. Online allocation

Figure 9 displays the results of an experiment running three
components with the same reference rate but with time vgryin
k. Every 3 seconds, the components randomly changes their
resource demands, resulting in a new allocation to maximize
total system utility. The newk parameters are drawn from a
uniform random interval, wherg,, .../ kmin = 2. The setup is
not unlike that from Figure 1. The quadratic cost function
displays good robustness properties in that a small change
in the parameter set only changes the optimum by a small
amount. Figure 10 displays the cost function over time for
the same experiment. It compares the cost using the dynamic
convex programming based allocation (DCA) compared with
a theoretical static worst case allocation (SWA) baselire
DCA setup can provide a substantial improvement over SWA
as long as the actual execution time is less than the worst
case. As can be expected, the advantage decreases in the la:
portion of the experiment where the actual execution time is
closer to the worst case.

As a final comparison between the DCA and SWA, Figure
11 shows the average cost for a number of setups correspond-
ing to different ratios betweeh,,,, andk,,;,,. For determinis-
tic cases Kax = kmin) the DCA actually underperforms the
SWA. This is because the DCA algorithm relies bnwhich
is initially unknown and will vary over time due to noise.
The resulting allocation will therefore likely be subopsm
even if there was enough resources to satisfy all components
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Fig. 10. The performance cost function over time for Dynar@ionvex
Allocation (DCA) compared with the Static Worst-case Altion (SWA)
baseline.
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Fig. 11. A comparison between DCA and SWA for different vaifity of
execution time.

on resources from other components.

Mixing software and hardware components will make it
hard to maintain global state knowledge and it is therefore
reasonable to pursue distributed formulations.

For estimation performance, in the general case little can
be said about event to event dynamics but under some as-
sumptions on the resource consumption on the components
and process noise, better performance in parameter esimat
should be possible.

Finally, admitting new components onto a running system
must be investigated as newly arriving components will have
uncertain parameters in the utility function. One posgipil
is to apply reinforcement learning methods to promote activ
probing.
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