
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An MPSoCs demonstrator for fault injection and fault handling in an IEEE P1687
environment

Petersen, Kim; Nikolov, Dimitar; Ingelsson, Urban; Carlsson, Gunnar; Larsson, Erik

2012

Link to publication

Citation for published version (APA):
Petersen, K., Nikolov, D., Ingelsson, U., Carlsson, G., & Larsson, E. (2012). An MPSoCs demonstrator for fault
injection and fault handling in an IEEE P1687 environment. Paper presented at IEEE European Test Symposium
(ETS), 2012, Annecy, France.

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/8f1b3224-dbec-4e83-8463-b8f343075acd


An MPSoCs demonstrator for fault injection and
fault handling in an IEEE P1687 environment

Kim Petersén1, Dimitar Nikolov2, Urban Ingelsson3, Gunnar Carlsson1 and Erik Larsson4

1Ericsson AB 2Linköping University 3Semcon 4Lund University
Stockholm, Sweden Linköping, Sweden Linköping, Sweden Lund, Sweden

ABSTRACT: As fault handling in multi-processor
system-on-chips (MPSoCs) is a major challenge, we have
developed an MPSoC demonstrator that enables experimen-
tation on fault injection and fault handling. Our MPSoC
demonstrator consists of (1) an MPSoC model with a set
of components (devices) each equipped with fault detection
features, so called instruments, (2) an Instrument Access
Infrastructure (IAI) based on IEEE P1687 that connects
the instruments, (3) a Fault Indication and Propagation
Infrastructure (FIPI) that propagates fault indications to
system-level, (4) a Resource Manager (RM) to schedule
jobs based on fault statuses, (5) an Instrument Manager
(IM) connecting the IAI and the RM, and (6) a Fault
Injection Manager (FIM) that inserts faults. The main
goal of the demonstrator is to enable experimentation
on different fault handling solutions. The novelty in this
particular demonstrator is that it uses the existing test
features, i.e. IEEE P1687 infrastructure, to assist fault
handling. The demonstrator is implemented and a case
study is performed.

I. Introduction

While recent semiconductor technologies enable the de-
sign and manufacturing of extremely complex integrated
circuits (ICs) that may contain multi-processor system-on-
chips (MPSoCs), these MPSoCs are increasingly suscep-
tible to defects. Unfortunately, an increasing number of
defects show up during operation. These defects are due
to escapes from manufacturing test, aging effects leading
to development of faults while the MPSoC is in operation,
and environmental impact [1]. The defects lead to faults,
which can be classified as soft (transient and intermittent)
and hard (permanent). To handle these faults, there is a
need of fault handling to automate detection, identifica-
tion, and recovery from faults occurring in-operation. A
key for the fault handling is to correct faults as quickly
as possible and keep the system in an operational state.
It should be noted that fault detection and correction
are best performed as close to the origin of the fault as
possible, often in the interior of a system component,
while keeping the system in an operational state is best
controlled on the system level to have the overall view.

To aid development of fault handling solutions, this
paper proposes a demonstrator in which an MPSoC can
be simulated and the impact of faults can be studied.

The main parts of the demonstrator are:

• An MPSoC model, which consists of set of compo-
nents such as CPUs, DSPs, accelerators and memo-
ries. Each component is equipped with features called
instruments for fault detection.

• An Instrument Access Infrastructure (IAI) to connect
the instruments to the master CPU. The IAI follows
the proposal for IEEE standard P1687, a standard-
ization of access to on-chip instrumentation.

• A Fault Indication and Propagation Infrastructure
(FIPI), which holds fault indications and fault codes,
and propagates fault indications to the system-level
to shorten the time between the occurrence of a fault
and its detection at a system-level.

• A Resource Manager (RM) for collecting fault sta-
tuses from instruments, conducting fault handling
tasks and scheduling jobs, based on the fault statuses.

• An Instrument Manager (IM), to automate operations
given by the RM on the instruments over the IAI. The
IM acts as the RMs interface to the instruments.

• A Fault Injection Manager (FIM) which is capable of
injecting soft and hard faults into the MPSoC.

The main goal of the demonstrator is to enable exper-
imentation on fault handling solutions at system level,
while assuming that fault detection has already been
implemented at the component level. The novelty in the
demonstrator is that it makes use of existing test fea-
tures, i.e. test instruments that are connected through
dynamically configurable infrastructure that is based on
IEEE P1687 standard, to assist fault handling (system
monitoring and enable access to faulty components that
require some recovery actions).

The paper is organized as follows. A review of the litera-
ture is given in Section II. Section III details the main parts
of the demonstrator. In Section IV, a case study shows
how the demonstrator can be used to perform experiments
on fault management, including fault injection and fault
handling. Section V concludes the paper.

II. Related Work

This section reviews prior work related to the demon-
strator’s main parts, as they are listed in Section I, as well
as previous works for verifying fault handling solutions.

A. Fault Handling in MPSoCs
Fault handling is that which automates detection, iden-

tification and recovery from faults occurring in-operation,
with the purpose to maintain correct system operation.



For MPSoCs, several studies aim to improve the reliabil-
ity by employing fault tolerant techniques and spare parts
[2], [3]. A good example of a fault-management solution for
MPSoC [3] is an approach in which a job is executed in-
synch on two processors and fault detection is achieved by
comparing the state of the two processors. A system-level
component reacts by re-executing the job as a recovery
process. Fault handling solutions typically has a multi-
level approach with system-level decision support and at
least one level of fault detection and recovery mechanisms.
In our demonstrator, the RM provides system-level deci-
sion support and the instruments provide fault detection
and recovery mechanisms.
B. Instrument Access Infrastructure

To connect the instruments to the system-level decision
support in the RM, our demonstrator includes an Instru-
ment Access Infrastructure (IAI) implemented according
to IEEE P1687 [4]–[7]. Also known as Internal-JTAG
(IJTAG), P1687 aims to standardize access to on-chip
instrumentation by connecting a network of instruments
from multiple vendors to a chip-level JTAG TAP. Previ-
ously available standards have limitations which lead to
large overhead when the number of instruments increase
beyond a few hundred. Uses of P1687 include access to
sensors, Design for Test (DfT), configuration features,
debug features, etc. Research has investigated the use of
P1687 to tune high-speed serial links [8], how to calculate
instrument access time [9] and how to optimize instrument
access time by design of the instrument access infrastruc-
ture [10]. Scalable fault management architecture based on
IEEE P1687 is presented in [11].
C. Fault Indication Propagation Infrastructure

Our demonstrator includes a Fault Indication Propa-
gation Infrastructure (FIPI). An analogy to FIPI is the
interrupt function in a microprocessor, which triggers for
several types of faults with the purpose of notifying the
operating system of the fault as soon as possible and
trigger corresponding actions. The purpose of FIPI is to
indicate occurring faults as soon as possible to the system-
level where fault handling takes corresponding actions.
D. Fault Handling with a Resource Manager

In our demonstrator, a resource manager handles both
job scheduling and fault handling decisions. This suits
many fault handling solutions, such as the approach in
[3], which on top of managing faults keeps track of the
system ’health’ and schedule jobs accordingly. An example
is the fault tolerant technique rollback and recovery [12],
which involves restarting jobs that are affected by faults.
For this purpose the fault handling needs to be able to
schedule jobs. In other words, fault handling solutions are
incorporated in resource management. Such fault handling
solutions can be simulated in our demonstrator, using the
resource manager.

In the Razor approach to power and performance scaling
[13], an extra latch is put on each flip-flop to detect and
recover from delay faults. A delay fault count from each

Razor flip-flop is considered while adjusting the supply
voltage for minimizing the power consumption while keep-
ing the number of delay faults low. The Razor flip-flops
can be seen as fault detection instruments for which a RM
keeps the delay fault count and makes the decisions to use
other instruments to adjust the supply voltage.

E. Instrument Management
So far, no commercial tool is available for automating

operations on instruments over a P1687 IAI, such as is the
task of the IM. An ad-hoc solution based on beyond-the-
standard use of JTAG exist [14].

F. Fault Injection and Testing Fault Handling
Fault injection is a well studied method for investigating

the impact of a fault on system behavior. Fault injection is
used to evaluate fault-tolerance methods [15]–[17]. In [15],
fault injection-based testing is proposed as a compliment
to formal methods for increasing the confidence in fault-
tolerant method implementations. They found that fault
injection-based testing is essential for verifying fault toler-
ance, because critical parts of the fault tolerance system
are only exercised when faults occur and are handled.
Therefore, fault injection is included in our demonstrator.

G. MPSoC Demonstrators of Fault Handling Solutions
One previous study [18] presents a simulation-

framework for experimenting with reliability solutions tar-
geting soft faults. The framework includes fault injection
capability and a reliability manager. The key idea in [18]
is to analyze a task graph at MPSoC design time and
add redundancy and self-checking schemes as needed to
increase reliability, followed by fault injection-supported
verification in a hardware-software co-simulation. In con-
trast to our demonstrator, the framework in [18] only
targets soft faults, does not support experimentation on
fault handling schemes and does not include instruments,
an IAI, a FIPI nor any other similar concepts.

H. Motivation for our MPSoC Demonstrator
As seen from above, reliability enhancement through

fault handling is important for MPSoCs [2], [3]. Indeed,
new implementations of fault tolerance techniques must
be verified and fault injection is appropriate for study-
ing fault tolerance techniques in action [15], [16]. The
same is true for fault handling solutions. Fault injection
is best done in a simulation environment, and therefore
the study in [18] created a framework for simulating an
MPSoC with fault injection to experiment on methods
to handle soft faults. To allow experiments on a larger
set of fault handling solutions, including such that feature
instruments for fault detection and correction (facilitated
by an instrument access infrastructure) and that feature
fault identification (facilitated by a fault indication propa-
gation infrastructure) and handling of both soft and hard
faults, we present our demonstrator. Furthermore, our
demonstrator is the first to feature an instrument access
interface based on P1687, which is capable of extending to
hundreds of instruments.



MASTER CPU

MEMORY

ACCELERATOR

DSP

CPU

BLOCK

INSTRUMENT

IAI

FIPI

MPSoC

RM

IM

FIM

Figure 1: Graphical presentation of the demonstrator

III. Demonstrator
The main parts of the MPSoC demonstrator (see Fig-

ure 1), as listed in Section I, are detailed below.

A. MPSoC
The MPSoC consists of a number of components such as

CPUs, DSPs, accelerators, memories, etc.. For the CPUs,
we assume that one of the processors is the master CPU
and the rest are work-horse CPUs. The master CPU
is used by the Resource Manager and the Instrument
Manager. To emulate execution of jobs we use the work-
horse CPUs. Each of the work-horse CPUs contains a
number of blocks (units), e.g. ALUs, multiplication units,
floating-point units, etc.. Each block contains operating
registers, status registers and some test logic circuitry. An
operating register is used by the CPU to enable execution
of jobs, such as a Program Counter, Stack Pointer, general-
purpose register, etc.. A status register reports the state
of a given CPU. For example, the content of the status
register can be a fault indication code. Test logic circuitry
is a test mechanism that enables testing a block of a
CPU during operation. In this paper, we use the term
instrument, whenever we address an operating register,
status register or test logic circuitry.

B. Instrument Access Infrastructure
The Instrument Access Infrastructure (IAI) enables ac-

cess to the instruments in the MPSoC from the master
CPU. While an IAI can be implemented using various
techniques, some requirements should be considered. In
particular, access to instruments might occur more fre-
quently at some points in time and less frequent at other
times. It becomes important to have an infrastructure that
can be dynamically configured to optimize access time to
instruments.

One way of developing a dynamically configurable in-
frastructure is to follow the IEEE standard proposal P1687
[19], which aims to standardize access to on-chip instru-
ments. A key feature in P1687 is that the infrastructure
can be hierarchically organized. In [9] it was suggested

that a multi-level hierarchy can be used to prioritize
instruments that are more frequently accessed than others.

While several options for the design of the IAI can be
envisioned, from the above we can see that the IAI should
be dynamically configurable and preferably implement
some sort of multi-level hierarchy.
C. Fault Indication and Propagation Infrastructure

The Fault Indication and Propagation Infrastructure
(FIPI) is an important part in the demonstrator. Faults
that are detected in the instruments, inside blocks which in
turn are inside components, might threaten the operation
of the complete MPSoC, unless proper action is taken. The
time between the manifestation of the fault and the corre-
sponding action is critical, not just for correct operation,
but also for performance. Therefore, the FIPI implements
an interrupt-like function that propagate fault indications,
in instruments that are capable of fault detection, to a
system-level fault indication instrument that holds a global
fault indication. In other words, the fault indication at the
fault detection instrument identifies the fault origin, but
this information takes a certain time to access. In contrast,
the system level fault indication instrument just indicates
that a fault is present somewhere in the MPSoC, but can
be quickly accessed, much like an interrupt. To facilitate
identification of the fault origin, the FIPI implements a
traceable path back to the instrument (or instruments)
that first raised the alarm.
D. Resource Manager

The purpose of the Resource Manager (RM) is to ob-
tain correct system operation and maximize the system’s
throughput. The RM is implemented as software that runs
on the master CPU, and it performs these two main tasks:

• Schedules and assigns (distributes) jobs to available
components (CPUs, DSPs, accelerators, etc.), and

• Provides fault handling, i.e. keeps track of defective
components, with the goal of increasing both system
availability and reliability.

For scheduling, the RM assumes given is a list of jobs
and the number of components from each component type
in the MPSoC. Each job in the job list is associated with an
execution time and a criticality (priority) level. The goal
of the RM is to assign jobs to the components, such that
the total time required for all the jobs to be completed
while utilizing the available components in the MPSoC is
minimized. Due to the fact that faults may occur during
the execution of jobs and that some components may
become defective during system operation, the RM needs
to provide some fault handling to obtain correct system
operation.

For fault handling, close system observation is required
from the RM to get information regarding the status of
the MPSoC, e.g. answers are required to questions such as:
Are there any errors in the CPUs on which jobs are being
executed? Are there any defective parts in the MPSoC?
There are multiple alternatives on how the fault handling



is to be carried out. The demonstrator provides a number
of features to facilitate fault handling.

To be able to detect malfunctioning of any of the com-
ponents, it is required that the RM monitors the operation
and constantly collects fault statuses by accessing the
different instruments. The collected data is analyzed and
appropriate action is carried out by the RM. An appropri-
ate action can be to employ a fault-tolerant technique to a
job or to initiate a functional test or a Built-In Self-Test.
Based on the collected data, the RM can perform fault
marking of components through a System Health Map
(SHM) that keeps track on defective components. The RM
inspects the SHM when scheduling jobs to identify fault-
free components on which the jobs can be executed.
E. Instrument Manager

The main objective of the Instrument Manager (IM) is
to carry out the communication between the RM and the
instruments. In that sense, the IM behaves as a mediator
between the RM and the instruments.

As discussed in the previous section, the RM has only
the global view of the MPSoC in terms of types and
number of components. In contrast to the RM, the IM
contains structural information of the system, meaning
that the IM is aware of the different instruments, and how
they are connected through the IAI. Given the structural
information, the IM is able to translate the requests from
the RM into physical addresses of the instruments.

A typical scenario for the IM would be as follows. The
RM sends a request to the IM through a specific high-
level command. Whenever the IM receives a high-level
command, the IM translates the high-level command into
a low-level command (bit stream) that is sent into the
hardware through the IAI. Once the low-level command is
performed and a low-level response in form of a bit stream
is received, the IM translates the response to some high-
level response (e.g. response from read or write command)
that is sent to the RM.
F. Fault Injection Manager

To be able to simulate the system in presence of faults,
there is a need to have a mechanism to inject faults. The
Fault Injection Manager (FIM) is developed to enable
testing of different fault handling solutions.

The FIM is able to inject soft (transient) and hard
(permanent) faults in any instrument, given a list of faults.
The list of faults specifies for each fault which instrument
to inject into, the type of fault (soft or hard) and the time
at which the fault should manifest.

In Section III-C, we discussed that fault indication
is incorporated within the instruments. We assume that
the contents of these instruments are results of some
underlying error detection mechanism. However, the error
detection mechanisms are not always perfect, i.e. an error
detection mechanism may identify a presence of fault even
when no such fault actually exists in the system. Therefore,
another useful feature of the FIM is the ability to inject
“false” faults, i.e. faults that have not occurred in reality.

IV. Case Study

In this section, we use our demonstrator in a case
study demonstrating: 1) fault injection, 2) fault detection,
3) fault identification, 4) fault marking and 5) recovery.
For that purpose, we implemented the demonstrator and
simulated a scenario where a permanent fault occurs in a
CPU register. We illustrate all needed steps taken by the
RM to detect the fault, identify the fault location, fault
mark the defective CPU and recover the operation.

Due to that some of the parts of the demonstrator were
implemented in VHDL (MPSoC, IAI, FIPI and FIM) and
other parts in software (RM and IM), we used commercial
hardware-software co-simulation tools.

Below we first describe the implementation of the
demonstrator, and then we show how the demonstrator
carries out the before mentioned scenario.

A. Demonstrator implementation
The MPSoC is implemented in VHDL and it consists

of one master CPU, 10 identical work-horse CPUs and two
DSPs (the DSPs are due to space limitation not detailed).
The structure of a work-horse CPU is depicted in Figure 3.
A work-horse CPU consists of two blocks: ALU and CTRL
(control). The ALU block contains two instruments, i.e. a
scan chain and a register file. The CTRL block contains a
Program Counter (PC) to emulate execution of jobs. The
DSPs are not detailed further as the case study focuses on
a fault in a CPU.

The IAI is implemented to follow the IEEE P1687
standard. The reason behind this is to enable flexible
access to instruments. A key component that enables flex-
ible access in IEEE P1687, is the Segment Insertion Bits
(SIBs) which make the network (scan-path) dynamically
configurable. We have designed the IAI such that the
instruments, including the IAI specific instruments (status
registers), which we address as EIF (Error Indication
Flag), are connected in a mutli-level hierarchy (tree-like
structure) (see Figure 2 and Figure 3). The advantage
with the design is that we easily can access different
instruments, e.g. the system-level EIF can be accessed by
an overhead of accessing only two SIBs (see Figure 2).

By programming (opening) the SIBs, it is possible to
access any of the IAI levels (System- level, Component-
Type-Level, Component-Level, Intra-Component-Level
and Instrument-Level). As the IAI is implemented in a
tree-like structure, opening a given SIB that belongs to a
given hierarchical level allows access to isolated set of SIBs
(subtree) that belong to the lower hierarchical levels. For
example if we in Figure 2 open the leftmost SIB in the
Component-Type-Level, we allow access to the SIBs that
belong to the lower levels (that belong to the CPUs).

The EIFs contain fault indication information. At
Instrument-Level, there is one EIF bit per instrument, at
Intra-Component-Level there is one EIF bit per compo-
nent block, at Component-Level there is one EIF bit per
component, at Component-Type-Level there is one EIF



TA
P

 

SIB 

MASTER CPU 

SIB 

EIF 

SIB SIB SIB 

SIB SIB SIB SIB 

EIF 

EIF 

DSP 

CPU10 CPU2 CPU1 

EIF 

EIF EIF EIF 

M 

M 

M M M M 

M 

System-Level 

Component Type-Level 

Component-Level 

Figure 2: Tree-like IAI and FIPI

SIB 

CPU 

EIF 

SIB 

SIB SIB SIB 

SIB 

SIB SIB SIB 

SC
A

N
 C

H
A

IN
 

R
EG

ISTER
 FILE 

EIF 

P
C

 

R
EG

ISTER
 

EIF 

ALU CTRL 

Component-Level 

Intra-component-Level 

Instrument-Level 

M M 

M 

Figure 3: Details on CPU with IAI and FIPI

bit for each component type, and at System-Level there is
one EIF bit.

The FIPI, implemented in VHDL, is a combinational
logic that enables the contents of an EIF at one level in the
IAI to be propagated to the EIF of the upper level. In this
way fault effects are immediately reported from a lower
level to the system-level (root) EIF. From each EIF, the
FIPI propagates a single bit to an EIF in the upper level,
by performing an OR operation on all the bits in the lower
level EIF. For example, if a fault occurs in a register in the
ALU, the corresponding bit in the Instrument-Level EIF
of the ALU is set. An OR operation is performed on the
Instrument-Level EIF bits, and a single bit (corresponding
to the ALU block) is set in the Intra-Level-Component EIF
of the CPU. The fault indication is further propagated to
the System-Level EIF. To enable fault marking, the FIPI
associates a mask register (M) for each EIF. The mask
register is of the same size as the EIF. Setting the mask
register at an EIF blocks fault propagation upwards.

The RM, which in this case study is straight forward,
constantly polls the System-Level EIF to check if there
are any faults in the system. If a fault is detected, the RM
traces the fault and identifies the CPU where the fault has
occurred by stepping through the hierarchy. Note that to
find the root cause of a fault, several iterations are needed.

1 

SIB SIB SIB 

SIB SIB SIB SIB 

10 

EIF 

DSP 

CPU10 CPU2 CPU1 

00 

0 

M 

1 100 

1..0 0..0 1..0 1..0 

00 00 

0 0 

10 00 

a) b) 

c) d) 

EIF M 

EIF M EIF M 

EIF M 

Figure 4: Fault identification through reconfiguration of
IAI (IEEE P1687 network)

In each iteration, new commands are given to the IM and
the RM gets more knowledge on the fault location. Once
the fault is identified, the RM first performs fault marking,
i.e. updates the SHM, and issues a command to the IM to
write in the corresponding mask register, and after that it
forces re-execution of the job on a different CPU.

The IM receives commands from the RM. When the
IM receives a command from the RM, the IM first config-
ures the SIBs in the IAI such that required instruments are
accessed. Once the setup is done, the actual instrument or
instruments are accessed.

The FIM inject faults that are specified in a given file,
i.e. FaultList. The FaultList contains one line for each fault
that is to be injected. For each fault given is: a time stamp
that represents the time at which the fault is to be injected,
a unique address of the instrument where the fault should
occur (fault location), the fault effect of the inserted fault
(e.g. Sa0, Sa1), the fault type soft or permanent.
B. Demonstrator in operation

In this section, we detail the needed steps required to
detect, identify, fault mark and recover from a permanent
fault that occurs in the register file, in the ALU of CPU1
after some time in operation. The steps are as follows:

1) Injection: To inject the fault, we generate a FaultList
file that contains a single fault (see Figure 5). The FIM
reads the FaultList and injects the fault by the following
scheme: when the simulation time reaches 44ns, bit 1 (this
bit corresponds to the register file) in the Instrument-level
EIF of ALU block in CPU1 is set.The FIPI propagates the
fault upwards in the IAI hierarchy such that corresponding
bits of the EIF at Intra-Component-level, Component-
level, Component-Type-Level and System-Level are set.

2) Detection: During operation, the RM constantly
checks if a fault has occurred by sending commands to
the IM for checking the EIF bit at System-Level (polling).
At detection (polling), for each poll the IM configures



44ns SYS.CPU.cpu1.alu.reg.eif.bit1 1 ReadOnly 

Time Stamp Fault Effect 

Fault Type Fault Location 

Figure 5: Fault description

the SIBs such that the System-Level EIF is accessed and
checked (see Figure 4(a)). If the System-Level EIF is set,
a fault in the MPSoC is detected. Once the RM detects
that there is a fault, the RM tries to identify the defective
component.

3) Identification: Once the RM detects that there is a
fault somewhere in the system, the RM sends a command
to the IM to check which type of component is defective.
This is done by checking the Component-Type-Level EIF.
The IM configures the SIBs such that the Component-
Type-Level EIF is accessed, and reports, in this case, that
there is a fault in one of the CPUs (the bit corresponding
to the SIB which is connected to the CPUs is set, see
Figure 4(b)). Since at this point the RM is aware that
there is a faulty CPU, the RM then gives a command to
the IM to check which CPU is defective, i.e. checks the
Component-Level EIF of the CPUs. The IM re-configures
the SIBs such that the Component-Level EIF of the CPUs
is accessed (see Figure 4(c)), and reports CPU1 as faulty.

4) Fault Marking: Once the fault is identified, the RM
updates the SHM such that CPU1 is marked as defective
and then issues a command to the IM to write in the
mask register associated to the Component-Level EIF of
the CPUs (observe the contents of the mask register in
Figure 4(d)) such that no further faults are propagated
from CPU1 over the FIPI.

5) Recovery: The recovery process, consists of moving
the job that was running on CPU1 to another CPU. The
RM checks the SHM to find an idle fault-free CPU. If
successful, RM issues a re-execution of the job. After this
step, the RM continues polling the System-Level EIF.

V. Conclusion

In this paper we present an MPSoC demonstrator useful
to explore in-operation fault injection and fault handling
strategies. A key feature of the demonstrator is the combi-
nation of the fault propagation architecture and the IEEE
P1687 architecture, which gives enables minimized time
between fault detection at a component and the fault
action at the system-level and allows flexible access to any
part of the system. Through a case study, we have with the
demonstrator shown the steps from fault injection, fault
detection, fault identification, fault marking, and recovery.

References

[1] Y. Xiang, T. Chantem, R. P. Dick, X. Hu, and L. Shang,
“System-level reliability modeling for MPSoCs,” in
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2010 IEEE/ACM/IFIP International
Conference on, Oct. 2010, pp. 297 –306.

[2] N. Hébert, G. Almeida, P. Benoit, G. Sassatelli, and L. Torres,
“A cost-effective solution to increase system reliability and main-
tain global performance under unreliable silicon in MPSoC,”
in Reconfigurable Computing and FPGAs (ReConFig), 2010
International Conference on, Dec. 2010, pp. 346-351.

[3] H.-M. Pham, S. Pillement, and D. Demigny, “Evaluation of
fault-mitigation schemes for fault-tolerant dynamic MPSoC,” in
Field Programmable Logic and Applications, 2010 International
Conference on, 31 2010-Sept. 2 2010, pp. 159-162.

[4] J. Rearick, B. Eklow, K. Posse, A. Crouch, and B. Bennetts,
“IJTAG (internal JTAG): a step toward a DfT standard,” in Test
Conference, 2005. Proceedings. ITC 2005. IEEE International,
Nov. 2005, pp. 8 pp. -815.

[5] K. Posse, A. Crouch, J. Rearick, B. Eklow, M. Laisne, B. Ben-
netts, J. Doege, M. Ricchetti, and J.-F. Cote, “IEEE P1687:
Toward standardized access of embedded instrumentation,” in
Test Conference, 2006. IEEE International, Oct. 2006, pp. 1-8.

[6] A. Crouch, “IJTAG: The path to organized instrument con-
nectivity,” in Test Conference, 2007. IEEE International, Oct.
2007, pp. 1 –10.

[7] J. Doege and A. Crouch, “The advantages of limiting P1687 to
a restricted subset,” in Test Conference, 2008. IEEE Interna-
tional, Oct. 2008, pp. 1 –8.

[8] J. Rearick and A. Volz, “A case study of using IEEE P1687
(IJTAG) for high-speed serial I/O characterization and testing,”
in Test Conference, 2006. ITC ’06. IEEE International, Oct.
2006, pp. 1 –8.

[9] F. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Test
time analysis for IEEE P1687,” in Test Symposium (ATS), 2010
19th IEEE Asian, Dec. 2010, pp. 455 –460.

[10] ——, “Design automation for IEEE P1687,” in Design, Au-
tomation Test in Europe Conference Exhibition (DATE), 2011,
March 2011, pp. 1 –6.

[11] A. Jutman, S. Devadze, and J. Aleksejev, “Invited paper:
System-wide fault management based on IEEE P1687 IJ-
TAG,” Reconfigurable Communication-centric System-on-Chip
(ReCoSoC), 2011 6th International Workshop on, June 2011.

[12] J. Smolens, B. Gold, J. Kim, B. Falsafi, J. Hoe, and A. Nowa-
tryk,“Fingerprinting: bounding soft-error-detection latency and
bandwidth,” Micro, IEEE, vol. 24, no. 6, pp. 22 –29, Nov.2004.

[13] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Toku-
naga, S. Das, and D. Bull, “Razor II: In situ error detection and
correction for PVT and SER tolerance,” in Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International, Feb. 2008, pp. 400 –622.

[14] M. Majeed, D. Ahlström, U. Ingelsson, G. Carlsson, and E. Lars-
son, “Efficient embedding of deterministic test data,” in Test
Symposium , 2010 19th IEEE Asian, Dec. 2010, pp. 159 –162.

[15] D. Blough and T. Torii, “Fault-injection-based testing of fault-
tolerant algorithms in message-passing parallel computers,” in
Fault-Tolerant Computing, 1997. FTCS-27. Digest of Papers.,
Twenty-Seventh Annual International Symposium on, June
1997, pp. 258 –267.

[16] A. Ademaj, P. Grillinger, P. Herout, and J. Hlavicka, “Fault
tolerance evaluation using two software based fault injection
methods,” in On-Line Testing Workshop, 2002. Proceedings of
the Eighth IEEE International, 2002, pp. 21 – 25.

[17] O. Ballan, U. Rossi, A. Wantens, J.M. Daveau, S. Nappi,
and P. Roche, “Verification of soft error detection mechanism
through fault injection on hardware emulated platform,” in
Dependable System and Network Worskhops (DSN-W), 2010
International conference on, June 2010.

[18] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto,
“A framework for reliability assessment and enhancement in
multi-processor systems-on-chip,” in Defect and Fault-Tolerance
in VLSI Systems, 2007. DFT ’07. 22nd IEEE International
Symposium on, Sept. 2007, pp. 132 –142.

[19] “IEEE P1687/D1.25 Draft Standard for Access and Control of
Instrumentation Embedded within a Semiconductor Device”


