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Abstract

A method to estimate QZ′ of antennas from a single frequency current dis-

tribution is introduced. Three-dimensional (3D) antennas are studied using

this single-frequency method and previous results on single-frequency Q-factor

estimation and current optimization. Physical bounds on the D/Q-ratio are

derived using the concept of optimum antenna current distribution in the

studied situations. These bounds are used for an antenna placement analysis

applied to a wireless device model. Furthermore, the performance of antennas

optimized using a genetic algorithm is compared with physical bounds cus-

tomized for each analyzed situation. A combination of antenna Q and QZ′ is

used as optimization objective for a 3D radiating structure.

1 Introduction

Antenna Q can be computed from a single frequency current distribution on a ra-
diating structure using the method presented in [12] and [10]; see also [13]. This
method is based on expressing the electric and magnetic energies stored in the �elds
created, and the power radiated by an antenna in terms of the current [25]. The Q-
factor estimation method is applied in a genetic algorithm and method of moments
(GA/MoM), [17, 23], optimization procedure in [5, 6]. The concept of optimum an-
tenna current distribution, [10], is used to assess the performance of GA-optimized
radiating structures in [5, 6]. An ant colony optimization method generates antennas
whose performance is compared with physical bounds in [24]. �Corner connections,�
a typical characteristic of metallic-patch-based genetically optimized antennas, can
be avoided using methods such as random geometry re�nement, [20], patch overlap-
ping, [16], faulty-gene purging, [6], etc.

Here we extend the single-frequency Q-factor estimation concept to QZ′ , a pa-
rameter introduced in [28]. A 3D structure is used to show that this parameter can
have small values, e.g., QZ′ � 1 although Q > 1. The energy-based single-frequency
antenna Q estimation method is applied to the single-band Q-factor optimization
of 3D radiating structures with rectangular ground planes. These structures repre-
sent simpli�ed models of common wireless communication terminals, more realistic
compared to the planar models analyzed in [5, 6]. A GA/MoM, [17, 23], procedure
optimizes antennas of such 3D structures for minimum Q-factor. This procedure
uses an in-house MoM solver with variable change for integrating 1/R singulari-
ties [18]. The commercial electromagnetic solver ESI-CEM [7] is used to compute
the input impedance of the optimized structures. A single resonance, [9, 28], or mul-
tiple resonance Brune synthesis model, [27], is employed to evaluate the Q-factor
of the structures from their input impedance. The Q-factors obtained using the
in-house and commercial solver agree to a large extent.

Optimum current densities, [10], in the sense of their D/Q ratio, are derived for
the 3D structures studied in this paper. The D/Q ratio of an optimum antenna
current, realizable or not, gives the physical bound on D/Q for a real structure, i.e.,
having a physical current density. The Q-factors of genetically optimized antennas



2

are compared with Q-factors of optimum currents. The same conditions, e.g., geom-
etry, optimization region, dimensions, etc., are used both in genetic optimization and
current optimization. In this way the bounds are customized for the analyzed situ-
ation. Customized bounds and optimum currents are used in an antenna placement
in wireless device study. The objective of this study is to determine the antenna
location that maximizes the performance of the device, measured as D/Q-ratio or
Q-factor.

The paper is organized as follows. A summary of the theory presented in [5,
10, 12] on the use of stored energies for antenna analysis and design is included in
Section 2.1. The single frequency QZ′ estimation method is presented in Section 2.2.
The convex optimization formulation used to derive physical bounds on D/Q and
D/Q-optimum currents is described in Section 2.3. Section 3 presents the numerical
simulations performed in this paper and their results. Section 3.1 describes the
general simulation setup. The performance and examples of GA/MoM optimized
3D structures are presented and compared with optimum-current performance in
Section 3.2. Section 3.3 illustrates the fact that some antennas can have QZ′ � 1
even though Q > 1. An antenna placement situation is investigated using optimum
currents and physical limitations in Section 3.4. The paper ends with conclusions
in Section 4.

2 Stored Energies and Physical Bounds for Antenna

Analysis and Design

2.1 Stored Energies

Practical antenna analysis and design is usually performed using numerical tech-
niques that solve di�erential and/or integral equations describing an electromagnetic
problem. Examples and details of numerical techniques for electromagnetics can be
found in text books such as [15, 21], etc., and references therein. Such techniques are
based, in general, on a discretized computation domain. The method of moments
(MoM) is a numerical method particularly appropriate for antenna analysis due to
the fact that the discretized domain is the surface of the spatially �nite radiating
structure, [15]. We consider a structure discretized for analysis using an electric �eld
integral equation (EFIE)-based MoM solver. The current density J excited on the
surface of the structure is approximated in terms of the local basis functions ψp as

J(r) ≈
N∑

n=1

Jnψn(r), (2.1)

where r is the position vector, J = (J1, J2, . . . , JN)T is a column vector of complex,
surface-current, expansion coe�cients, and N is the number of basis functions used
to approximate the current. The expansion coe�cients are usually determined from
the system of equations

ZJ = V, (2.2)
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where V is a column vector describing the feeding of the structure, and Z is the
impedance matrix describing the structure, [14, 15, 21].

The electric and magnetic energies stored in the �elds created by a radiating
structure, [25], are approximated in terms of the discrete current density J as the
quadratic forms, [10],

We ≈
1

4ω
JHXeJ (2.3)

and

Wm ≈
1

4ω
JHXmJ, (2.4)

where ω is the angular frequency, and Xe and Xm are the electric and magnetic
reactance matrices, respectively. The power radiated by an antenna is, [8, 13, 22, 25],

Pr ≈
1

2
JHRrJ, (2.5)

where Rr is the radiation resistance matrix. Equations (2.3), (2.4) and (2.5) can
be used to compute the Q-factor of a lossless resonant or non-resonant antenna
as, [5, 28],

Q =
2ωmax{We,Wm}

Pr

≈ max{JHXeJ,J
HXmJ}

JHRrJ
. (2.6)

The de�nition in the �rst part of (2.6) is equivalent to that in [1] for resonant anten-
nas. An overview of expressions for the Q-factor of antennas can be found in [26].
Equation (2.6) expresses the Q-factor of an antenna in terms of the current density
computed for a single frequency. The bandwidth of an antenna can be estimated
using a single frequency simulation, [5], based on the inverse proportionality between
the bandwidth and Q in a single resonance model, [9, 28]. Quadratic forms similar
to those in (2.5) have been employed for antenna array optimization in free space
in [14].

The expressions for Xe, Xm and Rr resemble the expression for the EFIE-based
impedance matrix, Z, commonly computed by MoM solvers [5, 10, 12]. An MoM
algorithm with Galerkin's method, [14, 21], applied to a mixed-potential EFIE for-
mulation computes the impedance-matrix elements, [15, 21],

Zmn = jη0

∫
∂V

∫
∂V

(
kψm1 ·ψn2 −

1

k
∇1 ·ψm1∇2 ·ψn2

)
e−jkR12

4πR12

dS1 dS2, (2.7)

where η0 is the free space impedance, k = ω/c0 is the wave number, c0 is the speed
of light in free space, R12 is the distance between the integration points in the two
integration domains, and V is the the volume occupied by the antenna, bounded
by the surface ∂V . Note that due to the inner product operation performed in the
MoM, i.e., one integration over the surface ∂V , the SI unit for Zmn is Ωm2 and
for the right-hand-side V�Vm. The resemblance of Xe and Z is illustrated by
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expressing the elements of the electric reactance matrix [10, 25]

Xe,mn = η0

∫
∂V

∫
∂V

∇1 ·ψm1∇2 ·ψn2

cos(kR12)

4πkR12

−
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

)sin(kR12)

8π
dS1 dS2. (2.8)

Similarly, Xm and Rr resemble Z as (2.8) resembles (2.7) [5, 10]. These similarities
allow integrating the computation of Xe, Xm and Rr in EFIE-based MoM solvers
with little computational e�ort.

The MoM matrices, Z, Xe, etc., are intrinsically suitable for some global op-
timization algorithms such as GA/MoM optimization, [17, 23], current optimiza-
tion, [10], etc. In such algorithms the optimization time of some antenna parame-
ters, e.g., the bandwidth, may be reduced using the single frequency expression (2.6)
for Q. In addition these matrices are suitable for current optimization [10] used to
derive physical limitations.

2.2 Single Frequency QZ′ Computation

Consider an antenna having the input impedance

Zin(k) = Rin(k) + jXin(k). (2.9)

This antenna is tuned to achieve resonance at the wave number k0 using a series-
connected, ideal, lumped inductor or capacitor, as in [28]. The input impedance of
the tuned antenna becomes

Zin,t(k) = Zin(k) + jXt(k), (2.10)

where

Xt(k) =


−kXin(k0)

k0
Xin(k0) < 0

−k0Xin(k0)

k
Xin(k0) > 0

. (2.11)

At the resonance frequency the input impedance has only the real part, i.e.,

Zin,t(k0) = Rin(k0). (2.12)

The Q-factor of the antenna tuned to resonance, in a single-resonance model, can
be approximated as [28]

QZ′(k0) ≈
k0
∣∣Z ′in,t(k0)∣∣
2Rin(k0)

, (2.13)

where prime denotes �rst derivative with respect to wave number. Note the change
of variables k = ω/c0, performed in order for Zin to be expressed in terms of the
same frequency variable as Z, whose elements are (2.7). If the single resonance
assumption does not hold, the derivative of the input impedance may approach zero
such that QZ′ ≈ 0.
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We express QZ′ in terms of the frequency derivative of the impedance matrix,
Z′, whose elements are given by

k∂Zmn

η0∂k
=

∫
V

∫
V

j
(
k2ψm1 ·ψn2 +∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4πkR12

+
(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2

) e−jkR12

4π
dV1 dV2. (2.14)

Replace (2.10) and (2.11) in (2.13) to obtain

QZ′(k0) ≈
∣∣∣∣k0Z ′in(k0)

2Rin(k0)
+ j
|Xin(k0)|
2Rin(k0)

∣∣∣∣ . (2.15)

An MoM solver gives all quantities needed to evaluate (2.15) except Z ′in. This quan-
tity is traditionally computed using a numerical approximation based on evaluating
Zin for two closely spaced frequencies. An alternative to this approach is presented
in the following.

The input impedance derivative is expressed in terms of the input admittance.
The admittance matrix is given by:

J = YV = Z−1V. (2.16)

This matrix de�nes the input impedance of the antenna using a voltage gap model
of feeding edge elements:

Yin =
VTYV

V 2
in

, (2.17)

where Vin is the voltage applied across the gap. Note that in an EFIE mixed-potential
formulation with Galerkin testing and basis functions de�ned on pairs of adjacent
rectangular mesh elements, [15, 19, 21], we have: Vf = Vin`f , where a voltage gap is
applied along basis function f , and `f is the length of the edge common to the two
rectangles where ψf 6= 0. We consider that the source is real-valued and frequency
independent, i.e., V′ = 0. The input impedance derivative becomes

Z ′in =

(
1

Yin

)′
= −Y

′
in

Y 2
in

= −
(
VTYV

)′
V 2
inY

2
in

= −VTY′V

V 2
inY

2
in

. (2.18)

Consider the following equation:

0 =
(
Z−1Z

)′
=
(
Z−1

)′
Z + Z−1Z′. (2.19)

Multiplication from the right by Z−1 gives

Y′ = −Z−1Z′Z−1 = −YZ′Y, (2.20)

such that the input impedance derivative is

Z ′in =
JTZ′J

V 2
inY

2
in

, (2.21)
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where the fact that Z and Y are symmetric matrices has been used. Replace (2.21)
in (2.15) to obtain

QZ′(k0) ≈
∣∣∣∣k0Z2

in(k0)J
TZ′J

2Rin(k0)V 2
in

+ j
|Xin(k0)|
2Rin(k0)

∣∣∣∣ , (2.22)

where the �rst derivative with respect to wave number of the impedance matrix,
Z′, is computed for the wave number k0. The corresponding expression for QZ′

in [4] di�ers from (2.22) as the former includes frequency derivatives of the current
density and complex conjugates. An expression similar to (2.22) can be derived
using a parallel tuning susceptance.

2.3 Physical Bounds

Physical bounds customized for the antennas analyzed can be derived by formulat-
ing appropriate optimization problems for antenna parameters [10]. These problems
determine optimum antenna current densities in the sense of the parameter(s) of in-
terest. Optimum antenna currents may or may not be physically realizable, i.e.,
there may or may not exist a feeding scheme of the antenna that produces the opti-
mum current. However, optimum currents give an upper bound on the performance
a physical structure can achieve. One of the advantages of current optimization is
the fact that customized bounds are derived without restrictive assumptions, e.g.,
bounding geometry, electrical size, etc.

We use a convex optimization formulation for maximizing the partial directiv-
ity Q-factor ratio, D/Q, of radiating structures. This formulation is obtained by
relaxation of, [10],

minimizeJ max{JHXeJ,J
HXmJ}

subject to FHJ = −j,
(2.23)

to the dual problem, [3],

minimizeJ JH (αXe + (1− α)Xm)J

subject to FHJ = −j,
(2.24)

over 0 ≤ α ≤ 1. The solution of (2.24) for a �xed α is

J =
−j (αXe + (1− α)Xm)−1F

FH (αXe + (1− α)Xm)−1F
, (2.25)

with appropriate scaling of J such that FHJ is dimensionless. The N × 1 matrix F,
with the elements

F ∗n =
−jkη0

4π

∫
V

ê∗ ·ψn(r)ejkk̂·r dV, (2.26)

is used to approximate the far �eld, F , in the �xed direction k̂, projected on the
polarization vector, ê, as

ê∗ · F (k̂) ≈ FHJ. (2.27)
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Formulation (2.24) minimizes the energy stored in the �elds created by a radiat-
ing structure for a �xed partial radiation intensity in a speci�c direction. Cur-
rent densities optimum in the sense of (2.24) give the physical limitation on D/Q.
The Q-factors of these currents, (2.6), may not be optimum in the sense of the
Q-factor, i.e., there may exist current densities producing smaller Q values. One
advantage of formulation (2.24) and its solution (2.25) is the fact that there exist
algorithms that solve (2.24) fast and e�ciently even for large matrices and multiple
directions and polarizations. For example the MATLAB function fminbnd can be
used to solve (2.24).

3 Results

3.1 Simulation Setup

An in-house EFIE-based MoM solver computes the matrices Z, Xe, Xm and Rr

that describe the antennas studied. These matrices are used in GA/MoM as mother
matrices [17], and for current optimization [10].

The in-house MoM-solver is based on Galerkin's method and a mixed-potential
EFIE-formulation [14, 15, 21]. The basis and testing functions have a �rooftop� pro-
�le on pairs of adjacent rectangular mesh elements, i.e., rectangles sharing a common
edge [19], as illustrated in Fig. 1. Such a function has the amplitude linearly increas-
ing toward the common edge and the direction from the �rst to the second rectangle
(numbered according to a �xed mesh element numbering rule). The change of vari-
able described in [18] is used to integrate the 1/R singularity for identical and closely
spaced mesh elements.

An in-house genetic algorithm [5, 6] is employed for searching realistic structures
with performance close to physical limitations. An initially-random, 200-individual,
antenna population is improved according to evolutionary principles in steps. At
each step 80 randomly chosen individuals compete to become one of two breeding
parents. The resulting two o�spring are a�ected by two-point cross-over (which
happens 80 % of the time) and single-gene mutation (20 % probability). These o�-
spring are placed in the population, which is enlarged by two. The antennas in
this expanded population are ranked according to their �tness. The two least-�t
antennas are removed from the population. Fitness is evaluated as an objective
(cost) function that is minimized during optimization. This function is a combi-
nation of antenna parameters with di�erent weights. After 300 consecutive steps
without population improvement the algorithm enters a phase where the o�spring
produced always have up to 4 genes mutated. This phase is meant to reduce the so-
lution time of the GA (however, this time improvement has not been studied). Once
improvement is observed, the algorithm returns to �natural� conditions, single-gene
mutation with 20 % probability. The optimization is stopped after 2 105 steps or
when genetic stability during 2 104 steps is observed.

The commercial electromagnetic solver ESI-CEM [7] is used to verify the results
obtained using the in-house solver through genetic optimization. This commercial
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solver uses a triangular element mesh for discretizing the surfaces of analyzed struc-
tures. The results of a GA/MoM-optimized antenna ESI-CEM simulation are used
to calculate the cost function for that antenna. In this way a comparison between
the results obtained using the in-house solver and the commercial solver ESI-CEM
is possible.

3.2 Bent-End Simple Phone Model

We consider in�nitely-thin, lossless, perfect-electrical-conductor (PEC) structures in
vacuum. The analyzed structures are spatially con�ned to three rectangular regions
connected together as illustrated in Fig. 1. The �rst region has the length `1 and
width w = 7 cm. This region is the �xed ground plane, [5, 6]. The second and
third rectangular regions, with the lengths `2 and `3 = 0.7 cm, respectively, and
width w, represent the antenna region, [5, 6]. The lengths `1 and `2 are chosen such
that `1 + `2 = ` = 14 cm. The region with the length `3 extends in a direction
perpendicular to the common plane of the other two regions. This arrangement
models, in a simpli�ed manner, some common mobile terminals.

Three situations of the above arrangement are considered. The structures cor-
responding to these situations have `2 = 0.7 cm, 1.4 cm and 2.8 cm, i.e., 5 %, 10 %
and 20 % of `, respectively. The ground plane is �xed and metallic (PEC). The an-
tenna region is used for current optimization�to derive physical limitations, and for
genetic optimization�to �nd realistic structures approaching their physical limita-
tions. Physical limitations are derived using convex optimization formulation (2.24)
for the D/Q-ratio for each situation, [10]. Antennas are optimized for minimum Q
through the GA/MoM optimization procedure, [17, 23].

The mother structure, [17, 23], corresponding to the arrangement described above
consists of three in�nitely thin PEC rectangular surfaces with the lengths `1, `2 and
`3, and width w arranged as in Fig. 1. This structure is discretized with a non-
uniform mesh, �ner in the antenna region than in the ground plane for all situations
considered. The �rst 11.2 cm in the `-direction from the left in Fig. 1 are divided
in 40 mesh elements (and 25 in the w-direction). The remaining 2.8 cm in the `-
direction are divided in 20 mesh elements (and 50 in the w-direction). The bent
region is divided in 5 by 50 mesh elements in the `3 and w directions, respectively.
This particular choice of discretization results in square mesh elements with the side
1.4 mm in the antenna region and 2.8 mm in the ground plane. A row of overlapping
basis functions in the `-direction at the place of the discontinuity in the mesh size
couples electrically the regions with di�erent discretizations.

The mother matrices, i.e., the matrices Z, Xe, etc., describing the mother struc-
ture, are square with 4435 rows. A block matrix decomposition is applied to these
matrices, [17]. This decomposition reduces the sizes of the matrices manipulated
repetitively during the GA/MoM optimization. These latter matrices are square
with 990, 1485 and 2475 rows respectively for `2 = 0.7 cm, 1.4 cm and 2.8 cm.

The genetic optimization of antenna Q has been run for �ve frequencies, given by
`/λ = 0.1, 0.2, 0.3, 0.4, and 0.5. Five optimized structures have been generated by
the GA for each combination of `2 and frequency. The smallest optimized-structure
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F

`2`1
`

w

`3

Fixed ground plane Antenna

Figure 1: Illustration of rectangular mesh element discretization and �rooftop�
basis function amplitude for a three-dimensional radiating structure. Metal areas
are depicted in gray shading. The amplitudes of three of the total 7×3+6×4−4−3
basis functions are depicted in blue, pink and green shading. The feeding edge is
marked F .

Q-factor (2.6) of the �ve corresponding to each combination of `2 and frequency is
labeled �Pred.� in Fig. 2. The optimized structures with these smallest Q-factors (of
which six are depicted in Fig. 3) have been simulated using the commercial solver
ESI-CEM, [7]. The input impedance of these structures is used to obtain the Q-
factors labeled �Sim.� in Fig. 2. These Q-factors agree to a large extent with those
obtained using the in-house MoM solver and the discrete expressions (2.3)�(2.6) (less
than 6 % deviation relative to the former Q values). The single-resonance model de-
scribed in [9, 28], (2.13), is employed to compute the Q-factor for `/λ = 0.1 and 0.2.
The Q-factors for the other frequencies are computed using the multiple-resonance,
Brune-synthesis model, [27]. The single-frequency QZ′ (2.22) has been applied to the
structures having the smallest Q-factors mentioned above. The QZ′ values in these
cases have less than 5 % di�erence relative to corresponding QZ′ values computed
using (2.13).

TheQ-factors obtained in optimization and simulation are compared toQ-factors
given by optimum antenna current distributions, labeled �Opt.� in Fig. 2. These
distributions are obtained using the convex optimization formulation (2.24) for the
D/Q-quotient, [10]. The matrices involved in these formulations are square with 990,
1485 and 2475 rows respectively for `2 = 0.7 cm, 1.4 cm and 2.8 cm. These matrices
are obtained using a uniform, 1.4 mm-side square mesh element discretization of the
mother structure�same mother structure as that considered for GA optimization.
The physical bound on the Q-factor of a rectangular PEC region with the dimensions
14 × 7 cm2 computed using the results in [11] is included for illustration. It is
observed in Fig. 2 that the optimized-structure Q-factors are close to those achieved
by optimum antenna currents (less than 13 % deviation relative to the optimum-
current Q-factors). Note that the current distributions used to compute the curves
labeled �Opt.� in Fig. 2 are optimum in the sense of D/Q. However, the Q-factors
computed from these distributions may not be optimum in the sense of the Q-
factor. This may result in structures that are on the �wrong side� of the D/Q-
optimum current Q-factor, e.g., below the curves in Fig. 2. The D/Q-quotient of
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0.1 0.2 0.3 0.4
1

10

102

`/λ

Q
0.2 0.4 0.6 0.8 1

f/GHz, ` = 14 cm

Opt. Pred. Sim.

`2 = 0.7 cm
`2 = 1.4 cm
`2 = 2.8 cm

Bound, rectangle

Figure 2: The Q-factors of antennas optimized using a genetic algorithm (�+�)
compared to corresponding Q-factors of D/Q-optimum current densities, [10], for
the bent-end model illustrated in Fig. 1 with `2 = 0.7 cm, 1.4 cm and 2.8 cm and
` = 14 cm. The input impedance of the GA-optimized structures, computed by ESI-
CEM, [7], has been used to calculate the Q-factors �◦� using a resonance model [9,
27, 28]. The physical bound on Q for a rectangular PEC surface 14× 7 cm2, [11], is
depicted in solid black line.

Figure 3: Example of genetic algorithm optimized structures (gray shading�part
of the ground plane, black�antenna region part coplanar with the ground plane,
bronze�antenna region part normal to the ground plane) with Q-factors depicted
in Fig. 2 for `/λ = 0.1 (left column) and `/λ = 0.5 (right column), and `2 = 0.7 cm
(top row), 1.4 cm (middle row), and 2.8 cm (bottom row). Feeding edges are circled.
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such structures is on the �right side� of the physical bound.

3.3 Bent-End Simple Phone Model�Optimization for QZ′

The bent-end model with `1 = 12.6 cm and `2 = 1.4 cm, described in Sec. 3.2,
has been optimized using the GA for operation between 700 MHz and 960 MHz.
This frequency band is divided in two sub-bands with the center frequencies fc,1 =
759.5 MHz and fc,2 = 889.5 MHz, The fractional bandwidths of the two sub-bands
are equal, FBW1,2 ≈ 15.8 %. The matrices Z, Xe, Xm and Rr are computed for the
center frequencies. Two extra impedance matrices are computed for the frequencies
1.001fc,1,2 in order to evaluate QZ′ at fc,1,2 using (2.13). The cost function minimized
by the genetic algorithm is

FC = αQ,M max

{
Q1

7
+
Q2

7

}
+ αQ,S

(
Q1

7
+
Q2

7

)
+ αQZ′ ,M

max {QZ′,1 +QZ′,2}+ αQZ′ ,S
(QZ′,1 +QZ′,2) , (3.1)

where the indices 1 and 2 denote the sub-band, Q is the energy-based antenna-
Q (2.6), QZ′ is the single-resonance input-impedance-derivative antenna-Q (2.13),
and the weights α de�ne the optimization target. The normalization values for Q,
7, ensure less than −6 dB re�ection coe�cient magnitude at the antenna input for
the targeted FBW, under the assumption of single-resonance. The QZ′ values are
not normalized because some applications target as low QZ′ as possible, i.e., little
variation of the input impedance in the operation band.

The GA has been run �ve times for each optimization target whose α-values are
listed in Table 1. The Q-factors of the four GA-optimized structures depicted in
Fig. 4 (of the total 15 structures) are presented in the same table. The structures
corresponding to rows 1, 2 and 3 have the minimum cost function. The structure
whose Q-factors are listed on row 4 has been optimized for simultaneous minimum
Q and QZ′ , does not have the minimum cost function, but has minimum Q on both
sub-bands (out of the total 5 GA-optimized structures with this target). The values
for QZ′ listed in Table 1 are evaluated with (2.13). These values agree to a large
extent with the same values reevaluated at the center frequencies with (2.22). The
four structures of Fig. 4 have been simulated in ESI-CEM [7]. The magnitudes
of the re�ection coe�cients at the inputs of these structures are depicted in Fig. 5.
Matching networks that yield less than −6 dB re�ection coe�cient in the entire band
have been designed using BetaMatch [2]. These networks are depicted in Fig. 6 and
the resulting S11 magnitudes in Fig. 5. Real component models of surface-mount
device (SMD) lumped elements, including losses, have been used for matching.

3.4 Wireless Terminal Antenna Placement Analysis Using

Optimum Currents

Optimum antenna currents can be employed for evaluation and comparison of the
performance achievable by a device with antennas placed at di�erent locations. For
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1 2

3 4

Figure 4: GA-optimized structures whose Q-factors are listed in Table 1. Gray
shading�part of the ground plane, black�antenna region part coplanar with the
ground plane, bronze�antenna region part normal to the ground plane. Feeding
edges are circled.

0.5 0.7 0.9 1.1
−15
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|S11|/ dB
1
2
3
4
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0.3 0.4 0.5 `/λ

Figure 5: Magnitude of S11 at the input of the structures depicted in Fig. 4 without
matching network, the curves labeled 1, 2, 3 and 4, and with the matching networks
sketched in Fig. 6, the curves labeled 1m, 2m, 3m and 4m.
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Target
αQ, αQZ′ , Q1 Q2 QZ′,1 QZ′,2

M S M S

1 min Q 1 0.1 0 0 4.6 3.7 2.9 0.3
2 min QZ′ 0 0 1 0.1 8.2 8.9 0.01 0.01
3

min Q & QZ′ 1 0.1 1 0.1
8.7 6.8 0.08 0.08

4 6.5 5.5 1.1 1.1

Table 1: GA cost function parameters and results for di�erent optimization objec-
tives

22 n

2.7 p

3.3 p

2.2 p
27 n

15 n

4.7 p

2.2 p

Figure 6: Matching networks designed for the structures depicted in Fig. 4 to
yield less than −6 dB re�ection coe�cient magnitude between 700 . . . 960 MHz (solid
curves in Fig. 5). Component values in SI units. Matching networks numbered as
structures in Fig. 4�left to right and top to bottom.

illustration, we would like to determine the position and shape of the antenna re-
gion, [5, 6], that has the smallest Q-factor in the frequency range of Fig. 2. The nine
3D simpli�ed models of common hand-held wireless terminals depicted in Fig. 7 are
analyzed. These models are limited to a rectangular parallelepiped with the dimen-
sions `×w×h = 14× 7× 0.7 cm3 (i.e., length×width×height). Note that limiting
the structures to a parallelepiped is introduced for illustration purpose and does not
restrict the applicability of the procedure exempli�ed here. Each model is drawn in
Fig. 7 to scale in three side views from the `, w and h-directions (except for Fig. 7h
where an h-side view and two sections through the symmetry planes are depicted).
Gray and black represent the ground plane and antenna region, respectively. The
thickness of the in�nitely thin PEC material is exaggerated.

The ground plane, [5, 6], consists of an in�nitely thin planar PEC sheet that
covers 90 % of the area of one `×w face of the parallelepiped bounding the antenna.
The remaining 10 % of that face represents the support of the antenna region, which
may be continuous or divided in more sub-regions. Here, a maximum of two sub-
regions have been used. The structures in the antenna regions are limited to in�nitely
thin PEC sheets placed on faces of the 3D shape of the antenna region. This shape
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Struct. a b c d e, f g h i
N 7584 8256 7568 7584 8256 8256 10830 7584
NAR 1936 2608 1928 1944 2616 2612 5168 1992

Table 2: Dimensions of MoM matrices for the structures of Fig. 7

a b c

d e f

g h i

Figure 7: Nine simpli�ed wireless-device models limited to a parallelepiped, con-
sisting of a planar ground region extending 90 % of one length×width face, and an
antenna region occupying 10 % of the parallelepiped volume. Three side views are
depicted for a-g and i, i.e., structures as seen along the length, width and height.
A side view along the height and two sections at the symmetry planes are depicted
for h. Gray shading�ground plane; black�antenna region, [5, 6].

is obtained by translating the 10 % of the ` × w-face area reserved for the antenna
region a distance h perpendicularly to the ground plane (i.e., by extruding the 10 %
in the h-direction to the opposed face). The shapes resulting in the antenna region
are made of rectangular parallelepipeds. These parallelepipeds are covered with
PEC sheets on the four largest-area faces (in the case depicted in Fig. 7h there are
four openings adjacent to the ground plane corners in the w×h-plane; these are one
mesh-element wide and extend the entire h-dimension).

The antenna region placement situations introduced above are discretized using
a uniform mesh of 1.75× 1.75 mm2 rectangular elements. The total number of basis
functions, N , resulting for the structures depicted in Fig. 7 are presented in Table 2
(i.e., the number of rows and columns, where applicable, of Z, Z′, Xe, Xm, Rr, and
F). The same table presents the number of rows, and columns where applicable,
NAR, of the blocks, [17], corresponding to the 10 %-`×w-area antenna region [5, 6].
These blocks are computed for the matrices involved in the convex optimization
formulation (2.24).

The bounds on D/Q using formulation (2.24) for the simpli�ed models of Fig. 7
are depicted in Fig. 8. Linear polarization along the length and directivity in the
direction of the height of the parallelepiped bounding the models are considered. The
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Figure 8: Physical bounds on D/Q for the structures depicted in Fig. 7 obtained
using the convex optimization formulation (2.24), [10], when only the antenna region
(black in Fig. 7) is optimized. The physical bound on D/Q for a rectangular PEC
surface 14× 7 cm2, [11], is depicted in solid black line and labeled �R.�

bound computed using the results in [11]1 for a rectangular, in�nitely thin, 14×7 cm2

PEC sheet is labeled �R� in Fig. 8. The D/Q-optimum current distributions giving
the physical bounds in Fig. 8 are used to compute the Q-factors (2.6) depicted in
Fig. 9. The physical bound on Q for a rectangular 14 × 7 cm2 PEC sheet, [11],
is labeled �R� in Fig. 9. The ring structure depicted in Fig. 7h outperforms all
other structures in the �gure in terms of D/Q and Q, except for a frequency region
around `/λ ≈ 0.1 where the structure in Fig. 7b has a greater D/Q. We also note
that around `/λ ≈ 0.37 a few of the structures in Fig. 7 reach close to the D/Q
bound of a rectangular region and the structure in Fig. 7h has a D/Q value greater
than that of a rectangular region. The optimum-current Q-factors do not reach as
close to the physical bound on Q for a rectangular region as the D/Q-values.

4 Conclusions

A method to estimate QZ′ of antennas from the current distribution computed for a
single-frequency is introduced. This method and other previous results are applied to
three analysis and design situations of three-dimensional radiating structures. These
applications suggest that customized physical bounds, optimum currents, and single-
frequency expressions such as (2.6), (2.22), are tools that may be useful for antenna
design, e.g., to stop an optimization process, assess realizability of speci�cations,
assess performance of antenna locations, etc.

The �rst situation mentioned above is global optimization of 3D antennas with
knowledge of physical bounds pertaining the radiating structure as it is, without
assumptions such as electrical size, bounding geometry, etc. The results presented
here suggest that single-frequency estimations such as (2.6) and (2.22) can reduce

1http://www.mathworks.se/matlabcentral/�leexchange/26806-antennaq
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Figure 9: The Q-factors (2.6) achieved by the currents that give the optimum
D/Q-values depicted in Fig. 8. The Q-factor of a 14× 7 cm2 PEC rectangle, [11], is
labeled �R.�

the optimization time of some antenna parameters, e.g., antenna bandwidth, Q. Fur-
thermore, carefully integrated physical bounds can be used for physical-limitation
aware optimization, i.e., to stop an optimization process when the target is achieved
with a certain margin.

The second situation is a non-exhaustive study of optimizing antennas for Q ver-
sus QZ′ , or both. Four examples illustrate values for Q and QZ′ obtained by antennas
optimized genetically for Q, (2.6), QZ′ , (2.13), and both. The three targets include
simultaneous operation on two di�erent frequencies. The di�erent frequencies can
be centers of adjacent (as here) or separated frequency bands.

The third situation is the use of optimum antenna currents for determining the
optimum position of an antenna in a wireless device. Nine simpli�ed device models
are analyzed, in which the antenna/antennas may occupy 10 % of the device volume.
These models can be generated manually (as is the case here) or by an optimization
process.
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