
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptation of a System Dynamics Model Template for Code Development and Testing
to an Industrial Project

Berling, Tomas; Andersson, Carina; Höst, Martin; Nyberg, Christian

2003

Link to publication

Citation for published version (APA):
Berling, T., Andersson, C., Höst, M., & Nyberg, C. (2003). Adaptation of a System Dynamics Model Template for
Code Development and Testing to an Industrial Project. Paper presented at ProSim03 - Software Process
Simulation Modeling workshop, Co-located with ICSE 03, Portland, United States.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/900fa59c-40c9-4bd0-b1b7-c9afffc6a6c6

A

Proc
softw
and
ess u
proc

T
ated
velo
tion
syste
show
tend
is a
fect
tecti
trac
an a
deve
ers w

T
duce
spec
port
mod
pati
men

1. I

Sim
syste
the s
reas
indu
• It

If
Published in proceedings of ProSim 2003
daptation of a Simulation Model Template for Testing to an Industrial Project

Tomas Berling*, Carina Andersson**, Martin Höst**, and Christian Nyberg**

* Ericsson Microwave Systems AB
SE-431 84 Mölndal, Sweden

Tel: +46 31 747 65 42
Fax: +46 31 747 04 84

e-mail: tomas.berling@emw.ericsson.se

** Lund University

Dept. of Communication Systems
Box 118, SE-221 00 Lund, Sweden

Tel: +46 46 222 33 19
Fax: +46 46 14 58 23

e-mail: (carina.andersson, martin.host,
christian.nyberg)@telecom.lth.se

Abstract

ess understanding and improvements are essential in
are industry in order to achieve cost effectiveness

short delivery times. One means of increasing proc-
nderstanding and improvement is to utilize software
ess simulation.
his paper describes how a template model was cre-
 in order to increase the knowledge of the code de-
pment and test processes for an industrial organiza-
. The template model was created from an existing
m dynamics model for the unit test phase. The paper
s how the template model can be adapted and ex-

ed to fit a similar organization. The simulation model
pplied for investigating the relationship between de-
prevention in the development phase and defect de-
on in the various test phases. Data from a large con-
t-driven project were used in a case study to calibrate
dapted and extended model, which included code
lopment and four test phases. Programmers and test-
ere involved in the design of the model.

he results show that it is possible to use the intro-
d template model and to adapt and extend it to a
ific organization. We can also conclude that it is im-
ant to involve project members who contribute to the
el building. The process understanding of the partici-
ng project members is increased due to their involve-
t.

ntroduction

ulation involves experimentation with a model of a
m instead of the system itself. Usually the model of
ystem is implemented in a computer program. Some

ons for the increasing interest of using simulations in
stry are:
 might be dangerous to experiment with the system.
 for example the system is a nuclear power plant, ex-

perimentation with a new control system is not al-
lowed until it is simulated.

• The system might not exist. If for example a new air-
craft is constructed, it is best to evaluate its perform-
ance using simulation before actually building it. It
would be too expensive to build several different air-
craft and measure their performance.

• Before changing an organization it is advisable to
simulate the new organization to see if it meets the
demands put on it.
The models used in simulation usually consist of a

state description and a number of rules that describe how
the state is changed with time, given a certain environ-
ment. The rules of change can be differential or differ-
ence equations.

Usually a distinction is made between discrete event
simulation and continuous simulation [1]. In discrete
event simulation the state of a system is changed only
when certain events occur and is not changed between
these events. A typical example is a queuing system
where the state is the number of customers in the queue
and the events are arrivals of customers and departures of
customers. An example of a continuous simulation is
when the air pressure around an aircraft is simulated as a
function of time. Usually differential equations are used
to describe state changes in models used for continuous
simulation. It is also possible to combine discrete event
simulation and continuous simulation, which is usually
called hybrid simulation, see for example Donzelli et al
[2], and Martin et al [3].

In software engineering the main reasons for using
simulations of software processes are for the purpose of
strategic management, planning, control and operational
management, process improvement and technology adop-
tion, understanding, and training and learning [4,5]. In a
software development project the effect of a process
change in the code development or the test phases can be
difficult to predict or it can be difficult to prioritize work
in the different phases during time pressure, for example.

A simulation model is appropriate to use in these cases.
The risk of changing processes in the running projects in
order to learn about it and to implement new ideas is too
high, since it would lead to longer delivery times and high
costs. A simulation model is used without any risk and
with a relatively low cost.

The focus of this study is to enhance the modeling of
the code development and test phases, for any organiza-
tion, in order to understand the current software devel-
opment process and to facilitate for future improvements
to these processes. A system dynamics model with a code
development phase and a test phase has been developed,
which can be used as a template for other organizations to
simulate these phases. The paper describes how this tem-
plate model can be extended and adapted to suite the
software development process in an organization.

The template model has been extended and adapted at
Ericsson Microwave Systems AB, Sweden, to facilitate
process improvements. Specifically the resources used,
the distribution of undiscovered defects in the different
test phases, and the cost of finding defects in different
phases were studied.

The main research questions of this study are:
• What key tasks, primary objects, and vital resources,

in the simplest case, are needed in a simulation model
in order to investigate for example the resources used,
the distribution of undiscovered defects in different
phases, and the cost of finding defects in different
phases?

• How can such a template model be adapted and ex-
tended to a specific organization?
The template model in this study is based on the study

by Collofello et al [6], who modeled and simulated a unit
test phase. The idea of viewing the unit test phase as two
flows, a testing flow and a detection flow originates from
Collofello et al, and in this study the model is further gen-
eralized.

Modeling and simulation of the code development and
test phases have been performed in other studies. Analy-
sis of the test process has for example been performed by
Raffo et al [7] in which the impact of a process change
was simulated. The process change involved the imple-
mentation of unit test plans and the simulation result
showed that the process change would be successful.
Madachy et al [8] have simulated the peer review model
in an organization to investigate the dynamic project ef-
fects of performing inspections. The code development
and test phases are parts of this model. The simulation
results helped the planning and performance of peer re-
views. Andersson et al [9] simulated the requirements
specification and test phases and specifically analyzed the
resource allocation in the different activities to decrease
the project cycle time. The models used in these studies

are specific for the examined organizations in contrast to
the general model presented here.

In this paper a continuous simulation model is used. A
discrete event simulation can also be used for this pur-
pose. The discrete event simulation technique has for ex-
ample been used to model a specific requirements man-
agement process for identification of overload situations
[10].

The paper is structured as follows. The organization,
developed products, and process are described in the en-
vironment part in Section 2. The method used is pre-
sented in Section 3 and the model and simulation is re-
ported in Section 4. Conclusions are presented in Section
5.

2. Environment
2.1. Organization and Developed Products

The study is performed at Ericsson Microwave Systems
AB, where radar systems are developed. The systems are
large and complex with hard real-time constraints. The
systems are divided into sub-systems, which are inte-
grated at several levels, both hardware and software wise.

The products are delivered on contract. There are
therefore relatively few customers compared to broad
market products.

2.2. Process

The organization follows an incremental software devel-
opment process. In each development step, called incre-
ment, functionality is added to the previous one. The
functionality is added in a manner so that the system is
always executable. The first increment contains only ba-
sic functionality and the last increment contains all func-
tions.

In each increment the following development phases
are included:
• System requirements specification
• Sub-system level 1 requirements specification (see

Figure 2 for the different sub-system levels)
• Sub-system level 2 requirements specification
• Code development and unit test
• Sub-system level 2 verification
• Sub-system level 1 verification
• System integration
• System verification

System acceptance tests with the customer are per-
formed after the last increment. Table 1 presents the de-
velopment phases included in the case study and the per-
sonnel performing it.

Sub-system level 2

Sub-system level 2

Sub-system level 2

Sub-system level 1

System

Sub-system level 1

Table 1. Development phases in the study and the
personnel performing it.
Development phase Personnel
Code development and unit test Programmers
Sub-system level 2 verification Programmers
Sub-system level 1 verification Programmers
System integration Independent testers
System verification Independent testers

Figure 2. The sub-system level 2 in the study in rela-
tion to the whole system
 3. Method The sub-system level 1 requirements specification

phase is performed by design engineers and the sub-
system level 2 requirements specification phase is per-
formed by programmers. These two phases are not in-
cluded in the simulation study.

In order to answer the research questions, the idea of im-
plementing a template model, and adapting and extending
it to a specific organization is examined. Building the
simulation model was an iterative procedure with a con-
tinuous contact with the programmers and testers in the
modeled project. The close co-operation with the pro-
grammers and testers resulted in discussions on both
model purpose, and model structure. The development
procedure can be described in several steps, where feed-
back from the programmers and testers was received in
every step.

The sub-system is developed by approximately 4 pro-
grammers in average. The sub-system is divided into
units, which are tested separately. The unit tests are de-
veloped and executed at the same time as the code devel-
opment for the system. When the programmers have com-
pleted the code development and the unit tests are exe-
cuted without failures the code is frozen in a unique revi-
sion and the next phase, sub-system level 2 verification, is
performed. In sub-system level 1 verification, which is
the next phase, the sub-systems at level 2 are integrated
and verified into one sub-system at level 1. When this
phase is completed the sub-system at level 1 is delivered
to the independent test engineers. In the system integra-
tion phase the testers integrate the sub-system level 1 with
several other sub-systems at level 1. When the integration
phase is conducted the next phase, system verification, is
performed. In the system verification phase the system is
verified by the testers. When the system has been verified
and defects have been corrected or postponed, the devel-
opment of the increment has been completed.

The first step concerned specifying the purpose, model
scope, result variables, process abstraction, and input pa-
rameters. This was performed according to a guideline of
Kellner et al [5]. These aspects were identified in order to
specify what to simulate.

The purpose of the simulation study is to enhance the
understanding of the code development and testing
phases, specifically the resources used, the distribution of
undiscovered defects in the different test phases, and the
cost of finding defects in different phases. When the un-
derstanding has increased the simulation model can be
used for process improvement and technology adoption in
the code development and test phases. Several increments can exist at the same time, but in

different phases, i.e. the next increment can start before
the previous is completed. Figure 1 shows an example of
development phases and increments in an incremental
development process. Figure 2 shows the sub-system
level 2 in the study in relation to the whole system.

The model scope was confined to the development
and testing phases. The requirements specification phases
were excluded from the model’s boundary for the reason
that faults in the requirements specifications are only indi-
rectly causing defects in the code, through the program-
mers’ knowledge and skills. If the code would have been
generated automatically from the requirements specifica-
tions the requirements specification phases would have
been included. Even though the requirements specifica-
tion phases are not unique parts of the model, they could
be included as input parameters at the development, and
testing phases.

Requirements
specification

Code
development

Sub-system level
1 verification

Sub-system level
2 verification

System
integration

Increment 1

Increment 2

Increment 3

Increment 4

System
verification

Time

Figure 1. An example of development phases and in-
crements in an incremental development process

The simulation of an industrial project was performed
for one increment, see Figure 1, i.e. a portion of a life
cycle, in one project.

The result variables in the project simulation included
defect distribution between the phases, resources used in
the phases, and an estimated cost of finding defects in
different phases.

The organization also follows a formal review process
for all documents. All necessary documents are defined in
the formal incremental software development process.

The process abstraction part is the key contribution
of this paper. The main research questions presented in
Section 1 yield the process abstraction. The key tasks,
primary objects, and vital resources according to Table 2
were identified as the simplest case for the template
model. The idea of viewing the unit test phase as two
flows, a testing flow and a detection flow originates from
Collofello et al [6]. The template model is built from this
idea.

Table 2 Key tasks, primary objects, and vital re-
sources for the template model.
Key tasks Primary objects Vital resources
Code development Incoming work in KLOC Programmers
Testing of code Defects in code Testers

This template model can be adapted and extended with
further key tasks, primary objects, and vital resources to
suite the industrial environment.

The key tasks, primary objects, and vital resources in
the industrial simulation included in this study were
adapted and extended according to Table 3. This adapta-
tion and extension is directly related to the organization
process, described in Section 2.2.

Table 3 Key tasks, primary objects, and vital re-
sources for the industrial environment in this study.
Key tasks
Code development and unit test
Sub-system level 2 verification
Sub-system level 1 verification
System integration
System verification
Rework of defects, i.e. corrections.
Primary objects
Incoming work in KLOC
Defects in code
Vital resources
Programmers
Testers

The key tasks are the activities relevant to the model

purpose, while the primary objects are the project arti-
facts, believed to affect the result variables. Vital re-
sources could also be the hardware used for code devel-
opment and testing, but this was not included in this in-
dustrial simulation.

A case study by Berling and Thelin [11] of the verifi-
cation and validation activities in the organization served
as a baseline for the important factors and the expected
behavior of the simulated system. In their study, the
trade-off between inspection and testing, in terms of
faults found and resources used were investigated in the
organization. Data from their study were used to calibrate
and validate the adapted simulation model.

The input parameters are defined in accordance with
the desired result variables and the process abstraction. In
the template model the in-parameters were defined ac-
cording to Table 4.

Table 4. The in-parameters in the template model.

Input parameter
Incoming work
Programmer Resource
Tester Resource
Coding Method
Testing Method

In the industrial simulation included in this study the

template model was extended with further in-parameters.
Most of the in-parameters in the industrial setting are con-
stants, defined by the model user before the simulation
model is executed, while others are varying over time.
The input parameters are described in more detail in Ap-
pendix A.

With the simulation purpose, the model scope, the re-
sult variables, the key tasks, and the input parameters in
mind the template model was adapted and extended to a
first draft on paper. The draft model only consisted of
qualitatively affecting relationships, and was without
weighting and quantitative relationships.

To ensure the validity of the draft model, feedback was
received from programmers and testers on the included
in-parameters and relationships. Walkthroughs of the
model were performed. Their comments mainly con-
cerned definitions and effects of in-parameters and cost
aspects of finding defects in different phases. Test cover-
age was for example one in-parameter added to the model
after comments from the programmers and testers.

According to the programmers’ and testers’ comments
the model was revised and thereafter transformed into the
simulation tool. A visual description was chosen in order
to enhance the understanding of the model, and to ease
the calibration of the model, which continuously was per-
formed with assistance from programmers and testers.

The development of the model extended from the tem-
plate model, with few affecting factors, to a more detailed
and project specific model with more relationships and
inter-dependencies. As a result of the study by Berling
and Thelin [11] the factor “Low-level design” was added
to the model. This factor became apparent when faults
found in the real system were classified and analyzed, i.e.
faults were injected in the real system due to an inade-
quate low-level design for the sub-system.

In addition to the walkthroughs with programmers and
testers, and using their estimates based on their past ex-
periences, calibration of the simulation model was per-
formed with real project data, see Section 4.2 for a de-
scription. If project data are not available statistical data

from literature can be used initially, see for example
Jones [12].

The opportunity to further develop the model still ex-
ists, either to include or exclude activities, if these are
assumed to affect the output, or to make changes to adapt
the model for another development project.

4. Model and simulation
4.1. Template Model

The template model, including only the necessary key
objects in the simplest case, is presented in Figure 3. This
model consists of one module for code development,
module A, and one module for test, module B. The arrow
in Figure 3 corresponds to undiscovered defects, which
are transferred from module A to module B. With the
template model the user can simulate the number of in-
jected defects during code development and the number
of detected defects during testing as well as used re-
sources and the time for development and testing. When
the template model behavior is understood by the user,
the model can be extended and adapted to reflect the in-
dustrial setting. This is described in the next section.

Module A
Code
development

Module B
Unit test

Figure 3. The template model with one development
phase and one test phase.

The code development module, module A, is modeled
according to Figure 4. The model user estimates the fol-
lowing input parameters:
• The incoming work
• The number of programmers
• The average number of injected defects per day per

programmer
• The average produced number of KLOC per day per

programmer with the coding method
The values of the input parameters can be estimated by

project measures, reported statistics, or best estimates
from experienced programmers and testers. The lower
flow in Figure 4 corresponds to the coding rate, which is
determined by the number of programmers and the aver-
age KLOC per day produced per programmer. The num-
ber of KLOC in incoming work together with the coding
rate determine the number of days it takes to complete the
code. The upper flow in Figure 4 corresponds to the de-
fect injection rate during coding, which is determined by
the coding rate and the injected number of defects per
KLOC by the programmers, due to the coding method.
The output from the module is the number of undiscov-
ered defects in the code, which is transferred to undiscov-

ered defects in module B, unit test, when module A has
been completed. The formulas used in module A are:
• CodingRate=CodingMethodCR*ProgrammerResource
• Defect Injection Rate During Coding = Coding Rate *

Coding Method DI
The Coding Method is divided into Coding Method

CR for the coding rate, in which the unit is KLOC/day,
and Coding Method DI for the defect injection rate, in
which the unit is the number of defects/KLOC.

The input parameters in module A and their units are
listed in Table 5.

Defect Injection Rate During Coding

Undiscovered Defects

Code Method DI

Coding Rate

Completed Code

Code Method CRProgrammer Resource

Incoming Work

Module A: Code development

To Module B
Undiscovered
Defects

Figure 4. The development module, Module A, in the
template model.

Table 5. Input parameters in Module A

Input parameter unit
Incoming work KLOC
Programmer Resource Number of programmers
Coding Method CR KLOC/day
Coding Method DI Number of defects/KLOC

The test module, module B, is modeled according to

Figure 5. The incoming work, the number of testers, the
average number of detected defects per day per tester, and
the average number of KLOC tested per day per tester
with the test method is estimated by the model user. The
lower flow in Figure 4 corresponds to the testing rate,
which is determined by the number of testers and the av-
erage KLOC tested per day per tester. The number of
KLOC in incoming work together with the testing rate
determine the number of days it takes to test the code.
The upper flow in Figure 4 corresponds to the defect de-
tection rate, which is determined by the testing rate and
the detected number of defects per KLOC with the test
method. The output from the module is the number of
undiscovered defects in the code. The formulas used in
module B are:
• Test Rate = Test Method TR * Tester Resource
• Defect Detection Rate = Test Rate * Test Method DD

The Test Method is divided into Test Method TR for
the testing rate, in which the unit is KLOC/day, and Test

Method DD for the defect detection rate, in which the unit
is the number of defects/KLOC. The detection rate is in-
dependent of the number of faults in the code. This was
chosen for practical reasons.

The input parameters in module B and the units are
listed in Table 6. The number of tested KLOC per day is
more difficult to estimate than for example the number of
tested requirements per day. The unit number of tested
KLOC per day is used anyway in order for the test
method to be estimated in number of defects per KLOC in
the upper flow. The unit in the upper flow would other-
wise be the number of defects per requirement, which is
also a difficult unit. A suggestion for the model user is to
approximate that each requirement is of equal size in
KLOC. A model extension with the input parameter test
coverage, for example, can be performed by measuring
test coverage by the number of requirements tested, and
then approximating the corresponding number of KLOC
tested. This approximation is used in this industrial simu-
lation.

Defect Detection Rate

Discovered Defects

Test Method DD

Test Rate

Completed Test

Test Method TRTest Resource

Incoming Work

Module B: Test Phase

To Module B
Undiscovered
Defects

Undiscovered Defects

Figure 5. The test module, Module B, in the template
model.

Table 6. Input parameters in Module B
Input parameter unit
Incoming Work KLOC
Test Resource Number of testers
Test Method TR KLOC/day
Test Method DD Number of defects/KLOC

4.2. Simulation with an adapted model in an
industrial setting

The template module described in Section 4.1 was im-
plemented, extended and adapted in the organization de-
scribed in Section 2. The in-parameters listed in Table A1
in Appendix A were considered important for module A.
The major adaptations in module A are the inclusion of
unit tests in the development phase and the extension of
in-parameters to the code rate and defect injection rate,
see Figure 6. The unit test is included in module A, since

it is developed and executed in parallel with the code de-
velopment in the same phase, see Section 2.

Figure 6. Module A in the extended and adapted model
in the industrial setting.

The in-parameters listed in Table A2 in appendix A
were considered important for module B. The major ad-
aptations in module B from the template model are the
extension of a rework flow and the extension of in-
parameters to the test rate and defect detection rate, see
Figure 7. The rework flow was added in order to estimate
resources and time for the corrections of defects. Module
B was also extended with a defect injection flow, due to
the fact that new defects could be injected in the system
during defect correction, see the flow from the cloud in
the upper part of Figure 7. The arrow from Defect Re-
work Rate to Injected Defects due to rework is added in
order to control the number of new injected defects,
which is dependent on the number of corrected defects.
The flow from Undiscovered Defects A to Undiscovered
Defects B1 is added in order to transfer the Undiscovered
Defects from module A to module B when module A is
completed. The arrows from Undiscovered Defects A,
Undiscovered Defects B1, and Incoming Work B1 to Test
Resources B1 are added in order to start Module B when
the Undiscovered Defects have been transferred from
module A to module B. The arrow from Detected Defects
B1 to PrResource Rework controls that programmer re-
sources are only correcting defects if defects are discov-
ered. The test coverage is controlled by multiplying the
Incoming Work with the percentage of test coverage in
module B.

The model was also extended with a modified module
B for each testing phase, according to the software devel-
opment process described in Section 2. The model for the
industrial setting includes four modules of type B, accord-
ing to Figure 8. The modules of type B are identical, but
the parameters’ values differ between the modules to re-

flect the situation in each phase. Defects from other sub- systems at level 1 and 2 are not included in this study.

Figure 7. Module B in the extended and adapted model in an industrial setting.

Module A
Code
development
and unit test

Module B
Sub-system
test level 2

Module B
Sub-system
test level 1

Module B
System
integration

Module B
System
verification

Figure 8. Adapted and extended model in an industrial
setting.

The model in-parameters were adjusted to correspond
to a real increment in a project with the programmers’ and
testers’ viewpoint on the magnitude of the parameters.
The data, which were used to calibrate the model, were
taken from a problem reporting system, a personnel time
logging system, and the number of lines of code from
project data, as well as experiences from the programmers
and testers. For more details on these data see [11]. The
results of the simulation are presented in Figure 9.

The upper graph in Figure 9 shows the number of un-
discovered defects in the different phases. The first stead-
ily growing curve corresponds to the defect injection dur-
ing coding and unit test. The decrease of the number of
undiscovered defects in the test phase curves corresponds
to the discovered defects during the test phases. The low
increase of undiscovered defects in the test phase curves
(see third description in upper part of Figure 9) is due to a
low injection rate of new defects in the project during
defect corrections. The verification phase in this incre-
ment was not performed. The undiscovered defects are
therefore not reduced in the last curve, in this case. The
model was calibrated to correspond to the real time scale
and to the number of defects in the increment. The pro-
grammers and testers adjusted the in-parameters to simu-
late a process change to see how the model worked. The

simulation results reflected the simulated change in the
number of detected defects in the different phases.

The middle graph shows the number of persons, i.e.
resources used in the different phases. The presented re-
sources also include the programmers doing rework dur-
ing defect corrections. The times in which the resources
are zero are due to the model implementation. In this
model the transfer of undiscovered defects from one mod-
ule to another is completed before the next module testing
is initiated. The model can be further developed in this
respect.

The lower graph shows an estimate of the cost of de-
tecting defects in the various phases. The cost of finding
and correcting a defect, in the adapted model, is modeled
to be increased for each test phase. This corresponds to
the increased cost of performing all test phases again for
the corrected defect. The actual flow or performance of
new corrected releases of code, due to defect corrections,
is not simulated in the model. The largest cost curve in
the lower graph is due to the undiscovered defects, which
were not found in this increment. The cost of finding de-
fects in different phases is difficult to estimate, since each
defect can cause different costs. Various approximations
and definitions can be used. In this case the cost of find-
ing faults in different phases were approximated with a
fictitious value of 10 for the first testing phase, 20 for the
next, and so on. The total cost, which is not shown in
Figure 9, of all the found and not found defects in the
different phases yields a good estimate for a process
change in terms of costs.
4.3. Validation

The adapted model was validated with a sensitivity analy-
sis [13]. In the sensitivity analysis the output variables

Number of faults, and Calendar time were measured for

Defect injection during
coding and unit test

Discovered defects
during testing

Test phase verification is not per-
formed in this increment

Injection of new defects
during code rework

B

A

P g

Figure 9. Results from the simulation model i

Module A when changing the input parame
Method Code Rate, Programmer Resource, Uni
centage, Code Method Defect Injection, and
work at “extreme values”. The parameter Cod
Code Rate includes the parameters PrSystKnow
SystComplexityCR, QualityReqSpec&Func
PrExperienceCR, and CodeMethodCR. The
Code Method Defect Injection includes the p
PrSystKnowledgeDI, SystComplexityDI, Q
Spec&FuncDescrDI, PrExperienceDI, and
MethodDI. This simplification can be perfor
these parameters technically are summarized
parameter in the model.

The “extreme values” of the parameters we
by selecting a reasonably high and low value
for which the model is used. The number of pro
1

B

B

B4
rogrammer ResourcesCodin
TB2 TB3

T T

n

t
t

u

m

i

B1

P

B

 the indus

ers Code
 Test Per-
Incoming
e Method
ledgeCR,
DescrCR,
parameter
arameters
alityReq-
 Code-
ed since
into one

re chosen
n a range
grammers
2

P

B

trial sett

was
limit
facto
runs
analy
depe
Defe
Meth
rect
the C
had
incre
corre
with

T
para
3

P

B

ing

for example 2 i
. The sensitivity
rial design [14

 (5 parameters
sis showed tha

ndent on, and o
ct Injection, an
od Defect Inje
behavior of the
alendar time s

been incorrectly
ased when the u
cted and a vali

 a correct behav
he validation of
meters Test Me
P

C
1
 2

3

B

n the lo
 analys

] for M
with 2
t the n
nly on,
d Incom
ction*In
 simula
howed
 implem
nit test

dation w
ior for a
 Modu
thod T
4

ostUndiscoveredDefects
B4

B1
 B2
 B3
B4

wer limit and 8 in the upper
is was performed with a full
odule A, which results in 32
levels). The factorial design
umber of injected faults are
 the parameters Code Method

ing work, and in fact Code
coming work. This is a cor-

ted system. The validation of
that the Unit Test Percentage
ented, since the calendar time
 was reduced. The model was

as performed a second time
ll parameters.
le B was performed with the
est Rate, Test resource, Test

Method Defect Detection, Programmer Resource Rework,
Incoming work, Rework Method, and Injected Defects
due to rework. A simplification of the parameters Test
Method Test Rate, Test Method Defect Detection, and
Rework Method was performed, similarly as for Module
A. The output variables were the number of detected
faults, the number of days for rework, and the number of
test days. These output variables are used for the calcula-
tion of costs etc. A fractional factorial design with 16 runs
was performed. This means that first-order effects cannot
be separated from third-order interactions, but effects of
third-order interactions are not considered likely in this
case, thus not affecting the result. When choosing the
“extreme values” for Module B, certain relationships be-
tween parameters set limitations. For example the test rate
(KLOC/day) could not be greater than the incoming work
(KLOC) if the time step is set to 1 day. The analysis of
the fractional factorial design showed that the model be-
haved correctly for all parameters and output variables.

5. Conclusions

In this study a template model has been developed and
evaluated. The template model has been specialised into a
model that is adapted to a specific industrial project. We
have found that it is possible to use the template model
when a specific model is derived, and that it is possible to
derive the specialised model as it was done in the pre-
sented case study. We have also seen that it is important
to involve representatives from the project. In the case
that is presented, the representatives came from the pro-
ject that was simulated, and we believe that this is a feasi-
ble way in cases where this is possible. The programmers
and the testers had many important suggestions and cor-
rections in the work with the specific model.

It is also concluded that a thorough analysis of project
data, yielding information regarding resources used,
faults found etc in the phases facilitate the model building
and validation.

During the feedback-session it was found that the pro-
grammers and testers were interested and they thought
that they had gained understanding of the process because
of this work. We therefore believe that the model de-
scribes issues that are important, and that it is a good rep-
resentation of the real process.

We believe that it is possible to use the template model
in organisations that are similar to the studied organisa-
tion. It is probably possible to adapt the model in the
same way as in this study, if the project does not differ
very much.

Further work includes more experimentation with the
template model. For example, the organisation in the case
study is planning to use the adapted and extended model
in more increments.

Acknowledgement

The authors would like to thank our colleagues at Erics-
son Microwave Systems AB Maria Jonsson, Reine Lars-
son, Magnus Larsson, Carl-Ejnar Bergh, and Thomas
Svensson for their contribution to this work.

This work was partly funded by The Swedish Agency
for Innovation Systems (VINNOVA), under a grant for
the Centre for Applied Software Research at Lund Uni-
versity (LUCAS).

References
[1] Law, A. M, and Kelton, W. D., Simulation modeling and
analysis, 3rd ed., McGraw-Hill, 2000.
[2] Donzelli, P., Iazeolla, G., “Hybrid simulation modelling of
the software process”, Journal of Systems and Software, Vol 59,
Issue 3, 2001, pp. 227-235.
[3] Martin, R., Raffo, D. “Application of a hybrid process
simulation model to a software development project”, Journal of
Systems and Software, Vol 59, Issue 3, 2001, pp. 237-246.
[4] Abdel.Hamid, T., Madnick, S., Software Project Dynamics:
An Integrated Approach, Englewood Cliffs, New Jersey,
Prentice Hall, 1991.
[5] Kellner, M.I., Madachy, R.J., Raffo, D.M., “Software
process simulation modeling: Why? What? How?” , Journal of
Systems and Software, Vol 46, Issue 2-3, 1999, pp. 91-105.
[6] Collofello, J.S.; Zhen Yang; Tvedt, J.D.; Merrill, D.; Rus, I.,
“Modeling software testing processes”, Conference Proceedings
of the 1996 IEEE Fifteenth Annual International Phoenix
Conference on Computers and Communications, 1996, pp. 289-
293
[7] Raffo, D. M., Kellner, M. I., “Analyzing Process
Improvements Using the Process Tradeoff Analysis Method”,
Proceedings of the Software Process Simulation Modeling
Workshop (PROSIM 2000), Held in London, UK, July 12-14,
2000.
[8] Madachy, R., Tarbet, D. “Case studies in software process
modeling with system dynamics”, Software Process
Improvement and Practice, Vol 5, Issue 2-3, 2000, pp. 133-146.
[9] Andersson, C., Karlsson, L., Nedstam, J., Höst, M., Nilsson,
B. I., ”Understanding software processes through system
dynamics simulation: a casestudy”, Proceedings of 9th Annual
IEEE International Conference and Workshopon the
Engineering of Computer-Based Systems (ECBS 2002). Held in
Lund,Sweden, April 8-10, 2002, pp. 41-48.
[10] Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., and
Nyberg, C. “Exploring bottlenecks in market-driven
requirements management processes with discrete event
simulation”, Journal of Systems and Software, Vol 59, Issue 3,
2001, pp. 323-332.
[11] Berling, T., Thelin, T. “An Indusrtial Case Study of the
Verification and Validation Activities”, submitted to the Metrics
Conference 2003.
[12] Jones, T. C., Estimating Software Cost, McGraw-Hill, 1998
[13] Banks, J., Handbook of Simulation, John Wiley & Sons,
1998, ISBN 0-471-13403-1.

[14] Box, G. E. P., Hunter, W. G., and Hunter, J. S., Statistics
for experimenters: An introduction to Design, Data Analysis,
and Model Building, Wiley-Interscience, 1978, ISBN 0-471-
09315-7.

Appendix A

Table A1. Important in-parameters for module A in the
extended and adapted model.
Input parameters Module
A

Measure

Programmers’ system
knowledge Code rate

Consider the characteristics in Table A3 below “Programmer
participation in reviews”, “Number of years with total system”,
“Number of years with sub-system”, and “Used system in labora-
tory environment”. Estimate a measure on the reduced or in-
creased production of KLOC/day, due to level of system knowl-
edge.

System complexity Code
rate

Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”.
Estimate a measure on the reduced or increased production of
KLOC/day, due to level of system complexity.

Quality of requirements
specifications and func-
tional descriptions Code
rate

Consider the characteristics in Table A3 below “Documentation
status”, “Review of documents”, and “Faults in documents”.
Estimate a measure on the reduced or increased production of
KLOC/day, due to level of quality of requirements specifications
and functional descriptions.

Programmers’ experience
Code rate

The programmers’ experience as a programmer and with the
language used.
Estimate a measure on the reduced or increased production of
KLOC/day, due to level of programmers’ experience

Coding method code rate The number of produced KLOC/day. Estimate a measure of the
number of produced KLOC/day per programmer, due to the
coding method used.

Programmer resource for
coding

The number of programmers for the sub-system development.

Amount of incoming work
(KLOC)

Lines of uncommented code

Programmers’ system
knowledge Defect injection

Consider the characteristics in Table A3 below “Programmer
participation in reviews”, “Number of years with total system”,
“Number of years with sub-system”, and “Used system in labora-
tory environment”. Estimate a measure on the number of injected
defects/KLOC, due to level of system knowledge.

System complexity Defect
injection

Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”.
Estimate a measure on the number of injected defects/KLOC, due
to level of system complexity.

Quality of requirements
specifications and func-
tional descriptions Defect
injection

Consider the characteristics in Table A3 below “Documentation
status”, “Review of documents”, and “Faults in documents”.
Estimate a measure on the number of injected defects/KLOC, due
to level of quality of requirements specifications and functional
descriptions

Programmers’ experience
Defect injection

The programmers’ experience as a programmer and with the
language used.
Estimate a measure on the number of injected defects/KLOC, due
to level of programmers’ experience.

Unit test effectiveness The number of defects/KLOC discovered by unit test.
Coding method defect
injection rate

The number of injected defects/KLOC. Estimate a measure of the
number of injected defects/KLOC per programmer, due to the
coding method used.

Table A2. Important in-parameters for module B in the
extended and adapted model.
Input parameters Module
B

Measure

Testers’ system knowledge
test rate

Consider the characteristics in Table A3 below “Tester participa-
tion in reviews”, “Number of years with total system”, “Number
of years with sub-system”, and “Used system in laboratory envi-
ronment”. Estimate a measure on the number of tested KLOC/day,
due to level of system knowledge.

System complexity test rate Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”.
Estimate a measure on the number of tested KLOC/day, due to
level of system complexity.

Quality of requirements
specifications and func-
tional descriptions test rate

Consider the characteristics in Table A3 below “Documentation
status”, “Review of documents”, and “Faults in documents”.
Estimate a measure on the number of tested KLOC/day, due to
level of quality of requirements specifications and functional
descriptions.

Testers’ experience test rate The testers’ experience. Estimate a measure on the number of
tested KLOC/day, due to level of testers’ experience.

Test method test rate The number of tested KLOC/day. Estimate a measure of the

number of tested KLOC/day per tester, due to the test method
used.

Test resource The number of testers in the test phase.
Incoming work The number of KLOC of the sub-system to be tested .
Test coverage The % of code tested. (Multiplied with incoming work in the

model)

Testers’ system knowledge
defect detection

Consider the characteristics in Table A3 below “Tester participa-
tion in reviews”, “Number of years with total system”, “Number
of years with sub-system”, and “Used system in laboratory envi-
ronment”. Estimate a measure on the number of detected de-
fects/KLOC, due to level of system knowledge.

System complexity defect
detection

Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”.
Estimate a measure on the number of detected defects/KLOC, due
to level of system complexity.

Quality of requirements
specifications and func-
tional descriptions defect
detection

Consider the characteristics in Table A3 below “Documentation
status”, “Review of documents”, and “Faults in documents”.
Estimate a measure on the number of detected defects/KLOC, due
to level of quality of requirements specifications and functional
descriptions

Testers’ experience defect
detection

The testers’ experience. Estimate a measure on the number of
detected defects/KLOC, due to level of testers’ experience.

Test method defect detec-
tion

The number of detected defects/KLOC. Estimate a measure of the
number of detected defects/KLOC per tester, due to the test
method used.

Programmers’ system
knowledge Defect rework

Consider the characteristics in Table below “Programmer partici-
pation in reviews”, “Number of years with total system”, “Number
of years with sub-system”, and “Used system in laboratory envi-
ronment”. Estimate a measure on the number of reworked de-
fects/day, due to level of system knowledge.

System complexity Defect
rework

Consider the characteristics in Table below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”.
Estimate a measure on the number of reworked defects/day, due to
level of system complexity.

Quality of requirements
specifications and func-
tional descriptions Defect
rework

Consider the characteristics in Table below “Documentation
status”, “Review of documents”, and “Faults in documents”.
Estimate a measure on the number of reworked defects/day, due to
level of quality of requirements specifications and functional
descriptions.

Programmers’ experience
Defect rework

The programmers’ experience as a programmer and with the
language used.
Estimate a measure on the number of reworked defects/day, due to
level of programmers’ experience.

Code structure Defect
rework

The degree to which the code is well-structured and well-
documented.
Estimate a measure on the number of reworked defects/day, due to
level of code structure.

Programmer resource for
rework

The number of programmers for the sub-system development.
Since the rework is performed in a later phase it is not a conflict
with the programmer resource for coding in the model. The
measure should reflect the average number of programmers used
for rework

Rework method rework rate The number of reworked defects/day. Estimate a measure of the
number of reworked defects/day per programmer, due to the
rework method used.

Defect injection rates
during code rework

Estimate the % of defects that lead to new defects.

Table A3. Characteristics for a number of in-
parameters in the extended and adapted model.
Characteristics Measure
Programmer participation in
reviews

Important documents for code development is reviewed.

Number of years with total
system

Number of years of work with total system, in order to know
the purpose, structure etc. of the system.

Number of years with sub-
system

Number of years of work with sub-system, in order to know the
purpose, structure etc. of the sub-system.

Used system in laboratory
environment

The programmer or tester has used the system in laboratory
environment.

Common components The use of common components affects the complexity
Sub-system’s control The sub-system’s control and effect on other sub-system
Other sub-systems’ control The degree to which the sub-system is controlled and affected

by other sub-systems.
Documentation status The degree to which important documents (requirements

specifications and functional descriptions) are complete, i.e. if
important parts are missing.

Review of documents The amount of review and the appropriateness of reviewers.
Faults in documents The degree of faults found in important documents (require-

ments specifications and functional descriptions) after release.
Tester participation in reviews Important documents for testing is reviewed.

