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Abstract 

ess understanding and improvements are essential in 
are industry in order to achieve cost effectiveness 

short delivery times. One means of increasing proc-
nderstanding and improvement is to utilize software 
ess simulation. 
his paper describes how a template model was cre-
 in order to increase the knowledge of the code de-
pment and test processes for an industrial organiza-
. The template model was created from an existing 
m dynamics model for the unit test phase. The paper 
s how the template model can be adapted and ex-

ed to fit a similar organization. The simulation model 
pplied for investigating the relationship between de-
prevention in the development phase and defect de-
on in the various test phases. Data from a large con-
t-driven project were used in a case study to calibrate 
dapted and extended model, which included code 
lopment and four test phases. Programmers and test-
ere involved in the design of the model.  

he results show that it is possible to use the intro-
d template model and to adapt and extend it to a 
ific organization. We can also conclude that it is im-
ant to involve project members who contribute to the 
el building. The process understanding of the partici-
ng project members is increased due to their involve-
t. 

ntroduction 

ulation involves experimentation with a model of a 
m instead of the system itself. Usually the model of 
ystem is implemented in a computer program. Some 

ons for the increasing interest of using simulations in 
stry are: 
 might be dangerous to experiment with the system. 
 for example the system is a nuclear power plant, ex-

perimentation with a new control system is not al-
lowed until it is simulated. 

• The system might not exist. If for example a new air-
craft is constructed, it is best to evaluate its perform-
ance using simulation before actually building it. It 
would be too expensive to build several different air-
craft and measure their performance. 

• Before changing an organization it is advisable to 
simulate the new organization to see if it meets the 
demands put on it.  
The models used in simulation usually consist of a 

state description and a number of rules that describe how 
the state is changed with time, given a certain environ-
ment. The rules of change can be differential or differ-
ence equations. 

Usually a distinction is made between discrete event 
simulation and continuous simulation [1]. In discrete 
event simulation the state of a system is changed only 
when certain events occur and is not changed between 
these events. A typical example is a queuing system 
where the state is the number of customers in the queue 
and the events are arrivals of customers and departures of 
customers. An example of a continuous simulation is 
when the air pressure around an aircraft is simulated as a 
function of time. Usually differential equations are used 
to describe state changes in models used for continuous 
simulation. It is also possible to combine discrete event 
simulation and continuous simulation, which is usually 
called hybrid simulation, see for example Donzelli et al 
[2], and Martin et al [3]. 

In software engineering the main reasons for using 
simulations of software processes are for the purpose of 
strategic management, planning, control and operational 
management, process improvement and technology adop-
tion, understanding, and training and learning [4,5]. In a 
software development project the effect of a process 
change in the code development or the test phases can be 
difficult to predict or it can be difficult to prioritize work 
in the different phases during time pressure, for example. 



A simulation model is appropriate to use in these cases. 
The risk of changing processes in the running projects in 
order to learn about it and to implement new ideas is too 
high, since it would lead to longer delivery times and high 
costs. A simulation model is used without any risk and 
with a relatively low cost. 

The focus of this study is to enhance the modeling of 
the code development and test phases, for any organiza-
tion, in order to understand the current software devel-
opment process and to facilitate for future improvements 
to these processes. A system dynamics model with a code 
development phase and a test phase has been developed, 
which can be used as a template for other organizations to 
simulate these phases. The paper describes how this tem-
plate model can be extended and adapted to suite the 
software development process in an organization. 

The template model has been extended and adapted at 
Ericsson Microwave Systems AB, Sweden, to facilitate 
process improvements. Specifically the resources used, 
the distribution of undiscovered defects in the different 
test phases, and the cost of finding defects in different 
phases were studied. 

The main research questions of this study are: 
• What key tasks, primary objects, and vital resources, 

in the simplest case, are needed in a simulation model 
in order to investigate for example the resources used, 
the distribution of undiscovered defects in different 
phases, and the cost of finding defects in different 
phases? 

• How can such a template model be adapted and ex-
tended to a specific organization? 
The template model in this study is based on the study 

by Collofello et al [6], who modeled and simulated a unit 
test phase. The idea of viewing the unit test phase as two 
flows, a testing flow and a detection flow originates from 
Collofello et al, and in this study the model is further gen-
eralized. 

Modeling and simulation of the code development and 
test phases have been performed in other studies. Analy-
sis of the test process has for example been performed by 
Raffo et al [7] in which the impact of a process change 
was simulated. The process change involved the imple-
mentation of unit test plans and the simulation result 
showed that the process change would be successful. 
Madachy et al [8] have simulated the peer review model 
in an organization to investigate the dynamic project ef-
fects of performing inspections. The code development 
and test phases are parts of this model. The simulation 
results helped the planning and performance of peer re-
views. Andersson et al [9] simulated the requirements 
specification and test phases and specifically analyzed the 
resource allocation in the different activities to decrease 
the project cycle time. The models used in these studies 

are specific for the examined organizations in contrast to 
the general model presented here. 

In this paper a continuous simulation model is used. A 
discrete event simulation can also be used for this pur-
pose. The discrete event simulation technique has for ex-
ample been used to model a specific requirements man-
agement process for identification of overload situations 
[10]. 

The paper is structured as follows. The organization, 
developed products, and process are described in the en-
vironment part in Section 2. The method used is pre-
sented in Section 3 and the model and simulation is re-
ported in Section 4. Conclusions are presented in Section 
5. 

 
2. Environment 
2.1. Organization and Developed Products 
 
The study is performed at Ericsson Microwave Systems 
AB, where radar systems are developed. The systems are 
large and complex with hard real-time constraints. The 
systems are divided into sub-systems, which are inte-
grated at several levels, both hardware and software wise.  

The products are delivered on contract. There are 
therefore relatively few customers compared to broad 
market products. 
 
2.2. Process 
 
The organization follows an incremental software devel-
opment process. In each development step, called incre-
ment, functionality is added to the previous one. The 
functionality is added in a manner so that the system is 
always executable. The first increment contains only ba-
sic functionality and the last increment contains all func-
tions. 

In each increment the following development phases 
are included: 
• System requirements specification 
• Sub-system level 1 requirements specification (see 

Figure 2 for the different sub-system levels) 
• Sub-system level 2 requirements specification 
• Code development and unit test 
• Sub-system level 2 verification 
• Sub-system level 1 verification 
• System integration 
• System verification 

System acceptance tests with the customer are per-
formed after the last increment. Table 1 presents the de-
velopment phases included in the case study and the per-
sonnel performing it. 

 
 



Sub-system level 2

Sub-system level 2

Sub-system level 2

Sub-system level 1

System

Sub-system level 1

 

Table 1. Development phases in the study and the 
personnel performing it. 
Development phase Personnel 
Code development and unit test Programmers 
Sub-system level 2 verification Programmers 
Sub-system level 1 verification Programmers 
System integration Independent testers 
System verification Independent testers 

Figure 2. The sub-system level 2 in the study in rela-
tion to the whole system 
  3. Method The sub-system level 1 requirements specification 

phase is performed by design engineers and the sub-
system level 2 requirements specification phase is per-
formed by programmers. These two phases are not in-
cluded in the simulation study. 

 
In order to answer the research questions, the idea of im-
plementing a template model, and adapting and extending 
it to a specific organization is examined. Building the 
simulation model was an iterative procedure with a con-
tinuous contact with the programmers and testers in the 
modeled project. The close co-operation with the pro-
grammers and testers resulted in discussions on both 
model purpose, and model structure. The development 
procedure can be described in several steps, where feed-
back from the programmers and testers was received in 
every step. 

The sub-system is developed by approximately 4 pro-
grammers in average. The sub-system is divided into 
units, which are tested separately. The unit tests are de-
veloped and executed at the same time as the code devel-
opment for the system. When the programmers have com-
pleted the code development and the unit tests are exe-
cuted without failures the code is frozen in a unique revi-
sion and the next phase, sub-system level 2 verification, is 
performed. In sub-system level 1 verification, which is 
the next phase, the sub-systems at level 2 are integrated 
and verified into one sub-system at level 1. When this 
phase is completed the sub-system at level 1 is delivered 
to the independent test engineers. In the system integra-
tion phase the testers integrate the sub-system level 1 with 
several other sub-systems at level 1. When the integration 
phase is conducted the next phase, system verification, is 
performed. In the system verification phase the system is 
verified by the testers. When the system has been verified 
and defects have been corrected or postponed, the devel-
opment of the increment has been completed. 

The first step concerned specifying the purpose, model 
scope, result variables, process abstraction, and input pa-
rameters. This was performed according to a guideline of 
Kellner et al [5]. These aspects were identified in order to 
specify what to simulate.  

The purpose of the simulation study is to enhance the 
understanding of the code development and testing 
phases, specifically the resources used, the distribution of 
undiscovered defects in the different test phases, and the 
cost of finding defects in different phases. When the un-
derstanding has increased the simulation model can be 
used for process improvement and technology adoption in 
the code development and test phases. Several increments can exist at the same time, but in 

different phases, i.e. the next increment can start before 
the previous is completed. Figure 1 shows an example of 
development phases and increments in an incremental 
development process. Figure 2 shows the sub-system 
level 2 in the study in relation to the whole system. 

The model scope was confined to the development 
and testing phases. The requirements specification phases 
were excluded from the model’s boundary for the reason 
that faults in the requirements specifications are only indi-
rectly causing defects in the code, through the program-
mers’ knowledge and skills. If the code would have been 
generated automatically from the requirements specifica-
tions the requirements specification phases would have 
been included. Even though the requirements specifica-
tion phases are not unique parts of the model, they could 
be included as input parameters at the development, and 
testing phases. 

 

Requirements
specification

Code
development

Sub-system level
1 verification

Sub-system level
2 verification

System
integration

Increment 1

Increment 2

Increment 3

Increment 4

System
verification

Time

Figure 1. An example of development phases and in-
crements in an incremental development process 

The simulation of an industrial project was performed 
for one increment, see Figure 1, i.e. a portion of a life 
cycle, in one project. 

The result variables in the project simulation included 
defect distribution between the phases, resources used in 
the phases, and an estimated cost of finding defects in 
different phases. 

 

The organization also follows a formal review process 
for all documents. All necessary documents are defined in 
the formal incremental software development process. 



The process abstraction part is the key contribution 
of this paper. The main research questions presented in 
Section 1 yield the process abstraction. The key tasks, 
primary objects, and vital resources according to Table 2 
were identified as the simplest case for the template 
model. The idea of viewing the unit test phase as two 
flows, a testing flow and a detection flow originates from 
Collofello et al [6]. The template model is built from this 
idea. 

 
Table 2 Key tasks, primary objects, and vital re-
sources for the template model. 
Key tasks Primary objects Vital resources
Code development Incoming work in KLOC Programmers 
Testing of code Defects in code Testers 
 

This template model can be adapted and extended with 
further key tasks, primary objects, and vital resources to 
suite the industrial environment. 

The key tasks, primary objects, and vital resources in 
the industrial simulation included in this study were 
adapted and extended according to Table 3. This adapta-
tion and extension is directly related to the organization 
process, described in Section 2.2. 

 
Table 3 Key tasks, primary objects, and vital re-
sources for the industrial environment in this study. 
Key tasks 
Code development and unit test 
Sub-system level 2 verification 
Sub-system level 1 verification 
System integration 
System verification 
Rework of defects, i.e. corrections. 
Primary objects 
Incoming work in KLOC 
Defects in code 
Vital resources 
Programmers 
Testers 

 
The key tasks are the activities relevant to the model 

purpose, while the primary objects are the project arti-
facts, believed to affect the result variables. Vital re-
sources could also be the hardware used for code devel-
opment and testing, but this was not included in this in-
dustrial simulation. 

A case study by Berling and Thelin [11] of the verifi-
cation and validation activities in the organization served 
as a baseline for the important factors and the expected 
behavior of the simulated system. In their study, the 
trade-off between inspection and testing, in terms of 
faults found and resources used were investigated in the 
organization. Data from their study were used to calibrate 
and validate the adapted simulation model. 

The input parameters are defined in accordance with 
the desired result variables and the process abstraction. In 
the template model the in-parameters were defined ac-
cording to Table 4. 

 
Table 4. The in-parameters in the template model. 

Input parameter 
Incoming work 
Programmer Resource 
Tester Resource 
Coding Method 
Testing Method 

 
In the industrial simulation included in this study the 

template model was extended with further in-parameters. 
Most of the in-parameters in the industrial setting are con-
stants, defined by the model user before the simulation 
model is executed, while others are varying over time. 
The input parameters are described in more detail in Ap-
pendix A. 

With the simulation purpose, the model scope, the re-
sult variables, the key tasks, and the input parameters in 
mind the template model was adapted and extended to a 
first draft on paper. The draft model only consisted of 
qualitatively affecting relationships, and was without 
weighting and quantitative relationships. 

To ensure the validity of the draft model, feedback was 
received from programmers and testers on the included 
in-parameters and relationships. Walkthroughs of the 
model were performed. Their comments mainly con-
cerned definitions and effects of in-parameters and cost 
aspects of finding defects in different phases. Test cover-
age was for example one in-parameter added to the model 
after comments from the programmers and testers. 

According to the programmers’ and testers’ comments 
the model was revised and thereafter transformed into the 
simulation tool. A visual description was chosen in order 
to enhance the understanding of the model, and to ease 
the calibration of the model, which continuously was per-
formed with assistance from programmers and testers. 

The development of the model extended from the tem-
plate model, with few affecting factors, to a more detailed 
and project specific model with more relationships and 
inter-dependencies. As a result of the study by Berling 
and Thelin [11] the factor “Low-level design” was added 
to the model. This factor became apparent when faults 
found in the real system were classified and analyzed, i.e. 
faults were injected in the real system due to an inade-
quate low-level design for the sub-system. 

In addition to the walkthroughs with programmers and 
testers, and using their estimates based on their past ex-
periences, calibration of the simulation model was per-
formed with real project data, see Section 4.2 for a de-
scription. If project data are not available statistical data 



from literature can be used initially, see for example 
Jones [12]. 

The opportunity to further develop the model still ex-
ists, either to include or exclude activities, if these are 
assumed to affect the output, or to make changes to adapt 
the model for another development project. 

 

4. Model and simulation 
4.1. Template Model 
 
The template model, including only the necessary key 
objects in the simplest case, is presented in Figure 3. This 
model consists of one module for code development, 
module A, and one module for test, module B. The arrow 
in Figure 3 corresponds to undiscovered defects, which 
are transferred from module A to module B. With the 
template model the user can simulate the number of in-
jected defects during code development and the number 
of detected defects during testing as well as used re-
sources and the time for development and testing. When 
the template model behavior is understood by the user, 
the model can be extended and adapted to reflect the in-
dustrial setting. This is described in the next section. 

 
Module A
Code
development

Module B
Unit test

 
Figure 3. The template model with one development 
phase and one test phase. 
 

The code development module, module A, is modeled 
according to Figure 4. The model user estimates the fol-
lowing input parameters: 
• The incoming work 
• The number of programmers 
• The average number of injected defects per day per 

programmer 
• The average produced number of KLOC per day per 

programmer with the coding method 
The values of the input parameters can be estimated by 

project measures, reported statistics, or best estimates 
from experienced programmers and testers. The lower 
flow in Figure 4 corresponds to the coding rate, which is 
determined by the number of programmers and the aver-
age KLOC per day produced per programmer. The num-
ber of KLOC in incoming work together with the coding 
rate determine the number of days it takes to complete the 
code. The upper flow in Figure 4 corresponds to the de-
fect injection rate during coding, which is determined by 
the coding rate and the injected number of defects per 
KLOC by the programmers, due to the coding method. 
The output from the module is the number of undiscov-
ered defects in the code, which is transferred to undiscov-

ered defects in module B, unit test, when module A has 
been completed. The formulas used in module A are: 
• CodingRate=CodingMethodCR*ProgrammerResource 
• Defect Injection Rate During Coding = Coding Rate * 

Coding Method DI 
The Coding Method is divided into Coding Method 

CR for the coding rate, in which the unit is KLOC/day, 
and Coding Method DI for the defect injection rate, in 
which the unit is the number of defects/KLOC.  

The input parameters in module A and their units are 
listed in Table 5. 
 

Defect Injection Rate During Coding

Undiscovered Defects

Code Method DI

Coding Rate

Completed Code

Code Method CRProgrammer Resource

Incoming Work

Module A: Code development

To Module B
Undiscovered
Defects

 
Figure 4. The development module, Module A, in the 
template model. 
 
Table 5. Input parameters in Module A 

Input parameter unit 
Incoming work KLOC 
Programmer Resource Number of programmers 
Coding Method CR KLOC/day 
Coding Method DI Number of defects/KLOC 

 
The test module, module B, is modeled according to 

Figure 5. The incoming work, the number of testers, the 
average number of detected defects per day per tester, and 
the average number of KLOC tested per day per tester 
with the test method is estimated by the model user. The 
lower flow in Figure 4 corresponds to the testing rate, 
which is determined by the number of testers and the av-
erage KLOC tested per day per tester. The number of 
KLOC in incoming work together with the testing rate 
determine the number of days it takes to test the code. 
The upper flow in Figure 4 corresponds to the defect de-
tection rate, which is determined by the testing rate and 
the detected number of defects per KLOC with the test 
method. The output from the module is the number of 
undiscovered defects in the code. The formulas used in 
module B are: 
• Test Rate = Test Method TR * Tester Resource 
• Defect Detection Rate = Test Rate * Test Method DD 

The Test Method is divided into Test Method TR for 
the testing rate, in which the unit is KLOC/day, and Test 



Method DD for the defect detection rate, in which the unit 
is the number of defects/KLOC. The detection rate is in-
dependent of the number of faults in the code. This was 
chosen for practical reasons. 

The input parameters in module B and the units are 
listed in Table 6. The number of tested KLOC per day is 
more difficult to estimate than for example the number of 
tested requirements per day. The unit number of tested 
KLOC per day is used anyway in order for the test 
method to be estimated in number of defects per KLOC in 
the upper flow. The unit in the upper flow would other-
wise be the number of defects per requirement, which is 
also a difficult unit. A suggestion for the model user is to 
approximate that each requirement is of equal size in 
KLOC. A model extension with the input parameter test 
coverage, for example, can be performed by measuring 
test coverage by the number of requirements tested, and 
then approximating the corresponding number of KLOC 
tested. This approximation is used in this industrial simu-
lation. 

 

Defect Detection Rate

Discovered Defects

Test Method DD

Test Rate

Completed Test

Test Method TRTest Resource

Incoming Work

Module B: Test Phase

To Module B
Undiscovered
Defects

Undiscovered Defects

 
Figure 5. The test module, Module B, in the template 
model. 
 

Table 6. Input parameters in Module B 
Input parameter unit 
Incoming Work KLOC 
Test Resource Number of testers 
Test Method TR KLOC/day 
Test Method DD Number of defects/KLOC 

 

4.2. Simulation with an adapted model in an 
industrial setting 

 

The template module described in Section 4.1 was im-
plemented, extended and adapted in the organization de-
scribed in Section 2. The in-parameters listed in Table A1 
in Appendix A were considered important for module A. 
The major adaptations in module A are the inclusion of 
unit tests in the development phase and the extension of 
in-parameters to the code rate and defect injection rate, 
see Figure 6. The unit test is included in module A, since 

it is developed and executed in parallel with the code de-
velopment in the same phase, see Section 2. 

 

 
Figure 6. Module A in the extended and adapted model 
in the industrial setting. 
 

The in-parameters listed in Table A2 in appendix A 
were considered important for module B. The major ad-
aptations in module B from the template model are the 
extension of a rework flow and the extension of in-
parameters to the test rate and defect detection rate, see 
Figure 7. The rework flow was added in order to estimate 
resources and time for the corrections of defects. Module 
B was also extended with a defect injection flow, due to 
the fact that new defects could be injected in the system 
during defect correction, see the flow from the cloud in 
the upper part of Figure 7. The arrow from Defect Re-
work Rate to Injected Defects due to rework is added in 
order to control the number of new injected defects, 
which is dependent on the number of corrected defects. 
The flow from Undiscovered Defects A to Undiscovered 
Defects B1 is added in order to transfer the Undiscovered 
Defects from module A to module B when module A is 
completed. The arrows from Undiscovered Defects A, 
Undiscovered Defects B1, and Incoming Work B1 to Test 
Resources B1 are added in order to start Module B when 
the Undiscovered Defects have been transferred from 
module A to module B. The arrow from Detected Defects 
B1 to PrResource Rework controls that programmer re-
sources are only correcting defects if defects are discov-
ered. The test coverage is controlled by multiplying the 
Incoming Work with the percentage of test coverage in 
module B. 

The model was also extended with a modified module 
B for each testing phase, according to the software devel-
opment process described in Section 2. The model for the 
industrial setting includes four modules of type B, accord-
ing to Figure 8. The modules of type B are identical, but 
the parameters’ values differ between the modules to re-



flect the situation in each phase. Defects from other sub- systems at level 1 and 2 are not included in this study. 

Figure 7. Module B in the extended and adapted model in an industrial setting. 
 

Module A
Code
development
and unit test

Module B
Sub-system
test level 2

Module B
Sub-system
test level 1

Module B
System
integration

Module B
System
verification

 
 

Figure 8. Adapted and extended model in an industrial 
setting. 

 

The model in-parameters were adjusted to correspond 
to a real increment in a project with the programmers’ and 
testers’ viewpoint on the magnitude of the parameters. 
The data, which were used to calibrate the model, were 
taken from a problem reporting system, a personnel time 
logging system, and the number of lines of code from 
project data, as well as experiences from the programmers 
and testers. For more details on these data see [11]. The 
results of the simulation are presented in Figure 9. 

The upper graph in Figure 9 shows the number of un-
discovered defects in the different phases. The first stead-
ily growing curve corresponds to the defect injection dur-
ing coding and unit test. The decrease of the number of 
undiscovered defects in the test phase curves corresponds 
to the discovered defects during the test phases. The low 
increase of undiscovered defects in the test phase curves 
(see third description in upper part of Figure 9) is due to a 
low injection rate of new defects in the project during 
defect corrections. The verification phase in this incre-
ment was not performed. The undiscovered defects are 
therefore not reduced in the last curve, in this case. The 
model was calibrated to correspond to the real time scale 
and to the number of defects in the increment. The pro-
grammers and testers adjusted the in-parameters to simu-
late a process change to see how the model worked. The 

simulation results reflected the simulated change in the 
number of detected defects in the different phases. 

The middle graph shows the number of persons, i.e. 
resources used in the different phases. The presented re-
sources also include the programmers doing rework dur-
ing defect corrections. The times in which the resources 
are zero are due to the model implementation. In this 
model the transfer of undiscovered defects from one mod-
ule to another is completed before the next module testing 
is initiated. The model can be further developed in this 
respect. 

The lower graph shows an estimate of the cost of de-
tecting defects in the various phases. The cost of finding 
and correcting a defect, in the adapted model, is modeled 
to be increased for each test phase. This corresponds to 
the increased cost of performing all test phases again for 
the corrected defect. The actual flow or performance of 
new corrected releases of code, due to defect corrections, 
is not simulated in the model. The largest cost curve in 
the lower graph is due to the undiscovered defects, which 
were not found in this increment. The cost of finding de-
fects in different phases is difficult to estimate, since each 
defect can cause different costs. Various approximations 
and definitions can be used. In this case the cost of find-
ing faults in different phases were approximated with a 
fictitious value of 10 for the first testing phase, 20 for the 
next, and so on. The total cost, which is not shown in 
Figure 9, of all the found and not found defects in the 
different phases yields a good estimate for a process 
change in terms of costs. 
4.3. Validation 
 



The adapted model was validated with a sensitivity analy-
sis [13]. In the sensitivity analysis the output variables 

Number of faults, and Calendar time were measured for  
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Figure 9. Results from the simulation model i
 

Module A when changing the input parame
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Method Defect Detection, Programmer Resource Rework, 
Incoming work, Rework Method, and Injected Defects 
due to rework. A simplification of the parameters Test 
Method Test Rate, Test Method Defect Detection, and 
Rework Method was performed, similarly as for Module 
A. The output variables were the number of detected 
faults, the number of days for rework, and the number of 
test days. These output variables are used for the calcula-
tion of costs etc. A fractional factorial design with 16 runs 
was performed. This means that first-order effects cannot 
be separated from third-order interactions, but effects of 
third-order interactions are not considered likely in this 
case, thus not affecting the result. When choosing the 
“extreme values” for Module B, certain relationships be-
tween parameters set limitations. For example the test rate 
(KLOC/day) could not be greater than the incoming work 
(KLOC) if the time step is set to 1 day. The analysis of 
the fractional factorial design showed that the model be-
haved correctly for all parameters and output variables. 

 
5. Conclusions 
 
In this study a template model has been developed and 
evaluated. The template model has been specialised into a 
model that is adapted to a specific industrial project. We 
have found that it is possible to use the template model 
when a specific model is derived, and that it is possible to 
derive the specialised model as it was done in the pre-
sented case study. We have also seen that it is important 
to involve representatives from the project. In the case 
that is presented, the representatives came from the pro-
ject that was simulated, and we believe that this is a feasi-
ble way in cases where this is possible. The programmers 
and the testers had many important suggestions and cor-
rections in the work with the specific model. 

It is also concluded that a thorough analysis of project 
data, yielding information regarding resources used, 
faults found etc in the phases facilitate the model building 
and validation. 

During the feedback-session it was found that the pro-
grammers and testers were interested and they thought 
that they had gained understanding of the process because 
of this work. We therefore believe that the model de-
scribes issues that are important, and that it is a good rep-
resentation of the real process. 

We believe that it is possible to use the template model 
in organisations that are similar to the studied organisa-
tion. It is probably possible to adapt the model in the 
same way as in this study, if the project does not differ 
very much.  

Further work includes more experimentation with the 
template model. For example, the organisation in the case 
study is planning to use the adapted and extended model 
in more increments. 
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Appendix A 
 
Table A1. Important in-parameters for module A in the 
extended and adapted model. 
Input parameters Module 
A 

Measure 

Programmers’ system 
knowledge Code rate 

Consider the characteristics in Table A3 below “Programmer 
participation in reviews”, “Number of years with total system”, 
“Number of years with sub-system”, and “Used system in labora-
tory environment”. Estimate a measure on the reduced or in-
creased production of KLOC/day, due to level of system knowl-
edge. 

System complexity Code 
rate 

Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”. 
Estimate a measure on the reduced or increased production of 
KLOC/day, due to level of system complexity. 

Quality of requirements 
specifications and func-
tional descriptions Code 
rate 

Consider the characteristics in Table A3 below “Documentation 
status”, “Review of documents”, and “Faults in documents”. 
Estimate a measure on the reduced or increased production of 
KLOC/day, due to level of quality of requirements specifications 
and functional descriptions. 

Programmers’ experience 
Code rate 

The programmers’ experience as a programmer and with the 
language used. 
Estimate a measure on the reduced or increased production of 
KLOC/day, due to level of programmers’ experience 

Coding method code rate The number of produced KLOC/day. Estimate a measure of the 
number of produced KLOC/day per programmer, due to the 
coding method used. 

Programmer resource for 
coding 

The number of programmers for the sub-system development. 

Amount of incoming work 
(KLOC) 

Lines of uncommented code 

  
Programmers’ system 
knowledge Defect injection 

Consider the characteristics in Table A3 below “Programmer 
participation in reviews”, “Number of years with total system”, 
“Number of years with sub-system”, and “Used system in labora-
tory environment”. Estimate a measure on the number of injected 
defects/KLOC, due to level of system knowledge. 

System complexity Defect 
injection 

Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”. 
Estimate a measure on the number of injected defects/KLOC, due 
to level of system complexity. 

Quality of requirements 
specifications and func-
tional descriptions Defect 
injection 

Consider the characteristics in Table A3 below “Documentation 
status”, “Review of documents”, and “Faults in documents”. 
Estimate a measure on the number of injected defects/KLOC, due 
to level of quality of requirements specifications and functional 
descriptions 

Programmers’ experience 
Defect injection 

The programmers’ experience as a programmer and with the 
language used. 
Estimate a measure on the number of injected defects/KLOC, due 
to level of programmers’ experience. 

Unit test effectiveness The number of defects/KLOC discovered by unit test. 
Coding method defect 
injection rate 

The number of injected defects/KLOC. Estimate a measure of the 
number of injected defects/KLOC per programmer, due to the 
coding method used. 

 
Table A2. Important in-parameters for module B in the 
extended and adapted model. 
Input parameters Module 
B 

Measure 

Testers’ system knowledge 
test rate 

Consider the characteristics in Table A3 below “Tester participa-
tion in reviews”, “Number of years with total system”, “Number 
of years with sub-system”, and “Used system in laboratory envi-
ronment”. Estimate a measure on the number of tested KLOC/day, 
due to level of system knowledge. 

System complexity test rate Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”. 
Estimate a measure on the number of tested KLOC/day, due to 
level of system complexity. 

Quality of requirements 
specifications and func-
tional descriptions test rate 

Consider the characteristics in Table A3 below “Documentation 
status”, “Review of documents”, and “Faults in documents”. 
Estimate a measure on the number of tested KLOC/day, due to 
level of quality of requirements specifications and functional 
descriptions. 

Testers’ experience test rate The testers’ experience. Estimate a measure on the number of 
tested KLOC/day, due to level of testers’ experience. 

Test method test rate The number of tested KLOC/day. Estimate a measure of the 

number of tested KLOC/day per tester, due to the test method 
used. 

Test resource The number of testers in the test phase. 
Incoming work The number of KLOC of the sub-system to be tested . 
Test coverage The % of code tested. (Multiplied with incoming work in the 

model) 
  
Testers’ system knowledge 
defect detection 

Consider the characteristics in Table A3 below “Tester participa-
tion in reviews”, “Number of years with total system”, “Number 
of years with sub-system”, and “Used system in laboratory envi-
ronment”. Estimate a measure on the number of detected de-
fects/KLOC, due to level of system knowledge. 

System complexity defect 
detection 

Consider the characteristics in Table A3 below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”. 
Estimate a measure on the number of detected defects/KLOC, due 
to level of system complexity. 

Quality of requirements 
specifications and func-
tional descriptions defect 
detection 

Consider the characteristics in Table A3 below “Documentation 
status”, “Review of documents”, and “Faults in documents”. 
Estimate a measure on the number of detected defects/KLOC, due 
to level of quality of requirements specifications and functional 
descriptions 

Testers’ experience defect 
detection 

The testers’ experience. Estimate a measure on the number of 
detected defects/KLOC, due to level of testers’ experience. 

Test method defect detec-
tion 

The number of detected defects/KLOC. Estimate a measure of the 
number of detected defects/KLOC per tester, due to the test 
method used. 

Programmers’ system 
knowledge Defect rework 

Consider the characteristics in Table below “Programmer partici-
pation in reviews”, “Number of years with total system”, “Number 
of years with sub-system”, and “Used system in laboratory envi-
ronment”. Estimate a measure on the number of reworked de-
fects/day, due to level of system knowledge. 

  
System complexity Defect 
rework 

Consider the characteristics in Table below “Common compo-
nents”, “Sub-system’s control”, and “Other sub-systems’ control”. 
Estimate a measure on the number of reworked defects/day, due to 
level of system complexity. 

Quality of requirements 
specifications and func-
tional descriptions Defect 
rework 

Consider the characteristics in Table below “Documentation 
status”, “Review of documents”, and “Faults in documents”. 
Estimate a measure on the number of reworked defects/day, due to 
level of quality of requirements specifications and functional 
descriptions. 

Programmers’ experience 
Defect rework 

The programmers’ experience as a programmer and with the 
language used. 
Estimate a measure on the number of reworked defects/day, due to 
level of programmers’ experience. 

Code structure Defect 
rework 

The degree to which the code is well-structured and well-
documented. 
Estimate a measure on the number of reworked defects/day, due to 
level of code structure. 

Programmer resource for 
rework 

The number of programmers for the sub-system development. 
Since the rework is performed in a later phase it is not a conflict 
with the programmer resource for coding in the model. The 
measure should reflect the average number of programmers used 
for rework 

Rework method rework rate The number of reworked defects/day. Estimate a measure of the 
number of reworked defects/day per programmer, due to the 
rework method used. 

Defect injection rates 
during code rework 

Estimate the % of defects that lead to new defects. 

 
Table A3. Characteristics for a number of in-
parameters in the extended and adapted model. 
Characteristics Measure 
Programmer participation in 
reviews 

Important documents for code development is reviewed. 

Number of years with total 
system 

Number of years of work with total system, in order to know 
the purpose, structure etc. of the system. 

Number of years with sub-
system 

Number of years of work with sub-system, in order to know the 
purpose, structure etc. of the sub-system. 

Used system in laboratory 
environment 

The programmer or tester has used the system in laboratory 
environment. 

Common components The use of common components affects the complexity 
Sub-system’s control The sub-system’s control and effect on other sub-system 
Other sub-systems’ control The degree to which the sub-system is controlled and affected 

by other sub-systems. 
Documentation status The degree to which important documents (requirements 

specifications and functional descriptions) are complete, i.e. if 
important parts are missing. 

Review of documents The amount of review and the appropriateness of reviewers. 
Faults in documents The degree of faults found in important documents (require-

ments specifications and functional descriptions) after release. 
Tester participation in reviews Important documents for testing is reviewed. 

 


