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Abstract

A general mixed initial-boundary value problem for a non-local hyperbolic
equation, relevant for the study of the propagation of transient electro-magnetic
waves in flat slabs, consisting of dispersive stratified complex media, and ex-
cited by incident plane waves, is treated. Theorems regarding unique solvabil-
ity and causality are presented and proved by a time domain method similar
to the one used in the scalar (isotropic) case. The Green functions equations
for the problem are derived and proved to be uniquely solvable. The theo-
rems are applicable to wave propagation in, e.g., large classes of dispersive
bi-isotropic, an-isotropic, and bi-an-isotropic media.

1 Introduction

Propagation of transient waves in stratified dispersive media has been studied ex-
tensively during the last ten years, see, e.g., Refs. [3, 4, 8–10, 12, 14, 15, 17]. Due to
a large number of applications, special interest has been paid to electro-magnetic
wave propagation in linear dispersive complex media, e.g., chiral or, more generally,
bi-isotropic media [15, 17], and an-isotropic media [8]. The dispersive effects in these
media are modelled with time convolution in the constitutive relations. The corre-
sponding inverse scattering problems have also been addressed [3, 4, 7, 9, 14, 16]. In
the analysis of the propagation of transient waves in these media, two different, but
related, methods are available, namely the invariant imbedding technique and the
Green functions approach. These methods rely on the assumption, that the propa-
gation problem has a unique well-behaved solution in every bounded time interval,
which is sufficient from the numerical point of view, and that strict causality holds
for dispersive media, i.e., the speed of the wave front is lower than or equal to the
speed given by the non-dispersive properties of the medium. In Ref. [19], it is proved
that this is true for stratified, dispersive, isotropic slabs, subject to transient normal
plane wave incidence, provided the permittivity and permeability at the boundaries
are continuous, i.e., in the case without wave impedance mismatch. Furthermore,
it is proved that the speed of the wave front is independent of the dispersion of
the medium as well as the incident wave. The fundamental theorem in Ref. [19]
asserts the existence of a unique well-behaved solution to the weak canonical prob-
lem in every bounded time interval. In the present paper, the theorems in Ref. [19]
are generalized, not only to a large class of dispersive complex media, but also to
various wave impedance mismatch cases, by employing the time domain method in
Ref. [19], i.e., with classical means.

The investigations in, e.g., [7, 8, 15–17] suggest the study of the following mixed
initial-boundary value problem, defined in the product set (x, s) ∈ (0, 1)× R:

(
(∂x + ∂s)e

+(x, s)
(∂x − ∂s)e

−(x, s)

)
= b(x)

(
e+(x, s)
e−(x, s)

)
+

∫ s

−∞
a(x, s− s′)

(
e+(x, s′)
e−(x, s′)

)
ds′,

e±(x, s) = 0, s ≤ 0,

2ei(s) = t0e
+(+0, s) + r0e

−(+0, s),

e−(1− 0, s) = r1e
+(1− 0, s).

(1.1)
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Here, s and x are the travel-time coordinates for time and slab depth, respectively,
and ei(s), e±(x, s) ∈M2×1(R), while a(x, s), b(x) ∈M4×4(R), for each ordered pair
(x, s), where Mm×n(R) is the linear space over R consisting of the m × n-matrices
with real entries. The real numbers r0, t0 �= 0, and r1 are due to wave impedance
mismatch at the slab walls, x = 0 and x = 1, respectively. The relevant material
properties of the complex medium are contained in the functions a and b. Moreover,
the incident electric field ei at the front wall is causal, i.e., ei(s) = 0 for all s < 0.
The vector fields e± have been obtained by a wave splitting, i.e., a change of the
dependent variables, such that e± represent the right- and left going waves in the
isotropic media outside the slab, respectively, see, e.g., Refs. [7, 8, 15–17]. Further
details on the physical interpretation of these vector fields and the functions a and
b can also be found in Section 5. The second equation above shows that the slab is
initially quiescent; therefore,

∫ s

−∞ can be substituted for
∫ s

0
in the first one.

The matrix notation in Eq. (1.1) is appropriate for the wave propagation and
scattering problems referred to above, and it is employed throughout this paper.
Every vector (in the plane) is identified with its column vector representation in
the usual basis, i.e., as a 2 × 1-matrix, and is typed in italic boldface. Quadratic
matrices are typed in Roman boldface.

In Section 2 of this paper, the canonical problem corresponding to Eq. (1.1)
is examined. In Section 3, it is proved, that the problem (1.1) is indeed uniquely
solvable in each bounded time interval, that strict causality holds in this general
vector case, and, furthermore, that the speed of the wave front is precisely one. In
Section 4, the Green functions equations are derived and proved uniquely solvable.
Finally, in Section 5, Eq. (1.1) is derived for a large class of bi-isotropic cases.

2 The canonical problem

In this section, the canonical problem corresponding to the problem (1.1) is studied.
In Theorem 2.1 below, it is proved that this problem is uniquely solvable in a weak
sense in each bounded time interval. The proof is similar to the one given in the
scalar, isotropic case by T. M. Roberts in Ref. [19], generalizing theorems of S.
Aoubi [1] and Courant-Hilbert [6]. See also Ref. [2], where unique solvability of
partial integro-differential equations is discussed. The basic idea in the proof of
Theorem 2.1 is the repeated use of the the Banach fixed-point theorem, see, e.g.,
Ref. [20]. Theorem 2.2 shows that the regularity of the solution in the previous
theorem is increased with the regularity of the memory function a, which admits
the definition of the Green functions employed in, e.g., [7, 8, 15–17].

In the theorems and the proofs below, the following definitions and facts are
employed: If A ⊂ Rd is an open set, the real linear space consisting of all functions
f : A→ Mm×n(R) with bounded and continuous derivatives up to order k in A
is denoted by Ckm×n(A). This function space is complete furnished with the norm

‖f‖ = max
i,j
‖fi,j‖∞ = max

i,j
(sup
x∈A
|fi,j(x)|), (2.1)

where fi,j are the components of f . The class Cm×n(A) is defined analogously.
The product space Cm×n(A) × Cm×n(A) over the real numbers, equipped with the
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norm ‖(·, ··)‖ = max(‖ · ‖, ‖ · ·‖), where the norm ‖ · ‖ is defined in Eq. (2.1),
is also a Banach space. Convergence in these norm-topologies is called uniform.
By straightforward generalization of a theorem in real analysis, one can prove,
that, if the sequence (fj)

∞
j=1 ∈ C1

m×n(A) × C1
m×n(A) converges pointwise to f in

A, and if (∂ifj)
∞
j=1 ∈ Cm×n(A) × Cm×n(A) converges uniformly to g in A, then

g ∈ Cm×n(A) × Cm×n(A), f is differentiable in A with respect to the i-th coordi-
nate, and ∂if = g in A. Furthermore, recall that a function f on a Banach space
(B, ‖ · ‖) is called a contraction, if there exists a non-negative number r < 1 such
that ‖f(x) − f(y)‖ ≤ r‖x − y‖ for all points x and y in B, and that the Banach
fixed-point theorem under these circumstances guarantees that f has a unique fixed
point in B, i.e., there exists precisely one point x ∈ B such that f(x) = x. Finally,
the Heaviside step function is denoted by H, and I is the 2× 2 identity matrix.

In the light of Duhamel’s principle, it is appropriate to use the matrix setting in
Theorem 2.1, i.e., to treat the two canonical problems, due to the different polariza-
tions of the incident wave, together. Geometrical quantities defined in the theorem
or the proof are illustrated in Figure 1. The main theorem of this section is

Theorem 2.1. (Weak canonical problem) Let the given functions a ∈ C4×4(I×R+)
and b ∈ C4×4(I), where I = (0, 1) and R+ = (0,∞), be decomposed into C2×2-blocks
according to

a(x, s) =

(
a11(x, s) a12(x, s)
a21(x, s) a22(x, s)

)
, b(x) =

(
b11(x) b12(x)
b21(x) b22(x)

)
, (x, s) ∈ I× R+.

Define trapezoids by Q2n = {(x, s) ∈ I× R : −∞ < s < x + 2n}, and line segments
by L± = ∪∞k=0 {(x,±x + 2k) ∈ I× R+} and L = L+ ∪ L−. Furthermore, let r1, r0,
and t0 �= 0 be given real numbers. Then, for every integer n ≥ 0, the initial-boundary
value problem defined in the product set I× R by

(
(∂x + ∂s)u

+(x, s)
(∂x − ∂s)u

−(x, s)

)
= b(x)

(
u+(x, s)
u−(x, s)

)
+

∫ s

−∞
a(x, s− s′)

(
u+(x, s′)
u−(x, s′)

)
ds′,

u±(x, s) = 0, s ≤ 0,

2IH(s) = t0u
+(+0, s) + r0u

−(+0, s),

u−(1− 0, s) = r1u
+(1− 0, s),

(2.2)
has a unique solution u± ∈ C2×2(Q2n \ L) in the weak sense in Q2n, i.e., integrated
along the characteristics. Thus, (∂x ± ∂s)u

± are understood as derivatives with re-
spect to the vectors (1,±1), respectively. The solution is equal to zero in Q0, and for
every j ∈ {0, 1, . . . , 2n}, the restrictions of u± to Tj can be extended continuously to
Tj, where the open set Tj is defined as {(x, s) ∈ I× R : x + j − 1 < s < −x + j + 1}
if j is an odd integer, and Tj = {(x, s) ∈ I× R : −x + j < s < x + j} if j is even.
Moreover, u± have jump discontinuities across L±, respectively. The jump at the
point (x, s) ∈ L±, defined by [u±(x, s)] := u±(x, s + 0) − u±(x, s − 0), satisfies the
following ordinary differential equation, where β+ := b11 and β− := b22 :

d

dx
[u±(x,±x+2k)] = [

d

dx
u±(x,±x+2k)] = β±(x)[u±(x,±x+2k)], x ∈ I. (2.3)
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At the boundary, the jumps are coupled to one another as [u+(+0, 0)] =
2

t0
I, [u+(+0, 2k)] = −r0

t0
[u−(+0, 2k)], k > 0,

[u−(1− 0, 2k − 1)] = r1[u
+(1− 0, 2k − 1)], k > 0.

(2.4)

Finally, if [u+(+0, 2k)] �= 0, then [u+(x, x + 2k)] is non-singular for each x ∈ I,
and, if [u−(1− 0, 2k− 1)] �= 0, then [u−(x,−x+2k)] is non-singular for each x ∈ I.
In particular, u+, u+ ± u−, but not u−, are discontinuous across the line s = x.

Note that if the matrices (b11(x))0≤x≤1 all commute, a closed form expression for
the jumps in u+ can be obtained: [u+(x, x+2k)] = exp (

∫ x

0
b11(x

′)dx′)[u+(+0, 2k)].
Analogously, if the matrices (b22(x))0≤x≤1 all commute, integration of Eq. (2.3)
yields [u−(x,−x+2k)] = exp (

∫ x

1
b22(x

′)dx′)[u−(1−0, 2k−1)]. Note also that if I is
replaced by 0 in Theorem 2.1, then the solution u±0 to Eq. (2.2) is identically zero.
This follows from the uniqueness assertion, since u± and u± + u±0 both solve Eq.
(2.2), if u± is the solution in Theorem 2.1. More generally, it follows that the unique
weak solution to Eq. (2.2) subject to the input

∑
ciHsi instead of H, where ci ∈ R,

si ∈ R+, and Hsi(s) = H(s−si), is given by
∑

ciu
±
si
, where u±si(x, s) = u±(x, s−si).

Theorem 2.2. If, in the foregoing theorem, a is differentiable with respect to s in
I×R+, and if ∂sa ∈ C4×4(I×R+), then u± ∈ C1

2×2(Q2n \ L), and the restrictions of
the partial derivatives of u± to Tj can be extended continuously to Tj for each j.

Before the presentation of the proofs of the theorems above, some consequences
concerning the regularity of the solution are discussed. Note that by necessity in
Theorem 2.1, u± become continuous on L∓, respectively. The existence of g± :=
∂su

± in Q2n \ L, guaranteed by Theorem 2.2, is crucial for the Green functions
formulation. By Theorem 2.2, the jumps in g± across L also exist, and they are
easily computed. For instance, if (x, s) ∈ L−, then [∂xu

+(x, s)] − [∂su
+(x, s)] = 0,

since u+ is continuous across L−. On the other hand, [∂xu
+(x, s)] + [∂su

+(x, s)] =
b12(x)[u−(x, s)] by Eq. (2.2). Hence,

[g+(x, s)] = [∂xu
+(x, s)] = b12(x)[u−(x, s)]/2, (x, s) ∈ L−, (2.5)

which shows that u+ is in general not differentiable on L−. Analogously,

[g−(x, s)] = −[∂xu
−(x, s)] = −b21(x)[u+(x, s)]/2, (x, s) ∈ L+. (2.6)

Furthermore, note that u± might not be differentiable on L±, even if [u±] = 0,
respectively. To see this, integrate Eq. (2.2) along both sides of the characteristics,
differentiate with respect to s, and subtract. In the limit, these operations yield

[g+(x, x + 2k)] = [g+(+0, 2k)] +

∫ x

0

b11(x
′)[g+(x′, x′ + 2k)] dx′+

+

∫ x

0

(a11(x
′,+0)− b12(x

′)b21(x
′)/2) [u+(x′, x′ + 2k)] dx′,

[g−(x,−x + 2k)] = [g−(1− 0, 2k − 1)] +

∫ x

1

b22(x
′)[g−(x′,−x′ + 2k))] dx′+

+

∫ x

1

(a22(x
′,+0) + b21(x

′)b12(x
′)/2) [u−(x′,−x′ + 2k)] dx′,
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where also Eqs. (2.5) and (2.6) have been employed. This equation can be solved.
By a well known theorem in real analysis, [g±(·,± ·+2k)] ∈ C1

2×2(I) and

d

dx
[g±(x,±x + 2k)] = β±(x)[g±(x,±x + 2k)] +α±(x)[u±(x,±x + 2k)], (2.7)

where α+(x) = a11(x,+0)− b12(x)b21(x)/2, α−(x) = a22(x,+0) + b21(x)b12(x)/2,
β+(x) = b11(x), and β−(x) = b22(x) for x ∈ I. If [u+(+0, 2k)] �= 0, one obtains

[g+(x, x + 2k)] = [u+(x, x + 2k)][u+(+0, 2k)]−1[g+(+0, 2k)]+

+ [u+(x, x + 2k)]

∫ x

0

[u+(x′, x′ + 2k)]−1α+(x′)[u+(x′, x′ + 2k)] dx′,
(2.8)

where the results in Theorem 2.1 have been used. If [u−(1− 0, 2k − 1)] �= 0, then

[g−(x,−x + 2k)] = [u−(x,−x + 2k)][u−(1− 0, 2k − 1)]−1[g−(1− 0, 2k − 1)]+

+ [u−(x,−x + 2k)]

∫ x

1

[u−(x′,−x′ + 2k)]−1α−(x′)[u−(x′,−x′ + 2k)] dx′.

At the boundary, the jumps in g± are related to each other as

[g+(+0, 0)] = −r0

t0
[g−(+0, 0)] =

r0

2t0
b21(+0)[u+(+0, 0)] =

r0

t20
b21(+0),∑

j=+,−
[g−(1− 0, 2k − 1)]j = r1

∑
j=+,−

[g+(1− 0, 2k − 1)]j, k > 0,

∑
j=+,−

[g+(+0, 2k)]j = −r0

t0

∑
j=+,−

[g−(+0, 2k)]j, k > 0,

(2.9)

where the subscript +(−) indicates that the jump across L+(L−) is referred to. The
jumps in the x-derivatives of u± across L±, respectively, are of less interest, but can
be computed by Eq. (2.3), once the jumps in the s-derivatives have been calculated.

From the above results, it is possible to make statements about the regularity
of the canonical solutions on L± in the partial mismatch cases (1): r1 = 0, and (2):
r1 �= 0 and r0 = 0, which are of special interest. In both cases, u+ is discontinuous
across the line s = x, while u− is continuous, but not differentiable, across this line.
(1): u− is continuous across the line s = 2 − x, but not differentiable, while u+ is
differentiable across this line. Across the line s = 2 + x, u+ is continuous but, in
general, not differentiable, while u− is differentiable. If also r0 = 0, u± are both
differentiable on this line. On the rest of L, u± are both differentiable.
(2): u− is discontinuous across the line s = 2 − x, while u+ is continuous, but not
differentiable. Across the line s = 2 + x, u+ is continuous, but not differentiable,
and u− is differentiable. Across the line s = 4 − x, u− is continuous, but not
differentiable, and u+ is differentiable. On the rest of L, u± are both differentiable.
Proof of Theorem 2.1. A necessary condition for the existence of a weak solution
u± ∈ C2×2(Q2n \ L) in Q2n to Eq. (2.2) is that u+ and u− can be extended to
continuous functions in Q2n \L+ and Q2n \L−, respectively. This fact is used below
in the construction of the solution. Choose T > 0, such that TnT = 2 for some even
integer nT , and such that

b(T ) := 2(1 + |r1|+ |r0/t0|)(‖b‖T + ‖a‖T 2) < 1/2, (2.10)
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where the different norms ‖ · ‖ are defined in (2.1). Assume that the theorem holds
in the set ∪k−1

j=0Tj ∪ {(x, s) ∈ Q0 : s ≤ 0} for some k, where 0 ≤ k ≤ 2n, and prove

that it holds also in ∪kj=0Tj ∪ {(x, s) ∈ Q0 : s ≤ 0}, by using the Banach fixed-point
theorem nT (nT/2) times if k �= 0 (k = 0). By Eq. (2.10), it will be clear, that
the method works for all k, including k = 0, and the theorem follows from the
induction axiom. Consider the continuous map f ≡ (f+, f−) on the Banach space
C2×2(Tk)× C2×2(Tk) defined by

(f+(u+,u−))(x, s) = (B+(u+,u−))(x, s)+

+

∫ x

x+

b11(x
′)u+(x′, s− x + x′) dx′ +

∫ x

x+

b12(x
′)u−(x′, s− x + x′) dx′+

+

∫ x

x+

(∫ s−x+x′

−∞
a11(x

′, s− x + x′ − s′′)u+(x′, s′′) ds′′

)
dx′+

+

∫ x

x+

(∫ s−x+x′

−∞
a12(x

′, s− x + x′ − s′′)u−(x′, s′′) ds′′

)
dx′,

(f−(u+,u−))(x, s) = (B−(u+,u−))(x, s)+

+

∫ x

x−
b21(x

′)u+(x′, s− x′ + x) dx′ +

∫ x

x−
b22(x

′)u−(x′, s− x′ + x) dx′+

+

∫ x

x−

(∫ s−x′+x

−∞
a21(x

′, s− x′ + x− s′′)u+(x′, s′′) ds′′

)
dx′+

+

∫ x

x−

(∫ s−x′+x

−∞
a22(x

′, s− x′ + x− s′′)u−(x′, s′′) ds′′

)
dx′,

(2.11)
where it is agreed that u±(x, s) for points (x, s) ∈ ∪k−1

j=0Tj ∪ {(x, s) ∈ Q0 : s ≤ 0}
attain the values computed in the previous steps. This map is induced by line-
integration along the characteristics of Eq. (2.2), and the points (x±, s±), where
s± < s, are the points where the straight lines emanating from (x, s) with slopes ±1,
respectively, cut the boundary of Tk, ∂Tk, and B±(u+,u−) are the corresponding
initial-boundary values of f±(u+,u−) at these points, see Figure 1. For a fixed
element (u+,u−) in the domain of f , these quantities are functions defined on Tk.
If k is odd, they are given by

(x+(x, s), s+(x, s)) = (0, s− x),

(x−(x, s), s−(x, s)) = 2−1(x + s− k + 1, x + s + k − 1) ∈ ∂Tk ∩ ∂Tk−1,

(B−(u+,u−))(x, s) := u−(x−, s− − 0),

(B+(u+,u−))(x, s) :=
2

t0
I− r0

t0
(f−(u+,u−))(x+ + 0, s+),

(2.12)

and if k is even, they are
(x+(x, s), s+(x, s)) = 2−1(k − s + x, k + s− x) ∈ ∂Tk ∩ ∂Tk−1,

(x−(x, s), s−(x, s)) = (1, s + x− 1),

(B+(u+,u−))(x, s) := u+(x+, s+ − 0),

(B−(u+,u−))(x, s) := r1(f
+(u+,u−))(x− − 0, s−).

(2.13)
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It is obvious, that every element (f+(u+,u−), f−(u+,u−)) in the range of f , can be
extended to a function in C2×2(Tk) × C2×2(Tk) in a natural way, and by the fourth
formula in Eqs. (2.12) and (2.13), it is clear, that this extension satisfies the boundary
values in Eq. (2.2). Furthermore, by the third condition in Eqs. (2.13) and (2.12), it
follows, that f±(u+,u−) are restrictions to Tk of continuous extensions of u± from
Tk−1 to Tk−1 ∪ Tk, respectively, see the first sentence of the proof. Differentiation of
f±(u+,u−) with respect to the vectors (1,±1), respectively, yields(

(∂x + ∂s)f
+(u+,u−)(x, s)

(∂x − ∂s)f
−(u+,u−)(x, s)

)
= b(x)

(
u+(x, s)
u−(x, s)

)
+

∫ s

−∞
a(x, s− s′)

(
u+(x, s′)
u−(x, s′)

)
ds′.

Note that the derivatives of the boundary-value functions B±(u+,u−) are zero. The
theorem is essentially proved, if it can be shown, that the map f has a unique fixed
point (u+,u−) ∈ C2×2(Tk) × C2×2(Tk). Unfortunately, this cannot be accomplished
in one step only; therefore, the following subdivision of Tk is introduced, see also
Figure 1: Pk,j := Tk ∩ (I× (k − 1 + (j − 1)T, k − 1 + jT )), j ∈ {1, . . . , nT}.

Since b(T ) < 2−1, the Banach fixed-point theorem implies that f has a unique
fixed point in C2×2(Pk,1)×C2×2(Pk,1) if k �= 0 and in C2×2(P0,nT /2+1)×C2×2(P0,nT /2+1)
if k = 0. In the latter case, the solution is obviously zero. That f actually is
a contraction follows easily from Eqs. (2.10)-(2.13): ‖f(u+,u−)− f(v+,v−)‖ ≤
b(T ) ‖(u+,u−)− (v+,v−)‖, for all (u+,u−), (v+,v−) ∈ C2×2(Pk,j)× C2×2(Pk,j).

In the next step, the procedure in the previous paragraph is repeated to show
that f has a unique fix point in the Banach space C2×2(Pk,2)×C2×2(Pk,2) if k �= 0 (and
in C2×2(P0,nT /2+2) × C2×2(P0,nT /2+2) if k = 0), at which the restriction of (u+,u−)
to Pk,1 (P0,nT /2+1) in Eq. (2.11) is the unique solution obtained in the first step.
Clearly, u± become continuous on the part of the horizontal line s = k − 1 + T
(s = T ) that is contained in Tk (T0). It takes nT − 2 (nT/2 − 2) another steps to
show that the map f has a unique fixed point (u+,u−) ∈ C2×2(Tk)×C2×2(Tk), which
is equal to zero if k = 0.

It remains to verify the statements concerning the jump-discontinuities. The
solution to Eq. (2.2) is zero in Q0, and by Eq. (2.12), u− is continuous on the line
s = x. Eq. (2.11) then gives that u+(x, x + 0) = 2

t0
I +

∫ x

0
b11(x

′)u+(x′, x′ + 0) dx′

for all x ∈ I, which is the required result for the function x→ [u+(x, x)]. Finally, if
Q+(x) := u+(x, x + 0), x ∈ I, then detQ+(0) �= 0, and basic matrix theory yields

d

dx
detQ+(x) = det

(
d
dx
Q1(x) Q2(x)

)
+ det

(
Q1(x) d

dx
Q2(x)

)
=

= det
(
b11(x)Q1(x) Q2(x)

)
+ det

(
Q1(x) b11(x)Q2(x)

)
= tr(b11(x)) detQ+(x)

for all x ∈ I, where Q1 and Q2 are the column vectors of Q+. Thus, detQ+(x) =
exp (

∫ x

0
tr(b11(x

′)) dx′) detQ+(0) �= 0, x ∈ I, which proves that Q+(x) is non-
singular for each x ∈ I. The other results follow analogously. The proof is finished.
Proof of Theorem 2.2. Assume that for some k, 0 < k ≤ 2n, the theorem holds
in ∪k−1

j=1Tj ∪Q0, and prove the validity of the theorem in ∪kj=1Tj ∪Q0. The theorem
then follows by induction in k, since it will appear, that no special consideration has
to be made in the first step or depending on whether k is odd or even. The map f in
the proof of Theorem 2.1 has a unique fixed point (u+,u−) ∈ C2×2(Tk) × C2×2(Tk).
It must be shown that u± actually belong to C1

2×2(Tk). Since (∂x±∂s)u± ∈ C2×2(Tk)
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Figure 1: Geometrical quantities defined in Theorem 2.1 and its proof.

by Theorem 2.1, it is sufficient to show that ∂su
± exist and belong to C2×2(Tk).

To this end, define recursively a sequence (u+
j ,u

−
j )∞j=0 in C1

2×2(Pk,1)× C1
2×2(Pk,1) by

(u+
j+1,u

−
j+1) = (f+(u+

j ,u
−
j ), f−(u+

j ,u
−
j )), which is possible since ∂sa exists in I×R+

and ∂sa ∈ C4×4(I × R+). The proof of the Banach fixed-point theorem — this
is actually the method of successive approximations, where the first element in the
sequence can be chosen arbitrarily — implies that this sequence converges uniformly
to (u+,u−) in Pk,1, since∥∥(u+

j ,u
−
j )− (u+

i ,u
−
i )

∥∥ ≤ b(T )
∥∥(u+

j−1,u
−
j−1)− (u+

i−1,u
−
i−1)

∥∥ (2.14)

for all i, j > 0 by Eqs. (2.10)-(2.13). Similarly, these equations yield∥∥∂s(u+
j ,u

−
j )− ∂s(u

+
i ,u

−
i )

∥∥ ≤ b(T )
∥∥∂s(u+

j−1,u
−
j−1)− ∂s(u

+
i−1,u

−
i−1)

∥∥ +

+ a(T )
∥∥(u+

j−1,u
−
j−1)− (u+

i−1,u
−
i−1)

∥∥ , ∀i, j > 0,
(2.15)
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where a(T ) is independent of k and (u+
j ,u

−
j )∞j=0. Eqs. (2.14) and (2.15) imply that∥∥∂s(u+

j ,u
−
j )− ∂s(u

+
i ,u

−
i )

∥∥ ≤
≤ (2b(T ))i−1

(1− 2b(T ))

(∥∥∂s(u+
1 ,u

−
1 )− ∂s(u

+
0 ,u

−
0 )

∥∥ + 2a(T )
∥∥(u+

1 ,u
−
1 )− (u+

0 ,u
−
0 )

∥∥)
if 0 < i < j, i.e., (∂s(u

+
j ,u

−
j ))∞j=0 is a Cauchy sequence in C2×2(Pk,1) × C2×2(Pk,1).

Since this function space is complete, the sequence (∂s(u
+
j ,u

−
j ))∞j=0 converges uni-

formly in Pk,1 to a bounded and continuous function (v+,v−). By the second para-
graph of this section, it follows that ∂s(u

+,u−) exists and equals (v+,v−). Thus, f
has a unique fixed point in C1

2×2(Pk,1)× C1
2×2(Pk,1).

In the next step, the procedure in the previous paragraph is repeated to show
that f has a unique fix point in C1

2×2(Pk,2) × C1
2×2(Pk,2). In this second step, we let

the restriction of (u+,u−) to Pk,1 be the unique solution obtained in the first step.
Since ∂su

± exist and are continuous on both sides of the part of the horizontal line
s = k − 1 + T that is contained in Tk, and since, by construction, (∂x ± ∂s)u

± and
∂xu

± exist and are continuous on this part of the line, ∂su
± exist and are continuous

here also. Just as in the proof of Theorem 2.1, it takes nT − 2 similar steps to show
that there is a unique C1

2×2×C1
2×2-solution (u+,u−) to Eq. (2.2) in ∪kj=1Tj∪Q0. From

the explicit form of the derivatives of the solution, it is clear that these functions
can be extended to bounded and continuous functions in Tk. The proof is finished.

3 The full propagation problem

In this section, the results in the preceding section are extended to a more general
input ei. Theorem 3.1 below asserts unique solvability for the general propagation
problem (1.1). As an immediate consequence of this, strict causality holds, that is,
the speed of the wave front is ≤ 1, see Section 1. In Theorem 3.2, it is proved that
the speed of the wave front is precisely 1, independent of the input.

Theorem 3.1. Let a, b, r1, r0, t0, L
±, Q2n, and u± be as in Theorem 2.1. More-

over, let ei : R → M2×1(R) be causal, i.e., ei(s) = 0 for all s < 0, and con-
tinuously differentiable with bounded derivative, with exception for at most a finite
number of points, 0 ≤ s1 < s2 < · · · < sp, where it is undefined. Finally, let
Γ = Γ+ ∪ Γ−, where Γ± = ∪pk=0 {(x, s) ∈ R2 : (0, sk) + L±}. Then, for every integer
n ≥ 0, the initial-boundary value problem (1.1), defined in I×R, has a unique solu-
tion, e± ∈ C2×1(Q2n \Γ±), in the weak sense of integration along the characteristics
within Q2n, i.e., when the derivatives ∂x ± ∂s are interpreted as derivatives with
respect to the vectors (1,±1), respectively. The solution is given by

e±(x, s) = ∂s

∫ s−x

−∞
u±(x, s− s′)ei(s′) ds′. (3.1)

The vector fields e± ∈ C2×1(Q2n \ Γ) are zero in Qs0, if ei(s) = 0 for all s < s0. If
∂sa exists in I× R+ and ∂sa ∈ C4×4(I× R+), then e± ∈ C1

2×1(Q2n \ Γ).

Proof. The Cauchy convergence principle guarantees the existence of ei(sj ±
0) := limei(s), as s → sj ± 0, at each discontinuity point sj, since, e.g., ei(s′) −
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ei(s′′) =
∫ s′

s′′
d
ds
ei(s) ds, sj < s′′ < s′ < sj+1, has the limit 0, when s′, s′′ ↘ sj.

Thus, ei has a finite jump discontinuity at the point sj, and the jump in ei at sj
is defined as [ei(sj)] := ei(sj + 0) − ei(sj − 0). A solution to the problem (1.1)
is immediately obtained by a straightforward extension of Duhamel’s principle, see
Ref. [6]: e±(x, s) =

∑p
k=1 u±(x, s− sk)[e

i(sk)] +
∫∞
−∞ u±(x, s− s′){ d

ds′e
i}(s′)ds′, for

all (x, s) ∈ Q2n \Γ, where { d
ds
ei}(s) denotes the classical derivative of ei at s. Use of

the fact that u+(x, s) = 0 when x > s yields the desired solution (3.1), which has the
regularity inherited by u±. Moreover, this is the only solution. For let (e+, e−) be
the difference between two solutions. Clearly,

(
e± 0

)
solve the canonical problem

in Theorem 2.1, with I replaced by 0, and since the solution to this problem is
unique, (e+, e−) is zero. Finally, the last sentence in the theorem holds by Theorem
2.2, since one can let the derivative on e± act upon u±. The proof is finished.

The vector fields e+ ± e− are essentially the electric and magnetic fields, see
Section 5. Trivially, if the conditions in Theorem 3.1 are fulfilled, the vector fields
e+ ± e− ∈ C2×1(Q2n \ Γ), and they are equal to zero in Qs0 , if ei(s) = 0 for all
s < s0. The following theorem shows that the speed of the wavefront in Theorem
3.1 is precisely one.

Theorem 3.2. (Wave front speed) Let, in the preceding theorem, ei have the fol-
lowing additional property: there is a number δ > 0 such that the restriction of ei

to (0, δ) is continuously differentiable and ei(s) �= 0 for all 0 < s < δ. Then for
each x ∈ (0, 1), there is a number s, x < s < x + δ, such that e+(x, s) �= 0, where
(e+, e−) is the unique solution to the problem (1.1) given by equation (3.1). The
same statement is true for the vector fields e+ ± e−.

Proof. Put ei = (ei1, e
i
2), and choose a real number δ0, 0 < δ0 < δ, such that

both ei1 and ei2 do not change sign in the interval 0 < s < δ0. In particular, this

implies that at least one of the terms
∫ δ0

0
ei1(s

′) ds′,
∫ δ0

0
ei2(s

′) ds′ is non-zero. Assume,
on the contrary to the hypothesis of the theorem, that there is a point x ∈ (0, 1)
such that e+(x, s+x) = 0 for all s ∈ (0, δ). By Theorem 2.1 in the previous section,
det(u+(x, x + 0)) �= 0, and since u+(x, x + 0) is an continuous extension, there is a
number δ1 > 0 such that

det

(
u+

11(x, x + s1) u+
12(x, x + s2)

u+
21(x, x + s3) u+

22(x, x + s4)

)
�= 0 (3.2)

for all s1, s2, s3, s4 such that 0 < s1, s2, s3, s4 < δ1. It is not a restriction to assume
that δ0 < δ1. Eq. (3.1) implies that 0 = ∂s

∫ s

0
u+(x, x + s− s′)ei(s′) ds′, 0 < s < δ0,

so that 0 =
∫ s

0
u+(x, x + s − s′)ei(s′) ds′, 0 < s < δ0. The mean value theorem of

integral calculus asserts that there are positive real numbers δ2, δ3, δ4, δ5, such that
δ2, δ3, δ4, δ5 < δ0 and

u+
11(x, x + δ0 − δ2)

∫ δ0

0

ei1(s
′) ds′ + u+

12(x, x + δ0 − δ3)

∫ δ0

0

ei2(s
′) ds′ = 0,

u+
21(x, x + δ0 − δ4)

∫ δ0

0

ei1(s
′) ds′ + u+

22(x, x + δ0 − δ5)

∫ δ0

0

ei2(s
′) ds′ = 0.

Eq. (3.2) implies that this system of equations has the trivial solution only, i.e.,∫ δ0
0
ei1(s

′) ds′ = 0 and
∫ δ0

0
ei2(s

′) ds′ = 0, which contradicts the second sentence of the
proof. Thus, there exists a number s, x < s < x + δ, such that e+(x, s) �= 0.
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Analogously, since det(u+(x, x + 0) ± u−(x, x + 0)) �= 0 for each x ∈ I, and
u+(x, x+0)±u−(x, x+0) are continuous extensions, there is a number δ6 > 0 such
that

det

(
u+

11(x, x + s1)± u−11(x, x + s1) u+
12(x, x + s2)± u−12(x, x + s2)

u+
21(x, x + s3)± u−21(x, x + s3) u+

22(x, x + s4)± u−22(x, x + s4)

)
�= 0

for all s1, s2, s3, s4 such that 0 < s1, s2, s3, s4 < δ6. A investigation similar to the one
above shows that for each x ∈ (0, 1), there exists a number s, x < s < x + δ, such
that e+(x, s)± e−(x, s) �= 0. The proof is finished.

4 The Green functions

As mentioned in Section 1, the results of the theory of this paper have already
been used by scientific community in a number of papers on direct and inverse
scattering in complex, dispersive media, e.g., [7, 8, 15–17]. In these articles, the
Green functions equations have been employed, rather than the similar and more
natural canonical functions equations (2.2). For completeness, these equations are
now presented and proved uniquely solvable in the general mismatch case.

There is a slight variation in the definition of the Green functions, g±, be-
tween different authors. In this paper, the following definition, closely related to
the original one by Krueger-Ochs [18], is employed: g±(x, s) := ∂su

±(x, s), for all
(x, s) ∈ Q2n \ L, where u± are the canonical functions in Theorem 2.2.

The relation between the Green functions and the split vector fields e± is ob-
tained by performing the differentiation in Eq. (3.1). The result is

e±(x, s) =

∫ s−x

−∞
g±(x, s− s′)ei(s′) ds′ +

∞∑
k=k±

[u±(x,±x + 2k)]ei(s∓ x− 2k),

where k+ = 0, k− = 1. The properties of the Green functions are given by

Theorem 4.1. Let a, b, r1, r0, t0, L
±, L, Q2n, Tk, and u± be as in Theorem 2.2.

Then, for each integer n ≥ 0, the integro-differential equation defined in I× R by

(
(∂x + ∂s)g

+(x, s)
(∂x − ∂s)g

−(x, s)

)
= b(x)

(
g+(x, s)
g−(x, s)

)
+

∫ s

−∞
a(x, s− s′)

(
g+(x, s′)
g−(x, s′)

)
ds′+

+
∞∑
m=1

(
a11(x, s− x− 2m + 2) a12(x, s + x− 2m)
a21(x, s− x− 2m + 2) a22(x, s + x− 2m)

) (
[u+(x, x + 2m− 2)]
[u−(x,−x + 2m)]

)
,

g±(x, s) = 0, s ≤ 0,

t0g
+(+0, s) + r0g

−(+0, s) = 0, g−(1− 0, s) = r1g
+(1− 0, s),

[g+(x, s)] = b12(x)[u−(x, s)]/2, (x, s) ∈ L−,
[g−(x, s)] = −b21(x)[u+(x, s)]/2, (x, s) ∈ L+,

(4.1)
where a(x, s) := 0 for s < 0, has a unique solution, g± ∈ C2×2(Q2n \ L) =
C2×2(∪2n

k=1Tk ∪ Q0), in the weak sense of line integration along the characteristics
within each triangle Tk, k ≤ 2n. Thus, the derivatives are interpreted as derivatives
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with respect to the vectors (1,±1), respectively. The solution is given by the Green
functions defined above. The finite jumps in g± = ∂su

± across L±, respectively, are
given by Eq. (2.7), and the jump conditions on the boundary by Eq. (2.9).

As an immediate consequence of Eqs. (2.8) and (2.9), the ’initial values’ of the
Green functions are obtained:g+(x, x + 0) = Q+

0 (x)

(
r0

2t0
b21(+0) +

∫ x

0

Q+
0 (x′)−1α+(x′)Q+

0 (x′) dx′
)
,

g−(x, x + 0) = −b21(x)Q+
0 (x)/2,

where Q+
0 (x) = u+(x, x + 0) for x ∈ I. Note that knowledge of the existence of a

unique weak solution to the Green functions equations in the sense of the theorem
above is sufficient for the numerical purposes in, e.g., [7, 8, 15, 16], since integration
along the characteristics within each triangle Tk is the first step in the employed
discretization method.
Proof of Theorem 4.1. By line integration of the canonical equations (2.2) along
the characteristics within each triangle Tk, k ≤ 2n, followed by differentiation with
respect to s, the weak formulation of Eq. (4.1) is obtained, and the existence part
follows from Theorem 2.2. The jump conditions are direct consequences of Eqs. (2.5)
and (2.6). Suppose there is another weak solution to the problem (4.1) in the above
sense. The difference between these solutions then satisfies Eq. (2.2), with input
0 instead of I. By uniqueness in Theorem 2.1, this difference is zero, so there is a
unique weak solution to Eq. (4.1) within each triangle Tk. The proof is finished.

Finally, the regularity of the Green functions on the curve L± in the mismatch
cases, (1): r1 = 0, and (2): r1 �= 0 and r0 = 0, is commented upon. It is easy to
obtain the explicit expressions for the jumps in g± across L by combining various
formulas in this paper; therefore, a quantitative discussion is sufficient.
(1): g− is discontinuous across the line s = 2 − x, while g+ is continuous. Across
the line s = 2 + x, g+ is discontinuous, and g− is continuous. If also r0 = 0, g± are
both continuous on this line. On the rest of L, g± are both continuous.
(2): g± and are both discontinuous across the line s = 2 − x. Across the line
s = 2 + x, g+ is discontinuous, but g− is continuous. Across the line s = 4− x, g−

is discontinuous, and g+ is continuous. On the rest of L, g± are both continuous.

5 A bi-isotropic example

In this section, a wave propagation problem for a dispersive, stratified, bi-isotropic
(chiral) slab is formulated and analyzed. The analysis motivates the study of Eq.
(1.1) in the previous sections.

The bi-isotropic slab is located between the planes x3 = 0 and x3 = d. The
media outside the slab are homogeneous, isotropic, and without dispersion, and the
permeability and permittivity of the medium to the right of the slab might differ
from the corresponding properties of the medium to the left. The slab is excited by a
transient transverse plane wave, incident from the left, and the incident electric field
at the front wall at the time t, Ei(t), is presumed to be quiescent before a finite time
T1, i.e., Ei(t) = 0 for all times t < T1. Moreover, Ei is assumed to be continuously
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differentiable with bounded derivative, except for at most a finite number of points,
t1 < . . . < tp, where it is undefined. Note that the set of all incident electric fields
with the above properties forms a linear space over the real numbers.

The constitutive relations for the bi-isotropic medium at the time t and at the
point r ≡ (x1, x2, x3) ≡ x1x̂1 + x2x̂2 + x3x̂3 are defined by the following relation
between the electric field E and the magnetic field H on one hand, and the electric
and magnetic flux densities, D and B, respectively, on the other:{

D(r, t) = ε(x3) (E(r, t) + (χee ∗E)(r, t)) + c(x3)
−1(χem ∗H)(r, t),

B(r, t) = c(x3)
−1(χme ∗E)(r, t) + µ(x3) (H(r, t) + (χmm ∗H)(r, t)) ,

(5.1)

where, e.g., (χee ∗E)(r, t) =
∫ t

−∞ χee(x3, t− t′)E(r, t′) dt′. It is understood that the
slab is initially quiescent, i.e., there is a time T , such that E(r, t) = 0 for all t ≤ T ,
and similarly for the magnetic field H(r, ·). Therefore,

∫ t

−∞ can be substituted for∫ t

T
in the convolutions above. The positive functions ε and µ are the non-dispersive

parts of the permittivity and permeability, respectively, and c := (µε)−1/2. All the
functions χee, χem, χme, and χmm have the same unit, s−1, and are referred to
as the susceptibility (integral) kernels. Clearly, the integral kernels χee and χmm
model the ordinary dispersive effects, while the chirality, (χem − χme)/2, and the
non-reciprocity, (χem + χme)/2, are the characteristic properties of the bi-isotropic
medium. The medium is reciprocal if χem + χme = 0, see Ref. [11].

The medium is assumed to be stratified with respect to depth, i.e., ε and µ
depend on the spatial variable x3, and the susceptibility kernels depend on x3 and
the time t. The functions ε and µ are continuously differentiable with bounded
derivatives in the interval (0, d), and the susceptibility kernels and their first and
second time derivatives are assumed to be bounded and continuous functions in
(x3, t) ∈ (0, d) × (0,∞). Due to causality in Eq. (5.1), the susceptibility kernels
are equal to zero when t < 0, see Ref. [11]. These conditions guarantee similar
regularity for the induced electro-magnetic fields (throughout space and time) as for
the incident field, described in the second paragraph of this section. More precisely,
the jump-discontinuities in the incident field will propagate along the characteristic
curves. However, the number of discontinuity curves may be infinite, since wave
impedance mismatch is allowed at the edges of the slab, i.e., there may be jump
discontinuities in the permittivity and the permeability at the front and/or at the
back wall.

The electro-magnetic field satisfies the source-free Maxwell equations:

∇×E = −∂tB, ∇×H = ∂tD, ∇ ·D = 0, ∇ ·B = 0. (5.2)

Transverse solutions, independent of the transverse coordinates (x1, x2), are sought,
i.e., E(r, t) = x̂1E1(x3, t) + x̂2E2(x3, t), and similarly for all the other electro-
magnetic fields. Note that it is not necessary to assume that the 3-components
of the vector fields vanish inside the bi-isotropic medium; the independence of the
spatial variables (x1, x2) and the Maxwell equations (5.2) imply that D3 and B3

are both constant, and by the continuity at the walls, they are both equal to zero
throughout space. The constitutive relations and the associative law for causal
convolutions then imply that both E3(x3, ·) and H3(x3, ·) satisfy the equation f +
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(χee + χmm + χee ∗ χmm − χem ∗ χme) ∗ f = 0, which is a linear Volterra integral
equation of the second kind, and therefore has the unique continuous solution f = 0,
see Ref. [13]. One arrives to the same conclusion if f has the regularity described in
the third paragraph of this section.

With the transverse Ansatz above, the Maxwell equations (5.2) can be written

∂3E = ∂t(JB), ∂3(JH) = ∂tD, J =

(
0 −1
1 0

)
, (5.3)

where a compact matrix notation, pertinent to the analysis of the propagation of
electro-magnetic waves in the bi-isotropic slab, has been introduced. Put, χee :=
χeeI, χme := χmeJ, χmm := χmmI, χem := χemJ. By the constitutive relations
(5.1), the flux densities B and D in Eq. (5.3) are eliminated, and a partial integro-
differential equation in the electric and magnetic fields E and H is obtained:

∂3

(
E

ηJH

)
=

η′

η

(
0 0
0 I

) (
E

ηJH

)
+

+ c−1∂t

((
χme∗ I + χmm∗

I + χee∗ −χem∗

) (
E

ηJH

))
,

(5.4)

where η :=
√
µ/ε is the wave impedance. Next, the wave splitting,(

E+

E−

)
= P

(
E

ηJH

)
, P =

1

2

(
I −I
I I

)
, P−1 =

(
I I
−I I

)
, (5.5)

is adopted. The wave splitting technique is now a well established method to solve
direct and inverse scattering problems. For a recent survey of the technique, the
reader is referred to Ref. [5]. Recent contributions to the solution of direct and
inverse scattering problems in complex media can be found in Refs. [7, 8, 16, 17].

The form of the matrix P−1 shows that the electric field is the sum of the split
vector fields, E±, and that the magnetic field is proportional to the difference (with
a matrix as proportionality constant). Outside the slab, E± represent the general
right- and left going waves. More precisely, E±(x3, ·) are the incident and reflected
electric fields at position x3, respectively, if x3 < 0. Analogously, E−(x3, ·) = 0, and
E+(x3, ·) is the transmitted electric field at position x3, if x3 > d. In particular, it
follows that the direct scattering problem is solved if the functions E−(+0, ·) and
E+(d − 0, ·) are known, since the continuity of (the tangential components of) the
magnetic and electric fields E and H at the boundary implies that

Er(t) =
2η(−0)

η(+0) + η(−0)
E−(+0, t) +

η(+0)− η(−0)

η(+0) + η(−0)
Ei(t),

Et(t) =
2η(d + 0)

η(d + 0) + η(d− 0)
E+(d− 0, t),

at each time t. Here, Er(t) is the electric field of the reflected transverse plane wave
at the front wall, and Et(t) is the electric field of the transmitted transverse plane
wave at the back wall, both evaluated at time t. In the second formula, the fact
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that there is no incident field from the right has been used. In addition, Eq. (5.5)
and the continuity of the magnetic and electric fields at the boundary yield{

E−(d− 0, t) = r1E
+(d− 0, t),

2Ei(t) = t0E
+(+0, t) + r0E

−(+0, t),
(5.6)

where

r1 =
η(d + 0)− η(d− 0)

η(d + 0) + η(d− 0)
, t0 = 1 +

η(−0)

η(+0)
, r0 = 1− η(−0)

η(+0)
.

The partial integro-differential equation for the split vector fields E± is easily
obtained from the wave equation (5.4) and the wave splitting (5.5). The result,(

(∂3 + c−1∂t)E
+

(∂3 − c−1∂t)E
−

)
=

η′

2η

(
I −I
−I I

) (
E+

E−

)
+

1

2c
∂t

(
χ ∗

(
E+

E−

))
,

χ :=

(
−χee − χmm − χem + χme −χee + χmm + χem + χme
χee − χmm + χem + χme χee + χmm − χem + χme

)
,

(5.7)

is clearly equivalent to the Maxwell equations for the bi-isotropic medium. Moreover,
since the slab is initially unexcited by the second and third paragraphs of this section,
there is a time T0 := min(T1, T ) such that{

Ei(t) = 0, t < T0,

E±(x3, t) = 0, (x3, t) ∈ (0, d)× (−∞, T0].
(5.8)

Introduce travel-time coordinates, (x, s), by

s(t) =
t− T0

tslab
, x(x3) =

1

tslab

∫ x3

0

dx′3
c(x′3)

, tslab =

∫ d

0

dx′3
c(x′3)

,

and put e±(x, s) := E±(x3(x), t(s)) and ei(s) := Ei(t(s)). By these substitutions of
variables, Eqs. (5.7), (5.6), and (5.8) are transformed into the non-local hyperbolic
initial-boundary value problem (1.1), where the functions a and b are defined by

a(x, s) =
tslab
2

∂sχ (x3(x), tslabs) , (x, s) ∈ I× R+ ≡ (0, 1)× (0,∞),

b(x) =
tslab
2
χ(x3(x), 0) +

d

dx
ln

√
η(x3(x))

η0

(
I −I
−I I

)
, x ∈ I,

and η0 is the wave impedance in vacuum. From the third paragraph of this section,
it is clear, that a ∈ C4×4(I × R+) is differentiable with respect to time s, ∂sa ∈
C4×4(I × R+), and b ∈ C4×4(I), so that all theorems in the previous sections are
applicable to this wave propagation problem.

As a final remark, note that the solution to Eq. (1.1) in this bi-isotropic case is
axially symmetric, i.e., if e± is the solution corresponding to the input ei, and R is an
arbitrary rotation matrix in the x1-x2-plane, then Re± is the solution corresponding
to the input Rei. This is not surprising since the constitutive relations for the bi-
isotropic medium are isotropic. More generally, this happens for media such that
RaijR

−1 = aij and RbijR
−1 = bij, 1 ≤ i, j ≤ 2, i.e., all the submatrices aij and bij

of a and b, respectively, defined by the decompositions in Theorem 2.1, commute
with every rotation matrix R.
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