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Popular science summary in English 
Plant photosynthesis is a process where they capture energy from the sun to make 
carbohydrates from carbon dioxide and water with oxygen as a by-product. The 
carbohydrates are used as energy source for growth and maintenance in so-called 
respiration, that takes places in small membrane-surrounded compartments in each 
cell called mitochondria. In respiration energy is released, oxygen is consumed, and 
carbon dioxide is produced. Though some energy is released as heat, much is 
captured in special molecules by the help of highly controlled enzymatic steps 
taking place in the cells. Respiration is not unique to plants, but plants have several 
additional enzymes compared to animals that allow uncoupling of the breakdown 
from energy storage to give a more flexible process. The additional enzymes include 
several so-called NDB proteins that oxidize cellular NAD(P)H, the reducing 
equivalents that is important for respiration and many other cellular reactions. These 
enzymes are also believed to be important in plant defences, especially under stress 
conditions, such as drought, high salinity, heat and pathogen attack.  

In this project, the NDB proteins were studied regarding their activity, structure 
and evolution. It was found that Ca2+ and pH conditions interacted in regulating the 
activities of NDB proteins. Therefore, the exact Ca2+ concentrations needed at 
different pH values within the physiological range were investigated. We found it 
was different for different type of NDB proteins. NDB1-type proteins oxidise only 
NADPH in isolated intact mitochondria and demands high Ca2+ and low pH. 
Whereas NDB2-type proteins oxidise only NADH, lower Ca2+ is needed and with 
little influence of the pH. Considering that cellular Ca2+ changes have features of 
spikes, we could predict that the NDB2-type proteins in cells should be permanently 
active whereas NDB1-type proteins would be active only when the Ca2+ 
concentration is high and pH is low. To understand better the regulation of NDB 
proteins, a 3D structure modelling of NDB1 and NDB2 from two model plants, 
potato and Arabidopsis thaliana, were made and in detail looked into. NDB proteins 
are modelled as a two-molecule unit, so-called dimer, with one side that associate 
with the inner mitochondrial membrane. Along the membrane side, there is a site 
where Ca2+ could bind. The binding of Ca2+ may change the structure of an NDB 
protein, and thus change the activity. NAD(P)H binding positions on the 3D-model 
helped us to predict the differences between NADH binding and NADPH binding. 
Based on two amino acids positions at the NAD(P)H binding position, we could 
predict what each NDB-type protein would oxidise, NADH or NADPH. Combined 
with evolutionary analysis, NDB1-type proteins were found present throughout 
most eukaryotic groups and evolutionarily ancestral as compared to NDB2-type 
proteins. These studies of NDB could improve understanding of the functions of 
NDB in plant energy regulation.  
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Abstract 
In living organisms, respiration is a biological process degrading different carbon 
substrates, consuming O2, and releasing the carbon as CO2. Plants have several 
alternative enzymes that are involved in the respiratory processes, as compared to 
animals. These alternative respiratory enzymes allow electrons to be transferred to 
oxygen in the mitochondrial inner membrane, but bypassing ATP synthesis. The 
alternative enzymes, e.g., type II NAD(P)H dehydrogenases (NDH-2), affect 
cellular NAD(P)H redox status, which is of vital importance for energy metabolism, 
ROS production and removal, anti-oxidation and reductive biosynthesis.  

Plant NDB-type proteins are NDH-2 enzymes located at the external 
mitochondrial inner membrane. It was earlier found that NDB1 oxidise cytosolic 
NADPH, and NDB2 oxidise cytosolic NADH. In this study, the regulatory 
mechanisms of A. thaliana and Solanum tuberosum NDB1 by cytosolic Ca2+ and 
pH were studied and compared to NDB2, using purified mitochondria and E. coli-
produced proteins in a membrane-bound and a purified soluble state. Membrane 
bound NDB1 and NDB2 oxidised NADPH and NADH, respectively. Soluble forms 
of NDB1 oxidise both NADH and NADPH, with higher NADPH activity. Soluble 
forms of NDB2 oxidised only NADH like the membrane-bound enzyme. In 
solution, the active StNDB1 resided as oligomers of dimeric units, mainly 
hexamers, and recombinant AtNDB2 was highly oligomeric. Within a physiological 
pH range, an acidic pH was found to lower the Ca2+ demand for activation of the 
mitochondrial and E. coli-produced NADPH oxidation via NDB1, as compared to 
a more alkaline pH. Depending on pH, 3-82 µM Ca2+ was needed. In contrast, the 
sub-µM Ca2+ demand for activation of NADH oxidation was not linked to pH. Both 
soluble and mitochondrial StNDB1 (NADPH oxidation) could respond quickly to 
increased and decreased Ca2+, whereas mitochondrial NADH oxidation responded 
quickly to Ca2+ increase but slowly to Ca2+ decrease. Overall, the results suggest 
that in vivo, the activity of NDB1 is rapidly controlled by pH-shift-associated Ca2+ 
spikes in the cytosol whereas NDB2 may be more continuously active.  

Based on modelling of NDB1, the core catalytic parts and dimerization surface 
showed distinct similarities to the structures of yeast ScNDI1 and Plasmodium 
falciparum PfNDH-2. This analysis highlighted motifs that correlate with NAD(P)H 
substrate specificity, and which were followed by evolutionary analysis. Most 
eukaryotic species have NDB proteins that contain a non-acidic motif for NADPH 
binding. Angiosperms and liverworts contain NDB proteins of NDB1- and NDB2- 
type, i.e. they contain acidic and non-acidic motifs for NADH and NADPH binding, 
respectively. This indicates that plants have more flexibility for external NAD(P)H 
oxidation as compared to other eukaryotes. Based on the evolutionary analysis, 
Ca2+-dependent external NADPH oxidation appears to be an ancient process as 
compared to NADH oxidation, and thus possibly has a more fundamental function 
in cellular redox metabolism. 
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Abbreviations 
 
ATP Adenosine triphosphate 

ADP Adenosine diphosphate 

NADH Nicotinamide adenine dinucleotide, reduced form 

NAD+ Nicotinamide adenine dinucleotide, oxidized form 

NAD NADH and/or NAD+ 

NADPH Nicotinamide adenine dinucleotide phosphate, reduced form 

NADP+ Nicotinamide adenine dinucleotide phosphate, oxidized form 

NADP NADPH and/or NADP+ 

NAD(P)H NADH and/or NADPH 

FADH2  Flavine adenine dinucleotide 

ROS Reactive oxygen species 

UQ Ubiquinone 

DH  Dehydrogenase 

K0.5(Ca2+)  The Ca2+ concentration inducing half-maximal activity 

t1/2  The half-life of the activity after addition of Ca2+/EGTA 
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1 Introduction to respiratory redox biology 

1.1 Plant respiration 
In respiration, carbon-containing substrates are oxidised to supply the organism with 
energy in the form of ATP, which is needed for growth and development. ATP is 
the universal ‘energy currency’ that supplies energy to most cellular metabolic 
activities. In plants, a large portion (35-80%) of carbohydrates assimilated by 
photosynthesis is consumed in respiration within the same period (Amthor 2000, 
Lambers et al 1998).  

Plant respiration is controlled by e.g., energy demand, availability of substrates, 
O2 supply, temperature and light conditions. In the absence of oxygen, fermentation 
will take place and lead to cytoplasmic acidification, which inhibits respiration and 
its ATP synthesis (Sakano 2001). Higher environmental temperature will also cause 
substantial increases in leaf respiratory carbon fluxes because more ATP is used for 
plant survival (Slot & Kitajima 2015). The major parts in plant respiration is briefly 
summarized below.  

1.1.1 Plant cellular respiratory products and substrates 
By completely degrading one glucose molecule, 30-32 ATP molecules can be 
regenerated through aerobic respiration (Browse et al 2014). Apart from ATP, 
respiration also produces metabolic intermediates that can be used for synthesis of 
amino acids, nucleic acids and fatty acids, which are needed for cell growth and 
maintenance. For example, 2-oxoglutarate is a respiratory intermediate exported 
from mitochondria to chloroplasts for glutamate synthesis (Lea & Miflin 2003).  

Substrates for respiration are usually carbohydrates like glucose, sucrose, triose 
phosphates and organic acids, as well as protein, lipid and chlorophyll degradation 
products. Lipids, protein and amino acids can be degraded to maintain respiration 
under carbon starvation (Araujo et al 2011, Cavalcanti et al 2017) like under 
darkening-induced conditions (Slot & Kitajima 2015). Lipids are otherwise mainly 
used for respiration in germinating oilseeds, and they can also be metabolized into 
sucrose that plants can transport and utilize for growth (Graham 2008). Organic 
acids such as malate and fumarate may also be utilized as respiratory substrate in 
leaves by the end of the night. Therefore, depending on the growth conditions, 
cellular conditions and environmental conditions, plants utilize many different types 
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of respiratory substrates. Still, sugars are the most common respiratory substrates in 
plant cells.  

1.1.2 Mitochondrial morphology 
Based on transmission electron microscopy, plant mitochondria are usually 
spherically shaped with 0.5-1.0 μm in diameter and up to 3 μm in length, which is 
similar to animal mitochondria (Logan & Leaver 2000). In vivo studies of GFP-
labelled plant mitochondria also showed elongated spherical structures (Logan & 
Leaver 2000). Additionally, the size, shape and distribution of mitochondria in a 
cell are not even (Scott & Logan 2011). The number and size of mitochondria 
depends on the mitochondrial fission and fusion rate (Scott & Logan 2011). Changes 
of mitochondrial size can also alter mobility and cellular distribution of the 
mitochondria.  

 

Figure 1. The general architecture of mitochondria. 
 

A mitochondrion has two membranes, the outer membrane and the inner membrane 
(Figure 1). The outer membrane encloses the entire organelle. Ions and metabolites 
exchange efficiently across the outer membrane through voltage dependent anion 
channels (Duncan et al 2013). The inner membrane is highly folded, forming cristae. 
The formation of cristae allows a mitochondrion to contain large amount of proteins, 
and the protein-to-lipid ratio is high, about 3:1 (Douce 1985). The space between 
the outer membrane and the inner membrane is known as the intermembrane space, 
which can be subdivided into two compartments, the peripheral intermembrane 
space and the intracristae space (Figure 1). They are separated by ring-like cristae 
junctions, which separate cristae membrane from surrounding inner membrane. 



19 

Such have seen in yeast, plant and mouse (Barbot et al 2015, Hessenberger et al 
2017). The compartment enclosed by the inner mitochondrial membrane is called 
the matrix. It has a very high content of macromolecules, and it is where the citric 
acid cycle takes place. The outer and inner membranes are connected at many sites 
by the translocase of the outer membrane complexes and the translocase of the inner 
membrane complexes, which are involved in protein translocation (Harner et al 
2011). 

1.1.3 Plant respiratory pathways 
In a plant cell, the respiratory pathways are distributed between the cytosol, 
mitochondria and chloroplasts. Plant respiration can be divided into: glycolysis, 
oxidative pentose phosphate pathway, citric acid cycle and oxidative 
phosphorylation, which are located in different cell compartments (Figure 2). The 
final products from the joint action of glycolysis, oxidative pentose phosphate 
pathway, and citric acid cycle pathways are CO2, H2O and reduced compounds 
nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide 
phosphate (NADPH), flavin adenine dinucleotide (FADH2) and a small amount of 
ATP. 

 

Figure 2. Overview of cellular respiration pathways. Modified from Browse et al (2014).  
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Glycolysis is an anaerobic pathway that provides pyruvate for the citric acid cycle 
and produce NADH and a small amount of ATP from oxidization of sugars in plants, 
mainly sucrose (Fernie et al 2004). The process mainly takes place in the plant 
cytosol, but also partly in plastids (Frehner et al 1990).  

Plant oxidative pentose phosphate pathway is a metabolic pathway that works in 
parallel to glycolysis and that is also located both in the cytosol and in plastids. The 
pentose phosphate pathway provides NADPH and some precursors for nucleotide 
and amino acid biosynthesis. This pathway is rate controlled by glucose-6-
phosphate DH, which is stimulated by the concentration of NADP+ and strongly 
inhibited by cytosolic NADPH (Browse et al 2014, Kruger & von Schaewen 2003).  

The Citric acid cycle is also called the tricarboxylic (TCA) cycle or Krebs cycle. 
It is located in the mitochondrial matrix. The citric acid cycle degrades acetyl-CoA 
generated from pyruvate and releases CO2. A major amount of NADH and FADH2 
(16 NADH and 4 FADH2 per sucrose) is synthesized together with a small amount 
of ATP. Synthesized NADH and FADH2 are the primary substrates for the electron 
transport chain (ETC) of the oxidative phosphorylation in mitochondria (Sweetlove 
& Møller 2010).  

Oxidative phosphorylation takes place in mitochondria and it is the process where 
most ATP is formed (Figure 3). Most aerobic organisms carry out oxidative 
phosphorylation. In this process, electrons are transferred from NADH to O2 
through the basic enzyme complexes I, III and IV in ETC. Complexes I, III and IV 
are embedded in the inner mitochondrial membrane and coupled to proton 
translocation. Complex I oxidize matrix NADH and transfer electrons to the 
ubiquinone (UQ) pool (Braun et al 2014). Complex III in turn accepts electrons from 
the UQ pool and transfers them to cytochrome c. Finally, complex IV transfers the 
electrons from cytochrome c to O2, generating H2O, and complex III and IV is 
jointly often called the cytochrome pathway. In the ETC process, an electrochemical 
gradient of protons is formed across the inner mitochondrial membrane by 
translocation of protons. Based on the chemiosmotic theory, the protons diffuse 
from the intermembrane space to the matrix through an ATP synthase, and drive the 
ATP synthase to produce ATP from ADP and Pi. (Browse et al 2014, Mitchell 1961, 
Nicholls 2013, Walker 2013). ATP synthases are found as dimers at the cristae rims 
in eukaryotes, including plants (Seelert & Dencher 2011), whereas complex IV has 
been localized to the flat sides of the intracristae membranes in human cells (Rieger 
et al 2014). 
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Figure 3. Schematic representation of oxidative phosphorylation in plants. 
The inner mitochondrial membrane (IMM) has the classical electron transport chain (ETC) complexes I-IV and ATP 
synthase including the cytochrome pathway, and alternative pathways including AOX, NDA, NDB and NDC. 
Abbreviations: IMM: inner mitochondrial membrane, I: complex I, II: complex II, III: complex III, IV: complex IV, V: ATP 
synthase, AOX, alternative oxidase, c: cytochrome c, NDA and NDC: internal NAD(P)H dehydrogenases, NDB: 
external NAD(P)H dehydrogenases, UQ: ubiquinone. Adapted from Browse et al (2014). 

Alternative pathways: Aerobic eukaryotes carry out mitochondrial oxidative 
phosphorylation by linking electron transport to ATP synthesis via proton 
translocation. However, unlike mammals, plants have several alternative enzymes 
involved in the electron transport processes, including alternative oxidase and type 
II NAD(P)H dehydrogenases (DHs) or in short NDH-2. None of the alternative 
oxidases or NDH-2 translocate protons, so they give no direct contribution to 
oxidative phosphorylation (Møller 2001). Therefore, NDH-2 could partially 
dissipate reductants without proton translocation in the electron transport chain, 
which is needed for ATP biosynthesis. The existence of NDH-2 enzymes may thus 
enhance the ability of balancing the mitochondrial membrane potential and 
reduction state, which turn down the efficiency of ATP production. Transgenic A. 
thaliana with suppressed NDH-2 expression have shown significant changes in 
cellular NADP(H) homeostasis, growth rate, respiratory metabolism and defence 
signalling (Wallström et al 2014a, Wallström et al 2014b).  
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Figure 4. The mitochondrial alternative respiration pathways in A. thaliana.  
The NDH-2 are in green color: NDA1-2, NDB1-4 and NDC1. They are specified with substrates and Ca2+ binding 
(Geisler et al 2007). Electron flow routes are shown as black solid arrow lines, and dash line constitutes a prediction 
for NDB3 as NADH DH. Complex I is shown for comparison. IMM: inner mitochondrial membrane. 

NDH-2 enzymes exist in plants, fungi, protists and bacteria (Melo et al 2004, 
Rasmusson et al 2008). Seven predicted NDH-2 were found in A. thaliana and 
classified into 3 families: NDA, NDB and NDC, which contain 2, 4 and 1 members 
respectively (Michalecka et al 2003). Homologues of all 3 families were also found 
in rice, Oryza sativa, suggesting that both monocots and eudicots NDA, NDB and 
NDC proteins (Rasmusson et al 2004). In A. thaliana and potato, AtNDA1, 
AtNDA2, AtNDC1 and StNDA1 have been found localized to the inner surface of 
the inner membrane, whereas StNDB1, AtNDB1, AtNDB2 and AtNDB4 are 
situated on the outside of the inner membrane (Figure 4) (Elhafez et al 2006, Geisler 
et al 2004, Rasmusson & Agius 2001, Rasmusson et al 1999). AtNDB3 is possibly 
external but the gene has been less studied (Michalecka et al 2003). However, dual 
targeting of plant NDH-2 has been observed; besides mitochondria, NDH-2 may be 
targeted to peroxisomes or chloroplasts (Xu et al 2013).  

Human apoptosis-inducing factor (AIF) and mitochondrion-associated inducer 
of death (AMID) have been claimed to be mitochondrial rotenone-sensitive NDH-2 
enzymes (Elguindy & Nakamaru-Ogiso 2015). Homologs of AIF and AMID are 
also present in plants, e.g., A. thaliana homologs At5g22140 and At3g44190 
(Michalecka et al. 2003). However, the NADH oxidation activity of the predicted 
proteins is not known. 

Apart from above, plant mitochondria contain supplementary pathways that can 
oxidize carbon compounds and transfer electrons to UQ. Examples include D-
lactate DH, dihydroorotate DH, glycerol-3-phosphate DH and also proline DH 
(Araujo et al 2010, Bartoli et al 2000, Rasmusson & Møller 2010, Schertl & Braun 
2014, Szabados & Savoure 2010).  

Uncoupling proteins bypass ATP synthesis because they mildly dissipate the 
electrochemical proton gradient, which leads to a decreased efficiency of oxidative 
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phosphorylation (Vercesi et al 2006). Uncoupling proteins are activated by 
superoxide, and they may protect cells against high production of reactive oxygen 
species (ROS) during biotic and abiotic stresses (Brandalise et al 2003, Fernie et al 
2004, Maxwell et al 1999). Overexpression of StNDB1 in tobacco leads to higher 
levels of uncoupling proteins and alternative oxidases (Michalecka et al 2004). 
However, new research claimed that the uncoupling proteins in plants are not found 
to have uncoupling function, but instead play an role as mitochondrial transporters 
for aspartate, glutamate and dicarboxylates (Monne et al 2018). If it is true, 
alternative oxidase and NDH-2 would be the major components for dissipation of 
the electrochemical proton gradient in plant cells.  

Fermentation is known as an alternative pathway to respiration when plants are 
under low O2 conditions, such as hypoxia and anoxia that can happen under flooding 
or waterlogging. Under low O2, the oxidative phosphorylation pathway is limited or 
inactivated (Møller 2001), and fermentation will take place. The ATP production 
efficiency per glucose is only 5-10 % compared to aerobic respiration (Drew 1997). 
Plant fermentation has three pathways, known as alcoholic fermentation, lactic 
fermentation and the alanine pathway, which are degrading pyruvate to ethanol, 
lactate and alanine respectively, and generating CO2 and NADH. The cytosol pH is 
dramatically changed into acidification under lactic fermentation (Browse et al 
2014).  

In order to have a better understanding of alternative plant respiration, the 
knowledge on plant NDH-2 is extended in this study, including its structure, 
regulation, evolutionary analysis and possible molecular mechanisms. 

1.1.4 Genes for mitochondrial proteins 
In plant mitochondria, most polypeptides involved in the ETC (e.g., most subunits 
in Complex I-IV and all alternative oxidases and NDH-2) are nuclear-encoded 
(Rasmusson et al 2008). Most animal mitochondrial genomes are about 16.5. kbp in 
length, whereas plant mitochondrial genomes have more variation, which range 
from 200 to 7000 kbp (Gualberto et al 2014). Mitochondrial genes encode proteins 
that are mainly involved in basic processes, for example, oxidative phosphorylation 
and translation (Burger et al 2003). In human, the mitochondrial genome has 37 
genes that encoding 13 proteins, 22 tRNAs, and 2 rRNAs (Anderson et al 1981). 
Model plant A. thaliana has 57 genes that encoding 33 proteins, 21 tRNAs, and 3 
rRNAs (Unseld et al 1997). Moreover, plant mitochondrial DNA can be present as 
a collection of linear DNA, smaller circular and branched molecules (Morley & 
Nielsen 2017). 
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1.1.5 Oxidative stress caused by redox changes 
During growth, plants have to face different environmental stresses such as a 
variable temperature, drought, nutrient deficiency, salt and metal toxicity, hypoxia, 
and pathogen attack (Vanlerberghe 2013). For example, high temperature can 
inhibit leaf respiration (Atkin et al 2006), salinity may decrease the cytochrome 
pathway and enhance alternative respiratory pathway (He et al 2019), heavy metals 
and O2 limitation affects root respiration dramatically (Gupta et al 2009, Moyen & 
Roblin 2013). In response to many stresses, plants increase the production of ROS 
due to over-reduction. The balance of redox status may thus be shifted to oxidative 
stress. As a result of oxidative stress, plants trigger programmed cell death and/or 
acclimation and improved stress tolerance (Amirsadeghi et al 2007, Noctor & 
Mhamdi 2017). For example, studies have shown that defence hormone signalling 
is linked to glutathione status, that is changed by H2O2 (Han et al 2013a, Han et al 
2013b). The stress-induced ROS may function in retrograde signalling, i.e. from 
mitochondria to nucleus, activating/repressing of nuclear genes, but ROS can also 
damage cellular components (Sweetlove & Møller 2010). With induced ROS, there 
are changes in mRNA and protein levels as well, e.g., under ROS-inducing stress 
conditions, genes encoding alternative oxidases are up-regulated together with 
NDH-2 genes, such as NDB2 with AOX1a and NDB4 with AOX1c (Clifton et al 
2005, Rasmusson et al 2009). Transcription factors ABI4, AtWRKY40 and 
AtWRKY63 can up- or down- regulate AOX1 and NDB2 genes (Giraud et al 2009, 
Van Aken et al 2013).  

The alternative respiratory enzymes are believed to respond to plant stress, 
prevent over-reduction of the proton-translocating main respiratory chain and 
counteract deleterious short-term metabolic fluctuations, thus reducing ROS 
formation and damage (Giraud et al 2009, Møller 2001, Rasmusson et al 2009). It 
was shown that plant mitochondrial alternative oxidases decrease the reduction level 
of the electron transport chain and lower ROS production (Maxwell et al 1999). The 
tight redox regulation of the alternative respiratory enzymes may therefore be 
particularly important to balance the cellular redox status under stress. 

1.2 Ca2+ in plant cells 
Calcium is normally present at millimolar levels on a whole tissue basis, but the free 
intracellular Ca2+ concentration is much lower, around 100 nM (Thomas 1982). 
Cells actively and passively translocate Ca2+ between different organelles, cytosol, 
and extracellular compartments. Ca2+ is a key regulator for NDB-type NDH-2, such 
as AtNDB1 and AtNDB2 (Geisler et al 2007). Experiments of this thesis were done 
to understand the mechanisms of NDB activation under physiological Ca2+ levels in 
vivo (Paper I & III). Therefore, this section will briefly summarize the resting and 
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total Ca2+ concentrations of different cell compartments under physiological 
conditions and the Ca2+ signal decoding in plants that might related to the NDB 
protein activity.  

1.2.1 Ca2+ concentrations in different cell compartments 
In plant cells, the concentration of free Ca2+ responds to growth conditions, and 
frequency and amplitude are variable with different stimuli. Based on experiments 
using Ca2+ sensor proteins, Ca2+ concentration changes can be visualised. For 
example, when A. thaliana roots are under salt stimuli, Ca2+ waves move up to 400 
µm/s through the cortical and endodermal cell layers, about several cells per second 
(Choi et al 2014b). The cytosolic Ca2+ concentration becomes elevated in an 
oscillatory manner in response to several factors, e.g., cell division, root cell 
elongation, heat or cold shock, drought, salinity, mechanical stimulation, pathogens 
attack (White & Broadley 2003).  

 

Figure 5. Free Ca2+ concentrations in a plant cell (collective from different cell types).  
[Ca2+] indicates free Ca2+ concentrations. Grey values are from animals. Different Ca2+ value sourses are listed: 
cytosol (Choi et al 2014a, Logan & Knight 2003), mitochondrion (Logan & Knight 2003), chloroplast (Johnson et al 
1995, Nobel 1969), ER (Coe & Michalak 2009), Vacuole (Conn & Gilliham 2010), Nucleus (Mazars et al 2009) and 
Apoplast (Conn et al 2011, Hepler 2005).  
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Dynamic changes in concentrations and changes in Ca2+ gives plants an ability to 
‘sense’ and ‘respond’ to different environments appropriately and specifically and 
to decode the Ca2+ signals induced by different responses. As summarised in Figure 
5, a collection of free Ca2+ concentration data of different cell compartments has 
been determined. The main storage of Ca2+ in plant cells is in the vacuole, which 
has around 0.2-5 mM free Ca2+ and up to 80 mM of total Ca2+, which is the sum of 
free and bound Ca2+ (Conn & Gilliham 2010). The apoplast is another place to store 
Ca2+. Apoplastic Ca2+ is variable from 10 μM to 10 mM in total, and around 0.33 
mM as free Ca2+(Conn et al 2011, Hepler 2005). Cytosolic Ca2+ concentrations can 
reach 5 μM or higher at stress conditions, but the resting concentration is around 
100 nM (Choi et al 2014a, Logan & Knight 2003), which is similar to the nuclear 
free Ca2+ level, around 100 nM (Mazars et al 2009). The estimated total and free 
Ca2+ of chloroplast are 15 mM and 150 nM respectively (Johnson et al 1995, Nobel 
1969). Mitochondrial matrix take up Ca2+ actively through several Ca2+ uniporters 
(Wagner et al 2016). In plant mitochondrial matrix, the estimated free Ca2+ 
concentration at resting condition is around 200 nM, and under stress conditions it 
can reach 500 nM or even higher (Choi et al 2014b), e.g., the touch response of A. 
thaliana cause around 4-fold increase of free Ca2+ in mitochondria (Logan & Knight 
2003). Ca2+ could pass the outer mitochondrial membrane freely through voltage-
dependent anion channels. Therefore, in these investigations we have considered the 
Ca2+ level being similar in intermembrane space as in the cytosol and to follow the 
Ca2+ spikes in the latter compartment.  

1.2.2 Decoding Ca2+ signals 
Signals in the form of defined changes in Ca2+ are decoded by the cell through 
various Ca2+ sensor proteins and transferred into phosphorylation events, protein-
protein interaction, and/or regulation of gene expression (Hashimoto & Kudla 
2011). Ca2+ sensor proteins are calmodulin, calmodulin-like protein and calcineurin 
B-like protein (Figure 6). Ca2+ sensor proteins mostly contain EF-hand domain(s) 
that binds Ca2+. Calmodulin is conserved in all eukaryotes, whereas calmodulin-like 
protein, calcineurin B-like protein and Ca2+-dependent protein kinase are specific to 
plants and some protists (Batistič & Kudla 2009, Billker et al 2004, Harper & 
Harmon 2005, Hashimoto & Kudla 2011). For example, potato Ca2+-dependent 
protein kinases (CDPK4 and CDPK5) activate the plasma membrane NADPH 
oxidase RBOHB, leading to elevated superoxide O2

- production and a decreased 
NADPH/NADP+ ratio (Kobayashi et al 2007, Pugin et al 1997). Plant NAD kinase 
(ATP:NADH 2′ -phosphotransferase) is activated by calmodulin and could modify 
the cytosolic NAD/NADP ratio (Turner et al 2005). Ca2+ signalling can also directly 
active EF-hand-containing enzymes by Ca2+ binding, such as A. thaliana NDB1 and 
NDB2 that oxidising cytosolic NAD(P)H (Geisler et al 2007), which may further 
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affect the NADNAD(P)H reduction level (Figure 6). The effect of the Ca2+ on the 
NDB enzymes are described below and in Paper I & III.  

 

Figure 6. Responses to Ca2+ concentration changes in plant cells. 
Ca2+ sensor proteins and Ca2+ binding enzymes are summarized above. Abbreviations: CaM, calmodulin. CML, 
calmodulin-like protein family. CDPK, the family of Ca2+-dependent protein kinase. CBL, the calcineurin B-like protein 
family, NADK, NAD kinase. RBOH, respiratory burst oxidase homologues. 

1.3 Cellular pH levels in plants 

1.3.1 A summary of pH levels in plants 
The pH varies between different compartments of plant cells. In A. thaliana, the 
cytosolic pH was found to be 6.5-7.6 in roots (Moseyko & Feldman 2001). When 
transfered to an acidic growth media, pH 3.8, the cytosol pH of plant cells drop 0.5-
0.8 pH unit within 1 hour (Moseyko & Feldman 2001). In root hair of Medicago 
sativa, pH is around 7.3 at aerobic conditions and around 6.8 at anoxia (Felle 1996). 
The cytosol pH is also dramatically changed towards acidification under 
fermentation, e.g., in Acer pseudoplatanus cells under anoxia, cytoplasmic pH 
decreased from 7.5 to 6.8 within 5 min (Gout et al 2001). The central vacuole pH 
has been measured to be around pH 5.5 (Martiniere et al 2013, Otegui et al 2005). 
The extracellular cell wall space is more acidic than the cytosol, around pH 5-6 
(Felle 2001). Shen measured cellular pH values of A. thaliana in different 
compartments as listed: pH 7.3 in the cytosol, pH 7.2 in the nucleus, pH 7.1 in the 
ER, pH 5.2 in the vacuole, pH 7.2 in the chloroplast stroma, pH 8.4 in the 
peroxisome, and pH 8.1 in the mitochondrial matrix (Shen 2017). However, the 
correctness of the mitochondrial matrix pH can be questioned because of the close 
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to solid environment with very high amount of proteins. A summary of pH 
estimations in a plant cells from above data is shown in Figure 7.  

In human cells, the pH has been reported to be 7.6 in the cytosol, 6.9 in the 
mitochondrial intermembrane space (but it was not clear exactly where in the 
intermembrane space), and 7.8 in the matrix (Porcelli et al 2005). Within the 
intermembrane space of mammals, the local pH was found to be 0.3 units less acidic 
at the ATP synthases that are located at the edges of cristae, where protons are 
transported into the matrix by the ATP synthase, than close to complex IV, where 
protons are pumped into the intermembrane space (Rieger et al 2014). The locations 
of inner mitochondrial membrane proteins may thus constitute microenvironment at 
least in mammals. This may be similar in plants and thus important for activation of 
mitochondrial external NDB proteins.  

 

Figure 7. The pH within a plant cell.  
Grey values are from data for human cells. Different pH value and sources are based on these pubulications: (Felle 
1996, Gout et al 2001, Moseyko & Feldman 2001, Shen 2017)   

1.3.2 Parallel changes of cellular Ca2+ and pH  
Recent experiments have shown that changes in the pH and free Ca2+ in cells have 
some association in signalling in plant cells, e.g., Ca2+ spikes were found 
dynamically linked with pH changes in the cytosol (Behera et al 2018). Transiently 
enhanced Ca2+ concentrations was also linked with a lowered pH after wounding of 
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A. thaliana cells (Behera et al 2018). The parallel phenomenon of associated pH and 
Ca2+ changes was observed in relation to growth rates of plant pollen tubes as well 
(Hepler & Lovy-Wheeler 2006). Therefore, there is a link between cellular Ca2+ 
signals and pH signatures, which is possibly relevant for different developmental 
processes in plants. The combined effects of pH and Ca2+ on NDB proteins was 
investigated in Paper I and is described below.  

1.4 NAD(P) in plant cells 

1.4.1 NAD(P) cellular functions and biosynthesis  
The pyridine nucleotides NAD and NADP occur in reduced and oxidized forms as 
shown in Figure 8. The reduced form is NAD(P)H and oxidized form is NAD(P)+.  

 

Figure 8. Molecular structures of NAD and NADP.  
The position in the AMP part where NAD and NADP differ is marked with orange circles. The position of the hydrogen 
in the reduced form of NADH and NADPH are marked with a red circle at the NMN part. 

NAD is strongly involved in respiratory energy metabolism in especially the cytosol 
and mitochondria but also has roles in chloroplasts (Noctor et al 2011). For example, 
chloroplasts of higher plants have NAD(P)-dependent malate DHs (Berkemeyer et 
al 1998). NADPH has a main role as a reducing agent in photosynthesis, where 
NADPH is generated in the light-dependent reactions. NADPH also reduces cellular 
antioxidants, such as the NADPH-requiring glutathione and thioredoxin systems 
that protect against oxidative stress but also regulates mitochondrial metabolism 
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(Fernandez & Wilson 2014, Møller 2015). Overall, NAD(P) plays an important role 
as a redox carrier in plant cells, and the redox status of NAD(P) affects respiration, 
photosynthesis, stress responses, reduction levels in cells and antioxidants.  

NAD is synthesized in plants through two metabolic pathways, the de novo 
pathway from aspartic acid and the salvage pathway that recycles nicotinamide 
(Katoh et al 2006, Wang & Pichersky 2007). In plastids, aspartate is converted into 
nicotinate mononucleotide, which is transferred to the cytosol or nucleus for 
synthesis of NAD (Noctor et al 2011). NAD can be converted to NADP by NAD 
kinases that are active in cytosol, plastids and peroxisomes. NAD kinases may thus 
regulate NAD/NADP ratio (Noctor et al 2011, Turner et al 2005). 

1.4.2 Plant cellular distribution of reducing equivalents 
The amounts of NAD and NADP in individual cell compartments differ between 
plant species and tissues (Noctor et al 2011). The NAD(P) concentrations in plant 
organelles are generally within the range of 0.1 to 2.5 mM (Noctor et al 2011). A 
summary of NAD(P) distribution and redox ratios in cell sub-compartments is 
denoted in Table 1. Variations are, however, observed between compartments and 
with different conditions. The total NAD concentrations are generally highest in 
mitochondria and lowest in the chloroplast (Douce & Neuburger 1989). However, 
because the cytosol volume is about 6 times the total mitochondrial volume in 
mesophyll cells, the total NAD content in leaves is highly dominated by the 
cytosolic pool (Noctor et al 2011, Queval et al 2011).  
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Table 1. Pyridine nucleotide concentrations in three compartments of plant leaf cells and whole tissue.  
Concentations are denoted in mM. n.m., not measured; n.d., not detected; The density of red colour indicates the relative 
value differences between ratios. The table is modifeied from Noctor et al. (2011) 

Compartment 
 Condition 

NAD+ NADH NADH/
NAD+ 

Total 
NAD 

NADP+ NADPH NADPH/
NADP+ 

Total 
NADP 

Reference 

Chloroplast 
(stroma) Light 0.21 0.05 0.24 0.26 n.m. n.m. - n.m. c 

 
Light 0.19 n.d. - 0.19 0.59 0.29 0.49 0.88 a 

 
Dark 0.92 n.d. - 0.92 0.51 0.12 0.24 0.63 a 

Mitochondria Light 0.68 1.76 2.59 2.44 n.m. n.m. - n.m. c 
 

Light 
(limiting 
CO2) 

1.55 0.46 0.30 2.01 0.08 0.24 3.00 0.32 b 

 
Light 
(saturating 
CO2) 

1.41 0.13 0.09 1.54 0.14 0.12 0.86 0.26 b 

 
Dark 1.52 0.08 0.05 1.6 0.27 0.05 0.19 0.32 b 

Cytosol Light 0.72 0.09 0.13 0.81 n.m. n.m. - n.m. c 
 

Light 
(limiting 
CO2) 

0.52 0.06 0.12 0.58 0.14 0.18 1.29 0.32 b 

 
Light 
(saturating 
CO2) 

0.62 0.02 0.03 0.64 0.14 0.14 1.00 0.28 b 

 
Dark 0.57 0.02 0.04 0.59 0.15 0.17 1.13 0.32 b 

Whole tissue Light 
  

0.17 
   

0.43 
 

d 

Dark (4h)   0.9    1.5  e 

a Data from Heineke et al. (1991); chloroplasts obtained by non-aqueous fractionation of spinach leaves. 
b Data from Igamberdiev &Gardeström (2003); rapid fractionation of pea protoplasts by filtration.  
c Data from Szal et al. (2008); rapid fractionation of cucumber protoplasts by filtration. The concentrations shown 
were recalculated from values given in nmol mg-1 chlorophyll assuming subcellular volumes reported for spinach 
leaves (Winter et al 1994). (Igamberdiev & Gardeström 2003) (Szal et al 2008) 
d Data from Wallström et al. (2014b) whole tissue of A. thaliana leaves. 

e Data from Liu et al. (2008); the first fully expanded leaf of 6-week-old tobacco.   
 

When potato StNDB1 was overexpressed in tobacco, leaf NADPH/NADP+ ratio was 
consistently lowered in light, and in one of three transgenic lines it was significantly 
lowered in darkness, whereas the NADH/NAD+ ratio was not changed (Liu et al 
2008). A similar pattern was observed in tobacco stem cells (Liu et al 2009). This 
means that NDB1 is able to modulate the cellular NADPH/NADP+ ratio in living 
cells. The NAD pool is generally oxidized in the cytosol, with NAD+ constituting at 
least 88% (Table 1). In contrast, the NADPH pool in the cytosol is generally about 
50% reduced (Table 1). This is consistent with whole tissue studies of A. thaliana 
leaves, where about 10% of the NAD was in the reduced form under light conditions 
(Wallström et al 2014a, Wallström et al 2014b). In contrast, the NADP pool in A. 
thaliana leaves is about 30% reduced under light condition (Wallström et al 2014b). 
NDB1-suppressing lines of A. thaliana showed decreased NADP+ (Wallström et al 
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2014a). Thus, NDB1 has the capacity to affect total amount of NADP pool and 
NADPH redox status in different cell compartments. 

1.4.3 Transport of NAD(P) and reductant within plant cells  
Within the cell, NAD(P) is transferred between some subcellular compartments 
through voltage-dependent anion channels on outer mitochondrial and chloroplast 
membranes (Hanning & Heldt 1993, Raghavendra et al 1994). The mitochondrial 
inner membrane is impermeable to NADH, but permeable for NAD+ via NAD+ 
transporters (Neuburger & Douce 1983). The electrons carried by NAD(P)H are 
transferred between separate pools of NAD(P)+ across membranes via metabolite 
shuttles operating through metabolite carriers (Taniguchi & Miyake 2012). For 
example, the malate/oxaloacetate shuttle systems transport electrons across the 
inner mitochondrial membrane and inner chloroplast envelope membrane (Heineke 
et al 1991, Noctor et al 2011, Taniguchi et al 2002), and also between the cytosol 
and the peroxisomal compartment (Reumann et al 1994). 

1.4.4 Consequences of NAD(P) redox changes in plant cells  
There are more than 800 known enzymes that utilize NAD(P) (Enzyme 
Nomenclature; https://www.qmul.ac.uk/sbcs/iubmb/enzyme/). The majority of 
these enzymes are involved in energy metabolism. The NAD(P)H redox status 
reflects the total cell redox states and overall metabolic activities (Schäfer & 
Buettner 2001). In plants, NADH/NAD+ redox status, NADPH/NADP+ redox 
status, the ferredoxin/thioredoxin system and the glutathione/glutaredoxin system 
are key regulators of redox in cellular process (Buchanan & Balmer 2005, Møller 
2015). In human cells, both oxidative and reductive stress can cause cellular redox 
changes involving many redox couples, such as NADH/NAD+, NADPH/NADP+ 

and glutathione disulphide-glutathione couples, which affects DNA-binding activity 
of some transcription factors, DNA repair, RNA synthesis, protein synthesis, 
enzyme activation and regulation of the cell cycle (Schäfer & Buettner 2001).   

In plant cells, mitochondrial NADH/NAD+ ratio and ATP/ADP ratio regulate the 
first citric acid cycle proper reaction that is catalysed by citrate synthase (Nunes-
Nesi et al 2013). Higher matrix NADH/NAD+ ratio will lead to more ROS 
production by generation of O2

- by complex I and III (Lindsay et al 2015). In the 
cytosol, the plant oxidative pentose phosphate pathway is rate controlled by 
glucose-6-phosphate DH in a reaction that is stimulated by the concentration of 
NADP+ and strongly inhibited by NADPH. Cytosolic NAD(P) redox status also 
affects starch storage and partitioning, lipid synthesis, nitrate assimilation and 
chlorophyll synthesis (Geigenberger & Fernie 2014).  
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For plant NDH-2 enzymes, a double RNAi suppression line of AtNDA1 and 
AtNDA2 showed higher total NADH content in rosettes tissues than the wild type 
(Wallström et al 2014b). The RNA modification also influenced the redox level of 
the NADPH pool, which indicates transhydrogenation between NAD and NADP 
can take place, at least within mitochondria (Wallström et al 2014b). However, 
NDB1-suppressing lines of A. thaliana instead showed specifically decreased 
NADP+, and were affected in central metabolism, growth and defence signalling 
(Wallström et al 2014a). The consequences of pH and Ca2+-regulation of NDB 
proteins and NAD(P)H reduction levels are discussed below and in Paper I.  
  



34 

 

 

 

 

 

Applied science, purposeful and determined, and pure science, playful and 
freely curious, continuously support and stimulate each other. The great 
nation of the future will be the one which protects the freedom of pure science 
as much as it encourages applied science.  

— Edwin Herbert Land 
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2 Type II NAD(P)H dehydrogenases 

The type II NAD(P)H DHs play an important role in respiration in mitochondria. 
They exist not only in plants, but are widely spread across the eukaryotic organisms. 
In this chapter, the overall knowledge of eukaryotic NDH-2 enzymes in substrate 
specificity, regulation, structure, molecular mechanism, distribution and evolution 
is covered, yet focused on plant NDB proteins. 

2.1 Substrate specificity of type II NAD(P)H DHs 

2.1.1 NADH and NADPH specificity  
Analysis of potato StNDA1 indicated that NADH is the substrate for NDAs (Geisler 
et al 2004, Svensson & Rasmusson 2001). Additionally, an AtNDA1-lacking mutant 
was found to have a decreased internal rotenone-insensitive malate oxidation 
activity, which linked the protein to NADH oxidation (Moore et al 2003). The 
AtNDA2 sequence has high similarity with AtNDA1 and was likewise suggested to 
be an NADH DH (Michalecka et al 2003, Moore et al 2003). AtNDC1 has been 
claimed to oxidize both NADPH and NADH, but preferred NADH as substrate 
(Fatihi et al 2015).  

Overexpression of potato StNDB1 in N. sylvestris leads to higher mitochondrial 
NADPH oxidation activity, whereas sense-suppression of both StNDB1 and the 
endogenous NsNDB1 leads to an undetectable mitochondrial NADPH oxidation 
activity, without affecting NADH oxidation, at least when measured at neutral pH 
(Liu et al 2008). This pattern was also seen at several pH values within the 
physiological range (Michalecka et al 2004)(Paper I). AtNDB1 in A. thaliana was 
also shown to be NADPH-specific when bound to E. coli membranes (Geisler et al 
2007). Both AtNDB2 and AtNDB4 specifically oxidized NADH and could 
complement for the lack of NADH oxidation in an E. coli double mutant that lacks 
both the complex I-type and the NDH-2 NADH DH (Geisler et al 2007). The 
substrate for AtNDB3 is not known but has been predicted to be NADH 
(Michalecka et al 2003) (Paper II). The soluble recombinant AtNDB2 produced by 
E. coli had only NADH oxidation activity (Paper III). In contrast, the soluble 
recombinant StNDB1 had both NADH and NADPH oxidation activity, yet with 
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higher NADPH oxidation activity (Paper III). However, also the membrane bound 
AtNDB1 oxidise both NADH and NADPH at high substrate concentration (0.8 mM 
NAD(P)H), but mainly oxidise NADPH at a lower substrate concentrations (80 µM 
NAD(P)H), at pH 7.2 (Geisler et al 2007). This pattern is also observed for soluble 
recombinant StNDB1 (Paper III). Hence, in vivo, NDB1 should mainly oxidize 
cytosolic NADPH and NDB2 only oxidize cytosolic NADH.  

2.1.2 NDH-2 enzymes are UQ specific and has different activities for 
different UQ substrates 

The motif AQxAxQ in NDH-2 proteins have been proposed to be a quinone binding 
site (Heikal et al 2014, Marreiros et al 2016). In a comparison of 131 eukaryotic 
NDH-2 homologues the collected sequence logo was consistent with this motif 
signature (Figure 9).  

 

Figure 9. Sequence logo of quinone binding sites from 131 eukaryotic NDH-2 enzymes.  
The conserved motifs (AQxAxQ) is marked out by red color. StNDB1a is used as an example to show the relative 
position of the quinone binding motif, A467Q468VA470XQ472. The 131 eukaryotic NDH-2 enzymes share the same 
species with the study in Paper II, but includes all types of NDH-2 enzymes, i.e., NDA, NDB and NDC protein 
sequences.  

For analysed NDH-2 enzymes, quinones are standard electron acceptors. UQ is 
reduced by NAD(P)H DHs and then receive 2H+ + 2e- to form UQH2, ubiquinol. 
The length of the side chain of common quinone and quinols found in energy-
transducing membranes can vary, e.g., UQ10 in plants and mammals has 10 
isoprenyl chemical subunits in the side chain, but UQ6 in yeast has 6, and UQ8 in E. 
coli has 8 (Okada et al 1996). In chloroplast, instead of UQ, plastoquinone is the 
redox carrier in the electron transport chain of photosynthesis (Allen et al 1981). 
The hydrocarbon side chain of ubiquinone UQ10 is highly hydrophobic. Because of 
the hydrophobic nature of UQ10, it is difficult to use as a substrate in vitro. Therefore, 
quinones with shorter side chains are used. Decylubiquinone (DcQ) is water soluble 
and was applied as standard acceptor in Paper I and Paper III, whereas UQ1, 
decylplastoquinone (DcPQ), duroquinone (DQ) and potassium ferricyanide (FeCN) 
were compared in Paper III. Among these electron acceptors, StNDB1 and 
AtNDB2 were relatively UQ-specific, e.g., not accepting DcPQ. This means plant 
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NDB proteins is specifically active in mitochondria even though they could have a 
secondary location in peroxisomes or chloroplasts.  

2.2 Regulation of external type II NAD(P)H DHs 
NDH-2 enzymes locate at two side of the inner mitochondrial membrane, facing 
towards matrix and intermembrane space differently. Therefore, NDH-2 enzymes 
can be regulated differently. This section only summarises the regulations of plant 
external type II NAD(P)H DHs, i.e., NDB proteins. The summarised regulations 
include cytosolic conditions, such as cytosolic Ca2+, pH and gene expression.  

2.2.1 Ca2+ is the allosteric activator for NDB and the Ca2+ dependence 
is under pH regulation 

From the study of isolated plant mitochondria, pH and Ca2+ are known to separately 
affect external NAD(P)H oxidation (Cowley & Palmer 1978, Møller 2001, 
Rasmusson & Møller 1991). Most external NDH-2 enzymes in A. thaliana are 
dependent on or stimulated by Ca2+, except AtNDB4 (Geisler et al 2007). Based on 
our experiments with isolated potato mitochondria and membranes containing E. 
coli expressed A. thaliana NDB proteins, the activation of NDB1 is expected to 
require high Ca2+ concentrations and a low pH, and the halfway activated K0.5(Ca2+) 
is around 3 and 82 µM at pH 6.8 and 7.5, respectively (Paper I). Therefore, we 
proposed that the Ca2+ activation of NDB1 is strongly depending on the pH (Paper 
I). Thus, the parallel enhancement of Ca2+ and pH (see section 1.3.2.) could 
positively affect NDB1 activity in vivo. Transgenic experiments showed that NDB1 
was active in vivo (Liu et al 2008), indicating a low pH and a high Ca2+ in the NDB1 
microenvironment. Additionally, NDB1 is found to be rapidly responsive to Ca2+ 
transient simulations, and this was consistently seen in situ and with purified 
recombinant StNDB1 (Paper I, III). The measured t1/2 (half-life of the activity after 
addition of Ca2+/EGTA) of mitochondrial StNDB1 is less than 5 seconds for both 
enhanced and decreased Ca2+ concentrations (Paper I). For a comparison, NDB2 
that is specific for NADH oxidation are likely constantly activated in vivo, based on 
the relatively low Ca2+ demand and slow deactivation properties. The K0.5(Ca2+) of 
the membrane bound AtNDB2 is 0.8 µM, independent of pH (Paper I), consistent 
with that the K0.5(Ca2+) of Helianthus tuberosus mitochondrial NADH oxidation is 
0.2–1 μM at pH 7.2 (Moore & Åkerman 1982, Rugolo et al 1991). The t1/2 of 
mitochondrial StNDB2 for Ca2+ increase is less than 5 sec but for Ca2+ decrease is 
around 35 seconds at pH 7.2 (Paper I). This is however not observed with soluble 
AtNDB2. A simplified illustration of the pH and Ca2+ regulations of NDB proteins 
is summarized in Figure 10. Therefore, Ca2+ signals and pH are essential for 
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mediating plant physiological changes via different Ca2+ responding paths and do 
have impact on NDB activity and cellular redox statues.  

 

 

Figure 10. A simplified illustration of the regulation of plant NDB1 and NDB2.  
Orange and blue curves indicate activities of NDB1 and NDB2, respectively. NADH is the substrate for NDB2 and 
NADPH is the substrate for NDB1. Normal and dashed lines indicates pH 6.8 and 7.2/7.5, respectively, and applies to 
all figure panels above except (B) and (C). NDB1 follows a sigmodal curve fit to pCa (A). The max activity of each 
related specific activity is decreasing with an enhanced pH within the physiological range (B). The K0.5(Ca2+) in μM is 
different between NDB1 and NDB2, and increasing with an enhanced pH for NDB1, but not for NDB2 (C). The 
simulations of transient Ca2+ changes within physiological range indicates a permeant active mitochondrial NDB2 and 
a Ca2+ elevated NDB1 activity for both mitochondrial and purified enzyme’s study (D and E). Purified NDB1 protein 
could oxidise both NADH and NADPH, but it prefers NADPH as substrate and even more so at low substrate 
concentrations (F). In contrast, NDB2 only oxidise NADH (F). Simbles:  indicate support by the mitochondrial 

study.  indicates support by the study of purified enzymes.  indicates support by the E. coli study of 
membrane-bound AtNDB1 and AtNDB2. Data of this figure is based on Paper I, Paper III and Geisler et al., 2007.  

2.2.2 Gene regulation of type II NAD(P)H DHs expression 
There is evidence that NDH-2 genes such as NDA1 and NDC1 have a light-induced 
expression (Rasmusson & Escobar 2007). The gene NDA2 and NDB2 are also up-
regulated by glucose (Clifton et al 2005, Price et al 2004, Rasmusson & Escobar 
2007). Expression levels of plant genes encoding NDH-2 enzymes were strongly 
affected by the nitrogen sources in that supply of ammonium leads to an increased 
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expression level as compared to nitrate nutrition (Escobar et al 2006). A similar 
effect was observed for AOX genes (Escobar et al 2006), which indicated that there 
is an association between AOX and NDH-2 enzymes. Under ammonium toxicity 
stress, both wild type and AtNDB1-suppressed lines showed significant suppressed 
growth in A. thaliana, but a decreased mitochondrial ROS production and elevated 
glutathione-associated antioxidants were observed in the AtNDB1-suppressed lines 
(Podgorska et al 2018). 

This may indicate a direct or indirect ROS production by NDB1, but it has not 
been tested. Moreover, there were no transcript changes found in all NDH-2 
enzymes in A. thaliana with hyperosmotic stress (Clifton et al 2005). However, we 
found the hyperosmotic stress could lower StNDB1 and AtNDB2 activity. The 
summarized transcription changes of NDH-2 enzymes to different conditions is 
shown below (Figure 11). Hence, a different gene expression level of NDH-2 genes 
could change the redox status of a plant, and consequently may vary plant growth.  

 

Figure 11. Transcription changes of NDH-2 to different conditions  
Upwards bars indicate increases and downwards indicate decreases in gene expression.(Clifton et al 2005, 
Podgorska et al 2018, Price et al 2004, Rasmusson & Escobar 2007). 

2.3 Structure of type II NAD(P)H DHs 

2.3.1 Primary structure of eukaryotic type II NAD(P)H DHs 
Proteins in the plant NDB family have molecular masses of 60-65 kDa, whereas it 
is around 50-55 kDa for NDA and NDC proteins (Michalecka et al 2003). The 
proteins have mitochondrial targeting sequences (for NDC also targetting to 
plastids) and two Rossmann folds that bind FAD and NAD(P)H (Figure 12). 
Mitochondrial targeting sequences are formed in the first 10-90 N-terminal residues 
that has a high Arg content and few negatively charged residues (Schneider et al 
1998). FAD is a redox prosthetic group that is usually non-covalently bound to 
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NDH-2 enzymes; an exception is Chlamydomonas reinhardtii CrNDA2, which has 
FMN as a flavin cofactor (Desplats et al 2009). The core FAD-binding motif is 
followed by an NAD(P)H binding motif. In general, NDH-2 enzymes found in 
eukaryotes show similarity to A. thaliana homologs (Figure 12). NDB-type proteins 
are defined by an inserted domain as compared to NDA and NDC-type proteins. 
The inserted domain in NDBs usually contains two EF-hand/EF-hand-like motifs, 
one or two of which binds Ca2+. Exceptions are found for A. thaliana AtNDB4 and 
Plasmodium falciparum pfNDH-2, which lack EF-hand motifs and were found not 
to bind Ca2+ (Geisler et al 2007, Yang et al 2017). Additionally, the fungus Ustilago 
maydis NDB has an NDB-type enzymes with 2 EF-hand domains that was predicted 
to bind Ca2+ (Paper II), but a Ca2+ effect was not observed in membrane 
preparations (Matuz-Mares et al 2018). A quinone-binding motif has been described 
above, and it is located close to the inserted NDB-specific region (Figure 12). The 
C-terminus has been indicated to be essential for membrane interaction of NDA1 in 
potato and NDI1 in yeast (Feng et al 2012, Iwata et al 2012, Rasmusson et al 1999), 
and the domain is consistently found in all eukaryotic NDH-2 enzymes (Paper II).  

 

Figure 12. Overview of the primary structure of eukaryotic type II NAD(P)H dehydrogenases. The names are 
based on plant homologs.  
The relative positions of domains are show in boxes. Black boxes denote mitochondrial targeting sequences, 
predicted FAD binding sites, NAD(P)H binding domains, quinone binding motifs, and membrane binding domains. The 
gray box denotes a piece of a sequence which looks like an insertion to NDA-type protein, usually a domain contain 1-
2 EF-hand/EF-hand-like motifs. This figure is modified from a figure by Allan Rasmusson (personal communication). 

2.3.2 Structural modelling of NDB proteins for substrate specificity 
predictions 

There are four NDH-2 enzymes whose structures have been investigated. Budding 
yeast ScNDI1 (Feng et al 2012, Iwata et al 2012), which is an NDA-type protein, 
has 38% protein sequence identity with StNDB1. Caldalkalibacillus thermarum 
NDH-2 (Heikal et al 2014), an NDA-type protein, has 24% identity with StNDB1, 
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Staphylococcus aureus NDH-2 (Sena et al 2015), an NDA-type protein, has 27% 
identity with StNDB1, and Plasmodium falciparum NDH-2 (Yang et al 2017), an 
NDB-type protein, has 30% sequence identity with StNDB1. The structures of 
NDH-2 from the malaria parasite, P. falciparum (Figure 13) and budding yeast S. 
cerevisiae (Paper II) was used as templates for modeling the plant NDB proteins’ 
structures.  

From the modeling of NDB1 proteins, the core catalytic parts and the 
dimerization surface showed distinct similarities to the structure of crystalized yeast 
ScNDI1 and P. falciparum PfNDH-2. Based on AtNDB1 modelling in Paper II, 
we predicted the NAD(P)H binding motifs and classified them into acidic and non-
acidic motifs, where an acidic motif correlated with NADH binding and non-acidic 
motif with NADPH binding. EF-hand structure was predicted separately (Paper II), 
and its possible position in the enzyme is thought to be along the membrane (Paper 
II). The pfNDH-2 structure supports the prediction.  

In brief, the substrate specificity for NAD(P)H in NDB proteins could be 
predicted by NAD(P)H binding motifs (Paper II). For example, for NDB proteins, 
an acidic motif (usually EA) binds the ribosyl group of NADH, whereas a non-
acidic motif (usually QS) binds the phosphorylated ribosyl group of NADPH 
(Paper II). 

2.3.3 Oligomeric features of purified and type II NAD(P)H DHs 
The structures of all crystalized NDH-2 enzymes have a basic dimeric unit, and 
homo-oligomers were observed in all of them (Feng et al 2012, Heikal et al 2014, 
Iwata et al 2012, Sena et al 2015, Yang et al 2017). By BN-PAGE separation and 
mass spectrometry, AtNDA2, AtNDB2 and AtNDB4 from A. thaliana were found 
at a native molecular mass of 160 kDa and suggested to be heterotrimeric 
(Klodmann et al 2011). Potato NDA and NDB proteins showed several weight 
forms by BN-PAGE and western blotting, migrating at 150-200 kDa and 180-700 
kDa, respectively (Michalecka et al 2004, Rasmusson & Agius 2001). A pattern of 
multiple oligomeric forms of recombinant StNDB1 and AtNDB2 was observed by 
native gel electrophoresis in this study, being consistent with the previous 
investigation of potato mitochondria (Rasmusson & Agius 2001). The minimal 
detected form of recombinant StNDB1 was approximately 160 kDa, and multi-
oligomers of most likely dimeric units, mainly hexamers were observed (Paper III). 
The 160 kDa band would then correspond to a dimer of the 63.5 kDa monomer. 
Differently, the recombinant AtNDB2 had a highly oligomeric feature (Paper III). 
Therefore, in vivo, NDB proteins on inner mitochondrial membrane are highly 
possible having a dimeric structure as the smallest unit.  
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2.4 The molecular mechanism of type II NAD(P)H DHs 
The catalytic mechanism of plant NDH-2 enzymes is currently not fully understood. 
Kinetic analyses of S. cerevisiae, Yarrowia lipolytica, Mycobacterium tuberculosis 
and Caldalkalibacillus thermarum claim it is either a ‘ping-pong’ scheme with a 
rate-limiting redox step (Blaza et al 2017, Eschemann et al 2005, Yamashita et al 
2007, Yano et al 2014) or a ternary mechanism for bacterial NDH-2 enzymes (Blaza 
et al 2017). Blaza et al. explained the possible mechanism for a bacterial NDA-type 
enzyme from C. thermarum and showed that the reactions of two substrates, NADH 
and UQ, occur independently (Blaza et al 2017). All of these mechanisms are based 
on NDA-type proteins, whereas NDB-type enzymes have not been studied. A 
conformational change of StNDB1 was observed after a binding of Ca2+ by 
fluorescence microscopy, and this is possibly due to a tryptophan (Trp484) in the 
helix containing the UQ binding motif (Figure 13), but not yet verified. We 
speculate that the Ca2+ binding of NDB1 may modify the efficiency of UQ binding 
(Paper III). However, kinetic measurements are needed to fully understand  the 
molecular mechanism of NDB proteins and how Ca2+ may affect the rate .  

 

Figure 13. Molecular models of StNDB1 and AtNDB2 showing the active region.  
An overlay of models for the StNDB1 (yellow) and AtNDB2 (pink) showing the catalytic parts without EF-hand domains. 
StNDB1 and AtNDB2 models were predicted by I-TASSER with PfNDH-2 (PDB: 5JWB) as template. FAD and NADH 
are predicted to bind to StNDB1 by I-TASSER. UQ5 is an overlay using the coordinates from the yeast homolog ScNDI1 
(PDB: 4g73). Trp in StNDB1 and Trp in AtNDB2 are marked out in green and blue respectively. Because the EF-hand 
domain covers the substrates from this angle of the picture, only the two ends of the EF-hand domain of StNDB1 is 
shown, in light blue. The UQ binding motif (AQxAxQ) is shown in purple, A467-Q472 in StNDB1, A472-Q477 in AtNDB2.The 
alpha helix that contain the UQ-binding motif is shown in blue, but the StNDB1-specific Trp484 is marked in green.  The 
models are shown with the predicted membrane-interaction sides downwards. 
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2.5 Type II NAD(P)H DHs distribution and evolution in 
eukaryotes 

In our study, NDA-, NDB- and NDC-type NAD(P)H DHs in eukaryotes are 
classified based on homology to plant proteins to simplify the description of the 
evolutionary changes (Figure 14) (Paper II). Most plants, green and red algae 
contain the full set of alternative respiratory enzymes, including alternative oxidase, 
NDA-, NDB- and NDC-type proteins (Paper II).  

The NDA and NDB proteins are homologs to alpha-proteobacterial NDA type 
NADH DHs and derive from an NDA-type enzyme that likely entered eukaryotes 
via the mitochondrial endosymbiosis event (Melo et al 2004, Michalecka et al 2003). 
NDC has a cyanobacterial origin via the plastid-forming endosymbiosis event 
(Michalecka et al 2003) (Figure 14). Phylogeny analysis combined with molecular 
structure analysis focused on substrate binding and Ca2+ binding of NDB proteins, 
and indicated that external NADPH oxidation (non-acidic motif) is an ancient 
process as compared to external NADH oxidation (acidic motif). However, switches 
between non-acidic and acidic motifs appear to have occurred multiple times in 
plant evolution, leading to changes in cytosolic NADH and NADPH oxidation 
(Paper II). The plant NDB-type NADH DHs are thus descendants of NDB-type  
NADPH DHs and indicates that an expansion of NADH DHs has taken place in 
angiosperms, which parallels the expansion of AOX from a single gene in ferns into 
a multi-gene family in seed plants (Neimanis et al 2013). Thus, external NADPH 
oxidation should have a more fundamental importance for cellular redox 
metabolism, but not related to photosynthesis (Paper II). 
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Figure 14. The distribution of NDH-2 and AOX proteins in eukaryotes, with emphasis on plants  
NDA-type, NDB-type and NDC-type NDH-2 and AOXs are indicated with yellow, blue, green, and red boxes 
respectively. The NAD(P)H binding motifs of NDB, acidic and non-acidic type are denoted as triangles on NDB signs, 
which predict the substrate of NADH (acidic type)(yellow) and/or NADPH (non-acidic type)(blue) in the clade. Lineages 
for which less than 20000 protein entries are present in the Genbank database are denoted within parenthesis. 
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3 Conclusions and future perspectives 

It was earlier known that, A. thaliana and potato external type II NADPH DH 
separately display pH and Ca2+ regulation (Michalecka et al 2004), but the Ca2+ 
concentrations needed for activation had not been determined. The results presented 
here indicate that the Ca2+ activation in vivo is controlled by pH, which means 
cytosolic acidification is a critical activator for NDB1 (Paper I). Purified NDB1 
oxidise both NADH and NADPH, but with higher NADPH oxidation activity. 
Purified NDB2 is consistent with membrane-bound NDB2 that only oxidase NADH 
(Paper III). Ca2+ transient simulations predict a permanently active NDB2 in vivo 
and a transiently elevated NDB1 in response to Ca2+ and lowered pH. 

Based on the NDB molecular modelling, we could connect substrate NAD(P)H 
specificity of characterised enzymes to sequence motifs. An acidic-type motif in 
NDB predicts binding of NADH, and a non-acidic-type motif NADPH. We 
followed the motifs in a phylogenetic analysis and discovered that external NADPH 
oxidation may be an ancient eukaryotic process as compared to external NADH 
oxidation (Paper II). NADPH oxidation may thus have a fundamental importance 
for cellular redox metabolism (Paper II). 

For future perspectives, further studies of StNDB1 and AtNDB2 are needed for a 
better understanding of the molecular mechanisms of NDB proteins. For example, 
we still do not know whether there are one or two Ca2+ binding sites, and we have 
no explanation of how come the Ca2+ demand is lower for DcQ reduction than for 
O2 reduction in mitochondria (Paper I). Therefore, determinations of Ca2+ binding 
affinities and kinetics with purified proteins are needed. Additionally, a kinetic 
study of different quinones may explain why the activities and especially Ca2+ 
demands are different when using different quinones and O2 as electron acceptors. 
Two independent steps are needed for electrons to be transferred within the NDA-
type protein in bacteria, and a reduced form of the protein could be stable detected 
(Blaza et al 2017). Comparing of reduced and oxidised NDB1 proteins could explain 
whether there is a stable reduced protein state where FAD is reduced. If so, there 
will be two apparent steps for electron transfer within a NDB1 protein, where the 
first step transfer electron from NADPH to FAD, and second step delivering the 
electrons from reduced FAD to quinone. If this would be the case, there are follow 
up questions, whether the Ca2+ is needed for first step or second step, or both. 
Additionally, when will then NADP+ disassociate from the protein, before or after 
FAD is reduced to FADH2, or even after the quinone is reduced? Furthermore, yeast 
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Ndi1 was found to generate O2
- in solution but not when bound to submitochondrial 

particles (Yamashita et al 2007). Therefore, it was suggested the reduced FAD in 
NDB enzymes may leak electrons to O2, and then an O2

- will be formed. 
Accordingly, ROS detection assays of active soluble and membrane-bound NDB 
proteins could be analysed in the future to answer whether NDB proteins could lead 
to ROS production in vitro and in vivo. If ROS production is confirmed, it will be 
contrary to previous knowledge, where NDB proteins were considered to play an 
important role as ROS eliminator in vivo in plant mitochondria (Sanz et al 2010). 
Moreover, if we would build a permanent active external mitochondrial NADPH 
DH for oxidising cytosolic NADPH, the cytosolic redox homeostasis may switch to 
a more oxidised cytosolic environment as under stress condition. How will the 
genetic modified plants with continued-reduced cytosolic NADPH/NADP+ pool 
grow under different normal and stress conditions? Would this provide more or less 
resistance to biotic and/or abiotic stresses? This would be very interesting to know 
in future by studying the according transgenic plants with a modified ndb1 gene. If 
the results are positive, the knowledge of NDB proteins may help agriculture in a 
long perspective by enhancing the ability of crops to face different environmental 
stresses.  
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