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Abstract

The identification of a subterranean metallic ore from scattering experiments,
conducted on the surface of the ground or in a bore hole, is a classic geophys-
ical problem. In general this problem is not well-posed. However, a priori
information about the shape of the target provides enough regularization to
make the problem numerically stable. The problem is solved by minimiz-
ing the mean-square error between an eleven parameter model, based on the
null field approach, and the data. The optimization is done with a Newton
technique in which a singular value decomposition of the model Jacobian is
employed. The algorithm is very stable to noise and makes good reconstruc-
tions from feasible starting guesses, for realistically noise contaminated data.

1 Introduction

In geophysical prospecting one often ends up trying to solve an inverse problem.
In this paper one class of such problems is addressed where a typical prospecting
situation is simulated.

When an area with indications of mineable ores is found the prospecting usually
enters a phase of extensive subsurface probing by means of long bore holes in order
to establish the location, quality and extent of the ores. These bore holes provide
the information needed to make the decision of how and if to mine an outcrop.
However, it is very expensive and time consuming to drill these holes. It is therefore
of vital interest to minimize the number of holes and to optimize their distribution.

Thus the problem that is approached in this paper is; is it possible to determine
the size, location and orientation of an ore by making scattering experiments on the
surface of the ground or in a nearby bore hole? Furthermore, since real data are
always more or less contaminated with noise, it is important to determine how well
a reconstruction can be made in such a case.

Without any a priori information about the size or shape of the ore the problem
is not well posed. To stabilize the numerical algorithm some regularization of the
problem has to be introduced. This can be made by a restriction of the form of the
subterranean inhomogeneity. Since most sulphide ore bodies in Northern Sweden
are very thin compared to their lateral extensions an appropriate model for these is
to approximate them with a thin, perfectly conducting, elliptic disk.

The scattering domain under consideration consists of a halfspace with an over-
burden. Submerged in the halfspace is a perfectly conducting elliptic disk which
models the target ore. The scattering domain is excited by a time-harmonic field
emitted by a loop antenna on the ground and the total field or the scattered field
is calculated along a bore hole or in a mesh on the surface of the ground. In total,
there are eleven free parameters in the model. The scatterer is described by the
size, aspect ratio, location of the center, and the three Euler angles. The halfspace
is described by its resistivity, and the overburden by its thickness and resistivity.
The span of these free parameters constitute the parameter space of the problem.



In this model the forward problem can be stated. Given a point x in the para-
meter space, find the field values d at the prescribed field points, i.e.,

m(z) =d

where the function m is non-linear. This forward problem is solved with the null-field
approach which is further described in the appendix.

The corresponding inverse problem is now stated. Given a set d of data, find the
corresponding point x in the parameter space for which m(z) gives an optimal fit to
the data in some suitable norm. This inverse problem is solved with a data fitting
procedure of Newton type.

2 Optimization techniques

In this section the optimization techniques used are presented. Optimization tech-
niques have been used extensively to solve inverse problems. An overview of the use
of optimization techniques to solve electromagnetic inverse problems can be found
in [6]. For an extensive presentation of optimization based on the Newton method
the reader is referred to [3].

The optimization problem is to fit a set of data (y;,d;),i = 1,... ,m, with a
model M (x,y). Here x € R™ is a point in the parameter space, y; are the space
coordinates of the 7 : th “measurement” and d; is the data of the same. It is
convenient to introduce a residual function

R:R"—=R™ |, m>n
whose components are defined as
ri(x) = M(x,y;) —d; , i=1,...,m

Given this residual function, the problem at hand can be written as a minimization
problem

1 1
. _ . _}%T R _ - : 2
min f(z) = min —R" () R(v) = min - Zl ri(w)
This problem is normally referred to as the nonlinear least-squares problem.
One possible approach to solve the nonlinear least-squares problem is to make

an affine model M.(x) of R(x) around the current point z., i.e.,
M.(x) = R(xz.) + J(z.)(x — ) (2.1)

where J(z);; = Or;(x)/0x; is the Jacobian. Normally, one can not expect to find
an z; such that M.(z;) = 0 since it is an overdetermined system. (M. : R" —
R™,  m > n). One classic approach to this problem is to choose z as the minimizer
of the linear least-squares problem

1
min =|M, ()

zER™
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Figure 1: The scattering geometry.

If J(x.) has full rank the solution can be written as
ry =z — [J () (2)] - J(z)R(z,) (2.2)

Methods based on this iterate are referred to as Gauss-Newton type methods.

One complication with the Gauss-Newton method is that the Jacobian might be
very ill-conditioned, reflecting the fact that the model is insensitive to variations in
certain directions in the parameter space.

In order to overcome this we will make a different use of the affine model (2.1).
This approach is based on the singular value decomposition (SVD) of the Jacobian
matrix (J € R™*")

J=UDVT

Here U € R™*™ and V € R™ "™ are orthogonal matrices. The matrix D € R™*" is
diagonal with its entries defined by d;; = p; > 0,4 =1,... ,min(m,n), d;; =0,i #
j. The w;’s are called the singular values of J. Given the SVD of J, it is possible to
define a generalized inverse, the Moore-Penrose inverse, as

Ji=vDuT | Di=¢ " |0, ti =0
dl; =0, i#]



Figure 2: The size of the elliptic disk is given by the half axes a and b, and the
orientation of the disk given by the Euler angles «, 3 and ~.

Through this generalized inverse M,.(z) = 0 has a unique solution
vy =2, — J(x)R(2.)

This iterate is called the SVD-Newton iterate.

The Moore-Penrose inverse also provides a natural way to regularize the problem.
This is due to the following; if the problem is insensitive to variations in one of the
parameters, or a linear combination of parameters, this means that the column
vectors of the Jacobian has a high degree of linear dependence and the condition
number of the matrix is very high. In terms of the SVD, this implies that the matrix
has one or more very small singular values. The condition number & is in fact defined
as K = [lmaz/min- Lhe idea is to suppress this linear dependence of the column
vectors, thus making the matrix better conditioned. This is done by introducing a
regularizing parameter A and to define a regularized Moore-Penrose inverse through

D BB VY Ty A2
JI=vDluT |, DI={ """ 0, i<\
-i- _ . .
dij =Y, i

The regularizing parameter has the effect of masking off directions in the parameter
space in which the problem is ill-conditioned.

The strategy is to start the optimization with some A > 0, large enough to make
the Jacobian J;[ well behaved. In this way a point x, is found which minimizes
the rms-error of the residuals for the affine model and which is hopefully near the
true minimizer z, of the problem. Then the parameter A is decreased, making the
Jacobian more ill-conditioned. But since x) is close to x,, the algorithm is in a better
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Figure 3: X component of synthetic data (H-field) along the bore hole. The field
is normalized by a factor Mk3/4m. The lines without markers show the magnitude
(solid line) and phase (broken line) of the clean data. The lines with markers show
the corresponding noise contaminated data. These data are contaminated with
Gaussian noise with zero mean and standard deviation o = 0.015.

position to handle this. This procedure is repeated until the minimizer z, is found.
In this way the search is guided down to the minimizer. Keeping the Jacobian well
behaved while z. is far away from the minimizer z,, saving the difficult parts until
Z. is close to z,.

If the data are clean, then reducing A will decrease the rms-error of the datafit,
monotonically, eventually making x)y — z, as A — 0. If, however, the data are
contaminated with noise, then the rms-error might actually increase as A gets very
small. In such a case, the procedure is stopped at the optimal A which gives the
best fit. The problem of choosing the optimal A is in general tractable.

All variations of the Newton iteration are based on making a local model around
the current point. Hence, these methods are at best locally convergent and have to be
augmented with a global strategy in order to achieve global convergence. The SVD-
Newton step (2) might actually fail to be a descent step in certain situations, e.g. if
the problem at hand is not a small residual problem or the problem is very nonlinear.
In such situations the step might be too long and that the optimal minimizer within
the range of the Newton step might be located in a slightly different direction.

In this paper, a backward line tracing strategy is chosen. This is done as follows:
First the Newton step is tried. If this step gives an acceptable decrease in residual,
it is accepted. If not, a backtracing along the Newton direction is employed. Other
strategies, i.e., trust region approaches, are possible [3].
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Figure 4: Y component of synthetic data along the bore hole. All other parameters
are the same as in Figure 3.

3 Results

In this section the performance of the algorithm is presented by a number of nu-
merical calculations. The performance is compared for different types of data, i.e.,
bore hole measurements or surface grid measurements, and the sensitivity of the
reconstruction to error in the data is investigated.

It is natural to separate the total field into a regional field and an anomalous
field. The term regional field refers to the field scattered from large-scale structures,
such as layering, with no target ore present. By anomalous field is understood the
scattered field due to the presence of the target ore. This break up of the field
enters in a natural way in the forward solver (A.16-A.18). In prospecting situations
there are often a priori information about the regional structures and their physical
properties, which can be utilized to separate the total field. In general though it is
a nontrivial problem to extract the anomalous field. The first reconstructions are
made with anomalous field data, i.e., it is assumed that the total field is properly
separated into a regional and an anomalous field. The more general problem of both
separating the field and reconstructing the target as well as the regional parameters
is addressed at the end of this section.

The first class of reconstructions to be presented uses data along a bore hole.
At each field point the data consist of all three components of the anomalous field,
both magnitude and phase information.

The coordinate system used to describe the geometry has its origin at the point
where the bore hole penetrates the surface. The z-axis is directed towards the center
of the loop antenna and the z-axis is directed upward. The bore hole is parametrized
by the spherical angles 1 and v, and the length [ along the hole. The antenna is
characterized by the coordinates of the center (zy,0,0), and the radius ;. The



o
104 " TS
v, L
o .
= 0.8 - * |
é — mag {Clean data) 65 E
I phaze | B0 ﬁ
ﬁ ——mag (Moizydata)
0.6 -
--4-phasze -
Vot | cp)
0.4 - M T .
gt Rk LS

I | I | I | I |
100 150 200 250 00 il 400 4510

Distance alongborehole

Figure 5: Z component of synthetic data along the bore hole. All other parameters
are the same as in Figure 3.

Parameter | Correct value | Initial guess
Ty 400 m 360 m
Us -100 m -130 m
2 -250 m -280 m
a 100 m 130 m
b 25 m 50 m
« 45  deg 35 deg
I} 30 deg 10  deg
7y 60 deg 50 deg

Table 1: Free parameters

scattering geometry is shown in Figure 1. The target scatterer, the elliptic disk, is
characterized by the length of the half axes a and 0. The center of the scatterer is
given by (s, ys, 25) and the orientation of the scatterer is given by the Euler angles
a, 3 and 7. Here « is a rotation around the z-axis, § a rotation around the y'-axis,
and v a rotation around the z”-axis [1]. The disk-related parameters are shown in
Figure 2.

In the computations to follow, the free parameters of the second column of
Table 1 are used to calculate the synthetic data. The source is located at x; = 800 m,
its working frequency 20kHz and the radius r, = 100m. The field points are
situated along a bore hole, in the direction 7 = 150° and ¢ = —45°. In total 25 field
points, every 15th meter starting at [ = 100 m, are used.

All the reconstructions start from the initial guess listed in the third column of
Table 1. The first reconstruction, in the following called experiment 1, is done using
clean data. The magnetic field is normalized by a factor Mkj /4w, where M is the
magnetic moment of the source and kg is the wavenumber of free space. The initial
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Figure 6: The left axis shows the rms error of the field values for three different
values of the regularization parameter X in a logarithmic scale. The right axis shows
the corresponding rms error of the parameters in a linear scale. The data are clean.

Exp 1
A # iterations | rms error
0.1 5 1.291072
0.01 5 2.43107°
0.001 1 2.42107°

Table 2: Iterations of experiment 1

data is shown in Figures 3-5. In these figures the magnitude of the clean data is
shown as the solid line without markers and the phase as the broken line without
markers, respectively. As is seen in Figure 6 the rms error decreases monotonically
as the regularizing parameter A decreases. This is an indication that the problem
is fairly well-posed. In Table 2 the very fast local convergence is manifested. After
just a few iterations the algorithm converges to the minimizer.

In the following experiments the data are contaminated with noise. The noise
is assumed to be generated by an independent noise source which is modelled by
Gaussian noise with zero mean and standard deviation o, where o is independent
of the original data. In experiment 2 ¢ is equal to 0.015. The magnitude and the
phase of the contaminated data are shown in Figures 3-5, as marked solid lines and
marked broken lines, respectively. The convergence of the algorithm with these data
is shown in Figure 7, where the rms error of the datafit, left axis, and the rms error
of the parameterfit, right axis, are plotted versus the regularizing parameter \. As
demonstrated in the figure, the algorithm quickly converges to the true minimizer
even in this case. The well-behavedness of the algorithm for bore hole data is further
manifested by the slow decrease in magnitude of the singular values, as shown in
Figure 8.
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Figure 7: Same as Figure 6 but the data are contaminated with Gaussian noise
with zero mean and standard deviation o = 0.015. Both left and right axes show
the rms errors in linear scales.

As a final worst case the bore hole data is contaminated with Gaussian noise
with a standard deviation o equal to 0.05. The input data of this experiment, No.
3, is shown in Figures 9-11. As in Figures 3-5, the marked solid lines and the
marked broken lines show the magnitude and phase of the error contaminated data,
respectively. As seen in the figure the quality of the input data is quite bad in
this case. Still the algorithm gives an acceptable reconstruction. In Figure 12 the
convergence for this noise level is demonstrated, and in Figure 13 the decrease of
the singular values.

Next set of experiments presented uses data collected on the ground surface. Two
different meshes are used. The first consists of three parallel lines running 40m apart
from each other. Along each line seven measurements are made each 20th meter.
The second layout has two more lines placed between the three original lines. Thus,
in this layout the inter line distance is 20m. In both layouts the scatterer is placed
60m out along the center line and straight below the same. All other parameters of
the scatterer and the ground are the same as in the bore hole case.

With clean data the algorithm makes good reconstructions with both layouts.
The convergence of the algorithm in the case of clean data is shown in Figure 14,
where the rms error of the datafit and the parameter fit are shown for different . In
this figure the five line layout is used. The three line layout gives the same output.

In the case of noise contaminated data the surface layouts do not behave as
well as in the bore hole case. In Figure 15 the singular values are shown for noise
contaminated data with ¢ = 0.0015. Note that the standard deviation of the noise
in this case is one order of magnitude smaller compared to experiment 2. The
quality of the reconstruction with noise contaminated data with standard deviation
o = 0.0015 and a surface layout with five lines, experiment 4, is shown in Figure 16.
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So far all reconstructions are made using anomalous field data. Thus it is as-
sumed that the total field can be separated into a regional field and an anomalous
field by some means. In general this is a nontrivial problem which has to be ad-
dressed. One of the main difficulties is that the magnitude of the anomalous field is
typically only a small fraction of the total field. This characteristic tends to make
the extraction of the anomalous field sensitive to noise. The reconstruction of the
target parameters is very sensitive to a bias (i.e., a systematic error) in the anom-
alous field, due to incorrect separation of the total field into regional and anomalous
fields, respectively. It is therefore of vital importance that the reconstruction of
the regional parameters be accurate. In the previous reconstructions no bias occurs
since Gaussian noise with zero mean is used. Thus this type of noise is much more
well-behaved.

One approach to separate the fields is to use an iterative scheme. At each step
the regional field is approximated by the difference between the total field and the
optimized anomalous field from the previous iteration. The regional parameters are
then determined by an optimization to this field. In the same way the anomalous
field is approximated as the difference between the total field and the optimized
regional field found above, and the new set of target parameters are determined by
an optimization to this field.

This process is repeated until convergence is reached. Noting that the regional
field constitutes the major part of the total field; the total field itself is used as a
first approximation to the regional field. Symbolically the iteration process can be
written as
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Figure 9: X component of synthetic data along the bore hole. The lines without
markers show the magnitude (solid line) and phase (broken line) of the clean data.
The lines with markers show the corresponding noise contaminated data. These
data are contaminated with Gaussian noise with zero mean and standard deviation

o = 0.05.

0 _ 0
{ HBeg = H,,; . — ngg,opt
Hanom = HtOt Hreg,opt - anom,opt
1 1
{ Hlieg HtOt Hanomppt - Hﬂeg,opt
Hanom - HtOt Hreg,opt - Hanom,opt
n _ n—1 n
{ Hreg - H‘EOt - Hanom,opt - Hreg,opt
n _ n n
Hanom - HtOt - Hreg,opt - Hanom,opt

Figure 17 shows the result of the iterative procedure. The geometry is the same
as in experiment 1. The data are contaminated with Gaussian noise with o = 0.01
but this time the total field is used. As can be seen in the figure the scheme converges
to a fix point in the parameter space giving an acceptable reconstruction of both
the regional parameters as well as the target parameters.

4 Conclusions

The identification of subterranean metallic ores from scattering experiments is in
general not a well-posed problem. However, by restricting the shape of the target
the problem is regularized enough to make it numerically stable. In this paper we
have modeled the ore by a perfectly conducting elliptic disk, which is a reasonable
model for the type of sulphide ores found in Northern Sweden.
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Figure 10: Y component of synthetic data along the bore hole. All other para-
meters are the same as in Figure 9.

Given the assumption that the scattering data can be properly separated into a
regional and an anomalous field it is shown that the target can be identified from
a feasible starting guess. The algorithm is also shown to be stable to noise for
realistically noise contaminated data.

The separation of the scattering data into a regional and an anomalous part is a
nontrivial problem. The last part of the article presents a possible way of separating
the field and determine the basement parameters as well as the target parameters
through an iterative process. The convergence of this process can be improved by
providing a priori information about the regional large-scale structures and their
physical properties.

Appendix A T-matrix formulation and computa-
tion of the forward problem

In this appendix a brief description of the method used to solve the forward prob-
lem, the null-field method, is given. Since the intention of this appendix is to give
the reader an overview rather than a detailed description references to appropriate
sources are given where needed. This overview is given in three steps. First the null-
field approach is applied to a perfectly conducting three dimensional scatterer. As a
second step the regional model, consisting of a half-space covered by an overburden
excited by a loop antenna, is considered. Finally these two models are combined
into a complete model which takes into account the interactions between the various
scattering surfaces [4] (cf. also [5]).
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Figure 11: Z component of synthetic data along the bore hole. All other para-
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A.1 Null-field approach to 3-d scatterer

The problem is to compute the scattered field, assuming that the geometry of the
scatterer and the incident field is known. The initial step in the null-field approach is
to expand the fields in suitable sets of global expansion functions. Thus the incident
and the scattered fields are expanded in spherical vector waves around an origin
inside the scatterer

E™(r) = Zanv;(kr)
Be(r) = 3 (k)

where v! (kr) and v¢(kr) are the regular and outgoing spherical vector waves, re-
spectively. These waves are defined as

Uziaml = jl (kT)Alaml (f)

; [kr g (kr)) . Jukr) . (A1)
Voomil = Lr AQUWZ(T) + l(l + ]-) kr A3Uml(7ﬂ)
The outgoing vector waves are defined in a similar way by exchangi?%; the spherical
1 .

bessel function j; with spherical hankel functions of the first kind A, in (A.1).
Furthermore, the unknown surface field on the scatterer is expanded in tangential
vector waves as

J(r)=vx H(r) = %Zan/ﬁ x (V x vl (kr))

Here Y is the inverse of the wave impedance, i.e., Y = k/wp.
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Between the expansion coefficients a,, and f,, there is a linear relation.
fn = E Tnn’an’
n/

Once the T-matrix is found the scattering problem is solved. The null-field approach
provides an algorithm to find a truncated approximation to 7, . This is done
by deriving the relations between the incident field and the surface field, and the
scattered field and the surface field, i.e.,

n = - Z Qo O (A.2)
fn = Z Q;n’an’ (A3)
The entries of the Q°-matrix are explicitly given by [7], [§]

e = k:/ {vi(r) x [V x vl,(r)]} - 0dS (A.4)
s

The expressions for the (Q-matrices of a perfectly conducting ellipsoid, which is
the scatterer considered in this paper, are given in [2]. Here it suffices to note that
the entries in the matrices are integrations over the surface of the scatterer where the
integrands are combinations of the expansion functions. Hence the ()-matrices can
be computed explicitly. Once the Q)-matrices are computed to a given truncation,
the T-matrix is the solution of the matrix equation.

TQ =~ (A5)
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A.2 Stratified ground excited by loop antenna

In the previous section it was natural to use spherical wave functions since the
scatterer was a three dimensional object. In the current setting with a stratified
ground it is more natural to work with plane vector waves. The reason for this is
that the boundary conditions are easy to fulfil with plane waves. A plane wave that
impinges on a plane interface gives rise to a reflected plane wave and a transmitted
plane wave. The amplitudes are given by the reflection and transmission coefficients,
respectively, and the directions of propagation are given by Snell’s law. The natural
starting point is thus to expand the known incident field and the scattered field in
plane waves, i.e.,(cf., e.g., [5])

E™(r)

Z/ dﬂ/smadaao ko)®,(ko; T) (A.6)

Jj=1 0
9 2T

E*(r) = ) / g / sin v dobo (ko) @ (ko; 7) (A7)
=17 Cy

where Cy are integration contours in the complex a-plane chosen in such a way that
ksina € [0,00). Integration over C refers to up going waves, and C_ to down
going waves.

In order to simplify the notation the following convention, introduced in [4], is
adopted. Integration and summation over j are suppressed and we write

2
Z dﬁu smaudayf] )9i(ky) = f1 g

7j=1
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each line.

i.e., the domain of integration is represented by an arrow and the index of the
material parameters are indicated by the superscript. In this notation Egs. (A.6)
and (A.7) are written

E"(r) = @?(r)a‘f

E*(r) = ®)(r)b)
Within the layer both up and down going waves exist whereas in the lower half-
space only down going waves can exist since the half-space is now assumed to be

homogeneous and a radiation condition is assumed at infinity. In the new notation
these fields are

E'(r) = @1(7‘)@1—#@%(7")@1
E*(r) = (Iﬁ(r)ocf

Once more the null-field approach provides an algorithm to solve for the unknown
fields. In symbolic form the relations can be written as

W = i@l + QN5
(A.8)
9 = —i(@al + QY5
ol = iQfo}
(A.9)

5 = —iQia?
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Figure 15: The figure shows the magnitude of the singular values for different .
The data are collected in the same surface layout as in Figure 14.

The @-functions introduced above are defined as

Qi (ko) = 2, / IV B (k1)) x By (Kyrr)
Sy
+ C’,,(I)}(k:l,;r’) X [V'x ®(k,1;7)]}dS, ,v=0,1

where C, = 1, /p,+1. The explicit derivation of equations (A.8) and (A.9) is given
in [4]. These equations (A.8) and (A.9) can be solved formally to yield

0 = Rl

ol = [1— RURMITI00 (A.10)
5 = R~ RERYTG

ot = Tiag

where Rrﬂ and Tﬂ are the total reflection and transmission coefficients of the whole
layer and the others are transmission and reflection coefficients of the individual
interfaces.

A.3 Complete model

To form the complete model the models in subsections A.1 and A.2 have to be
combined. To achieve this the transformations between the spherical vector waves
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Figure 16: Same as Figure 6 but the standard deviation of the Gaussian noise is
o = 0.0015.

and the plane vector waves are introduced (cf., e.g., [5])

®;(kir) = 3 Bl (k)i (kr) (A.11)

2

Ve (kr) = 22/ dﬁ/sinadaan(z%)q>j(k;r) 220 (A.12)
J 0 Cy

The presence of the scatterer in region 2 implies that in addition to down going

plane waves up going plane waves have to be introduced, in the region between the

scatterer and the plane interface, in order to meet the boundary conditions. Thus
Eq. (A.9) now reads

ol = i(Qitod + QA
(A.13)
B = Qi+ QB)

With the use of the transformations (A.11) and (A.12) the equations (A.2) and (A.3)
can be written

Brﬁozf = 105,y (A.14)
3 = —2iB},Qh 0 (A.15)

If these equations ((A.8), (A.13), (A.14) and (A.15)) are solved formally the fields
in the different regions are obtained as
Bo(r) = B§“(r) + Byoo(r) + By (r) (A16)
= E{(r) + ®VR] a] + ®(r)T}, B, Tow
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Figure 17: Separation of the total field into a regional field and an anomalous field.
The vertical axis show the rms error in the target parameters and the horizontal
axis the rms error in the regional parameters.

Ei(r) = E"(r)+ E{"(r) (A.17)
= [@lrni+ @l)] [1- R T +
-1
(@) + @l RY] [1 - BRI TR B Ty

Ey(r) = E}F9"(r) + E™(r) (A.18)

]' €
= ®I(r)Tfja} + | v (ker) + @H(r)R] B, | T

Here the T' matrix is the solution of Eq. (A.5). Furthermore, the amplitude c,,
defined as

is the solution of

cp + Ann’ Cp = dn
o 2t T 0

2
Apw = —2BA R B}, T
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