
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Homogenization of the Maxwell equations in an anisotropic material

Kristensson, Gerhard

2002

Link to publication

Citation for published version (APA):
Kristensson, G. (2002). Homogenization of the Maxwell equations in an anisotropic material. (Technical Report
LUTEDX/(TEAT-7104)/1-12/(2002); Vol. TEAT-7104). [Publisher information missing].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/0ecce2d8-a0c5-45f8-8d86-3fff20035f91


CODEN:LUTEDX/(TEAT-7104)/1-12/(2001)

Homogenization of the Maxwell
equations in an anisotropic material

Gerhard Kristensson

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
Sweden



Gerhard Kristensson (Gerhard.Kristensson@es.lth.se)

Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
P.O. Box 118
SE-221 00 Lund
Sweden

Editor: Gerhard Kristensson
c© Gerhard Kristensson, Lund, March 11, 2002



1

Abstract

This paper contains an overview of the homogenization of anisotropic ma-
terials at fixed frequency using the concept of two-scaled convergence. The
homogenized electric and magnetic parameters, the relative permittivity and
the relative permeability, respectively, are found by suitable averages of the
solution of a local problem in the unit cell. A comparison between the exact
homogenization method presented in this paper and the traditional mixture
formulae, which are based on physical arguments, is made.

1 Introduction

Many engineering problems contain materials which are heterogeneous on a length
scale (microscopic) that is small compared with the typical length scales (macro-
scopic) of the problem. Nevertheless, the underlying heterogeneous, microscopic
structure affects the macroscopic properties of the material. Accurate methods to
model these microscopic effects are therefore important to develop.

In electromagnetic problems, when the wavelength is long compared to the pe-
riodicity of the microstructure, the homogenized values of the electric or magnetic
material parameters are pertinent macroscopic quantities. Several homogenization
procedures have been suggested in the literature. Some of these are based upon
physical arguments, e.g., the Maxwell Garnett formula, the Böttcher mixture rule
or Bruggeman formula, and the coherent potential (CP) formula [15]. They have
proven useful in many situations, e.g., low volume fraction of homogeneous spherical
or ellipsoidal inclusions in a homogeneous host material, but they fail if the volume
fraction is too high or if the inclusions are not spheres or ellipsoids. Then, a more
accurate homogenization procedure has to be used, which includes all contributions
of the interaction between the inclusions.

In this paper, we review a general mathematical procedure to obtain the ho-
mogenized (or effective) material parameters, which includes all interactions effects
between the inclusions. Specifically, we employ recent advances in the mathematics
of two-scale convergence, which was introduced in 1989 by Nguetseng [11]. Specif-
ically, we review some of the more important results of this convergence concept,
but for the mathematical details we refer to the existing literature on this subject.

A typical homogenization situation is depicted in Figure 1, where we, in several
steps, shrink the length scale ε, which is the periodicity of the material. The two-
scaled convergence predicts the limit of this process, and gives a procedure of how to
compute the effective material parameters of the material with microstructure. The
results are not restricted to low volume fractions of the inclusions or to a two-phase
composition of materials. In fact, the results are quite general and can be applied
to a large variety of engineering situations.

The results obtained using two-scale convergence are self-contained in contrast
to similar approaches that assume an asymptotic expansion of the solution in terms
of the microscopic scale, e.g., see [14]. The theory of two-scale convergence does
not rely on such an expansion. The periodic variations in the material parameters
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ε →

ε

smaller

Figure 1: A material with a microstructure with periodicity ε. The size of ε is
decreasing from left to right.

generate the same type of variations in the two-scale converged solution, which
characterizes the microscopic solution completely.

This paper is organized in the following way. In Section 2, the basic assumptions
of the homogenization problem are stated, and, in Section 3, the fundamental prop-
erties of the two-scaled convergence are reviewed. The local problem is stated in
Section 4, and a comparison between the classical mixture formulae and the exact
homogenization procedure is presented in Section 5. Some conclusions of the theory
are discussed in Section 6.

2 Formulation of the problem

Assume Ω is a smooth, bounded domain in R
3 with boundary ∂Ω, and outward

pointing unit normal ν̂. Some requirements on the regularity of the boundary ∂Ω
have to be made to justify the mathematics, but to avoid technical details these
are omitted. Moreover, assume that the material in Ω is Y ε-periodic, i.e., it is a
collection of identical cubes with side length ε (Y ε-cells), see Figure 2. This means
that the periodicity of the material is ε, with scaled unit cell εY , where Y is the
unit cube in R

3.
In Ω the electromagnetic fields satisfy the Maxwell equations. The field solutions

depend on the size of the Y ε-cells, and, therefore, all fields are indexed by the
periodicity ε. The Maxwell equations in the presence of a source term J ε are{

∇× Eε(x) = iωBε(x)

∇× Hε(x) = J ε(x) − iωDε(x)
x ∈ Ω (2.1)
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Ω

ε

Y ε-cell

ν̂

Figure 2: Typical periodic geometry of the material parameters and the definition
of the Y ε-cell.

and {
∇ · Bε(x) = 0

∇ · Dε(x) = 0
x ∈ Ω (2.2)

The boundary conditions on ∂Ω are traditionally taken as

ν̂ × Eε(x) = 0, x ∈ ∂Ω (2.3)

which also is adopted in this paper. Other boundary values, such as the penetrable
case, are also possible to analyze. In the penetrable case, the excitation is exterior
to the domain Ω. This problem is more complex, and the reader is referred to the
literature for the solution of this problem [20]. To simplify this review, we omit the
discussion of the sources below.

We now state the general assumption made on the relative permittivity and
the relative permeability used to describe the material in Ω. The material can be
inhomogeneous, and the relative electric permittivity dyadic, ε(x), and the relative
magnetic permeability dyadic, µ(x), are three-dimensional, complex-valued dyadics,
and they satisfy a coercivity and a boundedness condition (C1,2 > 0){

iξ ·
(
ε(x) − ε(x)†

)
· ξ∗ ≥ C1|ξ|2

|ε(x) · ξ| ≤ C2|ξ|
ξ ∈ C

3, x ∈ Ω

where ε† denotes the Hermitian of the dyadic ε. The first condition states that
the medium is passive, i.e., it is dissipative. The second one is a condition that
guarantees boundedness of the parameters. Moreover, the quantities are assumed
to be Y -periodic, i.e., ε(y + êk) = ε(y) for every value of the local variable y ∈ R

3

and for every k = 1, 2, 3. Similar result holds for the relative permeability µ. Due
to the dyadic characters of the relative permittivity and the relative permeability,
inhomogeneous, anisotropic situations can be analyzed.
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Since the medium is Y ε-periodic, we scale the arguments in ε and µ with the
periodicity ε. In fact, the constitutive relations adopted in this paper are{

Dε(x) = ε0ε(x/ε) · Eε(x)

Bε(x) = µ0µ(x/ε) · Hε(x)
(2.4)

This implies that the scaled material parameters used in (2.1) and (2.2) are Y ε-
periodic, i.e.,

ε((x + εêk) /ε) = ε(x/ε + êk) = ε(x/ε), for all x ∈ Ω, k = 1, 2, 3

since ε is Y -periodic.

3 The concept of two-scaled convergence

The basic mathematical tool in the analysis of the homogenized or effective material
parameters is the concept of two-scaled convergence. In this section, we review some
of the properties of this convergence principle. Only the basic properties needed for
the results presented in this paper are stated, and the reader who wants to study this
convergence concept in more detail is referred to the literature [1–3, 5, 11, 16–19].

The concept of two-scaled convergence was introduced by Nguetseng [11] and has
later been analyzed further in the mathematical literature, see e.g., [1–3, 5, 16–19].
A sequence {uε} in L2(Ω)3 two-scale converges to u0 ∈ L2(Ω × Y )3 if [11]

lim
ε→0

∫∫∫
Ω

uε(x) · φ(x, x/ε) dvx =

∫∫∫
Ω

∫∫∫
Y

u0(x, y) · φ(x, y) dvx dvy

for every smooth vector field φ(x, y), which is Y -periodic in y. The volume measure
of R

3 is denoted dvx or dvy depending on the integration variable. We denote two-

scale convergence by uε 2-s
⇀ u0. Allaire [1] proved that it is possible to extend the

set of test functions to the set of admissible function, i.e., all functions φ(x, y)
(Y -periodic in y, but not necessarily smooth in x and y) such that

lim
ε→0

∫∫∫
Ω

|φ(x, x/ε)|2 dvx =

∫∫∫
Ω

∫∫∫
Y

|φ(x, y)|2 dvx dvy

We easily see that if uε(x)
2-s
⇀ u0(x, y) then uε(x) converges weakly to the

mean over the unit cell Y . To see this, take a test function φ ∈ (L2(Ω))3 that is
independent of y and the definition implies

lim
ε→0

∫∫∫
Ω

uε(x) · φ(x) dvx =

∫∫∫
Ω

∫∫∫
Y

u0(x, y) · φ(x) dvx dvy

=

∫∫∫
Ω

u(x) · φ(x) dvx
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where the mean over the unit cell Y is denoted

u(x) =<u0(x, y)>=

∫∫∫
Y

u0(x, y) dvy

The average over the unit cell (Y -cell) is denoted

<f>=
1

|Y |

∫∫∫
Y

f(y) dvy

and |Y | is the volume of the unit cell (in our case we have scaled so that |Y | = 1).

Therefore, uε(x)
2-s
⇀ u0(x, y) implies that uε(x) ⇀ u(x) weakly in (L2(Ω))3.

It is also not hard to prove that if uε(x) → u(x) strongly in (L2(Ω))3 (norm
convergence in (L2(Ω))3), then it also two-scale converges to the same limit. The
converse is, however, not true. Moreover, if a(x, y) is a smooth Y -periodic function
in y, then aε(x) = a(x, x/ε) two-scale converges to a(x, y). In fact, every a(x, y) ∈
L2(Ω× Y ) is obtained as a two-scale limit of a function aε(x) in L2(Ω) [1]. We can
conclude that the convergence in the two-scaled sense is more general than both the
usual strong and weak convergence concepts.

The two usual concepts of convergence — strong (norm convergence) and weak
convergence — are too coarse instruments to preserve the information of the field
at the microscale. The concept of two-scale convergence, however, preserves some
of the relevant information of field at the microscale. This is proved to be an
ideal tool in the homogenization procedure of materials with microscopic scale, see
e.g., [1, 2, 5, 11, 16–20].

The existence of a two-scale limit of a family of fields Eε and Hε, such as the
solutions to the Maxwell equations in (2.1) and (2.2), as ε → 0, is guaranteed
provided a uniform bound can be established, that is, we need uniform bounds on
the fields of the following form (a priori estimates):

‖Eε‖2
2 ≤ C1, ‖∇×Eε‖2

2 ≤ C2, ‖Hε‖2
2 ≤ C3, ‖∇×Hε‖2

2 ≤ C4, for all ε (3.1)

where

‖u‖2
2 =

∫∫∫
Ω

|u(x)|2 dvx

The constants Ci, i = 1, 2, 3, 4, do not depend on the parameter ε, but only on
the domain Ω, and the material parameters in Ω. These a priori estimates, are
fundamental in the development of the homogenization procedure [1, 11]. For the
boundary conditions in (2.3) such an a priori estimate can be established [17]. The
a priori estimates for other appropriate boundary conditions, such as the penetrable
case, can also be obtained, see [20], but the analysis is more complex.

4 The local problem

The local problem is reviewed in this section. Most of the mathematical details,
however, are omitted. These are easily found in the literature [1, 3, 11, 16, 17].
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The a priori estimates in (3.1) suffice to guarantee that there are subsequences
of {Eε} and {Hε}, respectively, that two-scale converge [11, 16, 17], i.e.,{

Eε 2-s
⇀ E0(x, y) = E(x) + ∇yΦ1(x, y)

Hε 2-s
⇀ H0(x, y) = H(x) + ∇yΨ1(x, y)

(4.1)

and {
∇× Eε 2-s

⇀ ∇x × E0(x, y) + ∇y × E1(x, y)

∇× Hε 2-s
⇀ ∇x × H0(x, y) + ∇y × H1(x, y)

where the fields, E(x) and H(x), are the averaged fields over the unit cell Y , i.e.,


E(x) =<E0(x, y)>=

∫∫∫
Y

E0(x, y) dvy

H(x) =<H0(x, y)>=

∫∫∫
Y

H0(x, y) dvy

and the scalar fields Φ1 and Ψ1, and the vector fields E0, H0, E1 and H1 denote the
limit functions. Notice that the first terms in the two-scaled convergence in (4.1), E
and H , are independent of the local variable y, and the second terms are gradients
w.r.t. the local variable y. The two-scaled limits contain information about the
field on the microscopic level, and, moreover, the fields Eε and Hε do not converge
strongly to E and H , respectively, i.e., limε→0‖Eε(x) − E(x)‖ �= 0 [1]. However,
we have [20] 


lim
ε→0

‖Eε(x) − E0(x, x/ε) − εE1(x, x/ε)‖ = 0

lim
ε→0

‖Hε(x) − H0(x, x/ε) − εH1(x, x/ε)‖ = 0

This is the so called corrector result.
The unknown functions Φ1 and Ψ1, which contain the information of the behavior

of the fields on the microscale, are found by employing the Maxwell equations (2.1)
and (2.2), and the constitutive relations (2.4). A separation of variables arguments
implies that these functions can be obtained as the solution of a local problem. The
result is [1, 11, 17]




∇yΦ1(x, y) = −∇yχe(y) · E(x) = −∇y

3∑
i=1

χi
e(y)êi · E(x)

∇yΨ1(x, y) = −∇yχh(y) · H(x) = −∇y

3∑
i=1

χi
h(y)êi · H(x)

where

χe(y) =
3∑

i=1

χi
e(y)êi, χh(y) =

3∑
i=1

χi
h(y)êi
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The functions χi
e(y) and χi

h(y) are determined by the solution of the local problem
in the unit cell Y (i = 1, 2, 3) [1, 11]{

∇y ·
(
ε(y) · ∇yχi

e(y)
)

= ∇y · (ε(y) · êi)

∇y ·
(
µ(y) · ∇yχi

h(y)
)

= ∇y · (µ(y) · êi)
(4.2)

or in a weak formulation


∫∫∫
Y

∇yw(y) · ε(y) ·
(
êi −∇yχi

e(y)
)

dvy = 0

∫∫∫
Y

∇yw(y) · µ(y) ·
(
êi −∇yχi

h(y)
)

dvy = 0

for all Y -periodic test function w.
The local problem in (4.2) is an electrostatic problem in the unit cell Y . These

equations are solved for the unknowns χi
e(y) and χi

h(y) in the unit cell Y in each
unit direction êi, i = 1, 2, 3, with periodic boundary conditions on ∂Y . From these
solutions we then find the effective relative permittivity and permeability dyadics
in terms of the following averages [1, 11]:



εh =<ε(y) · (I3 −∇yχe(y))>=

∫∫∫
Y

{ε(y) − ε(y) · ∇yχe(y)} dvy

µh =<µ(y) · (I3 −∇yχh(y))>=

∫∫∫
Y

{µ(y) − µ(y) · ∇yχh(y)} dvy

(4.3)

where I3 is the identity dyadic in R
3. This procedure provides a constructive algo-

rithm to find the homogenized parameters — solve (4.2) and compute the averages
in (4.3). We also see that in general the homogenized parameters εh and µh are
anisotropic dyadics, even though the material parameters ε(y) and µ(y) inside the
unit cell are isotropic, i.e., proportional to the identity dyadic I3, ε(y) = ε(y)I3

and µ(y) = µ(y)I3. Notice that the homogenized parameters in (4.3) are constant
dyadics in Ω. It can be proven that if ε is a symmetric dyadic (reciprocal material),
then εh is also a symmetric dyadic [20]. Similar results hold for the homogenized
permeability dyadic µh.

Moreover, it is possible to prove [20] that the averaged fields, E(x) and H(x),
satisfy the Maxwell equations with the homogenized relative permittivity and per-
meability εh and µh given by (4.3), i.e.,{

∇× E(x) = iωµ0µ
h · H(x)

∇× H(x) = −iωε0ε
h · E(x)

and {
∇ ·

(
µh · H(x)

)
= 0

∇ ·
(
εh · E(x)

)
= 0



8

Figure 3: A numerical simulation of the local field in the unit cell (two-dimensional
version) of a two-shaft glass fiber weave. The lower left figure shows the glass fiber
weave and the lower right figure the computational model of this weave that is used
in this numerical simulation. The upper figure shows the local field in the unit cell
in a horizontal cross section of the right lower figure.

The local problem, (4.2), is solved by a suitable numerical approach, e.g., FEM.
We illustrate the homogenization procedure by an example that occurs in radome
applications. In radomes the matrix material is usually reinforced by glass fiber to
give the radome mechanical structure. The periodicity of the glass fiber is in general
small compared to the wavelength of the application. Therefore, a homogenization
of the complex material gives material parameters that accurately model the inter-
action between the material and the electromagnetic fields. The electromagnetic
parameters of this homogenization are uniaxial. A numerical simulation in two di-
mensions of the local field in the unit cell Y of a two-shaft weave is illustrated in
Figure 3. The glass fiber weave is depicted in the bottom left figure, and the model
of this glass fiber is illustrated in the lower right figure. The upper figure illustrates
the solution of the local problem in the unit cell. The intensity of the local field is
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shown in a horizontal cross section of the unit cell.

5 Comparison with classical mixture formulae

The classical mixture formulae are well-known to the electrical engineers. They
are derived under the assumption that all scattering effects can be ignored [15].
This implies that they give an approximate value of the material parameters of the
homogenized material, which is most accurate at low volume fractions. This is in
contrast to the exact method described in this paper, where all scattering effects are
included, and which gives an accurate value of the homogenized material parameters
for all volume fractions. Moreover, the classical mixture formulae apply only to
certain generic form of the inclusions, while the exact homogenization procedure
has very small limitations in its range of applications — both to geometry and
to material components. To illustrate the differences and the similarities between
these two ways of calculations, we make a comparison between the procedures in
this section. All the details of the analysis can be found in [6].

The classical mixture formulae apply to homogeneous, spherical or ellipsoidal in-
clusions in a homogeneous, isotropic or anisotropic background material [15]. There-
fore, let the material consist of two homogeneous materials; an isotropic background
material with relative permittivity εb, and periodically arranged spherical inclusions
with relative permittivity εi. We denote the radius of the sphere by a, and all
materials are non-magnetic, µ = 1. The volume fraction of the inclusions is then
f = 4πa3/3.

Several of the effective relative permittivity expressions of a mixture of homoge-
neous spherical inclusions are represented in the formula [15]

εh − εb

εh + 2εb + ν(εh − εb)
= f

εi − εb

εi + 2εb + ν(εh − εb)

where εh is the effective relative permittivity of the mixture. The integer ν represents
different mixture formulas, e.g., ν = 0 gives the Maxwell Garnett formula, ν = 2
gives the Böttcher mixture rule or Bruggeman formula, and ν = 3 gives the coherent
potential (CP) formula. The Maxwell Garnett formula is explicitly given by

εh = εb +
3fεb(εi − εb)

εi + 2εb − f(εi − εb)
(5.1)

Another mixture formula was derived by Lord Rayleigh and is given by [4, 7–
10, 12, 13, 15]

εh = εb +
3fεb

(εi + 2εb)/(εi − εb) − f − 1.305f 10/3(εi − εb)/(εi + 4εb/3)

which for small volume fraction f can be expanded as

εh = εb +
3fεb(εi − εb)

εi + 2εb − f(εi − εb)
+ 9fεb

155a10(εi − εb)
3

(3εi + 4εb) [εi + 2εb − f(εi − εb)]
2 + . . .
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ν β

0 α2/(3εb)
2 α2εi/(εb(εi + 2εb))
3 α2(4εi − εb)/(3εb(εi + 2εb))

Rayleigh α2/(3εb)

Table 2: The different coefficients in an expansion of εh = εb + αf + βf 2 for
small volume fractions f and different mixture formulae. The constant ν = 0 for
the Maxwell Garnett formula, ν = 2 for the Böttcher mixture rule or Bruggeman
formula, and ν = 3 for the coherent potential (CP) formula. The coefficient α =
3εb(εi − εb)/(εi + 2εb).

Notice that the first term in this expansion is the Maxwell Garnett formula, (5.1).
Some of these classical mixture formulae are derived for a random distribution

of spheres, but they are nevertheless often applied to a regular lattice problem.
All classical mixture formulae have their domain of validity for small volume

fractions f . The differences between the mixture formulae are best seen from the
power series expansion in f , i.e.,

εh = εb + αf + βf 2 + O(f 3)

The coefficient α = 3εb(εi − εb)/(εi + 2εb) are present in all these formulae, and this
contribution represents the dipole contribution. The β coefficients for the mixture
formulas are all different and they are given in Table 2 [15, p. 164].

The heterogenous material with spherical inclusions has been solved with the
complete homogenization procedure that is reviewed in this paper. The results and
the details of the analysis are given in [6]. From this complete solution, it is possible
to extract a small volume fraction expansion. The analysis is rather complex, and
we refer the interested reader to this reference for details. It is possible to explicitly
write down the complete solution of the local problem, but for comparative reasons
the low volume fraction result is most illustrative. The result is for small radii a of
the sphere is [6]

εh = εb +
3fεb(εi − εb)

εi + 2εb − f(εi − εb)
+

9fεb(εi − εb)
3S

(3εi + 4εb) [εi + 2εb − f(εi − εb)]
2 + O(a15)

where
S = 196a10 (4S1 + 2S2 − S3)

2 ≈ 155a10

where the sums S1, S2, and S3 explicitly are

S1 =
∞∑

ijk=1

3i2j2 − i4

(i2 + j2 + k2)9/2
, S2 =

∞∑
ij=1

3i2j2 − 2i4

(i2 + j2)9/2
, S3 =

∞∑
i=1

1

i5

Note that the first term in this exact homogenization procedure is the Maxwell
Garnett formula in (5.1), and, moreover, that the Rayleigh formulae is correct if
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powers of order fifteen and higher in the radius are ignored. All other mixture
formulae do not give the correct behavior beyond the dipole term. Therefore, for
this configuration, we see that the Maxwell Garnett (and Rayleigh) formula is the
most reliable one.

6 Conclusions

In this paper, a review of the homogenization of a heterogeneous, anisotropic ma-
terial is presented. The solution of the problem relies on the concept of two-scale
convergence. The solution of the local problem is determined by the properties of
the material on the microscopic scale, from which, by proper averages, the homog-
enized values of the electric and the magnetic properties of the material are found.
The method provides an exact method to find the homogenized parameters, and the
restrictions on geometry and materials are very small. A comparison between the
classical mixture formulae and the exact homogenization shows that the classical
mixture formulae are correct to dipole order, but also that they all give the incor-
rect higher order terms. The most accurate ones are the Maxwell Garnett and the
Rayleigh formulae.

Acknowledgement

The work reported in this paper is supported by a grant from the Swedish Foundation
for Strategic Research (SSF), which is gratefully acknowledged. The author also like
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