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Abstract

In this article, a non-iterative method for solving the transient electromagnetic
inverse scattering problem for a homogeneous, dispersive bi-isotropic slab is
considered. The slab is excited by a normally incident transverse pulse. The
inverse scattering problem is to determine (finite time traces of) the suscepti-
bility kernels, i.e., the four integral kernels present in the constitutive relations,
given (finite time traces of) the reflection and transmission kernels, which are
obtained by deconvolution of the scattered fields. Two numerical examples
illustrate the method with noisy data. Finally, the imbedding equations are
proved to be uniquely solvable, and the exact solution to the general propaga-
tion problem is found. This solution is given as a uniformly convergent series
and supports the employed inverse algorithm.

1 Introduction

During the last decade, an increasing interest in the employment of chiral, or more
generally, bi-isotropic media in electromagnetic devices has been developed, see,
e.g., Refs. [2, 11] for a review. The usefulness of these media is due to the further
possibilities of design, that the additional parameters, i.e., the chirality and the
non-reciprocity, provide. The characteristic feature of the bi-isotropic medium is
the twisting of the plane of polarization of an incident linearly polarized plane wave
as it propagates through the medium. This effect is known as optical activity,
and it originates from the handedness of the microstructure of the medium. A
typical example of a bi-isotropic medium in nature is dextrose. In the microwave
regime, a bi-isotropic medium can be manufactured, e.g., by placing many right-
wound wire helices randomly in an isotropic host. Clearly, this composite medium
is isotropic, in contrast to the likewise artificial pseudochiral or Ω medium, which
has an ordered planar structure of metal wires, bent to the form of the Greek
letter Ω, and therefore is (bi-)an-isotropic, see Ref. [13]. In both these media,
an interesting additional coupling between electric and magnetic phenomena arises,
though different in nature, and this coupling is manifested as time convolutions
in the constitutive relations in analogy with the modelling of the usual dispersive
effects.

In this article, the stress is on the propagation of transient waves in a single
homogeneous, dispersive bi-isotropic slab. In particular, the solution of the inverse
problem determining a finite time trace of the electromagnetic properties of the
bi-isotropic medium from a finite time trace of reflection and transmission data is
considered. One advantage of this time-domain approach is that it requires only a
finite time window.

Propagation of transient waves in stratified, reciprocal, bi-isotropic slabs at
oblique plane wave incidence has been investigated in Ref. [10]. The generic inverse
scattering problem for a homogeneous, possibly non-reciprocal, bi-isotropic slab,
subject to excitation by a normally incident plane wave, is discussed in Ref. [9]. In
the present paper, the problem in Ref. [9] is generalized to the more realistic case,
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Figure 1: The graph of the non-zero component of the incident electric field, Ei =
(Ei

x, E
i
y), in the two cases in Example 1 in Section 4. Time t is given in units of d/c,

while Ei
x(t) is measured in V/m.

where the actual reflected and transmitted electric fields are used as data. The reflec-
tion and transmission kernels are independent of the incident plane wave; therefore,
when the inverse problem is addressed, the incident electric field can be chosen per-
tinently. Since a deconvolution always has to be performed, it is preferable to choose
the incident pulse as narrow as the experimental technique permits. In fact, pulses
with the half-width 50 ps have been generated, see Ref. [6]. In Section 2, the key
steps in the derivation of the solution to the wave propagation problem in Ref. [9]
are recapitulated. The inverse scattering problem is discussed in Section 3. The
improvements in the inverse procedure are illustrated with two numerical examples
in Section 4. Finally, in Section 5, the exact solution to the propagation problem is
given as infinite series expansions. The specific form increases the understanding of
the inverse algorithm used in Section 3. It is also proved that the imbedding and
Green functions formulations are equivalent, and that the former — it is already
known that the Green functions equations have a unique solution — are uniquely
solvable.

2 The direct scattering problem

Consider a dispersive bi-isotropic slab occupying the space between the two planes
z = 0 and z = d in a right-handed Cartesian coordinate system O(x, y, z), where
the three basis vectors are denoted by ex, ey, and ez, respectively. For the sake of
simplicity, assume that the slab is homogeneous, and that it is surrounded by vacuum
with the permittivity ε0, the permeability µ0, the phase velocity c = 1/

√
ε0µ0, and

the wave impedance η =
√
µ0/ε0. Furthermore, suppose that there is no mismatch

at the boundaries, i.e., the slab has the vacuum permittivity and permeability, and
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Figure 2: The graph of the electric susceptibility kernel, G+F , for the homogeneous
reciprocal Lorentz medium in Example 1 in Section 4, restricted to two roundtrips.
Two reconstructions of this function, performed with 129 and 257 data points per
roundtrip, respectively, are also shown in the figure. The recovery based on generic
data only, i.e., noise-free scattering kernels is in excellent agreement with the original
susceptibility kernel, as indicated by the markers. 33 data points per roundtrip
suffice in this latter case. The time scale is given in units of d/c, while the vertical
axis has the unit c/d.

that the constitutive relations at the arbitrary point r ≡ (x, y, z) inside the bi-
isotropic slab and at the arbitrary time t are{

cηD(r, t) = E(r, t) + ((G+ F ) ∗E)(r, t) + η((K + L) ∗H)(r, t),

cB(r, t) = ((−K + L) ∗E)(r, t) + ηH(r, t) + η((G− F ) ∗H)(r, t),

where, e.g., (G ∗ E)(r, t) =
∫ t

−∞G(t − t′)E(r, t′) dt′. It is easy to see that these
equations hold throughout space provided the susceptibility kernels G, F , K, and
L are set equal to zero outside the slab. The kernels G and F model the ordinary
dispersive effects of the slab, while the chirality, K, and the non-reciprocity, L, are
the characteristic properties of the bi-isotropic medium. If L = 0, the medium is
reciprocal, see Ref. [8]. In the interval t ∈ [0,∞), the susceptibility kernels G(t),
F (t), K(t), and L(t) are assumed to be twice continuously differentiable functions
with bounded derivatives. For t < 0, they are equal to zero by causality [8].

A right-going transient plane wave, with the electric field Ei(t) at z = 0 at time
t, impinges normally on the slab, which is assumed to be quiescent before a certain
time. Suppose thatEi is continuously differentiable with bounded derivative, except
possibly at a finite number of (discrete) times, and that this electric field is initially
quiescent. The investigation in Ref. [12] guarantees the existence of a transverse
solution, independent of the transverse variables (x, y), to the source-free Maxwell
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Figure 3: The graph of the magnetic susceptibility kernel, G − F , for the homo-
geneous reciprocal Lorentz medium in Example 1 in Section 4, restricted to two
roundtrips. See Figure 2 for comments.

equations, ∇×E = −∂tB and ∇×H = ∂tD, in each bounded time interval:

E(r, t) = exEx(z, t) + eyEy(z, t) ≡
(
Ex(z, t)
Ey(z, t)

)
,

and similarly for all the other electromagnetic fields. It is shown that the solution
is unique, that the wave front speed is precisely c throughout space, and that the
internal and scattered electromagnetic fields inherit the regularity of the incident
wave. The reflected and transmitted electric fields at the front and back walls,
z = 0 and z = d, respectively, are denoted by Er(t) and Et(t) at the time t.

The source-free Maxwell equations for the medium read

c
∂

∂z

(
E

ηJH

)
=

∂

∂t

{(
(−K + L)∗ I + (G− F)∗

I + (G + F)∗ −(K + L)∗

) (
E

ηJH

)}
, (2.1)

where the 2× 2-matrices I and J are defined by

I =

(
1 0
0 1

)
, J = ez × I =

(
0 −1
1 0

)
,

and the susceptibility matrices are given by G = GI, K = KJ, F = F I, and L = LJ.
Define new dependent variables at each point (z, t) through the wave splitting(

E+(z, t)
E−(z, t)

)
= P

(
E(z, t)

ηJH(z, t)

)
, P =

1

2

(
I −I
I I

)
. (2.2)

This wave splitting has been employed in several direct and inverse scattering prob-
lems for stratified complex slabs, see, e.g., Refs. [3, 4, 9, 10]. For a survey of the
well-documented and frequently used wave splitting technique, see Ref. [1].
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Figure 4: The graph of the chirality, K, for the homogeneous reciprocal Lorentz
medium in Example 1 in Section 4, restricted to two roundtrips. See Figure 2 for
comments.

In free space, E±(z, t) are the electric fields at (z, t) of the actual right- and left
going waves, respectively. As usual in the wave splitting context, such an interpre-
tation is not possible inside the slab. However, since

P−1 =

(
I I
−I I

)
,

the total electric field at the point (z, t) is equal to the sum of the split vector fields
at (z, t), and the corresponding total magnetic field is proportional to the difference
(with the proportionality matrix J/η). Combination of the wave equation (2.1) and
the wave splitting (2.2) yields the dynamic equation for the split vector fields E±:(

(c∂z + ∂t)E
+

(c∂z − ∂t)E
−

)
=

∂

∂t

{(
−G−K −F + L
F + L G−K

)
∗

(
E+

E−

)}
. (2.3)

The free space contribution is recognized as the left term. Since the tangential com-
posants of the electric and magnetic fields are continuous in the z-variable through-
out space, Eq. (2.2) implies that this holds for the split vector fields also; therefore,
the boundary values are E+(0, t) = Ei(t), E−(0, t) = Er(t), E+(d, t) = Et(t), and,
finally, E−(d, t) = 0, since the slab is excited from the left only.

Elementary analysis of the dynamic equation (2.3) shows that any finite jump-
discontinuity [E±(z1, t)] := E±(z1, t+0)−E±(z1, t−0) in E± at (z1, t) is attenuated
and rotated as it propagates through the bi-isotropic medium according to

[E±(z2, t± (z2 − z1)/c)] = Q±(z1, z2)[E
±(z1, t)], (2.4)

Q±(z1, z2) = e
1
c

∫ z2
z1

(∓G(0)−K(0))dz
= e±a(z1,z2)

(
cosφ(z1, z2) − sinφ(z1, z2)
sinφ(z1, z2) cosφ(z1, z2)

)
,
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Figure 5: The graph of the co-reflection kernel, Rco, for the homogeneous reciprocal
Lorentz medium in Example 1 in Section 4, and its reconstruction in two different
cases. These reconstructions have been obtained by the deconvolution of the re-
flected electric field, Er, see Eq. (2.5), see Figures 8 and 1. Time t is given in units
of d/c, and the vertical axis in units of c/d.

where the rotation angle φ(z1, z2) = −K(0)(z2−z1)/c and the attenuation exponent
a(z1, z2) = −G(0)(z2 − z1)/c. The jump-discontinuities in E+ originate from jump-
discontinuities in the incident electric field. Jump-discontinuities in E− never arise
in the matched wave impedance case when the excitation from the right is zero.

By Duhamel’s principle, the scattering operators can be represented as{
Er(t) =

(
R ∗Ei

)
(t),

Et(t+ d/c) = Q+(0, d)
{
Ei(t) +

(
T ∗Ei

)
(t)

}
,

(2.5)

where R(t) and T(t) are the reflection and transmission kernels, respectively, at the
time t. In axially symmetric problems as this one, they have the form

R(t) =

(
Rco(t) −Rcross(t)
Rcross(t) Rco(t)

)
, T(t) =

(
Tco(t) −Tcross(t)
Tcross(t) Tco(t)

)
.

The imbedding equations show that Rcross(t) ≡ 0 if the medium is reciprocal, see
Ref. [10]. If, in addition, F = 0, the medium is non-reflective. This follows at once
from the dynamic equation (2.3) since the split vector fields are free-coupled in this
case.

The Green functions, which essentially are the classical time derivatives of the
canonical solutions, i.e., the step responses of the slab from the two different polar-
izations of the incident electric field, are denoted

G±(z, t) =

(
G±1 (z, t) −G±2 (z, t)
G±2 (z, t) G±1 (z, t)

)
, (2.6)
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Figure 6: The graph of the co-transmission kernel, Tco, for the homogeneous recip-
rocal Lorentz medium in Example 1 in Section 4, and its reconstruction in two
different cases. These reconstructions have been calculated by the deconvolution of
the transmitted electric field, Et, see Eq. (2.5), see Figures 9, 10, and 1. Time t is
given in units of d/c.

and they relate the split vector fields E± at an arbitrary point z inside the slab to
the excitation Ei at the front wall according to{

E+(z, t+ z/c) = Q+(0, z)
{
E+(0, t) +

(
G+(z, ·) ∗E+(0, ·)

)
(t)

}
,

E−(z, t+ z/c) = Q+(0, z)
(
G−(z, ·) ∗E+(0, ·)

)
(t).

(2.7)

In this definition, Duhamel’s principle and the axial symmetry are referred to again.
The lack of symmetry in these equations originates from the fact that the wave
impedance is matched at the back wall. Furthermore, due to strict causality and the
invariance under time translations, G±(z, t) = 0 when t < 0. The boundary values
G+(0, t) = 0 and G−(d, t) = 0 follow from the definition of the Green functions and
the lack of sources on the right hand side of the slab. Notice that Eq. (2.5) is a
special case of Eq. (2.7); therefore, R(t) = G−(0, t) and T(t) = G+(d, t) at each
time t. The Green functions equations are obtained, e.g., by inserting Eq. (2.7) into
Eq. (2.3):

c∂zG
+ = −(∂t {G + K}) ∗G+ − ∂t

{
G + K + (F− L) ∗G−

}
,

c∂zG
− − 2∂tG

− = 2G(+0)G− + ∂t
{
F + L + (F + L) ∗G+

}
+ (∂t {G−K}) ∗G−.

For an alternative derivation, see Ref. [12]. These equations hold for 0 < z < d and
t > 0 except on the line t = 2(d− z)/c, where G− has a finite jump discontinuity:

G−(z, 2(d− z)/c+ 0)−G−(z, 2(d− z)/c− 0) = e2a(z,d)
(
F(+0) + L(+0)

)
/2.
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Figure 7: The graph of the cross-transmission kernel, Tcross, for the homogeneous
reciprocal Lorentz medium in Example 1 in Section 4, and its reconstruction in the
two discussed cases. See Figure 6 for comments.

The initial values are given by [9]

G−(z,+0) = −
(
F(+0) + L(+0)

)
/2, (2.8)

2cG+(z,+0) = z
(
F2(+0)− L2(+0)− 2(G′(+0) + K′(+0))

)
. (2.9)

Integration of the Green functions equations along the characteristics and discretiza-
tion by the trapezoidal rule give efficient numerical algorithms for both the direct
and inverse problems. The time step in the discretization is denoted by ∆t and the
step in the spatial variable by ∆z = c∆t/2.

In the direct scattering problem, the susceptibility kernels are known, and the
scattering kernels, i.e., the reflection and transmission kernels, are computed by
solving the Green functions equations or the imbedding equations numerically. The
scattered fields, i.e., the reflected and transmitted electric fields, are then easily
calculated by Eq. (2.5). In the next section, the inverse problem is treated.

3 The inverse scattering problem

The inverse scattering problem for the bi-isotropic slab is to infer information about
the susceptibility kernels from finite time traces of the reflected and transmitted
electric fields. The first step in the inverse procedure is the deconvolution of the
scattered electric fields, Er and Et. If the duration of the incident pulse is compar-
atively short and the peak of the pulse occurs at t = 0, as in the numerical examples
in Section 4, Eq. (2.5) implies that the following simple deconvolution technique
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Figure 8: The graph of the co-component of the reflected electric field, Er =
(Er

x, E
r
y), in the two discussed cases in Example 1 in Section 4. Time scale is given

in units of d/c, and the scattered electric fields have the same unit as the incident
electric field in Figure 1.

can be applied:


Er(t) = R(t)

∫ t

−∞
Ei(t′) dt′, t ≥ 0,

Et(t+ d/c) = Q+(0, d)

{
Ei(t) + T(t)

∫ t

−∞
Ei(t′) dt′

}
, t ≥ 0,

Et(−∆t+ d/c) = Q+(0, d)

{
Ei(−∆t) + T(0)

∫ −∆t

−∞
Ei(t′) dt′

}
.

(3.1)

Initially, the values of T(0) and Q(0, d) are obtained by the combination of the third
equation and the second, evaluated at t = 0. The values of R(j) := R(j∆t) and
T(j) := T(j∆t) for j = 0, 1, 2, . . . , Jmax then easily follow.

An inverse algorithm is now used to calculate finite time traces of the suscepti-
bility kernels. The initial values G(0) and K(0) follow immediately from Eq. (2.4)
and the assumption that the angle φ(0, d) = −K(0)d/c is less than 2π. The val-
ues of F (0) and L(0) are given by Eq. (2.8) since G−(+0,+0) = R(+0). The
Green functions equations suggest that the inverse algorithm should be based on
the derivatives of the susceptibility kernels, rather than these kernels themselves.
Karlsson [5, 7] has shown that the forward algorithm can be employed in solving
the inverse problem in the special case of an isotropic slab, and this method was
extended to the bi-isotropic case in Ref. [9]. A more detailed analysis of the Green
functions equations for the related an-isotropic slab shows that this method can be
improved, see Fridén [3]. The outline of this improved method is as follows:
Time step 0. The second Green functions equation, evaluated at (+0,+0), and
the two initial conditions (2.8) and (2.9) yield the following initial values for the
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Figure 9: The graph of the co-component of the transmitted electric field,
Et = (Et

x, E
t
y), for the homogeneous reciprocal Lorentz medium in the two cases in

Example 1 in Section 4. Time scale is given in units of d/c, and the scattered electric
fields have the same unit as the incident electric field. Note the time-translation of
half a roundtrip in the transmitted electric field components.

derivatives of the susceptibility kernels:

G′(0) + K′(0) =
1

2
(F(0)2 − L(0)2)− c

d
T(0)

F′(0) + L′(0) = −2(R′(0) + G(0)R(0)).

Time step J . Assume that G′(j), K ′(j), F ′(j), and L′(j) are known at times
j < J , where G′(j) := d

dt
G(j∆t), et c. In particular, this means that the values of

G±(i, j) := G±(i∆z, j∆t) at times j < J are known, since the forward program can
be applied. The discretized Green functions equations imply that{

T(J) = A+G′(J) + B+K′(J) + C+F′(J) + D+L′(J) + M+(J),

R(J) = A−G′(J) + B−K′(J) + C−F′(J) + D−L′(J) + M−(J),
(3.2)

where the coefficients A±, B±, C±, and D± are constant matrices. The matrices
M± depend on G′(j), K ′(j), F ′(j), and L′(j) at times j < J only. All these
matrices have the form (2.6). By running the forward program at time J with
G′(J) = K ′(J) = F ′(J) = L′(J) = 0, one obtains the values of M±(J) as the
dummy values of T(J) and R(J), respectively. The linear system (3.2) in G′(J),
K ′(J), F ′(J), and L′(J) can be solved since the real values of T(J) and R(J) are
known by the deconvolution (3.1) above. Finally, G±(i, J) are computed at all the
grid points (i, J) by running the forward program at time J once again, this time
with respect to the correct values of G′(J), K ′(J), F ′(J), and L′(J).

The procedure for the time step J is repeated for the steps J + 1, . . . , Jmax.
Finally, the susceptibility kernels are obtained from its time derivatives by numerical
integration.
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Figure 10: The graph of the cross-component of the transmitted electric field,
Et = (Et

x, E
t
y), for the homogeneous reciprocal Lorentz medium in the two cases in

Example 1 in Section 4. See Figure 9 for comments.

The continuous counterpart to Eq. (3.2) is




T(t) = −
(
G′(t) + K′(t)− (F(0)− L(0))(F(t) + L(t))

2

)d
c

+ integral terms,

R(t) = −F(t) + L(t)

2
+ integral terms.

(3.3)
In Section 5, these equations are derived with the aid of the imbedding equations.
Roughly speaking, all new information about the co-susceptibility kernel F and
the non-reciprocity kernel L is obtained from the co- and cross reflection kernels,
respectively. Using this information, the changes in the co-susceptibility kernel G
and the chirality kernel K can be deduced from the co- and cross transmission
kernels, respectively.

By discretizing the integrals in Eq. (3.3) and by employing approximations such
as F ′(t) = (F (t)− F (t−∆t)/∆t, the coefficient matrices A±, B±, C±, and D± in
Eq. (3.2) can be obtained explicitly. Note that A−, B−, C±, and D± all tend to
zero as ∆t tends to zero, and that A− and B− tend to zero one order faster than
C− and D−. In the limit, new information about F and L obviously is contained
the matrices M±.

4 Numerical examples

In the following two examples, the numerical performance of the algorithm is demon-
strated.
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Figure 11: The graph of the non-zero component of the incident electric field,
Ei = (Ei

x, E
i
y), employed in Example 2 in Section 4. Time t is given in units of d/c,

while Ei
x(t) is measured in V/m.

Example 1. A reciprocal homogeneous Lorentz medium with the susceptibilities

G(t) = e−0.2t sin 4t+ 0.3e−0.5t sin 6t,

F (t) = 0.3e−0.5t sin 6t,

K(t) = 0.002e−0.2t cos 4t,

(and L(t) ≡ 0) is investigated in this first example. All numerical values of the
kernels are given in the unit c/d and time t in units of d/c. The restrictions of
these susceptibility kernels to two roundtrips, i.e, the interval [0, 4] are depicted in
Figures 2, 3, and 4. Note that the chirality, K, is approximately three orders of
magnitude smaller than the electric susceptibility G+ F .

Two incident pulses are depicted in Figure 1. They are examples of realistic
experimental pulses. 129 and 257 data points per roundtrip are employed in these
two cases, respectively. Data relevant for the inverse scattering problem is shown in
Figures 8, 9, and 10. The result of the deconvolution of the scattered electric fields is
shown in Figures 5, 6, and 7. By use of the imbedding equations, one can show that
Rcross = 0 in reciprocal cases. These quantities are used in the inverse procedure,
and the reconstructions of the susceptibility kernels are shown in Figures 2, 3, and
4 for the two incident pulses. Notice that the agreement is excellent already at
33 data points per roundtrip, provided the noise-free reflection and transmission
kernels are employed in the inverse procedure instead of the scattered electric fields
in Figures 8, 9, and 10. (In this case, the exact values of G(0) and K(0) are assumed
to be known.) This indicates that effort should be made in the generation of sharp
pulses, rather than in increasing the number of data points.
Example 2. A non-reciprocal Debye-Lorentz medium is considered. With all fre-
quencies given in units of c/d and time t given in units of d/c, the susceptibility
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Figure 12: The graphs of the electric and magnetic susceptibilities, G + F and
G − F , respectively, for the Debye-Lorentz medium in Example 2 in Section 4,
restricted to one roundtrip. Time t is given in units of d/c, while the vertical axis
is given in units of c/d.

kernels are 

G(t) = e−0.5t + 0.5e−0.5t sin 10t+ 0.2e−0.5t sin 25t,

F (t) = 0.5e−0.5t,

K(t) = 0.02e−0.5t cos 10t+ 0.1e−0.5t cos 25t,

L(t) = 0.01e−0.5t cos 10t.

This medium has more and higher resonance frequencies than the pure Lorentz
medium in Example 1. In order to obtain good results in this case, only one
roundtrip is considered, i.e, the interval [0, 2]. The restriction to one roundtrip
is not a serious limitation, since one can extract more information by choosing a
thicker slab consisting of the same medium. In total, 1025 data points are used in
this second example. The susceptibility kernels are depicted in Figures 12 and 13,
while the incident pulse is found in Figure 11. Reflection and transmission data for
this medium are shown in Figures 16 and 17, respectively. These electric fields have
been computed by solving the Green functions equations or the imbedding equations
followed by convolution, see Eq. (2.5). The result of the introductory deconvolution
is depicted in Figures 14 and 15. In spite of the incompleteness of deconvolution,
the reconstructions of the susceptibility kernels is excellent, which indicates that
the method is stable under perturbations. The recovered susceptibility kernels are
also found in Figures 12 and 13, represented by markers. These reconstructions are
practically indistinguishable from the real ones.
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Figure 13: The graphs of the magneto-electric susceptibility kernels, L ± K, for
the Debye-Lorentz medium in Example 2 in Section 4, restricted to one roundtrip.
See Figure 12 for comments.

5 Exact solutions

In this section, the exact solution to the propagation problem treated above is
derived. It is shown that for each given time a > 0, both G+(z, t) and G−(z, t)
can be written as infinate series that converge absolutely and uniformly on the set
{(z, t) ∈ (0, d)× (0, a) : t �= 2(d− z)/c}. The result holds for each set (G(t), K(t),
F (t), L(t)), t ∈ [0,∞) of bounded and twice continuously differentiable susceptibility
kernels with bounded derivatives. As mentioned before, the explicit form of the
solution strongly supports Karlsson’s extended method for the inverse scattering
problem. The derivation is based on the imbedding method, which is an alternative
formulation of the propagation problem, that also relies on the dynamic equation
(2.3) and Duhamel’s principle. As an intermediate step, it is shown, that each
solution to the Green functions equations, via a well-defined transformation between
the two formulations of the propagation problem, can be regarded as a solution to
the imbedding equations, and vice versa. This establishes the fact that the latter
equations also are uniquely solvable (in each bounded time interval). Furthermore,
the solution to the imbedding equations is given explicitly.

Introduce travel time coordinates (x, s) by x = z/d and s = tc/d, and define
dimensionless Green functions and susceptibility kernels by the following abuse of
notation: G±(x, s) := G±(z, t)d/c, G(s) := G(t)d/c et c. The equation for G−(x, s)
can then be written as

(∂x − 2∂s)G
− = (G(0) + K(0))G−+

+ ∂s
{
(I + G+∗)(F + L) + G− ∗ (G−K)

}
,

(5.1)

and the equation for G+(x, s) becomes

−∂xG+ = (I + G+∗)(G′ + K′) + ∂s
{
(F− L) ∗G−

}
. (5.2)
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Figure 14: The graphs of the reflection kernels, Rco and Rcross, for the Debye-
Lorentz medium in Example 2 in Section 4. The broken lines give the reconstructions
obtained by deconvolution of the reflected electric field, see Eq. (2.5). See also
Figures 11 and 16. Time t is given in units of d/c, and the vertical axis in units of
c/d.

The investigation in Ref. [12] shows that the Green functions equations are uniquely
solvable; therefore, it is possible to define new dependent variables, R(x, s) and
T(x, s), on the same form and with the same regularity as G−(x, s) and G+(x, s),
respectively, by the Volterra equations

{
G+(1, s) = G+(x, s) + T(x, s) +

(
T(x, ·) ∗G+(x, ·)

)
(s) = T(0, s),

G−(x, s) = R(x, s) +
(
R(x, ·) ∗G+(x, ·)

)
(s).

(5.3)

The functions R(x, s) and T(x, s) are uniquely determined by Eq. (5.3) and they
are known as the reflection and transmission imbedding kernels, respectively, for
the subsection [x, 1] of the physical slab [0, 1], see Ref. [9]. Conversely, the Green
functions G±(x, s) are determined uniquely by Eq. (5.3) when the imbedding kernels
are given. Note that the functions R(x, s) and T(x, s) defined by Eq. (5.3) become
continuously differentible except on the line s = 2(1− x), where R(x, s) has a finite
jump-discontinuity, and, furthermore, that R(s) := R(0, s) and T(s) := T(0, s) are
the physical reflection and transmission kernels, respectively, at time s.

Formally, the imbedding kernels are defined by:{
E−(z, t) =

(
R(z, ·) ∗E+(z, ·)

)
(t)

E+(d, t+ (d− z)/c) = Q+(z, d)
{
E+(z, t) +

(
T(z, ·) ∗E+(z, ·)

)
(t)

}
,

where R(x, s) = R(z, t)d/c and T(x, s) = T(z, t)d/c. A straightforward derivation
using the dynamic equation (2.3) shows that the imbedding kernels satisfy the non-
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Figure 15: The graphs of the transmission kernels, Tco and Tcross, for the Debye-
Lorentz medium in Example 2 in Section 4. The reconstructions have been obtained
by deconvolution of the transmitted electric field, see Eq. (2.5). See also Figures 11
and 17. Time t is given in units of d/c, and the vertical axis in units of c/d.

linear partial integro-differential equations

∂xR− 2∂sR = ∂s {F + L + 2G ∗R + (F− L) ∗R ∗R} (5.4)

R(1, s) = 0

R(x,+0) = −
(
F(+0) + L(+0)

)
/2

[R(x, 2(1− x))] =
exp

(
2a(x, 1)

)
2

(
F(+0) + L(+0)

)
and

∂xT = (∂s {G + K}) ∗T + ∂s {G + K + (F− L) ∗ (R + R ∗T)} (5.5)

T(1, s) = 0

2T(x,+0) =
{
F2(+0)− L2(+0)− 2(G′(+0) + K′(+0))

}
(1− x)

where the attenuation factor a(x1, x2) = −(x2−x1)G(+0). The domain of definition
for these equations is {(x, s) : s > 0, 0 < x < 1, s �= 2(1 − x)}. Note that the
reflection imbedding kernel is independent of the chirality kernel K.

In this paragraph, the imbedding equations are derived from the Green functions
equations (5.1)–(5.2) and the relation (5.3) between the two formulations, which is
considered to be the definition of the imbedding kernels. Differentiation with respect
to x in the first relation of Eq. (5.3) yields

(I + G+∗)∂xT = −(I + T∗)∂xG+. (5.6)

Analogously, differentiation of the second relation in Eq. (5.3) gives the equation

(∂x − 2∂s)G
− = (I + G+∗)(∂x − 2∂s)R + R ∗ ∂xG+ − 2R(x,+0)G+. (5.7)
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Figure 16: The graphs of components of the reflected electric field, Er = (Er
x, E

r
y),

at the front wall of the Debye-Lorentz medium in Example 2 in Section 4. Er has
been obtained by the convolution of the reflection matrix kernel, R, and the incident
electric field at the front wall, Ei, see Eq. (2.5). See also Figures 11 and 14. The
time t is given in units of d/c, and the scattered electric fields have the same unit
as the incident electric field.

Furthermore, if the second relation in Eq. (5.3) is inserted in Eq. (5.2), then

−∂xG+ = (I + G+∗)∂s {G + K + (F− L) ∗R} . (5.8)

Let the Volterra operator I + T∗ act on this equation and use Eq. (5.6). The result
is

(I + G+∗)∂xT = (I + G+∗)
(
(I + T∗)∂s {G + K + (F− L) ∗R}

)
,

and since the inverse of (I + G+∗) exists,

∂xT = (I + T∗)∂s {G + K + (F− L) ∗R} , (5.9)

i.e., the transmission imbedding equation (5.5) holds for the functions R and T
defined by Eq. (5.3). It remains to prove that these kernels also satisfy the reflection
imbedding equation (5.4). To see this, let the Volterra operator (I + G+∗)−1 act on
Eq. (5.1). By Eq. (5.7) and the second relation in Eq. (5.3) one obtains

(∂x − 2∂s)R = −(I + G+∗)−1∂xG
+ ∗R+

+ (2R(x, 0) + F(0) + L(0))(I + G+∗)−1G++

+ (G(0) + K(0))R + ∂s {F + L + (G−K) ∗R} .
(5.10)

Use of the initial condition R(x,+0) = G−(x,+0) = −(F(+0) + L(+0))/2 and
the substitution of Eq. (5.8) into Eq. (5.10) now yields the reflection imbedding
equation (5.4), since the contributions involving the chirality kernel K cancel.
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Figure 17: The graphs of components of the transmitted electric field, Et =
(Et

x, E
t
y), at the back wall of the Debye-Lorentz medium in Example 2 in Section 4.

Et is obtained by the convolution of the transmission matrix kernel, T, and the in-
cident electric field at the front wall, Ei, see Eq. (2.5). See also Figures 11 and 15.
The time t is given in units of d/c. Note the time translation (of half a roundtrip).

Conversely, assume that R and T satisfy the imbedding equations (5.4) and
(5.5), and define G± by Eq. (5.3). Then G± satisfy the Green functions equations.
To see this, let Eq. (5.5), or rather its equivalent, Eq. (5.9), be subject to the
operator (I + G+∗). Application of Eq. (5.6) immediately yields the equation

−(I + T∗)∂xG+ = (I + T+∗)
(
(I + G+∗)∂s {G + K + (F− L) ∗R}

)
.

Since the inverse of the operator (I + T∗) exists, it follows that G+ satisfy Eq.
(5.8), which easily can be transformed to the Green functions equation (5.2) by the
second relation in Eq. (5.3). It is now possible to write the reflection imbedding
equation (5.4) as in Eq. (5.10), and, finally, by letting the operator I + G+∗ act on
this equation, the Green functions equation (5.1) is also obtained. This completes
the proof of the fact that the two formulations of the propagation problem can be
transformed into one another by Eq. (5.3). Note also that initial values, boundary
values, and jump discontinuities are transformed properly by Eq. (5.3), and that
the derivation holds for the stratified slab.

The unique solution to the reflection imbedding equation is now derived. For
the semi-infinite homogeneous bi-isotropic slab one readily obtains the non-linear
Volterra equation

−2R∞ = F + L + 2G ∗R∞ + (F− L) ∗R∞ ∗R∞, (5.11)

since the reflection kernel R∞ is independent of x in this case. This equation also
holds for the finite slab in the triangular region bounded by the lines s = 0, x = 0,
and s = 2(1−x), where the presence of the back wall has not yet been observed. By
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unique solvability, the property (F−L) ∗R∞ is proportional to the identity matrix.
The proportionality factor is denoted by R1,∞, i.e., R1,∞I = (F−L) ∗R∞, and this
function satisfies

−2R1,∞ = F ∗ F + L ∗ L+ 2G ∗R1,∞ +R1,∞ ∗R1,∞. (5.12)

In each bounded interval s ∈ (0, a), the solutions to Eqs. (5.12) and (5.11) can be
obtained by successive approximations, and they are given by

R1,∞ = −1−G+
∞∑
n=0

(
1
2

n

)
(2G+G2 − F 2 − L2)n (5.13)

and

R∞ = −(1 + (G+
R1,∞

2
)∗)−1 (F + L)

2
,

respectively, where the notation Gn := G ∗ G ∗ · · · ∗ G (n − 1 times) with G0 := 1
and G1 := G has been adopted. Note that the lowest non-vanishing power of the
susceptibility kernels in the series (5.13) is quadratic (= −(F 2 +L2)/2). This series
converges absolutely and uniformly on (0, a) by Weierstrass’ comparison test since
the terms are convolutions. Thus, term by term integration is justified. The inverse
of the Volterra operator 1 + (G + R1,∞/2)∗ can be written 1 + f∗, where f is the
resolvent kernel to G+R1,∞/2, i.e.,

f +G+
R1,∞

2
+ f ∗ (G+

R1,∞
2

) = 0.

Naturally, the reflection kernel R∞ can also be expressed as an absolutely and
uniformly series on (0, a) involving the susceptibility kernels G, F , and L:

R∞ = −
(
1 +

( ∞∑
n=1

(G+
R1,∞

2
)n(−1)n

)
∗

)(F + L)

2
. (5.14)

Knowledge of R∞ makes it possible to derive the general solution to the reflection
imbedding equation also for 2(1 − x) < s < a + 2(1 − x). To see this, define the
deviation from R∞ by ∆R(x, s) := R(x, s + 2(1 − x)) − R∞(s + 2(1 − x)). This
deviation is identically zero for s < 0, and for 0 < s < a, it satisfies the boundary
value problem {

∂x∆R = ∂s {C ∗∆R + (F− L) ∗∆R ∗∆R} ,
∆R(1, s) = −R∞(s),

(5.15)

where C(s) := 2(G(s) +R1,∞(s)) only depends on time s. Define

∆R1I := ∂s {(F− L) ∗∆R} = (F(0)− L(0) + (F′ − L′)∗)∆R, (5.16)

to obtain a scalar problem:{
∂x∆R1 = (C(0) + C ′∗)∆R1 + ∆R1 ∗∆R1,

∆R1(1, s) = −R′1,∞(s).
(5.17)
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This is, however, an equation of Riccati type, which can be linearized with the
substitution ∂xU(x, s) =

(
(1 − U(x, ·)∗)∆R1(x, ·)

)
(s), where U(1, ·) := 0 without

restriction. For each, with respect to x, continuously differentiable solution ∆R1

defined on (x, s) ∈ (0, 1)× (0, a), this substitution determines uniquely a twice, with
respect to x, continuously differentiable function U on (x, s) ∈ (0, 1) × (0, a), and
vice versa. This follows from the expression

U(x, s) = −
∞∑
n=1

( ∫ x

1

∆R1(x
′, s) dx′

)n (−1)n

n!

obtained by successive approximations and by

∆R1(x, s) =
(
(1− U(x, ·)∗)−1∂xU(x, ·)

)
(s). (5.18)

Let 1 − U∗ act on both sides of Eq. (5.17) and use the definition of U . Since
∂xU(1, s) = −R′1,∞(s) for all s, integration with respect to x then yields

{
∂xU +R′1,∞ = (C(0) + C ′∗)U,
U(1, s) = 0.

The solution to this equation is

U(x, s) = −
(
x− 1 +

( ∞∑
n=2

(C(0) + C ′)n−1 (x− 1)n

n!

)
∗

)
R′1,∞,

where

(C(0) + C ′)n :=
n∑
k=0

(
n
k

)
C(0)n−k(C ′)k.

(Recall the notation (C ′)k := C ′ ∗C ′ ∗ · · · ∗C ′ (k− 1 times).) The solution (5.18) to
the scalar problem (5.17) is therefore

∆R1 = −
(
1 +

(
x− 1 +

( ∞∑
n=2

(C(0) + C ′)n−1 (x− 1)n

n!

)
∗

)
R′1,∞ ∗

)−1

(
1 +

( ∞∑
n=1

(C(0) + C ′)n
(x− 1)n

n!

)
∗

)
R′1,∞,

and using Eq. (5.16), it is now easy to verify that the solution to Eq. (5.15) is

∆R(x, s) = −R∞(s)−
{ ∞∑
n=1

( ∫ x

1

(C(0) + C ′(·) + ∆R1(x
′, ·)) dx′

)n 1

n!
∗R∞(·)

}
(s),

which establishes the solution

R(x, s+ 2(1− x)) = R∞(s+ 2(1− x)) + ∆R(x, s), 0 < s < a,
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to the reflection imbedding equation in the rest of its domain of definition. Note
that the solution is well-defined since the series involved converges absolutely and
uniformly on (x, s) ∈ (0, 1)× (0, a). Observe that these formulas show that the new
information about the susceptibility kernels that one can extract from the (physical)
reflection kernel R(s) is contained in the part R∞(s) only, just as expected.

Once the reflection imbedding kernel is known, it is easy to obtain the solution
to the transmission imbedding equation (5.9):

T(x, s) =
∞∑
n=1

( ∫ x

1

∂s
(
G(s) + K(s) + {(F− L) ∗R}(x′, s)

)
dx′

)n 1

n!
.

Similarly, the Green functions can be solved:


G+(x, s) =
∞∑
n=1

( ∫ x

0

∂s
(
G(s) + K(s) + {(F− L) ∗R}(x′, s)

)
dx′

)n (−1)n

n!
,

G−(x, s) = R(x, s) +
(
R(x, ·) ∗G+(x, ·)

)
(s).

The first formula is obtained from Eq. (5.8) and the second is just the second formula
in Eq. (5.3). The formula for G− and the remark at the end of the preceding
paragraph show that the second formula in Eq. (3.3) follows from the first term in
the series (5.14). The first term in the series for G+(1, s) = T(s) shows that the
first formula in Eq. (3.3) holds. This completes the investigation.

6 Conclusion

In this paper, a non-iterative method to reconstruct a finite time trace of the four
susceptibility kernels of a general dispersive, homogeneous bi-isotropic slab is pre-
sented. Finite time traces of the reflected and transmitted fields induced by a
normally incident electromagnetic pulse are used as data. Deconvolution reduces
the problem to the generic one, which has been investigated before. An improved
version of the inverse algorithm is used in this paper. In a couple of numerical exam-
ples, it is demonstrated that it is possible to obtain very good reconstructions of the
dispersive properties of the bi-isotropic medium, in spite of the ill-posed nature of
deconvolution. Finally, the exact solution to the direct scattering problem is derived
for arbitrary susceptibility kernels, and its explicit form (series expansions) supports
the employed inverse algorithm.
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