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Popular science summary 

 
Drug discovery and development is a time-consuming and expensive process. 
Years, sometimes decades, together with millions of dollars are invested in a 
compound before it reaches the drug market in the form of an effective and 
safe-to-use drug. Therefore, it is of great interest to reduce the time and costs 
needed along the way. The use of computational methods in drug design is one 
way in which this could be achieved.  

To accomplish this, we need a thorough knowledge of how drugs fulfil their 
purpose. Whether we are talking about simple painkillers that can be found in 
every medicine cabinet or about drugs used to treat serious illnesses, such as 
those used in cancer treatment, the mechanism of action of a drug molecule is 
normally the same: Find the target molecule and inhibit its function. But how 
does this work? For sure, these target molecules are not fugitives and drugs are 
not bounty hunters. There are no “Wanted – dead or alive” posters hanging 
around our blood stream and there is no award waiting at the end of the drug 
molecule’s journey. It is even more interesting than that. 

In most cases, the target molecules are proteins. Compared to drug molecules, 
protein molecules are considered to be molecular giants. Although quite large, 
they do not have a complicated sequence – they are built out of small molecules 
called amino acids, connected together into long chains. There are twenty 
different amino acids that are used by nature to build proteins. We can imagine 
this as the language of nature, where amino acids are letters of an alphabet. 
Now, with that analogy, we can explain how it is possible that such, in principle 
very simple molecules, are so special that they are the first ones to look at when 
one is trying to cure a disease.  

In the same way, a meaningful message is formulated by arranging letters into 
words and words into sentences: Putting together a number of amino acids in a 
specific sequence will produce a functional protein, capable of performing a 
certain function in an organism. But proteins are not just long molecular worms 
floating around living bodies. The amino acid sequence itself is not enough and 
one must “read between the lines”. In this case, it means to look at the 
distinctive three-dimensional structure of the protein in question. The shape of 
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the protein is a direct consequence of the primary protein sequence and it 
determines what the protein function will be.  

Proteins can have many roles in living organisms. They provide structure and 
support for cells, they bind and carry atoms and small molecules within cells 
and throughout the body, they act as messengers, transmitting signals between 
cells, tissues and organs, they speed up chemical reactions (enzymes), and they 
even protect living organisms from viruses and bacteria.  

While performing their functions, proteins may interact with certain molecules, 
called ligands. A ligand can be anything between an atom and a macromolecule, 
and what happens with a ligand after it binds to a protein depends on the protein 
function. However, it is important to note that most proteins bind specific 
ligands or groups of ligands.  

With this knowledge, we can now come back to where we started – drugs. Most 
drugs work by interacting with specific proteins, so that they either block the 
physiological function of the protein by disabling the binding of their natural 
ligands, or cause the protein to become active by mimicking the effect of the 
natural ligands. This explains the importance of proteins as drug targets. A 
protein with its particular function is typically part of an important process 
taking place in a living organism. Sometimes these processes get involved in 
disease pathways, meaning that, inhibiting or activating these particular targets 
can potentially eliminate the disease. Moreover, foreign disease-causing agents, 
such as bacteria, also have their own set of proteins that are crucial for their 
function, which means that targeting these proteins can eliminate the bacteria or 
disable their reproduction.  

Designing a new drug is always a challenging task. There are protocols and 
rules to follow when one is trying to find a compound that will be able to bind 
to a specific target. Even before the preclinical stage of drug discovery, plenty 
of research is conducted in order to discover the drug target, find and synthetize 
possible drug candidates, and measure their binding affinities.  

The use of computational methods can facilitate drug design in many ways. 
Simple and inexpensive methods, such as docking and scoring procedures, can 
enable screening of large compound libraries, which is one way of finding 
possible drug candidates. Another possibility is de novo design, where ligands 
are designed from scratch. Ideally, the choice of drug candidates should be 
narrowed down to a single compound, called lead compound, which is further 
optimized so that it fulfils all the criteria of a successful drug. This requires 
computational methods that employ higher levels of theory and therefore are 
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more expensive. There exists a plethora of methods used to estimate binding 
affinity of a drug molecule binding to a protein target. These methods are 
continuously being tested and improved. Computational methods can also be 
used to study the chemistry of protein–drug binding, which helps to better 
understand the binding process and thereby design better drugs in the future.  

In this thesis, various methods were employed to study the binding of different 
drug candidates to the galectin-3 protein, a target that can potentially be used in 
cancer treatment. Specific protein–drug interactions were studied, as well as the 
role of water and conformational entropy of the protein and drug in drug 
binding. Moreover, we participated in two blind challenges (D3R and 
SAMPL6), in which we tested the performance of different methods used to 
estimate binding affinities.  
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1 Introduction 

In this chapter, I will briefly describe the drug-design process and introduce 
basic ideas behind drug-design strategies. Next, I will give an overview of the 
most important concepts of protein–ligand binding, as proteins are in most cases 
used as drug targets. Finally, I will present the galectin-3 protein, which was 
used as the model system in most of the papers in this thesis.  

1.1 Drug discovery and drug design 

Drugs are compounds capable of interacting with a biological system in a way 
that produces a biological response. The response is not always beneficial for 
the biological system of interest. In fact, depending on how the system reacts, a 
compound can be anything between a medicine and a poison. There has been 
much discussion about the line between “good” and “bad” drugs, how safe it is 
to use certain drug compounds, and what are the side effects of their usage. 
Most of the time, the answer lies in the dosage. Taken in right amounts, a 
compound may, by interacting with specific macromolecules in a biological 
system, alter their function, and cause a desired biological response.  

When designing new drugs that will be used to treat a disease, one should 
first choose a target macromolecule (receptor, enzyme or nucleic acids). This is 
not a trivial task, considering that it takes a great deal of understanding which 
macromolecules are involved in a disease. Knowing their structure, properties, 
and functions is crucial, since many processes in an organism may, in one way 
or another, depend on activating or inhibiting a potential target.  

Once a target macromolecule has been selected, the next step is to find a lead 
compound. This compound can interact with the target, and, although the level 
of interaction may not be perfect and there may exist some side effects, the 
compound will serve as a start for the drug design and drug development 
process. There are numerous ways in which a lead compound can be found. 
Many medicines used today are developed from a lead compound obtained from 
a natural source, such as plants, microorganisms, animals, or even from venoms 
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and toxins. Another source is existing drugs, as well as libraries of synthetic 
compounds that never reached the pharmaceutical market. When possible, 
natural ligands or modulators can be used as lead compounds. In case of 
enzymes, it can be their substrates or products. Nowadays, if the target structure 
is well known, it is possible to use molecular modelling software to design 
drugs that can fit the desired binding site (de novo drug design). 

After discovering a lead compound, the drug design process can begin. 
Ideally, the starting compound should be modified so to obtain a good level of 
activity and selectivity for its target. Of course, all side effects should be 
brought to a minimum. The new drug should be easily synthetized, chemically 
stable, non-toxic, and should have acceptable pharmacokinetic properties.  

There are various strategies that can be used to optimize a lead compound. 
Many of them rely on identifying important interactions that exist between the 
target and the drug, which are responsible for the drug activity, as well as parts 
of the drug molecule that can be modified so that new, more favourable 
interactions with the target can be formed. The simplest approach is to look at 
the binding state and draw conclusions from the interactions present. However, 
it has become clear that sometimes this is insufficient, as other factors influence 
the binding. An example would be change in entropy of both the target and the 
drug molecule, upon formation of the complex. Another example is the 
influence of the surrounding water on the binding.  

To conclude, the key to successful drug design is to understand the system in 
question. Knowing which factors are most relevant for the system increases the 
chance that the changes made on a lead compound will result in a new drug 
molecule with enhanced activity and better properties. 

The drug discovery process is far from simple. It takes a long time to find a 
molecule that fulfils all the criteria described above. After optimizing a lead 
compound, many steps follow before the drug is out on the market. First comes 
preclinical stage, in which the drug is tested for toxicity on various tissues. 
After that come the clinical trials in several stages, where safety and dosage of 
the drug is tested on humans. Finally, if the drug meets all the requirements, it 
must be legalized and then the production may begin on a large-scale. 
Altogether, it is a lengthy and costly procedure. One way to reduce the time and 
costs of drug development is to use computational methods to design drugs. 
There are many computational methods that can be used for finding and 
optimizing a lead compound, ranging from simple and inexpensive docking and 
scoring procedures to computationally demanding but more accurate quantum-
mechanics based methods.1  
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1.2 Protein–ligand binding 

Any atom, ion, or a molecule capable of forming non-covalent interactions with 
a target macromolecule, is called a ligand. Drug molecules used in the treatment 
of different diseases, together with substances naturally binding to 
macromolecules in a living cell, belong to this large group of compounds. The 
principles of binding and forming a macromolecule–ligand complex are the 
same for both drugs and natural substances. Therefore, term “ligand” will be 
used instead of “drug” from now on. In this thesis, only protein targets have 
been studied, so the focus will be on proteins. I will briefly describe the most 
important concepts of protein–ligand binding, along with important interactions 
between the two molecules, and the role of surrounding water in the binding 
event. 

1.2.1 Proteins as drug targets  
I will start this part by explaining what makes proteins the most important drug 
targets in medicinal chemistry. Two main characteristics of a protein are its 
structure and function. Most proteins have a unique three-dimensional structure, 
resulting from the arrangement of the amino acids linked together into long 
chains through peptide bonds. There are 20 common amino acids found in 
humans. These protein building blocks can be non-polar, polar, or charged, and 
their number, ratio, and order in a protein chain, together with the rigidity of the 
peptide bond, determine the shape and the function of a protein. Proteins 
represent the cogwheels in all living organisms, having key roles in many 
biological processes, e.g. transport of molecules through the cell membrane 
(transport proteins), speeding up chemical reactions – catalysis (enzymes), and 
communication between cells (receptors).2 If a certain biological process is 
involved in a disease, proteins that take part in that process become a potential 
drug target, since inhibiting these proteins may incapacitate the source of the 
disease. Whether these target proteins belong to our own cells or to a foreign 
source (e.g. virus, bacteria, or fungi), the idea is to prevent the protein from 
performing its function. 

The binding of a ligand (L) to a protein (P) takes place in water solution, and 
results in a protein–ligand complex (PL). This can be described by the reaction: 

P + L ⇌ PL	
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The binding reaction (forward ⇀) and unbinding reaction (backward ↽) both 
have their own kinetic rate constants, 𝑘𝑘on and 𝑘𝑘off, respectively. When the 
equilibrium state is reached, the two reactions are balanced and we can write: 

𝑘𝑘on[P][L] = 𝑘𝑘off[PL]	
where the square brackets indicate equilibrium concentrations. The binding 
constant (𝐾𝐾b), and the dissociation constant (𝐾𝐾d), can be calculated from the 
ratio: 

𝐾𝐾b = 𝑘𝑘on 𝑘𝑘off⁄ = [PL] [P][L]⁄ = 1 𝐾𝐾d⁄ 	
The binding takes place at conditions of a constant temperature and pressure, 
which means that it will only happen if the change in Gibbs free energy 
(∆𝐺𝐺6789) at equilibrium is negative (the process is spontaneous). The more 
negative ∆𝐺𝐺6789 is, the more stable will the complex be. The relationship 
between 𝐾𝐾6 and ∆𝐺𝐺6789 is given by: 

∆𝐺𝐺bind = −𝑅𝑅𝑅𝑅 ln𝐾𝐾b𝐶𝐶		
where	 𝑅𝑅 is the ideal gas constant (8.314 J/mol/K), 𝑅𝑅 is the temperature in 
degrees of Kelvin, and 𝐶𝐶 is the standard concentration (M). The binding free 
energy of a protein–ligand complex can also be divided into enthalpy (Δ𝐻𝐻) and 
entropy (𝑅𝑅Δ𝑆𝑆) components:  

∆𝐺𝐺bind = 𝛥𝛥𝐻𝐻bind − 𝑅𝑅𝛥𝛥𝑆𝑆bind	
This means that the binding free energy depends on changes in the enthalpy 

and the entropy of the system upon ligand binding. Changes in the enthalpy 
come from breaking and forming non-covalent interactions between the protein, 
the ligand, and solvent molecules. If the newly formed interactions in the 
system are stronger than the interactions that existed before the binding, Δ𝐻𝐻 will 
be negative, in favour of the binding, and vice versa. Intermolecular interactions 
will be discussed in the next section. The change in entropy reflects the change 
in the level of the order in the system, coming from the change in the solvent 
entropy (Δ𝑆𝑆EFGH), the conformational entropy of the protein and the ligand 
(Δ𝑆𝑆JF8K), and from the loss of translational and rotational degrees of freedom of 
the protein and ligand upon complex formation (Δ𝑆𝑆LMN8E/MFL):3 

𝛥𝛥𝑆𝑆 = 𝛥𝛥𝑆𝑆solv + 𝛥𝛥𝑆𝑆conf + 𝛥𝛥𝑆𝑆trans/rot	
Quite often, when comparing a series of homologous ligands binding to a 

protein, it is observed that ligands that exhibit more favourable interactions to 
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the protein, i.e. more favourable enthalpy, also experience lower mobility, 
which results in less favourable entropy. This phenomenon is called enthalpy–
entropy compensation,4 and it demonstrates itself through linear dependence of 
Δ𝐻𝐻 and	Δ𝑆𝑆 for a series of homologous ligands binding to the same protein.  

1.2.2 Protein–ligand interactions 
There are several types of intermolecular interactions that can be found between 
a protein and a ligand. The number and types of these interactions in a binding 
site depend on the structure of the protein and ligand, and on the type of 
functional groups present in the binding site.  

The strongest of all the intermolecular interactions is ionic interaction that 
exists between functional groups with opposite charges (e.g. between 
carboxylate and ammonium ions). The strength, which can be anywhere 
between 20 and 400 kJ/mol,5 depends on the distance between the ions, but also 
the surrounding environment, with this interaction being stronger in a 
hydrophobic environment than in a polar one. 

The hydrogen bond is defined as the interaction between an electron-rich 
heteroatom and electron-deficient hydrogen atom, bound covalently to another 
electronegative atom. The strength of a hydrogen bond can vary (6–20 kJ/mol),6 
and is determined by the geometry of the bond, as well as the atoms involved. 
Even weak hydrogen bonds vastly contribute to the binding enthalpy, since 
there can be plenty of them in a single binding site.  

Although quite weak (2–4 kJ/mol), the Van der Waals interaction or London 
dispersion dominates between hydrophobic regions of a protein and a ligand 
when they are close enough to each other. They are a consequence of temporal 
fluctuations in the electron distribution, which gives rise to a temporary dipole, 
which may induce a dipole in the neighbouring regions.  

Molecules that have a permanent dipole can form a dipole–dipole interaction 
with another permanent dipole, so that the two dipoles are aligned parallel to 
each other, but in opposite directions. Another possibility would be interaction 
with an ion to form an ion–dipole interaction, or an interaction with a non-polar 
group resulting in a dipole–induced dipole interaction.  

Special cases of these interactions will be studied in this thesis. In particular, 
the cation–p interaction, which arises between an electron-rich π system and a 
cation. The strength of this interaction is rather significant, with energies that 
are quite often of the same order of magnitude as hydrogen bonds. For that 
reason, cation–π interactions are important in nature, mainly in protein systems, 
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where they play a role in protein structure, molecular recognition, and enzyme 
catalysis. 

Organofluorine compounds are often used as drugs. These compounds have a 
highly polarized C–F bond, that can interact with parts of a protein that have a 
partial positive charge. One such example is the amide group. The partially 
negative fluorine atom may interact with the carbon atom from the C atom of 
the amide, forming fluorine–amide interaction (C–F···C=O).  

Finally, halogen bonds are also studied in this thesis. These bonds are short-
ranged interactions that may occur between an electron-rich atom (halogen bond 
acceptor) and a positive region of a polarized halogen atom (halogen bond 
donor). The reason the halogen atom is polarized is that it is covalently bound to 
another atom, which makes the electrostatic potential of the halogen unevenly 
distributed, with a partially positive region opposite the covalent bond, called 
the s-hole. The formation of a σ-hole largely depends on the polarizability of 
the halogen, which increases with the size and the decreasing electronegativity 
of the halogen (i.e. F < Cl < Br < I). Moreover, the ability to withdraw electrons 
of the molecular group covalently bound to the halogen also contributes to the 
σ-hole formation.  

1.2.3 Role of water in protein–ligand binding 
Although often neglected, water plays an important role in protein–ligand 
binding. First, water is the medium where the binding process takes place, 
meaning that before the binding, water molecules completely surround and 
interact with both the protein and the ligand. During the binding event, water 
molecules that solvate the binding site are partly displaced into bulk. This 
process is called desolvation and contributes both enthalpically and entropically 
to the total free energy of the system.  

From the enthalpic point of view, water molecules displaced from the solute 
surface lose all favourable interactions with the solute. On the other hand, they 
form a new hydrogen-bond network in bulk water, whose interactions may or 
may not be more favourable than the interactions these water molecules formed 
with the solute molecules. Entropically speaking, water molecules experience 
different levels of order upon displacement. For example, it has been shown that 
the density of water molecules in a hydrophobic cavity is lower than the one in 
bulk, so water molecules displaced from such a cavity, become more ordered in 
bulk, which opposes the binding. Conversely, if water molecules in a protein 
cavity are well localized, their displacement into bulk makes them less ordered, 
which lowers their entropy and favours the binding.  
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The sign and magnitude of the enthalpy and entropy contributions of 
desolvation to the total free energy of the system are determined by the size and 
the shape of the solute, as well as the type and strength of interactions that exist 
between water molecules and the solute.  

Another way water molecules may contribute to protein–ligand binding is as 
individual water molecules that stay “trapped” at the protein–ligand binding 
interface. These water molecules are called bridging water molecules, since they 
connect parts of the protein and the ligand through hydrogen bonds. Usually, 
these molecules are tightly bound and highly ordered. This is entropically 
disfavouring, because a water molecule must pay high entropic penalty in order 
to stay in a single place. It was estimated that this penalty is around 8 kJ/mol at 
300 K.7 Such a water molecule is kept in place by a strongly favourable 
enthalpy, coming from the interactions with the solute molecules. From the 
ligand-design point of view, these water molecules are ideal for displacement 
by a new ligand. If we assume that the new ligand can form equally good 
interactions with the protein, the system would benefit from releasing this water 
molecule, since it would then not have to pay the entropic penalty. It is useful to 
know if such water molecules exist when a lead compound binds to a protein. If 
so, a new ligand may be designed so that it displaces the water molecule, but at 
the same time forms good interactions with the protein, without losing the 
favourable interactions that existed between it and the protein.8,9 There are 
several methods that may predict if such water molecules exist and in the 
Methods part of this thesis, I will discuss some of them.  

1.3 Galectin-3  

Galectin-3 is a protein used as a model system in several papers in this thesis. 
For that reason, it will be briefly introduced here.  

Galectins are a family of proteins from the class of lectins. Their main 
characteristic is the carbohydrate-recognition domain (CRD), capable of 
binding ligands containing a β-galactoside moiety.10,11 The CRD consists of 
approximately 135 amino acid residues, folded into two β-sheets that form a 
slightly bent sandwich (Figure 1.1). The β-sheet on the convex side has five 
strands, whereas that on the concave side, which can bind the carbohydrate 
ligand, has six strands.  
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Figure 1.1. Galectin-3C in a complex with a ligand. 

A total of 15 galectins have been found in mammals, 12 of which can be 
expressed in humans. Based on their structure, they have been classified into 
three types: prototypical, tandem-repeat, and chimeric galectins (Figure 1.2). 
The prototypical galectins contain a single CRD and may associate to form 
homo-dimers. The tandem-repeat galectins contain two distinct CRDs within 
one polypeptide chain, linked with a small peptide domain. Finally, the 
chimeric galectins have a single CRD and a very long amino-terminal domain, 
rich in proline, glycine, and tyrosine, which enable self-aggregation into 
oligomers consisting of up to five monomeric units. Galectin-3 is the only 
member of the chimera type of galectins. Depending on its concentration and 
the presence of the ligands, it can exist as a monomer or an oligomer. 
Oligomerization can sometimes be a problem when performing experiments 
involving galectin-3, so usually galectin-3C is used instead, in which the part 
responsible for oligomerization has been removed. 

Galectins have many physiological functions. They are involved in several 
processes at the cellular level, such as cell signalling, adhesion, cell 
differentiation, migration, and autophagy. Through these processes, galectins 
regulate the organism’s immune and inflammatory responses, but they are also 
involved in several diseases, such as fibrosis, cancer and heart disease. 
Galectin-3 has been shown to have great importance in cancer progression and 
metastasis, which makes it an interesting therapeutic target.12  
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Figure 1.2. Different galectin types: a) prototypical galectins forming a dimer, b) tandem-repeat galectins, and c) 
five chimeric galectins forming a pentameric complex. 

Galectin-3 is an excellent model system for the study of protein–ligand 
binding. It is biomedically relevant, but it is also experimentally well behaving 
(as galectin-3C) and its binding site allows studies of various types of protein–
ligand interactions.  
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2 Molecular modelling 

There are two different approaches to calculate the energy of a molecular 
system. In the first approach, called quantum mechanics, both electrons and 
nuclei are considered. On the other hand, the second approach, named 
molecular mechanics, treats atoms as a whole, meaning that electrons are 
neglected. In this chapter, I will present the basic concepts behind these two 
approaches, as well as the combination of the two.  

2.1 Quantum mechanics 

Quantum mechanical (QM) methods are based on the time-independent 
Schrödinger equation, introduced by Erwin Schrödinger in 1926: 

𝐻𝐻V𝛹𝛹 = 𝐸𝐸𝛹𝛹	
In this equation, 𝐻𝐻V is the Hamiltonian operator for the system of interest, Ψ is 
the wavefunction, which completely describes the system, and 𝐸𝐸 is the total 
energy of the system. For a three-dimensional chemical system, Ψ is a function 
of the three Cartesian coordinates of all particles in the system, and the 
Hamiltonian operator is a sum of several energy terms:  

𝐻𝐻V = 𝑉𝑉[\] + 𝑉𝑉[]] + 𝑉𝑉[\\ + 𝑅𝑅[] + 𝑅𝑅[\	
The first three terms are the potential energy terms: 𝑉𝑉[\] is the attractive 

potential between negatively charged electrons and positively charged nuclei, 
whereas 𝑉𝑉[]] and 𝑉𝑉[\\ represent the repulsive potential energy terms for electrons 
and nuclei, respectively. The last two terms, 𝑅𝑅[] and 𝑅𝑅[\, are the kinetic energy of 
the electrons and nuclei.13  
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2.1.1 Hartree–Fock theory 
The Schrödinger equation can be solved exactly only for very simple 

systems, such as the hydrogen atom or hydrogen-like atoms. Even for the 
simplest molecule, H_

`, the equation cannot be solved analytically, and various 
approximations and simplifications are used, in order to obtain a numerical 
solution. One such approximation is the Born–Oppenheimer approximation,14 
which allows electron and nuclear motions to be treated separately, since 
electrons are much lighter and faster compared to the nuclei.  

The simplest QM approach used is Hartree–Fock (HF) theory,15 which 
assumes that each electron moves in the average field of all other electrons (a 
mean-field approximation). In HF, the total N-electron wave function Ψ is 
written as a Slater determinant: 
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where 𝜑𝜑 is a one-electron spin orbital, obtained by multiplying the spatial 
molecular orbital 𝜓𝜓 by a spin function 𝛼𝛼 or 𝛽𝛽, representing the up- or down-spin 
of the electron: 

𝜑𝜑 = 	𝜓𝜓(𝑥𝑥) ∙ 	 v𝛼𝛼(𝜔𝜔)
𝛽𝛽(𝜔𝜔)	

This approach satisfies the requirement of anti-symmetry for electrons, and 
obeys the Pauli exclusion principle. The molecular orbitals 𝜓𝜓 are obtained by a 
linear combination of 𝑖𝑖 atomic orbitals (LCAO) 𝜒𝜒: 

𝜓𝜓 = z𝑐𝑐|𝜒𝜒|
|

	

where 𝑐𝑐| are coefficients, whose optimal values are determined using the 
variational principle, which states that the calculated ground-state energy 𝐸𝐸 of a 
system described by an approximate wave function is always larger than the 
ground state energy 𝐸𝐸} associated with the true wave function. 
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The set of atomic orbitals or basis functions used to construct molecular 
orbitals is known as the basis set. Usually, a linear combination of primitive 
Gaussian functions, known as contracted Gaussian-type orbitals (CGTO) are 
used.16 Having one CGTO for each electron pair in the system is called minimal 
basis set and it is a required minimum for any calculation. However, it is better 
to use more than one CGTO, especially for valence electrons, giving split-
valence basis sets, which are termed based on the number of CGTOs used as 
double-zeta (two CGTOs), triple-zeta (three CGTOs), etc.  

On top of this, polarization and diffuse functions can be added to improve the 
accuracy. Polarization functions are GTOs of angular momentum 𝑙𝑙 + 1. These 
functions allow molecular orbitals to be more asymmetric around nucleus, 
which is important for describing chemical bonding, because bonds are often 
polarized. Diffuse functions are GTOs with small exponents. These functions 
are important for describing anions, dipole moments, but also intra- and 
intermolecular bonding, since they accurately represent parts of the atomic 
orbitals that are distant from the atomic nuclei. 

In principle, the larger the basis set, the better will the results be, since that 
increases accuracy of the calculations. However, it also increases the cost, so in 
practice, one should find a compromise between the accuracy and 
computational cost.  

Even with an infinite basis set, the HF energy is still not exact, due to 
exclusion of electron correlation. There are many so-called post-HF methods, 
which describe electron–electron interactions, such as Møller–Plesset 
perturbation theory, configuration interaction methods, coupled cluster 
methods, and complete active space methods. An alternative to these rather 
costly “wave-function” methods is density functional theory, which instead uses 
electron density	𝜌𝜌(𝑟𝑟), a function of three Cartesian coordinates 𝑟𝑟, to 
characterize the system of interest.  

2.1.2 Density functional theory  
In 1964 Hohenberg and Kohn proved two theorems that enabled the use of 
density functional theory (DFT) for all systems. The first theorem, the existence 
theorem, states that the ground-state properties of a chemical system can be 
obtained from the electron density 𝜌𝜌, whereas the second theorem states that the 
method is variational, i.e. there exist a functional 𝐹𝐹[𝜌𝜌] that produces the 
ground-state energy 𝐸𝐸 which is minimized for the true ground state density 𝜌𝜌.17 
Proving these two theorems established DFT as a quantum chemical method, 
but there was still a lot of work to be done since exact formulation of 𝐹𝐹[𝜌𝜌] was 



30 

unknown. In 1965, Kohn and Sham developed a self-consistent field 
methodology that was based on fictitious system of non-interacting electrons, 
dividing the energy functional into several components: 

𝐸𝐸[𝜌𝜌(𝑟𝑟)] = 𝑅𝑅][𝜌𝜌(𝑟𝑟)] + 𝑉𝑉Ç][𝜌𝜌(𝑟𝑟)] + 𝑉𝑉]][𝜌𝜌(𝑟𝑟)] + ∆𝑅𝑅[𝜌𝜌(𝑟𝑟)] + ∆𝑉𝑉]][𝜌𝜌(𝑟𝑟)]	
where 𝑅𝑅] is the kinetic energy of the non-interacting electrons, 𝑉𝑉Ç]  is the 
nuclear–electron interaction, 𝑉𝑉]] is the classical electron–electron repulsion, ∆𝑅𝑅 
is the correction to the kinetic energy of the electrons, and ∆𝑉𝑉]] represents all 
non-classical corrections to the electron–electron repulsion energy.18  

The first three terms are computed in a similar way as in HF, with the largest 
difference in that the electron exchange energy that is included by definition in 
HF due to anti-symmetric Slater determinant wave function, is not included in 
DFT. Therefore, it must be included in the two corrective terms. The two terms 
also include electron correlation and together they give the exchange–
correlation energy 𝐸𝐸ÉÑ: 

𝐸𝐸ÉÑ[𝜌𝜌(𝑟𝑟)] = ∆𝑅𝑅[𝜌𝜌(𝑟𝑟)] + ∆𝑉𝑉]][𝜌𝜌(𝑟𝑟)]	
There are many approximate methods to calculate the exchange–correlation 

energy 𝐸𝐸ÉÑ. The simplest is local-density approximation (LDA), which assumes 
that the density locally can be treated as a uniform electron gas. In order to 
account for the non-homogeneity of the true electron density, generalized 
gradient approximation (GGA) also includes the gradient of the density. So-
called hybrid functionals also use a fraction of HF exchange. For example, the, 
B3LYP19 functional can be expressed as: 

𝐸𝐸ÉÑ
B3LYP = (1 − 𝑎𝑎)𝐸𝐸É

LDA + 𝛼𝛼𝐸𝐸É
HF + 	𝑏𝑏∆𝐸𝐸É

B + (1 − 𝑐𝑐)𝐸𝐸Ñ
LDA + 𝑐𝑐𝐸𝐸Ñ

LYP	
with 𝑎𝑎 = 0.20, 𝑏𝑏 = 0.72, and 𝑐𝑐 = 0.81. 

2.2 Molecular mechanics 

Molecular mechanics (MM) methods are based on a “ball and spring” model of 
a molecule, in which atoms are treated as balls, connected by bonds, represented 
by springs. The electronic structure of the molecule is neglected and the energy 
of the molecule is described by a force field.  

The force field is an empirical potential energy function that gives the energy 
of a molecule as a function of the Cartesian coordinates of all atoms. A standard 
force field for biomolecular simulations usually consists of a sum of five terms: 
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𝑈𝑈total = 𝑈𝑈bonds + 𝑈𝑈angles + 𝑈𝑈dihedrals + 𝑈𝑈vdw + 𝑈𝑈el	
The first three terms describe the internal energy of the molecule, coming 

from all bonds, angles, and dihedrals present in the molecule, whereas the last 
two terms are the non-bonded terms. 

In most variants of MM, covalent bonds are represented by springs, so the 
first term, 𝑈𝑈6F89E, uses the harmonic energy potential to describe covalent bond 
stretching around the equilibrium bond length, 𝑟𝑟}: 

𝑈𝑈bonds = z𝑘𝑘ó(𝑟𝑟 − 𝑟𝑟})_	

where 𝑘𝑘ó is the spring force constant for a given bond type 𝑏𝑏. Similarly, the 
bond angle term, 𝑈𝑈N8òGôE , is also described by a harmonic potential:  

𝑈𝑈angles = z𝑘𝑘ö(𝜃𝜃 − 𝜃𝜃})_	

where 𝑘𝑘ö is the angle force constant for angle 𝑎𝑎 involving three bonded atoms, 
and 𝜃𝜃} is the equilibrium angle. The dihedral term, 𝑈𝑈97úô9MNGE, uses a periodic 
function to describe torsion angle rotation around a bond: 

𝑈𝑈dihedrals = z𝑉𝑉Ç
2 [1 + cos(𝑛𝑛𝑛𝑛 − 𝛿𝛿)]	

where,	𝑉𝑉Ç is the corresponding force constant, 𝑛𝑛 is the periodicity of the torsion 
angle 𝑛𝑛, and 𝛿𝛿 is the phase shift.  

The fourth term is the van der Waals energy, which describes interactions 
between atoms that are not covalently bonded. At large interatomic distances, 
this term should be equal to zero, whereas at very short distances it should be 
strongly repulsive. However, at intermediate distances, where atoms are close to 
each other, but their electron clouds are not overlapping, this term should be 
slightly negative, due to induced dipole–dipole interactions, resulting from 
electron correlation. This behaviour is well described by the Lennard-Jones 
potential, which consists of two parts, a short-range repulsive term and a long-
range attractive term:  

𝑈𝑈vdw = z4𝜀𝜀|¢ £
𝜎𝜎|¢
𝑟𝑟|¢d_

− 𝜎𝜎|¢
𝑟𝑟|¢•

¶
|ß¢
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where −𝜀𝜀|¢ corresponds to the depth of the potential energy curve, 𝜎𝜎|¢ is the 
distance between two atoms at which the potential energy is zero, and 𝑟𝑟|¢ is the 
distance between the two atoms. Finally, the last term describes the Coulomb 
electrostatic interaction energy between two atoms with partial atomic charges 
of 𝑞𝑞| and 	𝑞𝑞¢: 

𝑈𝑈el = z 𝑞𝑞|𝑞𝑞¢
4𝜋𝜋𝜀𝜀𝜀𝜀}𝑟𝑟|¢|ß¢

	

where 𝜀𝜀} is permittivity of vacuum, 𝜀𝜀 is relative permittivity of the given 
medium (typically set to unity in atomistic simulations), and 𝑟𝑟|¢ is the inter-
atomic distance.  

All constants that appear in the expressions above are either obtained from 
experimental data or computed using high-level QM calculations. In this thesis, 
the AMBER ff14SB20 force field was used for proteins, the generalized 
AMBER force field21 (GAFF and GAFF2) was used for small organic 
compounds, and several force fields were employed for water molecules 
(TIP3P, TIP4P, TIP4P-Ew, and OPC)22–24.  

In MM, it is important to assign good partial charges to all atoms, since 
electrostatics contribute a lot to the non-bonded energy term. Charges assigned 
to the small organic compounds were calculated using the restrained 
electrostatic potential (RESP) approach.25  

2.3 The combined QM/MM approach  

The QM/MM approach is a way to apply the accurate, but expensive QM 
method on large chemical systems such as a protein–ligand complex.26 The idea 
is that a small part of such system, usually containing the binding site (the 
ligand and its surroundings), is treated with QM methods, whereas the rest of 
the protein and solvent are treated with MM methods. In this way, the system is 
divided into a small QM part (subsystem 1) and large MM part (subsystem 2), 
as shown in Figure 2.1.  
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Figure 2.1. QM/MM system: the small QM part (purpule) and the large MM part (green). 

 

There are several ways the QM/MM energy 𝐸𝐸QM/MM can be calculated. A 
simple and intuitive approach is to calculate the MM energy of the entire system 
𝐸𝐸d`_
¨¨, subtract the MM energy of the subsystem 1 𝐸𝐸d

¨¨, and add the QM energy 
of subsystem 1 𝐸𝐸d

≠¨: 

𝐸𝐸QM/MM = 𝐸𝐸d`_
MM − 𝐸𝐸d

MM + 𝐸𝐸d
QM	

In this approach, all interactions between the subsystems 1 and 2 are treated at 
the MM level, which is fine for van der Waals interactions, but is somewhat 
problematic for electrostatic interactions, so an alternative is to treat the 
electrostatic interactions between the two subsystems with QM, by including 
the MM point charges in the QM calculation and turning off the corresponding 
interactions in the MM calculations by zeroing the charges in the subsystem 1: 

𝐸𝐸QM/MM = 𝐸𝐸d`_,ÆØ∞}
MM − 𝐸𝐸d,ÆØ∞}

MM + 𝐸𝐸d,Æ±
QM 	

where 𝑞𝑞d and 𝑞𝑞_ are the MM charges in the subsystems 1 and 2, respectively. 
The first approach is called mechanical embedding and the second electrostatic 
embedding.  

  
  

MM 

QM 
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3 Sampling methods 

The energy of a molecule depends on its coordinates, as was discussed in the 
previous chapter. Since proteins and flexible ligands can adopt many, more or 
less similar conformations, it is necessary to calculate the total energy of the 
system as the average over the ensemble of conformations of the system in 
equilibrium. In addition, entropy of the system can also be calculated from the 
conformational ensemble. For these reasons, it is necessary to sample these 
possible conformations for the molecules involved to obtain reliable free 
energies of the protein–ligand binding. There are two approaches used to 
explore the conformational space of a molecule, molecular dynamics and Monte 
Carlo simulations. Both methods have advantages and disadvantages that will 
be discussed in this chapter.  

3.1 Molecular dynamics 

Molecular dynamics (MD) simulations employ the laws of classical mechanics, 
in particular Newton’s second law27, to move all atoms in the system of interest: 

𝐹𝐹| = 𝑚𝑚|𝑎𝑎| = 𝑚𝑚|
𝑑𝑑_𝑟𝑟|(𝑡𝑡)
𝑑𝑑𝑡𝑡_ 	

where 𝐹𝐹| is the force acting on an atom 𝑖𝑖 with mass 𝑚𝑚|, and 𝑎𝑎| is acceleration, 
which also can be expressed as the second derivative of the position 𝑟𝑟|(𝑡𝑡) of the 
atom 𝑖𝑖 with respect to time 𝑡𝑡.28 The forces acting on each atom can be 
calculated from the derivative of the potential energy 𝑈𝑈 with respect to the 
position 𝑟𝑟(𝑡𝑡): 

𝐹𝐹(𝑡𝑡) = − 𝑑𝑑𝑈𝑈
𝑑𝑑𝑟𝑟(𝑡𝑡)	

MD simulations typically start by assigning initial positions 𝑟𝑟(𝑡𝑡) and 
velocities 𝑣𝑣(𝑡𝑡) to all atoms in a system. Then, it is possible to calculate the 
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corresponding positions and velocities at time 𝑡𝑡 + ∆𝑡𝑡, by integrating the 
Newton’s equations of motion, where ∆𝑡𝑡 is the time step used in the 
simulations. For a very small time step, ∆𝑡𝑡 (0.5 − 1	fs), it is possible to solve 
the equations of motion numerically, where the positions of the atoms in the 
system are approximated by a Taylor expansion: 

𝑟𝑟(𝑡𝑡 + ∆𝑡𝑡) = 𝑟𝑟(𝑡𝑡) + 𝜕𝜕𝑟𝑟(𝑡𝑡)
𝜕𝜕𝑡𝑡 (∆𝑡𝑡) + 1

2
𝜕𝜕_𝑟𝑟(𝑡𝑡)
𝜕𝜕𝑡𝑡_ (∆𝑡𝑡)_ +⋯	

or: 

𝑟𝑟(𝑡𝑡 + ∆𝑡𝑡) = 𝑟𝑟(𝑡𝑡) + 𝑣𝑣(𝑡𝑡)(∆𝑡𝑡) + 1
2𝑎𝑎(∆𝑡𝑡)

_ + ⋯	

where 𝑎𝑎 is acceleration obtained from the calculated force for each atom. After 
calculating the new positions of all atoms, it is possible to update the energy and 
forces and iterate the procedure as many times as needed (Figure 3.1). This 
way, an MD simulation gives a trajectory, which shows how positions and 
velocities of all atoms vary with time.  

 

Figure 3.1. A simple MD algorithm. 

There are several ways in which a MD simulation can be made more 
efficient, in terms of speed and computational demand. For instance, disabling 
vibrations of all bonds involving hydrogen atoms, by constraining them to their 
equilibrium values (e.g. using the SHAKE algorithm29), enables the use of a 
larger time step (2 fs, rather than 0.5 fs), which speeds up the simulations. 

Assign initial positions r(t) and velocities v(t) to all particles in a 
system, and choose short Δt 

Calculate the forces: F= –dU/dr and a=F/m  

Move atoms: r(t+∆t) = r(t) + v(t)∆t + 1/2a∆t2 + … 

Move time forward: t = t + ∆t 

Repeat 
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Another commonly used approach is to reduce the number of calculated non-
bonded interactions, by employing a cut-off distance, beyond which the non-
bonded interactions are not calculated every time step. While this works fine for 
the short-ranged van der Waals interactions, it is a problem for long-ranged 
electrostatic interactions. If periodic boundary conditions are used, in which the 
simulation box is replicated infinitely in all directions, long-range electrostatic 
interactions can be treated by Ewald summation.30  

3.2 Metropolis Monte Carlo simulations 

The term Monte Carlo (MC) applies to all simulation techniques that use 
stochastic methods to generate new configurations of a system of interest, i.e. 
are based on random sampling. This means that in MC, an ensemble average is 
obtained, rather than a time average.  

In the canonical ensemble (the number of particles 𝑁𝑁, the volume 𝑉𝑉, and the 
temperature 𝑅𝑅 are constant), the ensemble average of a given property 〈𝐴𝐴〉 can 
be obtained from the following: 

〈𝐴𝐴〉 = ∫𝐴𝐴(𝑟𝑟\)𝑒𝑒qæ(ø¿)/¡¬√𝑑𝑑𝑟𝑟\
∫ 𝑒𝑒qæ(ø¿)/¡¬√𝑑𝑑𝑟𝑟\ 	

where 𝑘𝑘ƒ  is the Boltzmann constant, 𝑈𝑈 is the potential energy, and 𝑟𝑟\ denotes 
the configuration of an 𝑁𝑁-particle system (i.e., the positions of all 𝑁𝑁 particles).31 
The probability density of finding the system in configuration 𝑟𝑟\ is: 

𝜌𝜌(𝑟𝑟\) = 𝑒𝑒qæ(ø¿)/¡¬√

∫ 𝑒𝑒qæ(ø¿)/¡¬√𝑑𝑑𝑟𝑟\	

where the denominator is the configurational integral. If one can randomly 
generate 𝑀𝑀 points in configuration space according to this equation, then 〈𝐴𝐴〉 
can be expressed as: 

〈𝐴𝐴〉 ≈ 1
𝑀𝑀z𝐴𝐴(𝑟𝑟|\)

«

|∞d
	

One way to obtain such configurations is to generate them using Metropolis 
algorithm:32 First, an initial configuration 𝑟𝑟| is defined, having the potential 
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energy 𝑈𝑈(𝑟𝑟|). Then, a new trial configuration 𝑟𝑟¢ is generated, by adding a 
random displacement to one atom. The potential energy of this new 
configuration is 𝑈𝑈(𝑟𝑟¢). Now, if 𝑈𝑈»𝑟𝑟¢… ≤ 𝑈𝑈(𝑟𝑟|) the trial move is accepted. 
Otherwise, a random number between 0 and 1, 𝜌𝜌, is generated and the trial 
move is accepted if 

𝜌𝜌 < 𝑒𝑒q[æ(øÃ)qæ(øÕ)]/¡¬√	
The Metropolis algorithm is illustrated in Figure 3.2. Possible MC moves 

involve translations and rotations of the particles in the system. It is also 
possible to use “unphysical” moves, as is discussed in the next section. 

 

 

Figure 3.2. A simple MC algorithm. 

  

Generate initial configuration ri 

Calculate Ui (ri)  

Perform an “attempted” move to get a trial configuration rj   

Calculate Uj (rj)  

Calculate ∆U and check if the move is accepted 

Accepted: rj = ri Rejected: ri = ri  
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3.2.1 Grand canonical Monte Carlo simulations 
In this thesis, grand canonical Monte Carlo (GCMC) simulations, as 
implemented by Essex and coworkers33 in the ProtoMS software package,34 
were employed to study water structure and energetics around protein–ligand 
binding sites.  

In these simulations, rotations and translations of water molecules in a 
solvated protein–ligand system are performed. In addition, attempts are made to 
insert and delete water molecules in a region around the binding site. To do this, 
the region is coupled to an ideal-gas reservoir of water molecules and water 
molecules are allowed to exchange between the two (Figure 3.3, left).  

 

Figure 3.3. Left: Schematic diagram of water molecules in an ideal-gas reservoir coupled to a region within the 
protein. Right: GCMC titration curve showing the average number of inserted water molecules at different values 
of the Adams parameter. 

The chemical potential of a system at constant temperature 𝑅𝑅 and volume 𝑉𝑉, 
where the number of molecules of only one species can vary, is defined as: 

𝜇𝜇 = œ𝜕𝜕𝐹𝐹(𝑁𝑁, 𝑉𝑉, 𝑅𝑅)
𝜕𝜕𝑁𝑁 –

√,—
	

where 𝑁𝑁 is the instantaneous number of molecules in the system and 𝐹𝐹 is the 
Helmholtz free energy of the system. This means that a chemical equilibrium 
between the region with the chemical potential 𝜇𝜇region coupled to the gas 
reservoir with potential 𝜇𝜇reservoir will be established when 𝜇𝜇region = 𝜇𝜇reservoir. 

Adams parameter (B) 
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The reservoir in the grand canonical ensemble is not explicitly considered and is 
completely defined by the chemical potential. 

 Instead of chemical potential, Essex and coworkers use the Adams 
formulation of GCMC35 to calculate the acceptance probabilities for inserting a 
molecule from the gas reservoir and deleting a particle, respectively: 

𝑃𝑃insert = min	 ‘1, 1
𝑁𝑁 + 1𝑒𝑒

ƒ𝑒𝑒q∆æ/¡¬√’	

and: 

𝑃𝑃delete = min	÷1, 𝑁𝑁𝑒𝑒qƒ𝑒𝑒q∆æ/¡¬√◊	

where 𝑘𝑘ƒ  is Boltzmann's constant, ∆𝑈𝑈 is change in energy caused by the trial 
move, 𝑁𝑁 is the number of water molecules in the system, and 𝐵𝐵 is the Adams 
parameter,33,35 calculated as: 

𝐵𝐵 = 𝜇𝜇Ÿ(𝑁𝑁)
𝑘𝑘ƒ𝑅𝑅

+ ln𝑁𝑁	

where 𝜇𝜇′ is the excess chemical potential, i.e. the difference between the 
chemical potential of a given species 𝜇𝜇 and that of an ideal gas 𝜇𝜇79ôNG under the 
same conditions: 

𝜇𝜇Ÿ(𝑁𝑁, 𝑉𝑉, 𝑅𝑅) = µ(𝑁𝑁, 𝑉𝑉, 𝑅𝑅) − 𝜇𝜇ideal(𝑁𝑁, 𝑉𝑉, 𝑅𝑅) 
Simulating at a constant 𝐵𝐵 guarantees that the simulation is run at a constant 

𝜇𝜇, and like the temperature, 𝐵𝐵 must be set prior to running the GCMC 
simulation. The parameter 𝐵𝐵 influences the probability that a water molecule is 
inserted or deleted, and therefore, the number of inserted water molecules 
directly depends on 𝐵𝐵.  

By performing GCMC simulations at different 𝐵𝐵 values, a virtual titration is 
performed. From the titration curve showing the number of inserted water 
molecules as a function of 𝐵𝐵 (Figure 3.3, right), it is possible to calculate the 
free energy of transfer of 𝑁𝑁 water molecules from the gas reservoir to the region 
of interest: 

∆𝐹𝐹trans(𝑁𝑁| → 𝑁𝑁›) = 𝑘𝑘ƒ𝑅𝑅fi𝑁𝑁›𝐵𝐵› − 𝑁𝑁|𝐵𝐵| + ln 𝑁𝑁|!
𝑁𝑁›!

− fl 𝑁𝑁(𝐵𝐵)𝑑𝑑𝐵𝐵
ƒ‡

ƒÕ
·	

where 𝑁𝑁| and 𝑁𝑁› are initial and final number of water molecules, respectively, 
and the corresponding 𝐵𝐵 values, 𝐵𝐵| and 𝐵𝐵›. This method is called grand 
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canonical integration (GCI).33 To improve the precision, the GCMC titration 
data is fitted to a logistic equation: 

𝑁𝑁(𝐵𝐵)approx = z 𝑛𝑛|
1 + 𝑒𝑒(‰ÂÕq‰Õƒ)

Ê

|∞d
	

where 𝑚𝑚, 𝑛𝑛, 𝜔𝜔}| and 𝜔𝜔| are fitted parameters.  
To obtain the free energy of transfer of 𝑁𝑁 water molecules from bulk water to 

the region of interest, i.e. the binding free energy, ∆𝐹𝐹6789, one use the 
thermodynamic cycle shown in Figure 3.4, giving the equation: 

∆𝐹𝐹bind(𝑁𝑁) = ∆𝐹𝐹trans(𝑁𝑁) − ∆𝐹𝐹hyd(𝑁𝑁)	

 

Figure 3.4. Thermodynamic cycle used to calculate the binding free energy of N water molecules to a GCMC 
region of interest. 

where ∆𝐹𝐹úË9(𝑁𝑁) is the free energy of hydration of 𝑁𝑁 water molecules, obtained 
by multiplying the number of water molecules with excess chemical potential of 
a single water molecule (𝜇𝜇úË9Ÿ ), which can be taken from experiments or from 
simulations of the particular water model used.33 Finally, the number of water 
molecules that minimizes ∆𝐹𝐹6789 (𝑁𝑁FÈL) and the corresponding 𝐵𝐵 value that 
produces the optimal occupancy of a cavity are given by: 

𝜇𝜇protŸ »𝑁𝑁opt… = 𝜇𝜇hydŸ 	

𝐵𝐵opt =
𝜇𝜇hydŸ

𝑘𝑘ƒ𝑅𝑅
+ ln𝑁𝑁opt	

ΔFbind(N) 

ΔFtrans(N) 

ΔFhyd(N) 
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4 Thermodynamics of protein–
ligand binding 

In the introduction part of this thesis, I briefly discussed the importance of 
considering both the enthalpy and entropy when discussing protein–ligand 
binding free energies. The focus of this chapter will be calculations of entropy, 
since the enthalpy part was covered in the previous chapters. As mentioned 
before, the change in entropy may come from the change in the solvent entropy 
(Δ𝑆𝑆EFGH), the conformational entropy of the protein and the ligand (Δ𝑆𝑆JF8K), and 
from the loss of translational and rotational degrees of freedom of the protein 
and ligand upon complex formation (Δ𝑆𝑆LMN8E/MFL): 

Δ𝑆𝑆 = Δ𝑆𝑆solv + Δ𝑆𝑆conf + Δ𝑆𝑆trans/rot	
In this thesis, the conformational entropy of the protein and the ligand (Δ𝑆𝑆JF8K) 
and the solvent entropy around the binding site (Δ𝑆𝑆EFGH) were calculated from 
MD generated trajectories. The theory behind these calculations will be 
introduced below. 

4.1 Conformational entropy of the protein and the 
ligand 

There are many ways in which conformational entropy can be calculated. In this 
thesis, we used dihedral-distribution histogramming (DDH).36,37 In this 
approach, the Cartesian coordinates of the protein are converted to internal 
(bond, angle, and torsion) coordinates. The entropy contributions from the bond 
and angle fluctuations are small and essentially constant during ligand 
binding,38 so only the dihedral angles are used to calculate the conformational 
entropy. The distribution for each dihedral angle 𝑖𝑖 is then approximated by a 
discrete histogram and the entropy is calculated from: 
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𝑆𝑆| =
𝑅𝑅
2 − 𝑅𝑅 ln𝑁𝑁bin − 𝑅𝑅z𝑝𝑝|(𝑗𝑗) ln 𝑝𝑝|(𝑗𝑗)

\bin

¢∞d
	

where 𝑅𝑅 is the gas constant, 𝑝𝑝|(𝑗𝑗) is the probability that the dihedral angle is 
found in bin 𝑗𝑗, and 𝑁𝑁bin is the number of bins.39 The first two terms are 
normalization factors, giving the entropy of a free rotor 𝑅𝑅 2⁄  for a uniform 
distribution. These terms cancel for relative entropies. The number of bins used 
in this thesis is 72 (5° in each bin).38 

4.2 Solvent thermodynamics 

The majority of methods used to analyse the thermodynamics of the solvent 
involved in protein–ligand binding, are based on inhomogeneous solvation 
theory (IST).40 This theory uses statistical thermodynamics to extract 
information about the solvent around the solute, using MD generated 
trajectories.  

According to IST, the solvation entropy ∆𝑆𝑆EFGH, of a solute may be divided 
into contributions from solute–water correlations ∆𝑆𝑆EÏ and water–water 
correlations ∆𝑆𝑆ÏÏ: 

∆𝑆𝑆solv = ∆𝑆𝑆sw + ∆𝑆𝑆ww	
Here, ∆𝑆𝑆EFGH is approximated, so that it accounts for only the solute–water term: 

∆𝑆𝑆solv ≈ ∆𝑆𝑆sw ≡ −𝑘𝑘ƒ𝜌𝜌}

8𝜋𝜋_ fl𝑔𝑔sw(𝑟𝑟, 𝜔𝜔) ln 𝑔𝑔sw(𝑟𝑟, 𝜔𝜔) 𝑑𝑑𝑟𝑟𝑑𝑑𝜔𝜔	

where 𝑘𝑘ƒ  is Boltzmann’s constant, 𝜌𝜌} is the number density of bulk solvent, 
and 𝑔𝑔EÏ(𝑟𝑟, 𝜔𝜔) is the solute–water pair-correlation function in the solute frame 
of reference, where 𝑟𝑟 is the location of the water oxygen relative to the solute, 
and 𝜔𝜔 is Euler angles in the solute frame of reference. By rewriting 𝑔𝑔EÏ(𝑟𝑟, 𝜔𝜔) 
as the product of a translational distribution function 𝑔𝑔EÏ(𝑟𝑟) and an 
orientational distribution function conditioned on the position 𝑔𝑔EÏ(𝜔𝜔|𝑟𝑟), the 
solute–water entropy term can be further divided into translational and 
orientational terms: 

∆𝑆𝑆sw = ∆𝑆𝑆swtrans + ∆𝑆𝑆sworient 	
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where 

∆𝑆𝑆swtrans ≡ −𝑘𝑘ƒ𝜌𝜌} fl𝑔𝑔sw(𝑟𝑟) ln 𝑔𝑔sw(𝑟𝑟) 𝑑𝑑𝑟𝑟	

and 

∆𝑆𝑆sworient ≡ 𝜌𝜌} fl𝑔𝑔sw(𝑟𝑟)𝑆𝑆‰(𝑟𝑟)𝑑𝑑𝑟𝑟	

𝑆𝑆‰(𝑟𝑟) ≡ − 𝑘𝑘ƒ
8𝜋𝜋_fl𝑔𝑔sw(𝜔𝜔|𝑟𝑟) ln𝑔𝑔sw(𝜔𝜔|𝑟𝑟)𝑑𝑑𝜔𝜔	

The solvation energy ∆𝐸𝐸EFGH also consists of solute–water ∆𝐸𝐸EÏ and water–
water ∆𝐸𝐸ÏÏ terms: 

∆𝐸𝐸solv = ∆𝐸𝐸sw + ∆𝐸𝐸ww	
The ∆𝐸𝐸EÏ term is calculated in the following way: 

∆𝐸𝐸sw = 𝜌𝜌} fl𝑔𝑔sw(𝑟𝑟)∆𝐸𝐸sw(𝑟𝑟)𝑑𝑑𝑟𝑟	

∆𝐸𝐸sw(𝑟𝑟) ≡ − 1
8𝜋𝜋_ fl𝑔𝑔sw(𝜔𝜔|𝑟𝑟)𝑈𝑈sw(𝑟𝑟, 𝜔𝜔)𝑑𝑑𝜔𝜔	

where 𝑈𝑈EÏ(𝑟𝑟, 𝜔𝜔) is the solute–water interaction potential. Similarly, the ∆𝐸𝐸ÏÏ 
term is calculated as: 

∆𝐸𝐸ww = 𝜌𝜌} fl𝑔𝑔sw(𝑟𝑟)∆𝐸𝐸ww(𝑟𝑟)𝑑𝑑𝑟𝑟	

∆𝐸𝐸ww(𝑟𝑟) ≡ œ 1
8𝜋𝜋_–

_
𝜌𝜌} fl𝑔𝑔sw(𝜔𝜔|𝑟𝑟)	

× 	[𝑔𝑔sw(𝑟𝑟Ÿ, 𝜔𝜔Ÿ)𝑔𝑔ww(𝑟𝑟, 𝜔𝜔, 𝑟𝑟Ÿ, 𝜔𝜔Ÿ) − 𝑔𝑔ww} (𝑟𝑟, 𝜔𝜔, 𝑟𝑟Ÿ, 𝜔𝜔Ÿ)]
×	𝑈𝑈ww(𝑟𝑟, 𝜔𝜔, 𝑟𝑟Ÿ, 𝜔𝜔Ÿ)𝑑𝑑𝜔𝜔𝑑𝑑𝑟𝑟Ÿ𝑑𝑑𝜔𝜔Ÿ	

where 𝑔𝑔ÏÏ(𝑟𝑟, 𝜔𝜔, 𝑟𝑟Ÿ, 𝜔𝜔Ÿ) is the pair distribution function between water 
molecules with spatial and orientational coordinates (𝑟𝑟, 𝜔𝜔) and (𝑟𝑟Ÿ, 𝜔𝜔Ÿ) close to 
the solute, 𝑔𝑔ÏÏ} (𝑟𝑟, 𝜔𝜔, 𝑟𝑟Ÿ, 𝜔𝜔Ÿ) is the corresponding quantity in bulk water, and  
𝑈𝑈ÏÏ(𝑟𝑟, 𝜔𝜔, 𝑟𝑟Ÿ, 𝜔𝜔Ÿ) is the water–water interaction potential. 
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4.2.1 Grid inhomogeneous solvation theory 
In this thesis, the grid inhomogeneous solvation theory (GIST), developed by 
Gilson and coworkers41, is used. This implementation of IST discretizes the 
equations of IST onto a three-dimensional grid placed over a region of interest 
(Figure 4.1). The grid is divided into small boxes, called voxels and indexed 
with 𝑘𝑘, for which the thermodynamic quantities are calculated. The spatial 
integrals that appear in the IST expressions are replaced by sums over the 
voxels of the grid. This is an approximation, that becomes exact when the 
volume of the voxels 𝑉𝑉¡ → 0. This means that the smaller the voxels, the better 
the approximation.  

 

Figure 4.1. Schematic diagram of of GIST’s gridded water properties in a binding site. 

In GIST, the total translational solvation entropy of a region 𝑅𝑅 is given by: 

∆𝑆𝑆swÒ,trans ≈ z∆𝑆𝑆swtrans(𝑟𝑟¡)
¡∈Ò

	

∆𝑆𝑆swtrans(𝑟𝑟¡) ≈ 𝑘𝑘ƒ𝜌𝜌}𝑉𝑉¡𝑔𝑔(𝑟𝑟¡) ln 𝑔𝑔(𝑟𝑟¡)	

𝑔𝑔(𝑟𝑟¡) ≡
𝑁𝑁¡

𝜌𝜌}𝑉𝑉¡𝑁𝑁›
	

where 𝑟𝑟¡ is the location of the voxel 𝑘𝑘, 𝑁𝑁¡ is the number of water molecules 
within voxel 𝑘𝑘 summed across all frames 𝑁𝑁›.  
  

ΔEsw(rk) 
ΔEww(rk) 
ΔSsw

trans(rk) 
ΔSsw

orient(rk) 



47 

Similarly, the total orientational entropy of a region 𝑅𝑅 is: 

∆𝑆𝑆swÒ,orient ≈ z∆𝑆𝑆sworient(𝑟𝑟¡)
¡∈Ò

	

∆𝑆𝑆sworient(𝑟𝑟¡) ≈ 𝜌𝜌}𝑉𝑉¡𝑔𝑔(𝑟𝑟¡)𝑆𝑆‰(𝑟𝑟¡)	

𝑆𝑆‰(𝑟𝑟¡) =
−𝑘𝑘ƒ
𝑁𝑁¡

Û−𝛾𝛾 +zln ‘𝑔𝑔(𝜔𝜔||𝑟𝑟¡)
𝑁𝑁¡

’
\ı

|∞d
ˆ	

where	𝛾𝛾 is Euler’s constant. The corresponding energy terms are calculated in 
the following way: 

∆𝐸𝐸swÒ ≈ z∆𝐸𝐸sw(𝑟𝑟¡)
¡∈Ò

	

∆𝐸𝐸wwÒ ≈ z∆𝐸𝐸ww(𝑟𝑟¡)
¡∈Ò

− 1
2zz𝐸𝐸ww(𝑟𝑟¡, 𝑟𝑟 )

˜¯¡
˜∈Ò

¡∈Ò
	

Finally, the free energy of solvation ∆𝐺𝐺(𝑟𝑟¡) for voxel 𝑘𝑘 is: 

∆𝐺𝐺(𝑟𝑟¡) = ∆𝐸𝐸total(𝑟𝑟¡) − 𝑅𝑅∆𝑆𝑆swtotal(𝑟𝑟¡)	
where: 

∆𝐸𝐸total(𝑟𝑟¡) ≡ ∆𝐸𝐸sw(𝑟𝑟¡) + ∆𝐸𝐸ww(𝑟𝑟¡)	
and: 

	∆𝑆𝑆swtotal(𝑟𝑟¡) ≡ ∆𝑆𝑆swtrans(𝑟𝑟¡) + ∆𝑆𝑆sworient(𝑟𝑟¡)	
  



48 

 



49 

5 Free-energy calculations 

The difference in affinity between two structurally similar ligands binding to a 
protein can be calculated using alchemical free energy calculations. These 
calculations employ unphysical (alchemical) intermediates in order to estimate 
free energies of various physical processes. Some examples of these 
calculations are the free energy of transfer of a small molecule from gas to 
water (free energy of solvation), the absolute binding free energy of a ligand 
binding to a protein, the free energy of a mutation of a protein side chain, or a 
modification of a ligand bound to a protein (relative binding affinity). 

5.1 Thermodynamic cycle 

Free energy calculations are based on thermodynamic cycles, in which the end-
states are defined. For the calculations of relative binding affinity, the 
thermodynamic cycle is shown in Figure 5.1. It contains four end-states, two in 
which the either ligand A or ligand B is bound to the protein, and two in which 
ligand A or ligand B is free in solution, far from the protein. The upper and 
lower horizontal reactions (arrows) represent the binding of either ligand to the 
protein, i.e. the absolute binding affinities for each ligand. These are rather hard 
to calculate explicitly. If we are only interested in the relative binding affinity of 
the two ligands to the protein, we can instead study the two vertical reactions in 
the figure. These correspond to the difference in free energy of converting 
ligand A to ligand B both when they are bound to the protein and when they are 
free in solution. Since the total free energy of going around a thermodynamic 
cycle vanishes, the relative binding affinity is given by the equation 

∆∆𝐺𝐺bind = 𝐺𝐺bind
B − 𝐺𝐺bind

A = 𝐺𝐺A→B
bound − 𝐺𝐺A→B

free 	
These calculations are much less demanding. Of course, the absolute binding 

affinities in this case remain unknown. However, for the purpose of drug-
design, one is mainly interested in the difference in binding affinity between 
two ligands, which tells us which ligand is the stronger binder. 
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Figure 5.1. Thermodynamic cycle used for the calculations of relative binding affinities. 

5.2 Free-energy fundamentals 

For two states, A and B, with their respective potentials, 𝑈𝑈˙ and 𝑈𝑈˚, the 
potential energy difference is:  

∆𝑈𝑈 = 𝑈𝑈B − 𝑈𝑈A	
and the free energy difference in the canonical ensemble is directly related to 
the ratio of probabilities of the two states through their partition functions: 

∆𝐹𝐹A→B = −𝑘𝑘ƒ𝑅𝑅(ln𝑄𝑄B − ln𝑄𝑄A) = −𝑘𝑘ƒ𝑅𝑅 ln 𝑄𝑄B
𝑄𝑄A

= −𝑘𝑘ƒ𝑅𝑅 ln∫ 𝑒𝑒qæB(˝)/¡¬√𝑑𝑑𝑥𝑥
∫ 𝑒𝑒qæA(˝)/¡¬√𝑑𝑑𝑥𝑥	

where ∆𝐹𝐹 is the Helmholtz free energy difference between state B and state A, 
𝑄𝑄˙ and 𝑄𝑄˚ are the canonical partition functions, T is the temperature, and 𝑥𝑥 
indicates that the potential energy depends on the coordinates of the particles in 
the system.  

The simplest way to calculate the free energy from simulations is to use the 
Zwanzig relationship42: 

∆𝐹𝐹A→B = −𝑘𝑘ƒ𝑅𝑅 ln〈𝑒𝑒q(æBqæA)/¡¬√〉	
in which the energy is calculated from the ensemble average over 
configurations sampled from the reference state A. This method is also known 
as free-energy perturbation (FEP), which might be confusing sometimes, as the 
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abbreviation FEP is also used for all free-energy methods. Therefore, it is better 
to denote this method as exponential averaging. The method is exact, but its 
main drawback is that the calculations converge only when the difference 
between the two states is small. For most studied systems, this is not the case. 

To overcome this problem, the transformation from A to B is usually broken 
into several intermediate states by introducing a coupling parameter 𝜆𝜆, which 
can have values from 0 to 1, and calculating the potential energy as a linear 
combination of the two end-state potentials 𝑈𝑈˙ and 𝑈𝑈˚: 

𝑈𝑈(𝜆𝜆) 	= 	 (1 − 𝜆𝜆)𝑈𝑈A 	+ 	𝜆𝜆𝑈𝑈B	
By running the simulations using different modified potentials (gradually 
increasing the λ values), we alchemically transform ligand A to ligand B.  

There are several other ways to estimate the free energy of mutating ligand A 
to ligand B. One of the most commonly used methods is thermodynamic 
integration (TI),43 in which the free energy is calculated by integration the 
ensemble-averaged derivative of the potential energy with respect to 𝜆𝜆: 

∆𝐹𝐹A→B = −𝑘𝑘ƒ𝑅𝑅 ln𝑄𝑄(𝜆𝜆)	
𝜕𝜕𝐹𝐹
𝜕𝜕𝜆𝜆 = −𝑘𝑘ƒ𝑅𝑅

𝑄𝑄
𝜕𝜕𝑄𝑄
𝜕𝜕𝜆𝜆 = 𝜕𝜕𝑈𝑈

𝜕𝜕𝜆𝜆	

∆𝐹𝐹 = fl ˇ𝜕𝜕𝑈𝑈(𝜆𝜆)𝜕𝜕𝜆𝜆 !
"

d

}
𝑑𝑑𝜆𝜆	

Another approach is the Bennett acceptance ratio (BAR) method.44,45 This 
method requires information from two states in order to estimate free energy 
differences. Free energies are calculated based on the equation: 

𝑒𝑒q(∆#qÑ)/¡¬√ = 〈𝑓𝑓[(𝑈𝑈B − 𝑈𝑈A − 𝐶𝐶)/𝑘𝑘ƒ𝑅𝑅]〉A
〈𝑓𝑓[(𝑈𝑈A − 𝑈𝑈B + 𝐶𝐶)/𝑘𝑘ƒ𝑅𝑅]〉B

	

where 𝑓𝑓(𝑥𝑥) = (1 + 𝑒𝑒˝/¡¬√)qd is the Fermi function, and 𝐶𝐶 is a constant that is  
iteratively calculated until the above ensemble averages, denoted by angular 
brackets, are equal. Given a fixed length of each simulation, fewer intermediate 
states are required for BAR than for TI to give equivalent level of statistical 
precision.  

The multistate Bennett acceptance ratio (MBAR) method46 is also used in this 
thesis. It is an extension to the BAR method, in which data from all 𝜆𝜆 states are 
used to estimate free energy differences.  
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5.3 QM/MM free-energy perturbation 

The accuracy of free energy calculations largely depends on the choice of the 
potential energy function. Usually, an MM potential is used, since it allows 
extensive sampling, which is another important factor determining the accuracy 
of these calculations. However, the MM potential often fails to properly 
describe some types of interactions that can be found in a protein–ligand 
system. Therefore, it is essential to develop free energy methods that use energy 
potentials that can deal with a broader spectrum of interactions and capture 
most of the chemistry involved in protein–ligand binding, such as a QM/MM 
potential.47 Simply replacing the MM potential with QM/MM energy potential 
improves the free-energy estimates, but it also increases the cost of sampling by 
many orders of magnitude.48,49 Estimating the difference in relative binding 
affinity of two ligands A and B binding to a protein using this approach 
(∆∆𝐺𝐺≠¨/¨¨) corresponds to the upper purple arrow in Figure 5.2.  

 

Figure 5.2. Thermodynamic cycle used for the QM/MM free energy calculations of relative binding affinities. 

Another possibility to calculate ∆∆𝐺𝐺≠¨/¨¨ is to use the reference-potential 
method in which the free energy is first estimated at the MM level, ∆∆𝐺𝐺¨¨ 
(blue arrow), and then additional free-energy calculations are employed at the 
end-points to calculate the free-energy of going from the MM to the QM/MM 
potential ∆∆𝐺𝐺¨¨→≠¨/¨¨ (vertical arrows).50,51 According to the 
thermodynamic cycle in Figure 5.2, ∆∆𝐺𝐺≠¨/¨¨ can then be calculated from: 

∆∆𝐺𝐺A→B
QM/MM = −∆∆𝐺𝐺A

MM→QM/MM + ∆∆𝐺𝐺A→B
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In analogy with the use of the l coupling parameter above, the 
MM→QM/MM free energies can be calculated based on the energy function: 

𝐸𝐸(𝛬𝛬) = (1 − 𝛬𝛬)𝐸𝐸MM + 𝛬𝛬𝐸𝐸QM/MM	
where 𝐸𝐸¨¨ is the MM energy, 𝐸𝐸≠¨/¨¨ is the QM/MM energy and Λ is a 
coupling parameter going from 0 to 1. This is called the reference-potential 
approach with QM/MM sampling, RPQS.52,53  
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6 Summary of the papers 

The papers in this thesis can be divided into two main groups: 

• Development and application of MM- and QM/MM-FEP methods to 
calculate protein–ligand binding affinities, and testing of the methods to 
determine water structure in protein–ligand binding site (Papers I, II, 
III). 

• Application of computational methods to study protein–ligand binding 
on Galectin-3 model system, with focus on effects of solvation, entropy, 
and specific protein–ligand interactions (Papers IV–VIII). These 
projects involve extensive experimental studies of the binding, which 
were performed by our colleagues in a large interdisciplinary 
collaboration. Our calculations were performed to understand and 
explain the trends found experimentally. 
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6.1 Paper I  

Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 
with docking, MM/GBSA, QM/MM, and free-energy simulations 

 
In this paper, binding affinities of three sets of ligands binding to the heat-shock 
protein 90 in the D3R grand challenge blind test competition were estimated 
using four different methods (docking, MM/GBSA, QM/MM, and FEP). The 
results were rather disappointing, with poor and often negative correlation and 
Kendall’s tau values for most of the methods and ligand sets. The mean 
absolute deviations (MADs) for FEP calculations were 4–15 kJ/mol with 
maximum errors of up to 26 kJ/mol.  

For one of the sets, the problem could be traced to the displacement of one or 
two water molecules by one of the ligands. After employing GCMC 
calculations to deduce which water molecules dissociate for the various ligands, 
and rerunning the FEP simulations with those water molecules included in the 
perturbations, the results improved for that set, giving a perfect correlation (R = 
1.0) and lower MADs (4–5 kJ/mol), as shown in Table 6.1. 

Table 6.1. Performance of FEP calculations of relative binding free energies (based on two crystal 
structures) compared to experimental results (MAD and maximum error, Max, in kJ/mol). 

 FEP without water FEP with water 

 2WI7 3FT5 2WI7 3FT5 

MAD 14.2 ± 1.0 5.3 ± 0.8 4.8 ± 1.3 3.7 ± 1.3 

R –0.81 ± 0.07 0.59 ± 0.10 1.0 ± 0.04 1.0 ± 0.04 

𝜏𝜏 –0.33 ± 0.33 0.33 ± 0.48 0.33 ± 0.43 0.33 ± 0.43 

Max 26.0 ± 1.8 11.2 ± 1.8 6.1 ± 1.8 4.1 ± 1.8 
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6.2 Paper II  

Binding free energies in the SAMPL6 octa-acid host–guest challenge 
calculated with MM and QM methods 
 
In this paper, we have estimated free energies for the binding of eight 
carboxylate ligands to two variants of the octa-acid deep-cavity host (OAH and 
OAM) in the SAMPL6 blind-test challenge, using different methods: FEP at the 
MM level, FEP at the QM/MM level obtained with the reference-potential 
approach with QM/MM sampling (RPQS) at the PM6-DH+/MM level, as well 
as energies from QM/MM optimised structures at the PM6-DH+/MM and 
DFT/MM levels of theory.  

The results were quite satisfying because for the first time we were able to 
improve MM-FEP results for the octa-acid host with QM/MM methods and the 
results were among the best five submissions to the competition. The RPQS 
method performed the best, with MADs of 2.4–5.0 kJ/mol, excellent correlation 
of 0.81–0.93, and Kendall’s tau of 0.79–0.86 (Figure 6.1).  

 

Figure 6.1. Comparison of the experimental and calculated absolute affinities obtained with the MM-FEP (left) and 
QM/MM-FEP (right) methods. The line shows the perfect correlation. 
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6.3 Paper III  

Comparison of the GCMC and GIST methods to determine the water 
structure in protein binding sites  
 
In this paper, we test the performance of two methods used to determine the 
water structure in protein–ligand binding sites: GIST and GCMC. We compare 
how well the predictions of the two approaches agree for two cases: a system 
with a buried binding site (ferritin) and a system with a solvent-exposed binding 
site  (galectin-3). 

Our results indicate that GCMC calculations can be recommended for buried 
binding sites, for which the equilibration of water molecules with bulk may be 
slow (Figure 6.2). However, for solvent-exposed sites, GCMC gives poor water 
densities and the results should always be compared to MD results and the 
Adams parameter should be selected to reproduce water densities observed in 
MD.  

 

      

B = 10  B = 75 

Figure 6.2. Comparison of MD densities (grey; 10 separate simulations) and GCMC densities (magenta) for apo 
(left) and phenol-bound (right) ferritin started with crystal water molecules included. The GCMC results are from 
the simulations giving N closest to Nopt, viz. that with B = –8 for apo and B = –11 for the simulation with phenol.  
Densities are shown for an isovalue of 0.6. Crystal water molecules are shown as spheres, coloured based on 
their B-factors. 
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6.4 Paper IV  

Substituted polyfluoroaryl interactions with an arginine side chain in 
galectin-3 are governed by steric-, desolvation and electronic conjugation 
effects 
 
In this paper, we studied the binding of a series of 2,3,5,6-tetrafluorophenyl 
derivatives with different para substituents (Figure 6.3, left) to galectin-3. The 
compound with fluorine as the para substituent showed the highest binding 
affinity and any replacement of the fluorine in the para position led to a drop in 
the affinity. This was assumed to be due to fluorine–amide interaction with the 
backbone amide of Ser237–Gly238. However, the QM interaction energy 
between the backbone of Ser237–Gly238 and this ligand was not larger than for 
some of the other ligands.  

Instead, we showed that the relative affinities seem to be determined by other 
effects. First, the pocket beneath Arg144 is not large enough to fit bulkier 
groups (steric effects). Second, the solvation energy decreases strongly in the 
series OH–NH2–N3–F, implying that the desolvation penalty also decreases in 
this series, closely following the affinities of these ligands. Finally, we also 
showed that the solvation effect is partly counteracted by the interaction energy 
of the substituted tetrafluorophenyl group with Arg144, which becomes less 
favourable in this series. 

Figure 6.3. Left: Ligands used in this study and their 𝐾𝐾( values obtained by fluorescence polarisation assay. Right: 
Solvation free energies (blue squares) and interaction energies between Arg144 and the substituted tetraphenyl 
group (red squares). 
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6.5 Paper V  

Structure and energetics of ligand–fluorine interactions with galectin-3 
backbone and side-chain amides – insight into solvation effects and 
multipolar interactions 
 
In this paper, we performed structural and theoretical analyses of galectin-3 
ligands containing fluorinated phenyltriazolyl-thiogalactosides in order to study 
fluorine–amide interactions in the galectin-3 binding pocket and to attempt to 
correlate these with binding affinity as measured by fluorescence polarisation. 
We concluded that the binding of all ligands in this study is not governed by 
fluorine–amide interactions, but is instead determined by other effects, in 
particular dispersion, desolvation and polar interactions with other parts of the 
ligand. We show that the fluorine group is not more important than the 
hydrogen atoms on the benzene ring, but that at the same time, fluorine slightly 
but significantly decreases the solvation energy of the ligand which promotes 
the binding to a hydrophobic site (Figure 6.4). Thus, fluorine–amide 
interactions in protein–ligand interactions cannot simply be predicted on 
geometrical considerations alone but require careful consideration of the 
energetic components. 

 

Figure 6.4. Calculated QM interaction and solvation energies for the seven substituted benzene groups plotted on 
the y-axis against the experimental binding free energy on the x-axis. Interaction energies were calculated for 
three amino-acid models: the sidechain of Asn160, the backbone of Arg144–Ile145 and the backbone of Ser237–
Gly238. Sum is the sum of these three interaction energies minus the solvation energy of the ligand and it is 
shown on the right-hand-side y-axis. Best-fit lines are shown in the same colour as the symbols for each set of 
data. 
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6.6 Paper VI  

Structural and thermodynamic studies on halogen-bond interactions in 
ligand–galectin-3 complexes: electrostatics, solvation and entropy effects 
 
In this paper, we investigate the variation in binding affinity between galecin-3 
and a systematically varied series of halogen-containing ligands, using 
experimental and theoretical methods such as isothermal titration calorimetry 
(ITC), competitive fluorescence polarization, X-ray crystallography, NMR 
spectroscopy, MD simulations, and QM calculations. 

The QM calculations show that the binding enthalpy can be explained by 
interactions with Gly182 and other nearby residues, as well as the desolvation 
penalty (Figure 6.5, left). The change in entropy seems to be related to the 
number of water molecules displaced by the ligands: The ligand with H retains 
two water molecules, one of which is displaced by the ligands with F, Cl and 
Br, whereas the one with I displaces both molecules (Figure 6.5, right). 

 

 

Figure 6.5. Left: Comparison of the experimental ∆H from ITC with the calculated solvation free energy and QM 
interaction energies between the ligands and three nearby residues for the five ligands H, F, Cl, Br, and I. The 
sum of the three interaction energies minus the solvation free energy (Sum) shows a fair correlation to the 
experimental binding enthalpy (R = 0.86). Right: Superposition of the crystal structures and the water densities 
from the MD simulations for the five galectin-3C–ligand complexes, focused on the variable part of the ligands. 
The isodensity level is the same in all figures, five times the bulk density. The variable water molecule in the 
crystal structures are shown as balls. The structures and densities are color coded by H (slate), F (cyan), Cl 
(magenta), Br (green), and I (salmon pink). 
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6.7 Paper VII  

Interplay between conformational entropy and solvation entropy in 
protein–ligand binding 
 
In Paper III, we study conformational entropy and solvation entropy 
contributions to the difference in free energy of binding of a pair of 
diastereomeric ligands (called R and S) to galectin-3, using a combination of 
ITC, X-ray crystallography, NMR relaxation, and molecular dynamics 
simulations.  

To study solvation thermodynamics, we applied GIST analysis, as 
implemented by Gilson and coworkers in the cpptraj module of Amber 
software.41 For both ligands, we first performed clustering of the unrestrained 
MD simulations that were used for the conformational entropy calculations. 
Subsequently we performed MD simulations for each identified cluster, in 
which we kept the protein restrained toward the starting crystal structure, and 
the ligand toward the conformation that best represented the cluster, and we 
analysed these simulations with GIST (Figure 6.6).  

Figure 6.6. Differences in solvation around the binding site. Regions with high density of water relative to bulk 
water (six times the bulk water density) are represented as red mesh for R-galectin-3C (left) and blue mesh for S-
galectin-3C (right). 

We showed that the difference in solvent entropy of the two complexes 
amounts to only 3 ± 2 kJ/mol, whereas the difference in conformational entropy 
is 10 ± 5 kJ/mol, both in favour of the S-complex. The net contribution from 
conformational and solvent entropy of 13 ± 5 kJ/mol is greater than the overall 
entropy difference determined by ITC, 3 ± 1 kJ/mol (Figure 6.7), but the 
difference is not significant at the 95% confidence level. We conclude that 
conformational entropy dominates over solvation entropy in dictating the 
difference in the overall entropy of binding. 
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Figure 6.7. Entropy contributions to the differential binding of ligands R and S to galectin-3C. The bars indicate 
contributions from conformational entropy (green), solvation (magenta), and total entropy of binding determined by 
ITC (black). Error bars indicate the standard error (one standard deviation). 
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6.8   Paper VIII 

Entropy–Entropy compensation between the conformational and solvent 
degrees of freedom finetunes affinity in ligand binding to galectin-3C 
 
In this paper, we characterize the effects of minor changes in ligand structure on 
ligand affinity to the carbohydrate recognition domain of galectin-3. We employ 
a congeneric series of ligands with a fluorophenyl-triazole moiety, where the 
fluorine varied between the ortho, meta, and para positions. We used a 
combination of ITC, X-ray crystallography, NMR relaxation, and computational 
approaches including conformational entropy and GIST analyses of MD 
trajectories, to study how various entropic contributions to binding might vary 
between slightly different protein–ligand complexes. 

Our results show that minor differences between protein–ligand complexes in 
their overall binding thermodynamics might encompass greater differences 
among individual contributions, including a case of entropy–entropy 
compensation between the protein conformational and solvent degrees of 
freedom. 
  



65 

7 Conclusions 

In this thesis we employed several computational methods in order to 
investigate experimentally observed differences in binding affinity of various 
ligands binding to the galectin-3C protein. We studied the effects of solvation 
thermodynamics, protein and ligand conformational entropy change upon 
binding, as well as the significance of specific protein–ligand interactions, 
namely cation–p, fluorine–amide and halogen-bond interactions. Furthermore, 
we participated in two blind challenges, where we tested the performance of 
different free energy methods used to estimate protein–ligand binding affinities. 

We show that, in order to better understand protein–ligand binding and to be 
able to accurately predict binding affinities, it is not enough to take into account 
only the contributions coming from protein–ligand interactions. In fact, it is 
equally important to consider the surrounding solvent, since it can in many 
ways contribute to the free energy of binding. For instance, introducing 
functional groups in the ligand that could form stronger interactions with the 
protein might lead to higher desolvation penalties that can significantly affect 
the binding affinities. Furthermore, we show that the dynamics of the solvent 
around the binding site, together with the conformational entropy of both 
protein and ligand, give crucial contributions to binding thermodynamics. 
Finally, we show that the predictions of relative binding affinities may improve 
if displaced water molecules are included in the free-energy perturbation 
calculations.  

Finally, we compare different methods used to compare water structure and 
energetics, and we conclude that the GCMC simulations perform better for 
buried binding sites, whereas for solvent-exposed sites, MD simulations give 
more reliable results. 
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Abstract We have estimated the binding affinity of three
sets of ligands of the heat-shock protein 90 in the D3R

grand challenge blind test competition. We have employed

four different methods, based on five different crystal
structures: first, we docked the ligands to the proteins with

induced-fit docking with the Glide software and calculated

binding affinities with three energy functions. Second, the
docked structures were minimised in a continuum solvent

and binding affinities were calculated with the MM/GBSA

method (molecular mechanics combined with generalised
Born and solvent-accessible surface area solvation). Third,

the docked structures were re-optimised by combined

quantum mechanics and molecular mechanics (QM/MM)
calculations. Then, interaction energies were calculated

with quantum mechanical calculations employing

970–1160 atoms in a continuum solvent, combined with
energy corrections for dispersion, zero-point energy and

entropy, ligand distortion, ligand solvation, and an increase
of the basis set to quadruple-zeta quality. Fourth, relative

binding affinities were estimated by free-energy simula-

tions, using the multi-state Bennett acceptance-ratio
approach. Unfortunately, the results were varying and

rather poor, with only one calculation giving a correlation

to the experimental affinities larger than 0.7, and with no
consistent difference in the quality of the predictions from

the various methods. For one set of ligands, the results

could be strongly improved (after experimental data were
revealed) if it was recognised that one of the ligands dis-

placed one or two water molecules. For the other two sets,

the problem is probably that the ligands bind in different
modes than in the crystal structures employed or that the

conformation of the ligand-binding site or the whole pro-

tein changes.

Keywords Ligand-binding affinity ! Induced-fit docking !
MM/GBSA ! QM/MM ! Big-QM ! Free-energy
perturbation ! Continuum solvation ! Bennett acceptance
ratio ! D3R grand challenge ! Blind-test competition

Introduction

One of the prime challenges of computational chemistry is

to predict the free energy for the binding of small mole-

cules to biomacromolecules. Many biological functions are
exerted by the binding of substrates or inhibitors to

enzymes or effectors to receptors, and the prime aim of

drug development is to find small molecules that bind
strongly to the target receptor, but with a small effect on

other biosystems. Consequently, much effort has been

spent to develop methods with this aim, ranging from
simple docking and scoring approaches, via end-point

Majda Misini Ignjatović, Octav Caldararu, Geng Dong, Camila
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methods, such as MM/GBSA (molecular mechanics com-

bined with generalised Born and solvent-accessible surface
area solvation) and linear interaction energies (LIE), to

strict free-energy simulation (FES) methods [1–4].

Numerous studies have evaluated the performance of
various binding-affinity methods, e.g. docking [5, 6], MM/

GBSA [7, 8], and FES methods [9–11]. The conclusion has

typically been that docking methods can rapidly find the
correct binding pose among several other poses, but that

they have problems to correctly rank the affinities of a set
of ligands to the same protein. MM/GBSA calculations

typically give a better ranking of the ligands and an

understanding of energy terms involved in the binding, but
often vastly overestimate energy differences and the results

strongly depend on the employed continuum-solvation

model [2, 12]. Large-scale tests of FES calculations have
given rather impressive results for relative binding affini-

ties of similar ligands to the same protein, with mean

absolute deviations (MAD) of 4–6 kJ/mol [9–11]. How-
ever, the comparisons have been primarily directed to

small changes in the ligands and the performance is

uneven, with very good results for some proteins, but quite
poor performance for other proteins, occasionally with

errors of over 20 kJ/mol.

Comparisons of different approaches for the same test
case are less common and often half-hearted in the mean-

ing that the authors are experts or developers of one

approach and include other methods mainly to show that
they are worse [10, 13, 14]. In this respect, blind-test

competitions are important to judge the true performance

of different approaches, allowing experts to provide pre-
dictions that are not biased by the experimental results. In

the SAMPL4 octa-acid host–guest challenge for binding

affinities, FES methods gave the best results (the root-
mean-squared deviation, RMSD, was 5 kJ/mol and the

correlation coefficient, R2, was 0.9), although docking gave

results of only slightly worse quality (RMSD = 6 kJ/mol,
R2 = 0.8) [15–17]. However, this test case was ideal for

FES calculations with quite small differences between the

ligand and a conserved net charge. For the cucurbit [7] uril
host, the results were worse and more varying, but a FES-

based approach still gave the best results RMSD =

12 kJ/mol, R2 = 0.8, whereas docking gave poor results
(RMSD = 33 kJ/mol, R2 = 0.1) [15, 17]. The results for

the SAMPL3 host–guest systems were even worse, with

either RMSD and R2 both low, e.g. 6 kJ/mol and 0.4 for the
MM/GBSA-like solvent interaction energy (SIE) approach

[18], or both high, e.g. 47 kJ/mol and 0.8 for FES [19].

For protein systems, the results have been even worse.
For the HIV integrase binding-affinity challenge in

SAMPL4, a SIE approach was pointed out as best with a

mean absolute deviation (MAD) of 5 kJ/mol, but it gave a
negative correlation (R = -0.3) [20, 21]. Docking

calculations gave positive correlation (R = 0.5–0.6), but

the MAD was high (76–113 kJ/mol), because a raw
docking score was employed [22]. An MM/PBSA approach

gave a lower MAD, 16 kJ/mol, and a positive correlation

(R = 0.4) [20]. The reason for these poor results was that
all eight experimental binding affinities were within

4 kJ/mol.

A similar problem applied to the trypsin challenge in
SAMPL3, where the experimental range of the 17 ligands

was only 9 kJ/mol (and 13 within 4 kJ/mol). Unfortu-
nately, no overview article was published for this test case,

so it is hard to reach any unbiased conclusions. A com-

parison of five methods indicated that none of them gave
any useful correlation (R2\ 0.02), but LIE gave a correct

ranking of all ligands for which both the experimental and

computational estimates were statistically significant [14].
Docking with the Glide software gave the lowest MAD

(3 kJ/mol) and also the best discrimination between bin-

ders and non-binders (the area under the receiver-operat-
ing-characteristic curve, AUC, was 0.8). LIE gave a

slightly larger MAD (4 kJ/mol), but a poorer-than-random

AUC (0.3). MM/PBSA and MM/GBSA gave large MAD
(20 and 16 kJ/mol), but reasonable AUC (0.7).

In this article, we present a comparison of four different

approaches to calculate absolute or relative binding
affinities for three sets of similar ligands to the heat-shock

protein 90 (HSP90) within the drug-design data resource

(D3R) 2015 grand challenge [23]. HSP90 is a conserved
chaperone protein that is expressed ubiquitously in high

concentration [24], in particular in cancer cells [25, 26] and

therefore of large interest as a multiple-oncogenic-pathway
therapeutics [27–30]. We have performed docking with the

Glide software [31], MM/GBSA scoring with single min-

imised structures with the Prime software [32], and FES
calculations of relative affinities. In addition, we have

made an attempt to perform combined quantum and

molecular mechanics (QM/MM) scoring with an approach
similar to that developed by Grimme and coworkers for

host–guest systems [33, 34] combined with our big-QM

approach to obtain stable QM/MM energies for proteins
[35].

Methods

Relative binding free energies for three sets of ligands
binding to HSP90 were estimated as a part of the D3R

Grand Challenge 2015 [23]. Sets 1, 2, and 3 consist of five,

four, and ten ligands, respectively and involve chemically
similar ligands, which allow for the calculation of relative

binding free energies by alchemical FES methods. The 19

ligands are shown in Fig. 1. The FES calculations
employed four additional reference ligands, which are also
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Fig. 1 Structures of all ligands
from sets 1, 2, and 3, considered
in this study. The additional
reference ligands that were
employed for sets 1 and 3 are
also shown. The numbering of
ligands is the same as in the
HSP90 D3R grand challenge
data set. Ligands of sets 1 and 3
are shown in conformation 1
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shown in the figure. Four methods were used to estimate

the binding affinities, viz. docking, MM/GBSA, QM/MM,
and FES. They are described in separate sections below.

The studies were based on five protein crystal structures

(PDB files 3VHA [36], 2WI7 [37], 3FT5 [38], 3OW6 [39],
and 4YKR [40]), which are described in Table 1. They

were selected based on the quality of the structure, the

conformation of the entrance of the ligand-binding pocket
(closed, semi-closed, or open [38]) and the similarity of the

co-crystallised ligand with the ligands in the various sets.
The ligands in the crystal structures are shown in Figure S1

in the supplementary material. The 3VHA structure was

obtained at 1.4 Å resolution and it contains a ligand that is
quite similar to those in set 1. It was the only structure used

for the set 1 calculations and it was also used for some set 2

calculations. However, the ligand in 2WI7 is more similar
to the set 2 ligands, although the resolution is rather poor,

2.5 Å. The ligand in 3FT5 is also similar to the set 2

ligands, but it is much smaller and the binding pocket is in
the closed conformation. The resolution is intermediate

(1.9 Å). For set 3, two structures were employed, 3OW6

and 4YKR. They are of similar resolution (1.8 and 1.6 Å,
respectively) and contain similar ligands of a proper scaf-

fold (the ligand is slightly smaller in the 3OW6 structure).

Docking calculations

The docking calculations were set up with the Schrödinger
2015-2 suite of software [41]. They were based on the

3VHA [36] structure for set 1 and 2, and the 3OW6 [39]

structure for set 3. The 4YKR [40] structure was also tested
for set 3, but no reasonable docked structures could be

obtained for ligands 15 and 61. After the experimental

results were revealed, docking calculations were also per-
formed with the 2WI7 crystal structures for set 2 [37]. The

protein preparation wizard module was employed for

preparing the protein structures [41]. Crystal water mole-
cules more than 5 Å away from the ligand were removed

prior to the hydrogen-bond optimisation and protein min-

imisation stages. The hydrogen-bond network was opti-
mised at pH 7 by sampling Asn and Gln rotamers,

hydroxyls, thiols, and water orientations. The protonation

states for Asp, Glu, and His were derived from PropKa 3.1
[42, 43]. The protonation states employed for the His

residues are shown in Table 1.

According to the recommended protein preparation
protocol [44], the prepared structures were then relaxed by

means of a restrained molecular minimisation using the

Impact refinement module using the OPLS 2005 force field
[45], with heavy atoms restrained to remain within a

RMSD of 0.30 Å from the initial coordinates. This allows
hydrogen atoms to be freely minimised and heavy atoms

can move to relax strained bonds, angles, and steric cla-

shes. After a closer inspection of the hydrogen-bond net-
work in the ligand-binding site, three (3OW6) or four

(3VHA and 2WI7) water molecules were identified that

form at least one hydrogen bond to either the protein or the
ligand. These water molecules were kept in the calcula-

tions, whereas the remaining crystal water molecules were

deleted. For set 2, one of the four crystal-water molecules
(called Wat2 below) made steric clashes with one of the

ligands. In the calculations with the 3VHA structure, this

water molecule was deleted when docking all four ligands,
whereas with the 2WI7 structure, Wat2 was deleted only

for ligand 100 and was kept for the other three ligands.

The ligand structures were built using the Maestro
visualisation software [46] and then prepared with the

LigPrep module [47], in which the ionisation and tau-

tomeric states at pH 7 were predicted using Epik [48].
Finally, an energy minimisation in gas phase using

Macromodel [49] with the OPLS 2005 force field [45] was

performed.
All docking calculations were performed using the Glide

software [31]. Initial docking studies using the standard-

precision (SP) mode with default parameters for grid and
pose generation were unable to produce poses that fitted

into the binding site for the tested inhibitors, probably

because the binding cavity is too tight to fit molecules
larger than the co-crystallised ligands. Scaling down the

van der Waals radii of non-polar protein atoms, a crude

approach to allow steric clashes during docking, did not
produce better results. Therefore, we employed the

Table 1 Description of the
protein structures used in this
study and protonation states of
the His residues

Crystal structure Resolution (Å) State His protonation Set Ref.

77 154 189 210

3VHA 1.39 Semi-closed HIP HIPa HIP HIE 1, 2 [36]

2WI7 2.50 Open HIP HIE HIP HIE 2 [37]

3FT5 1.90 Closed HIP HIE HIP HIE 2 [38]

3OW6 1.80 Semi-closed HIP HID HIP HIE 3 [39]

4YKR 1.61 Closed HIP HIE HIP HIE 3 [40]

a HID in the docking and QM/MM calculations
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induced-fit docking (IFD) workflow [50, 51] to generate

alternative conformations of the receptor suitable to bind
the studied ligands, by allowing the protein to undergo

sidechain or backbone movements during the docking.

The IFD procedure has four steps: (1) initial Glide
docking using a softened-potential (van der Waals scaling

of 0.5) into a rigid receptor to generate an ensemble of

poses; (2) sampling of protein conformations using the
sidechain prediction module Prime [32], followed by a

structure minimisation of each protein–ligand complex; (3)
redocking of the ligands into low energy induced-fit

structures from the previous step using default Glide set-

tings (no scaling of van der Waals interactions); and (4)
estimation of the binding energy of the optimised protein–

ligand complexes.

The IFD standard protocol was employed, generating up
to 20 poses per ligand on each iteration. The docking grid

was generated for the co-crystallised ligands. The OPLS

2005 force field [45] was used for the minimisation stage,
in which residues within 5 Å of each ligand pose were

optimised. Pose rescoring was performed with the SP

docking mode. All other parameters were set to their
default values. Finally, the obtained docking poses were

visually inspected, filtering out those that did not adopt a

similar position and orientation as the reference inhibitors.
Only the most favourable docking pose for each ligand was

selected for structural analysis.

Pose rescoring with MM/GBSA

All docking poses were rescored with the MM/GBSA
approach, as implemented in the Prime program in the

Schrödinger software suite [32, 41]. It employed a single

minimised protein–ligand structure, thus establishing an
efficient approach to rapidly refine and rescore docking

results. We employed the variable dielectric solvent model

VSGB 2.0 [52], which includes empirical corrections for
modelling directionality of hydrogen-bond and p-stacking
interactions. This approach has been shown to give good

binding free energies for a wide range of protein–ligand
complexes [53]. Residues within 5.0 Å of the ligand were

allowed to relax during the MM minimisation of the

complex, keeping the rest of the structure fixed.

QM/MM scoring

The docked structures were also rescored using a QM/MM

approach, developed as a combination of the QM-cluster

approach for the study of the binding in host–guest systems
by Grimme and coworkers [33, 34] and the big-QM

approach developed in our group to obtain stable QM/MM

energies in proteins [35]. The QM/MM calculations
employed the docked structures, but the first four residues

in the protein for sets 1 and 2 were deleted (Pro11–Glu14,

because they are hanging free in solution, without any
interactions with the remainder of the protein) and a MOPS

buffer molecule, far from the ligand-binding site, was also

deleted. The docked structure was solvated in a sphere of
water molecules with a radius of 37 Å, centred on the

geometric centre of the protein, giving a total of *18,600

atoms. Hydrogen atoms and water molecules were opti-
mised with a 120 ps simulated annealing calculation with

an initial temperature of 370 K, followed by a minimisa-
tion using the Amber software [54].

QM/MM calculations

The QM/MM calculations were performed with the Com-

Qum software [55, 56]. In this approach, the protein and
solvent are split into two subsystems: System 1 (the QM

system) was relaxed by QM methods. For sets 1 and 2, it

consisted of the ligand, as well as Asn51, Ser52, Asp54,
Ala55, Lys58, Asp93, Gly95, Ile96, Gly97, Met98,

Asp102, Asn106, Leu107, Phe138, Tyr139, Val150,

Thr152, His154, Thr184, and Val186. For set 3, the QM
system included residues Leu48, Ile49, Asn51, Ser52,

Asp54, Ala55, Lys58, Asp93, Ile96, Gly97, Met98,

Asn106, Leu107, Lys112, Gly135, Val136, Gly137,
Phe138, Tyr139, Val148, Val150, Thr152, Thr184, and

Val186. In both cases, the six water molecules closest to

the ligand were also included, giving a total of *280 and
*320 atoms, respectively. The two QM systems are shown

in Fig. 2a, b. System 2 consisted of the remaining part of

the protein and the solvent. It was kept fixed at the original
docked coordinates.

In the QM calculation, System 1 was represented by a

wavefunction, whereas all the other atoms were repre-
sented by an array of partial point charges, one for each

atom, taken from MM libraries. Thereby, the polarisation

of the QM system by the surroundings is included in a self-
consistent manner (electrostatic embedding). When there is

a bond between systems 1 and 2 (a junction), the hydrogen

link-atom approach was employed: the QM system was
capped with hydrogen atoms (hydrogen link atoms, HL),

the positions of which are linearly related to the corre-

sponding carbon atoms (carbon link atoms, CL) in the full
system [55, 57]. All atoms were included in the point-

charge model, except the CL atoms [58].

The total QM/MM energy in ComQum is calculated
from [55, 56]

EQM=MM ¼ EHL
QM1þptch2 þ ECL

MM12;q1¼0 $ EHL
MM1;q1¼0 ð1Þ

where EHL
QM1þptch2 is the QM energy of the QM system

truncated by HL atoms and embedded in the set of point

charges modelling system 2 (but excluding the self-energy
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of the point charges). EHL
MM1;q1¼0 is the MM energy of the

QM system, still truncated by HL atoms, but without any

electrostatic interactions. Finally, ECL
MM12;q1¼0 is the classi-

cal energy of all atoms in the system with CL atoms and

with the charges of the QM system set to zero (to avoid
double counting of the electrostatic interactions). By this

approach, which is similar to the one used in the ONIOM

method [59], errors caused by the truncation of the QM
system should cancel.

The geometry optimisations were continued until the

energy change between two iterations was less than
2.6 J/mol (10-6 a.u.) and the maximum norm of the

Cartesian gradients was below 10-3 a.u. The QM calcu-

lations were carried out using Turbomole 7.0 software [60].
The geometry optimisations were performed using the

TPSS [61] functional in combination with def2-SV(P) [62]

basis set, including empirical dispersion corrections with
the DFT-D3 approach [63]. The MM calculations were

performed with the Amber software [54], using the Amber

ff14SB force field [64].

Big-QM calculations

Previous studies have shown that QM/MM energies

strongly depend on the size of the studied QM system

[58, 65]. To avoid this problem, we have developed the
big-QM approach to obtain converged energies [35]: we

constructed a very large QM system, consisting of all

residues with at least one atom within 7.5 Å of the ligand in
any of the studied structures. Thus, the QM system was the

same for all ligands. For sets 1 and 2 residues 22, 26,

47–59, 61, 62, 78, 91–108, 112, 135–139, 141, 142,
148–155, 162, 180, and 182–187, as well as the 79 closest

water molecules were included, in total *970 atoms. For

the set 3 ligands, the QM system consisted of residues 22,
26, 29, 44, 45, 47–59, 61, 62, 77, 78, 90–99, 102–113, 115,

131–142, 148–155, 162, 180, and 182–188, as well as the

80 closest water molecules, in total *1160 atoms. Both
systems included the single buried charged group in the

protein, Asp93. The ligand is not covalently connected to

the protein, so it does not form any junction to the protein
(in the standard big-QM approach, all buried charges in the

protein should be included and junctions should be moved

two residues away from the minimal QM system [35]). The
QM systems are shown in Fig. 2c, d. The big-QM calcu-

lations were performed on coordinates from the QM/MM

optimisation. Two sets of big-QM calculations were per-
formed. In the first, a point-charge model of the sur-

roundings was included, because this gave the fastest

calculations in our previous tests [35]. In the second
approach, we performed the calculation without the point-

Fig. 2 The QM systems used in the QM/MM optimisations for sets 1 and 2 (a), and set 3 (b), as well as in the big-QM calculations (c, d). The
ligand is shown in ball-and-sticks representation
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charge model, but included instead a conductor-like

screening model (COSMO) [66, 67] continuum solvent
with a dielectric constant of 80. In both cases, the calcu-

lations were performed at the TPSS/def2-SV(P) level of

theory and they employed the multipole-accelerated reso-
lution-of-identity J approach [68].

Additional energy terms

To the big-QM energy, we added the DFT-D3 dispersion
correction, calculated for the same big-QM system with

Becke–Johnson damping [69], third-order terms, and

default parameters for the TPSS functional using dftd3
program [70].

Moreover, we added a correction for increasing the basis

set from def2-SV(P) to def2-QZVP [71], calculated for the
QM system used in the QM/MM geometry optimisations

with the TPSS method and including a point-charge model

of the surroundings:

DEbsc ¼E TPSS/def2-QZVPð Þ$E TPSS/def2-SV(P)ð Þ ð2Þ

Thermal corrections to the Gibbs free energy at 298 K

and 1 atm pressure (Gtherm; including zero-point vibra-

tional energy (ZPE) entropy, and enthalpy corrections)
were calculated by an ideal-gas rigid-rotor harmonic-

oscillator approach [72] from vibrational frequencies cal-

culated at the MM level. These were obtained for truncated
systems in which only residues and water molecules within

12 Å of the ligand were included in the calculations.

Moreover, residues and water molecules more than 8 Å
from the ligand were kept fixed in the calculations and they

were ignored when the frequencies were calculated. Such

an approach is employed in MM/PBSA calculations [73]
and it has been found to give reliable results [74]. To obtain

more stable results, low-lying vibrational modes were

treated by the free-rotor approximation, using the interpo-
lation model suggested by Grimme and x0 = 100 cm-1

[33].

For all energy terms, interaction energies were calcu-
lated, i.e. separate calculations were performed for the

complex, for the protein without the ligand, and for the

isolated ligand:

DEint ¼ E complexð Þ$E proteinð Þ$E ligandð Þ ð3Þ

The protein calculations were always done using the

geometry of the complex after removal of the ligand. For
the free ligand, we did two sets of calculations. The first

was single-point calculations on the QM/MM structures of

the complex, whereas in the second approach, we opti-
mised the geometry of the ligand at the TPSS/def2-

SV(P) level of theory in a COSMO continuum solvent with

a dielectric constant of 80. This allowed for the calculation

of the relaxation energy of the ligand (i.e. the difference in
the TPSS/def2-QZVP energy of ligand when optimised in

the complex or isolated in the COSMO solvent).

Several approaches were tested to calculate the solvation
energy of the complex. In particular, we tested the QM/

MM-PBSA and -GBSA approaches [75], using Poisson–

Boltzmann (PB) or generalised Born (GB) solvation ener-
gies of the whole protein–ligand complex after removal of

the water molecules. However, this gave strongly varying
energies with large differences between the PB and GB

results. Therefore, we decided to simply use big-QM cal-

culations performed in a COSMO solvent with a dielectric
constant of 80. Such calculations were performed on both

the complex and the protein without the ligand. More

accurate solvation energies of the ligand (including also
non-polar effects) were calculated with the COSMO-RS

(real solvent) approach [76, 77] using the COSMOTHERM

software [78]. These calculations were based on two sin-
gle-point QM calculations at the BP/TZVP level of theory,

either in vacuum and with an infinite dielectric constant.

Consequently, the final binding free energies involved
six energy terms: the big-QM energies in the COSMO

solvent, the basis-set correction, the DFT-D3 dispersion

energy, the DGtherm free-energy corrections, the relaxation
energy of the ligand, and the solvation free-energy cor-

rection for the ligand:

DGbind ¼DGBQ þ DEbsc þ DEdisp þ DGtherm þ DEL;rlx

þ DDGL;solv ð4Þ

FES calculations

Relative binding free energies were also estimated by FES
calculations. These were set up independently, using

slightly different methods. For set 1, the 3VHA structure

was used [36], whereas for set 2, two crystal structures
were employed: 2WI7 and 3FT5 [37, 38]. The ligand pose

in 3FT5 is rotated 180" around C–NH2 bond relative to that

in 2WI7. We also tried to start the simulations from the
protein structure of 3FT5, but with the ligand in the ori-

entation found in structure 2WI7 (3FT5/2WI7). For set 3,

the 4YKR structure was used [40]. The structures were
protonated using the leap module of Amber 14 [54]. The

protonation of His residues was determined by investigat-

ing the surroundings, the hydrogen-bond network and the
solvent accessibility of each residue (Table 1). The

assignment agreed for three of the His residues in all

structures. However, for His154, we used a varying
assignment, because the crystal structures show that the

Nd1 atom interacts either with the backbone O atom of

J Comput Aided Mol Des (2016) 30:707–730 713

123



Asn155 or the backbone N atom of Asp156. In the 3VHA

structure this residue is solvent exposed and forms a water-
bridged interaction with Glu-62 and it was therefore

assumed to be doubly protonated to reduce the net negative

charge of the protein. All Glu and Asp residues were
assumed to be negatively charged and all Lys and Arg

residues positively charged, whereas the other residues

were neutral. This assignment was checked by the PropKa
software [42, 43].

All crystal-water molecules were kept in the calcula-
tions, except in set 2, for which one water molecule was

deleted to avoid steric clashes with the cyano group in

ligand 100. However, after submission of the results, we
run additional calculations with set 2, keeping all crystal-

water molecules or deleting one (3FT5) or two (2WI7)

water molecules by FES before the 101 ? 100 perturba-
tion. The protein–ligand complex and the free ligand were

solvated in a truncated octahedral box of TIP3P water

molecules [79], extending 10 Å from the protein and the
ligand, respectively.

The proteins were described with the Amber14SB force

field [64] and no counter ions were added to the system. All
ligands were manually built into the corresponding protein

structure and were described with general Amber force

field [80]. Charges were obtained with the restrained
electrostatic potential method [81]: the ligands were opti-

mised with the semiempirical AM1 method, followed by a

single-point calculation at the Hartree–Fock/6-31G* level
to obtain the electrostatic potentials, sampled with the

Merz–Kollman scheme [82]. These calculations were per-

formed with the Gaussian 09 software [83]. The potentials
were then used by antechamber to calculate the charges. A

few missing parameters were obtained with the Seminario

approach [84]: the geometry of the ligands was optimised
at TPSS/def2-SV(P) level, followed by a frequency cal-

culation using aoforce module of Turbomole 7.01 [60].

From the resulting Hessian matrix, parameters for the
missing angles and dihedrals were extracted with the

Hess2FF program [85]. These parameters are given in

Tables S1 and S2 in the supplementary material.
After submission of the results, it was discovered that

the structures of the set 1 ligands were strange, with a

tetrahedral –NH2 group, accepting hydrogen bonds from
the protein and water molecules (Figure S2 in the supple-

mentary material). This was traced back to a missing

improper torsion for this group. By adding this torsion with
a force constant of 10 kcal/mol/rad2 (cf. Table S2), more

reasonable structures were obtained.

In order to estimate the relative binding free
energy between two ligands, L1 and L2, DDG"bind =
DG"bind(L2) - DG"bind(L1), we employed a thermody-

namic cycle that relates DDG"bind to the free energy of

alchemically transforming L1 into L2 when they are either

bound to the protein, DG"bound, or free in solution, DG"free
[86],

DDG'
bind ¼ DG'

bind L2ð Þ$DG'
bind L1ð Þ ¼ DG'

bound$DG'
free:

ð5Þ

After dividing the transformation of L1 to L2 into a

discrete number of states, described by a coupling param-

eter k, multi-state Bennett acceptance-ratio method
(MBAR) was used to calculate DGbound and DGfree [87],

using the pyMBAR software [88]. Energies were also

calculated with Bennett acceptance ratio (BAR) [89],
thermodynamic integration (TI) [90], and exponential

averaging (EA) [91]. Separate calculations for the ligand

free in water and bound to the protein and 13 intermediate
states were used (k = 0.00, 0.05, 0.10, 0.20, 0.30, 0.40,

0.50, 0.60, 0.70, 0.80, 0.90, 0.95, and 1.00). The electro-

static and van der Waals interactions were perturbed
simultaneously in each simulation using soft-core poten-

tials for both types of interactions [92, 93].

For all ligands in set 1 and ligands 10, 15, 21, 23, 26, 28,
and 34 in set 3, there are two possible orientations of the

modified ring system. No flipping of this ring was observed
during the simulations in the protein. Therefore, we run

two independent perturbations starting from the two dif-

ferent conformations, in order to enhance the sampling.
The resulting dihedral angles in the simulations and the

docked structures are shown in Table S3 in the Supple-

mentary material. Ligand 61 in set 3 has two possible
configurations (R and S) and we studied both (experimen-

tally, the racemate was studied [23]).

The alchemical perturbation simulations were per-
formed in the following way [10]: the system at each

lambda value was subjected to 100 cycles of steepest-de-

scent minimisation, with all atoms, except water molecules
and hydrogen atoms, restrained to their start position with a

force constant of 418 kJ/mol/Å2. This was followed by

50 ps NPT simulation and a 500 ps NPT equilibration
without any restraints. Finally, a 1 ns production simula-

tion was run. Energy differences for MBAR were sampled

every 10 ps.
All minimisations and simulations were performed with

the pmemd module of Amber14 [54, 94]. The temperature

was kept constant at 300 K using a Langevin thermostat
with a collision frequency of 2.0 ps-1 [95] and the pressure

was kept constant at 1 atm using a weak-coupling isotropic

algorithm with a relaxation time of 1 ps [96]. Long-range
electrostatics were treated by particle-mesh Ewald method

[97]. The cutoff for the van der Waals interactions was set

to 8 Å. All bonds involving hydrogen atoms were con-
strained using the SHAKE algorithm [98], so that a time

step of 2 fs could be used.
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GCMC calculations

To determine the number of water molecules in the binding
site of the set 2 ligand, we employed grand canonical Monte

Carlo (GCMC) calculations, as implemented by Essex and

coworkers [99] in the ProtoMS software package (version
3.2) [100]. The water structure was analysed for a rectan-

gular box, extending 3 Å in all directions from the ligand,

starting from the docked results. The proteins (both 2WI7
and 3FT5) were described with the Amber 14SB force field

[64] and the ligands with the general Amber force field [80].

The structures were minimised using AMBER 14 [54] (100
steps minimisation via steepest descent) and then solvated

with TIP4P water up to a radius of 10 Å around the protein.

All the simulations were performed at 298 K, with a 10 Å
cutoff for the non-bonded interactions.

Apart from standard Monte Carlo moves, such as

translation and rotation, which apply to the whole system,
attempts were also made to insert or delete a water mole-

cule within the box region. The probability is controlled by

the chemical potential of an ideal-gas reservoir to which
the region around the ligand is being coupled. A virtual

titration was performed, simulating the system at different

chemical potentials (measured by the Adams value [101]).
The optimal number of water molecules around the ligand

was determined from the titration curve based on the

simulation for which the average number of water mole-
cules corresponds to the binding free energy minimum

[99]. The simulation with this value of the chemical

potential was analysed to obtain water clusters and these
were used as starting positions in FES calculations.

For all systems, GCMC simulations were run for 40

evenly spaced Adams values between -20 and ?19. The
systems were first equilibrated with 10 million Monte

Carlo moves. The first 5 million moves were dedicated to

inserting, deleting, and moving water molecules within the
box region. In the following 5 million moves, translations

and rotations of the protein, the ligand, and the rest of the

solvent were introduced for every second move, while the
other moves were still dedicated to the water molecules

within the box. After the equilibration, we performed 200

million moves of production, where the sampling contin-
ued in the same manner. Snapshots were recorded every

0.5 million moves of the production.

Quality measures and uncertainty estimates

The uncertainties of the free-energy estimates were
obtained by nonparametric bootstrap sampling (using 100

samples) of the work values in the MBAR calculations
using the pyMBAR software [88]. The other approaches

(docking, MM/GBSA, and QM/MM) are based on single

structures and therefore do not provide any statistical

estimate of the uncertainties. The quality of the binding-

affinity estimates compared to experimental data [23] was
quantified using the mean absolute deviation (MAD), the

squared Pearson’s correlation coefficient (R2), and the

Kendall’s rank correlation coefficient (s). The uncertainties
of the quality metrics were obtained by a parametric

bootstrap (500 samples) using the uncertainties in both the

calculated and experimental estimates. The experimental
binding affinities were estimated from the measured IC50

values [23] according to DG"bind = RT ln(IC50/C"), where
R is the ideal gas constant, T is the temperature, 300 K, and

C" is the standard-state concentration, 1 M. Ligand 61 was

reported as a non-binder, i.e. having IC50[ 50 lM [23]
and it was assigned a binding affinity of -24.6 kJ/mol

(corresponding to IC50 = 50 lM). No uncertainties for the

experimental affinities were provided by the organisers.
Therefore, we instead assumed a typical uncertainty of

1.7 kJ/mol for the experimental affinities [102] when cal-

culating the uncertainties of the quality measures.
To estimate the convergence of the various perturba-

tions, six different overlap measures were employed [10].

We calculated the Bhattacharyya coefficient for the energy
distribution overlap (X) [103], the Wu & Kofke overlap

measures of the energy probability distributions (KAB) and

their bias metrics (P) [104, 105], the weight of the maxi-
mum term in the exponential average (wmax) [22], the dif-

ference of the forward and backward exponential average

estimate (DDGEA), and the difference between the BAR and
TI estimates) [10]. X goes from 0, no overlap to 1, perfect

overlap [103], and we consider values higher than 0.7

acceptable [10]. KAB goes from 0—no overlap, via 1—full
overlap, to 2—the first distribution is completely inside the

second distribution [104, 105], and again values larger than

0.7 are accepted. A negative P indicates poor overlap and
values below 0.5 are alarming [104, 105]. 1/wmax indicates

how many snapshots contribute significantly to the EA

estimate and wmax values larger than 0.3 indicate poor
convergence [10]. DDGEA is the hysteresis in the forward

and backward EA estimates, whereas DDGTI indicates the

difference between the BAR and TI estimates. In both
cases, differences larger than 4 kJ/mol indicate poor con-

vergence [10]. We examined these overlap measures for

each of the 26 individual perturbations (13 k values for
simulations with or without the protein). If two of the

measures indicated poor overlap (or if P was negative),

additional simulations with intermediate k values were run.

Results and discussion

In the present work, we studied three congeneric series of

HSP90 inhibitors, shown in Fig. 1, within the D3R 2015
grand challenge blind competition [23]. Sets 1 and 2 are
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small aminopyrimidine derivatives consisting of five and

four molecules, respectively, both containing a 1,3-difluo-
robenzene group. Set 3 is comprised of ten benzimida-

zolone derivatives with a 1,3-dihydroxybenzene moiety as

the common scaffold. We have estimated absolute binding
affinities with molecular docking, MM/GBSA, and QM/

MM calculations and relative binding free energies with

the FES method. In the following, we will describe the
binding modes and affinities obtained with the various

methods in separate sections.

Prediction of binding modes by docking

Initial attempts using a standard docking approach, in

which the receptor structure was kept rigid, did not yield

satisfactory results, in that only a few ligands docked into
the binding pocket. A closer inspection showed that the

selected reference crystal structures contain ligands that are

smaller than the studied inhibitors, although they contain
the proper structural scaffolds. Therefore, steric clashes

with either protein residues or surrounding water molecules

occurred during the docking of most ligands. To account
for protein flexibility, we instead employed the induced-fit

docking (IFD) protocol [50, 51], which iteratively performs

docking calculations and optimises the protein–ligand
complexes through MM minimisations, effectively mod-

elling protein structural changes upon ligand binding. This

gave reasonable structures for all complexes.
All ligands bound approximately in the same position

and orientation as their corresponding reference structure

(Fig. 3), displaying favourable interactions with Asp93 and
Gly97 in complex hydrogen-bond networks that involve

several conserved water molecules. A summary of the

protein–ligand interactions is given in Table 2. It shows
that all ligands established a strong hydrogen bond with the

Asp93 sidechain (H–O distances of 1.96 ± 0.09 Å).

Moreover, most of the ligands displayed additional water-
bridged hydrogen bonds with Asp93 and Gly97 via one

crystal-water molecule (denoted Wat1). Most complexes

also showed a stacked interaction between one of the
benzene rings and the sidechain of Asn51, with a distance

of *4 Å between the Ne2 atom of Asn51 and the centre of

the benzene ring [106, 107].
Set 1 ligands also exhibited hydrogen bonds with

another crystal-water molecule (Wat2) that directly inter-

acts with Asn51, as well as with Leu48, Ser52, and Thr184
in a network involving two additional water molecules

(Fig. 3a). A weak hydrogen-bond with Tyr139 was also

identified, where one of the chlorine atom acts as acceptor.
Other minor interactions include weak p-stacking interac-

tions with Phe138 and hydrophobic contacts with Lys58.

The latter residue showed major variations in the sidechain
conformation in the various structures, because this is the

only residue that interacts with the variable part of the

ligands. In fact, ligand 80 showed a hydrogen-bond with
Lys58 sidechain instead, in which the furan oxygen atom

acted as the acceptor. For all the other ligands, the side-

chain of Lys58 was bent away from the ligand.
The set 2 ligands displayed interactions only with Asp93

and Wat1. However, the cyanide substituent of compound

100 replaced the role of Wat2 in Set 1 and established a
hydrogen-bond with Asn51 (cf. Figure 3b). To make the

results comparable, Wat2 was excluded in the calculations
for all four ligands. After submission, we also tested

docking calculations based on the 2WI7 crystal structure

(which has a ligand that is chemically more similar to the set
2 scaffold) and kept Wat2 when docking ligands 101, 105,
and 106. The results (also included in Table 2) showed that

these three ligands can make strong hydrogen bonds to
Wat2. Strong interactions with Wat3 and Wat1 were also

observed, whereas the interactions with Asp93 became

more variable (Fig. 3c). The water molecules bridged
interactions with Leu48, Asn51, Asp93, and Gly97. More-

over, the pyrazole ring nitrogen of ligands 105 and 106
established a second hydrogen bond with Wat1 (Fig. 3c).

In general, set 3 inhibitors exhibited a larger number of

interactions, and also shorter distances than in the other

two sets. In particular, the presence of hydroxyl and car-
bonyl groups allowed the formation of additional short

direct hydrogen bonds with Gly97 and Thr184, where one

of the hydroxyl substituents appears to have displaced
Wat2 (not present in the reference crystal, 3OW6) in

favour of direct hydrogen bonds with Asn51, and allowed

for reaching water Wat3, establishing further hydrogen
bonds with Leu48, Ser52, Ile91, and Asp93. Major move-

ments were observed for the Lys112 and Phe138 sidechains

(Fig. 3d), which were shifted towards the ligands to form
cation–p and p-stacking interactions, respectively. The

geometry of the cation–p interaction with Lys112 showed a

great variability, indicating that this interaction may be
important for regulation of the activity. For ligand 61, only
the R conformation was found to bind to the protein in a

reasonable mode.

Binding affinities estimated by docking and MM/
GBSA

We have estimated the binding affinities for the three sets

of ligands with three scoring functions (all employing the
same final IFD structures in Fig. 3): GlideScore (GScore),

Emodel and IFDScore (which is the GScore plus a portion of

the Prime MM energy from the refinement calculation). In
addition, all docked complexes were scored with MM/

GBSA calculations, after minimisation of the docked

structures. The calculated binding affinities are shown in
Table 3. The performance of the tested scores was
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evaluated by three quality metrics: the correlation coeffi-

cient (R), Kendall’s rank correction coefficient (s), and the
mean absolute deviation after removal of the systematic

error (i.e. the mean signed error; MADtr), which are listed

at the bottom of Table 3. The correlation between the

experimental [23] and calculated binding affinities are

shown in Fig. 4.
The results for set 1 were poor, with a negative or

vanishing s for all methods and a negative (MM/GBSA) or

very low correlation (R = 0.0–0.2). However, the MADtr

Fig. 3 Binding modes for the three series of HSP90 inhibitor from
the docking calculations: a set 1, b original docking for set 2, based
on the 3VHA crystal structure (submitted), c set 2 in the 2WI7 crystal
structure, keeping all water molecules, and d set 3. Carbon atoms of
the residues are shown in light grey tubes, showing some movements
as result of the induced-fit docking protocol. Carbon atoms of the
ligands are shown as green tubes. Water molecules that interact with

the ligands are displayed in thick tube representation and labelled as
WAT. Reference crystal structures (3VHA, 2WI7, and 3OW6
[36, 37, 39]) are coloured in cyan for comparison (both ligands and
protein). Nitrogen and oxygen atoms are blue and red, respectively.
Hydrogen bonds are represented as yellow dashed lines (purple if the
acceptor is a halogen atom). Cation-p and p-stacking interactions are
represented as dark green and dark cyan dashed lines, respectively
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is good for both GScore and IFDScore, 4 kJ/mol, but this is

mainly an effect of the fact that the range of the predicted

affinities is small, 4–7 kJ/mol, compared to experimental
range of 11 kJ/mol (setting all calculated affinities to the

same value gives a MADtr of 3 kJ/mol).

For the original calculations on set 2, all four methods
also gave very poor results, with strong negative correla-

tions (R = -0.9 to -1.0), owing to the fact that all
methods predicted ligand 100 to bind best, although it

experimentally is the weakest ligand. This also gave a large

MADtr to all methods (7–18 kJ/mol) and a negative or
vanishing s.

For the calculations based on the 2WI7 crystal struc-

ture, in which Wat2 was kept for ligands 101, 105, and
106, the results were more varying (also included in

Table 2). The GScore energies showed no correlation

with the experimental data, whereas the internal docking
score Emodel produced reasonable correlation (R = 0.67)

and a correct ligand ranking (s = 1.00). The IFDScore

showed intermediate results (R = 0.42 and s = 0.33).
The MM/GBSA results were very poor, with negative

R and s. On the other hand, MADtr was best for

IFDScore (5 kJ/mol). All methods still predicted ligand
100 to bind with a potency comparable to the other

ligands, probably because the employed docking and

MM/GBSA rescoring approaches did not consider the
cost of displacing Wat2 when ligand 100 binds. In fact,

most quality measures improved significantly if ligand

100 was excluded.

For set 3, the results are somewhat better: all methods

gave a positive correlation (R = 0.1–0.7) and a positive s
(0.1–0.4; however, it should be noted that four of the
ligands have experimental affinities within 1 kJ/mol,

making it questionable to calculate s for these—it would be

better to consider only statistically significant differences,
e.g. s90 [14]). Both R and s were best for MM/GBSA, but

MM/GBSA and Emodel gave poor MADtr (29 and
22 kJ/mol), which reflects that the results for these two

methods have a much larger range than the experimental

data (124 and 111 compared to 19 kJ/mol). On the other
hand, MADtr of GScore and IFDScore is much better, 4

and 5 kJ/mol, but again the ranges are smaller than for the

experimental results, 7 and 13 kJ/mol.
Two sets of absolute affinities were submitted, viz. the

original GScore and MM/GBSA (submission entries

56afbe93eeaf4 and 56afbea4a8c67, respectively) results in
Table 3 (based on the 3VHA structure without Wat2 for set

2).

QM/MM estimates

Next, we tried to estimate the binding free energies also
with a QM/MM approach. As described in the Methods

section, we started from the final induced-fit docked

structures, to which a sphere of water molecules was added
and optimised (together with the hydrogen atoms). Then, a

QM system of 280–320 atoms was optimised by QM/MM

at the TPSS/def2-SV(P) level of theory (Fig. 2a, b).

Table 2 Hydrogen bonds (first eight lines) and cation–p interactions (last line, Lys122) in the structures obtained with the induced-fit docking

Residues Set 1 Set 2 Set 2a Set 3

n r n r n r n r

Lys58 1 2.12

Asp93 5 2.08 ± 0.09 4 1.86 ± 0.07 4 1.90 ± 0.50 10 1.94 ± 0.11

Wat1 5 1.90 ± 0.07 4 2.12 ± 0.14 4 2.13 ± 0.15 10 1.84 ± 0.09

Wat2 5 1.94 ± 0.07 3 2.10 ± 0.05

Asn51 1 2.27 8 2.17 ± 0.12

Wat3 4 2.20 ± 0.05 9 1.97 ± 0.17

Gly97 10 2.19 ± 0.14

Thr184 10 1.83 ± 0.08

Asn51b 5 4.08 ± 0.05 4 4.30 ± 0.17 4 5.38 ± 0.71 5 4.13 ± 0.71

Lys112 8 5.40 ± 0.76

For each interaction, the number of structures in which this interaction is found is given (n, out of 5, 4, and 10 structures for sets 1–3,
respectively) and the average distance in these structures (r in Å), together with the standard deviation over the n structures. Wat1–Wat3 are
crystal-water molecules
a A second set of docking calculations for set 2, using the 2WI7 crystal structure and keeping Wat2 for ligands 101, 105, and 106 (but not 100),
done after the experimental results were revealed
b Interaction in which the plane of the sidechain amide group is nearly parallel to the plane of the aromatic ring. The average distance between
the Ne2 of Asn51 and the centre of the aromatic ring is given
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Finally, a big-QM calculation was performed for a QM

system involving all protein residues and water molecules

within 7.5 Å of the ligand, 970–1160 atoms, shown in
Fig. 2c, d), calculated at the TPSS/def2-SV(P) level of the-

ory in a COSMO continuum solvent. To the big-QM energy,

entropy, basis-set, and DFT-D3 dispersion corrections were
added, in addition to the relaxation energy and a more

accurate COSMO-RS solvation energy of the ligand (Eq. 4).

The QM/MM structures were qualitatively similar to the

docked structures, but with some differences in the

hydrogen-bond distances, as can be seen by comparing
Tables 2 and 4. For set 1, the bonds to Asp93 were

shortened, whereas those to Wat1 were elongated. For set

2, the structures of the four ligands were more similar, but
the hydrogen-bond interaction with Wat1 was strength-

ened. For set 3, the hydrogen bonds to Asp93, Wat3,

Table 3 Binding affinities
(DGbind in kJ/mol) for the three
studied HSP90 inhibitor sets
calculated with Glide (GScore
and Emodel), induced-fit docking
protocol (IFDScore), and MM/
GBSA. In addition, the
experimental data [23] are
included (Exp.)

Ligand Exp. GScore Emodel IFDScore MM/GBSA

Set 1 80 -32.6 -42.6 -326.8 -2079.7 -367.9

81 -38.2 -46.9 -398.1 -2086.9 -379.7

82 -28.2 -47.0 -378.7 -2083.8 -395.5

83 -27.5 -45.4 -375.6 -2085.9 -413.1

84 -29.9 -45.4 -368.3 -2081.5 -405.6

Set 2 100 -24.6 -41.3 -333.9 -2054.0 -342.8

3VHA 101 -38.3 -38.7 -289.5 -2047.0 -311.1

105 -39.5 -37.4 -300.7 -2046.5 -319.5

106 -40.3 -37.8 -308.4 -2046.6 -298.7

Set 2 100 -24.6 -39.7 -282.2 -1973.7 -357.2

2WI7 101 -38.3 -38.4 -282.9 -1973.4 -310.9

105 -39.5 -40.7 -307.1 -1978.7 -348.0

106 -40.3 -39.5 -309.7 -1974.8 -338.8

Set 3 10 -30.3 -51.5 -444.6 -1980.7 -292.2

11 -38.1 -46.9 -401.6 -1977.9 -307.1

15 -29.5 -54.1 -512.3 -1988.8 -347.7

19 -29.6 -47.8 -444.2 -1980.4 -306.3

21 -38.3 -54.2 -493.0 -1989.1 -395.8

23 -31.5 -50.3 -468.3 -1985.9 -333.7

26 -43.9 -53.7 -458.7 -1987.1 -383.3

28 -37.4 -54.4 -457.6 -1986.9 -316.1

34 -29.7 -51.4 -447.2 -1991.3 -305.0

61(R) [-24.6 -50.2 -415.5 -1981.7 -271.4

MADtr Set 1 3.9 17.6 3.8 18.2

Set 2 6.8 18.5 8.3 18.0

3WI7 5.6 8.7 4.8 17.5

Set 3 4.3 22.3 5.1 29.4

R Set 1 0.05 0.20 0.21 -0.70

Set 2 -0.97 -0.86 -1.00 -0.91

3WI7 -0.02 0.67 0.42 -0.55

Set 3 0.32 0.11 0.16 0.70

s Set 1 -0.20 0.00 -0.20 -0.60

Set 2 -0.67 0.00 -0.67 -0.67

3WI7 0.00 1.00 0.33 -0.33

Set 3 0.20 0.20 0.11 0.42

For set 2, two series of results are given, based on either the 3VHA or 2WI7 crystal structures, the latter
including Wat2 for ligands 101, 105, and 106. The lower part of the table contains the quality metrics of the
various results: the mean absolute deviation after removal of the systematic error (MADtr), the correlation
coefficient (R) and Kendall’s rank correlation coefficient (s). Only the best scores among all obtained
structures are reported
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Gly97, and Thr184 were much shortened, whereas that to

Wat1 was elongated.
Table 5 shows the various QM/MM (free) energy

components for the 19 ligands and their correlation to the

experimental data. It can be seen that the raw QM/MM
energies were large and negative (-620 kJ/mol on aver-

age). The same applies to the EHL
QM1þptch2 energy component

(-557 kJ/mol on average), showing that the QM/MM
energy is dominated by the QM energy. Neither term

showed any convincing correlation to experimental data.

The big-QM energies were less negative, especially in the

COSMO solvent (-127 kJ/mol on average). However, the

correlation to the experimental data was still poor for all
three sets of ligands, R = -0.1 to 0.3.

The dispersion energy was large and negative, showing

a smaller variation than the QM energies (-309 kJ/mol on
average). It was compensated by the basis-set correction

and the DGtherm terms, which both were positive, 177 and

104 kJ/mol on average. Neither term showed any consis-
tent correlation to the experimental data. The relaxation

energy of the ligand was 10–61 kJ/mol, largest for the set 3
ligands and smallest for set 2. It showed only a minor

variation depending on whether it was calculated with the

def2-SV(P) or def2-QZVP basis sets or with or without the
COSMO solvation energy (less than 11 kJ/mol). The

COSMO-RS solvation energies of the ligand were -48 to

-141 kJ/mol, more negative for the set 3 ligands than for
the ligands of the other two sets. The COSMO-RS solva-

tion energy was always more negative than the pure

COSMO solvation energy, by 23 kJ/mol on average. Nei-
ther of the ligand terms showed any consistent correlation

to the experimental data.

Adding all the terms according to Eq. 4, we obtained the
full QM/MM binding free energy (DGbind). From Table 5,

it can be seen that it was too negative compared to the

experimental data and also with a too large range (-34 to
-164 kJ/mol). For sets 2 and 3, it showed a weak corre-

lation with the experimental data (R = 0.5 and 0.3,

respectively), whereas for set 1, the correlation was nega-
tive (R = -0.7). For all three sets, MADtr was large,

17–30 kJ/mol. In fact, the results could be improved if the

DGtherm and DEL,rlx terms were omitted (DG’bind column in
Table 5). Then, MADtr was only 6 kJ/mol for set 2 and

Table 4 Hydrogen bonds (first eight lines) and cation–p interactions (last line, Lys122) in the structures obtained with QM/MM optimisation

Residues Set 1 Set 2 Set 3

n r n r n r

Lys58 1 2.29

Asp93 5 1.86 ± 0.04 4 1.83 ± 0.07 10 1.53 ± 0.05

Wat1 5 2.08 ± 0.08 4 1.89 ± 0.05 10 2.07 ± 0.07

Wat2 5 1.87 ± 0.05

Asn51 1 2.52 9 2.08 ± 0.12

Wat3 9 1.62 ± 0.03

Gly97 10 1.75 ± 0.03

Thr184 10 1.67 ± 0.04

Asn51a 5 3.95 ± 0.11 4 4.22 ± 1.03 9 3.75 ± 0.21

Lys112 10 5.42 ± 0.29

For each interaction, the number of structures in which this interaction is found is given (n, out of 5, 4, and 10 structures for sets 1–3,
respectively) and the average distance in these structures (r in Å), together with the standard deviation over the n structures. Wat1–Wat3 are
crystal-water molecules
a Interaction in which the plane of the sidechain amide group is nearly parallel to the plane of the aromatic ring. The average distance between
the Ne2 of Asn51 and the centre of the aromatic ring is given
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Fig. 4 Correlation between the experimental [23] and calculated
binding affinities. Sets 1–3 are marked with squares, triangles, and
circles, respectively. For GScore, the original score is shown, whereas
for Emodel, IFDScore, and MM/GBSA, the mean signed error is
subtracted (to give a similar scale of all the calculated results). The
line shows the perfect correlation. Ligand 61 was experimentally
found to be a non-binder, i.e. with a Ki[ 50 lM, which corresponds
to DGbind[-25 kJ/mol
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14–23 kJ/mol for the other two sets. It is often observed

with the similar MM/GBSA approach that the results are
improved if the DGtherm term is omitted [2]. The reason is

probably that the complex and protein structures may relax

to different local minima during the MM minimisation.
Likewise, MM/GBSA almost invariably exclude the ligand

and protein relaxation energies, because they strongly

increase the statistical uncertainty of the results [2]. For the
rigid octa-acid host–guest system in the SAMPL4 compe-

tition, an improvement of the results was obtained if the

ligand-relaxation energy was included [16], but with the

more flexible ligands in the SAMPL5 competition, the

results were deteriorated [108].
Compared to the docking and MM/GBSA results in

Table 3, the QM/MM calculations gave much better corre-

lation and s for set 2, similar or slightly worse results for set 3,
andmuchworse for set 1 (except forMM/GBSA).MADtrwas

also better for set 2, whereas it wasworse than the GScore and

IFDScore for the other two sets. One set of relative QM/MM
affinities was submitted (submission entry 56af85ab34dbd),

viz. theDGbind results inTable 5, but unfortunatelywith a sign

error in the DDGL,solv term in Eq. (4).

Table 5 The various QM/MM (free-) energy terms (kJ/mol): the
QM/MM energy (DEQM/MM), the E

HL
QM1þptch2 energy (DEQM?ptch), the

big–QM energy (DEBQ), calculated either with a point-charge (ptch)
model of the surroundings or with COSMO solvation, the dispersion
energy, the basis-set correction energy (Eq. 2), the DGtherm ZPE,
entropy, and thermal correction, the ligand relaxation energy
(DEL,rlx), the ligand solvation energy (DGL,solv), calculated either at

the COSMO (TPSS/def2–SV(P)) or COSMO–RS (BP/TZVP) levels
(the DDGL,solv term in Eq. (4) is the difference of those two energy
terms), and the final QM/MM binding free energy from Eq. (4)
(DGbind) and the same energy, excluding the DGtherm and DEL,rlx

terms (DG0
bind). The last nine lines in the table give MADtr, R and s

compared to the experimental data [23]

Ligand DEQM/MM DEQM?ptch DEBQ DEdisp DEbsc DGtherm DEL,rlx DGL,solv RS DGbind DG0
bind

ptch COSMO QZP COSMO

80 -484.2 -426.7 -156.2 -56.9 -285.5 149.3 93.1 -27.1 -45.9 -54.8 -64.1 -157.2

81 -565.5 -491.4 -214.4 -76.2 -324.3 157.4 111.3 -33.8 -55.4 -69.2 -84.3 -195.5

82 -487.3 -421.6 -145.2 -45.9 -316.1 145.3 81.4 -21.5 -42.3 -51.5 -104.6 -186.0

83 -550.4 -470.1 -218.3 -82.9 -337.8 160.5 99.2 -32.2 -51.3 -60.5 -119.6 -218.8

84 -544.9 -471.9 -158.4 -45.0 -340.5 152.6 80.5 -32.7 -57.7 -65.8 -111.6 -192.1

100 -487.8 -425.3 -181.7 -65.7 -249.1 148.0 100.1 -16.2 -65.2 -81.9 -33.9 -133.9

101 -475.4 -419.0 -164.5 -67.6 -266.1 158.8 61.1 -10.6 -39.3 -48.1 -94.4 -155.5

105 -433.5 -379.7 -157.8 -54.3 -238.3 133.1 86.4 -10.2 -49.6 -63.2 -49.3 -135.7

106 -438.7 -384.7 -170.7 -70.4 -231.7 130.5 93.7 -10.7 -51.5 -66.1 -52.7 -146.3

10 -760.1 -697.2 -447.5 -242.3 -307.2 196.8 123.8 -54.7 -103.8 -141.1 -136.8 -260.6

11 -707.8 -645.2 -336.0 -153.8 -324.3 194.7 112.4 -54.8 -89.7 -122.8 -83.0 -195.4

15 -851.1 -705.8 -388.7 -182.1 -353.4 256.5 136.8 -48.2 -101.5 -127.4 -68.1 -204.9

19 -711.6 -640.0 -386.5 -215.5 -284.3 191.0 106.6 -31.6 -91.4 -123.6 -138.4 -244.9

21 -776.1 -684.7 -349.5 -178.5 -359.3 217.3 150.4 -35.9 -92.7 -120.9 -105.9 -256.3

23 -748.1 -676.3 -389.8 -185.3 -338.8 186.2 85.8 -47.0 -98.8 -140.3 -163.7 -249.5

26 -726.8 -658.0 -349.4 -176.8 -341.0 203.6 116.0 -34.9 -89.9 -123.9 -129.3 -245.3

28 -750.0 -685.2 -379.5 -190.6 -325.4 203.3 107.6 -43.9 -95.2 -125.4 -131.0 -238.6

34 -749.5 -687.7 -424.5 -235.0 -291.0 196.4 104.5 -52.2 -100.9 -141.0 -132.7 -237.2

61 -687.3 -622.1 -282.7 -93.5 -352.0 187.6 123.8 -60.8 -90.3 -121.0 -42.6 -166.5

MADtr 31.9 25.0 29.0 13.3 16.7 6.0 11.5 4.5 5.2 5.1 21.4 14.5

27.0 24.2 12.1 7.0 15.5 9.4 10.7 7.7 12.5 14.1 17.1 6.1

31.6 23.7 37.6 30.1 21.0 16.7 13.9 11.1 7.8 9.6 30.0 23.0

R 0.33 0.44 0.33 0.29 -0.26 -0.21 -0.70 0.41 0.36 0.57 -0.67 -0.27

-0.78 -0.73 -0.83 -0.11 -0.22 0.37 0.49 -0.99 -0.81 -0.76 0.53 0.55

-0.01 0.09 -0.11 0.05 0.21 -0.08 -0.09 -0.53 -0.40 -0.32 0.27 0.38

s -0.60 -0.20

0.33 0.33

0.07 0.33
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FES results

Relative binding free energies between pairs of ligands
were estimated using alchemical FES calculations and

employing the standard thermodynamic cycle with the two

ligands either bound to the protein or free in solution [86].
Free-energy differences were calculated with the MBAR,

BAR, TI, and EA methods. Most of the calculations in sets

1 and 3 involved reference ligands to make the perturba-
tions smaller.

The average structures of the HSP90–ligand complexes

are described in Table 6. For set 1, we find that the ligands
bind in a mode that is rather similar to that found in the

docking and the QM/MM optimisations (Fig. 5a): all

ligands formed a direct hydrogen bonds to Asp93 and the
two water molecules Wat1 and Wat2, as well as the

stacking interaction between the aromatic ring of the ligand

and the sidechain of Asn51. However, in variance to the
docked and QM/MM structures, all ligands in the FES

structures showed also a hydrogen bond to Wat3.

Ligands from set 2 bind differently in the FES simula-
tions started from the crystal structures 2WI7 and 3FT5.

Structures obtained with the 2WI7 structure were quite

similar to the docked and QM/MM structures (Fig. 5b), in
which each ligand directly interacted with Asp93 and

formed a hydrogen bond network involving Wat1, Asp93,

Thr184, and Gly97. No water molecule replaced the
deleted Wat2 molecule. In the 3FT5 structures, the ligands

still showed a direct hydrogen bond to Asp93, but the

ligands were rotated so that the hydrogen-bond network
was moved towards Asn51 and involved Wat2, Wat3, and

a third water molecule, shown in Fig. 5c. Ligand 100 of the
3ft5 subset also formed two direct hydrogen bonds with
Thr184 and Gly97 (Fig. 5d).

After submission of the results, we performed GCMC

calculations to study the water structure around the ligands
of set 2. These calculations are described in the Supple-

mentary material. The resulting clustered water molecules

around the various ligands are shown in Fig. 6. It can be
seen that for the 2WI7 structure, the cyano group in ligand

100 replaced two water molecules that were present for the

other three ligands (Wat2 and Wat3). For the 3FT5 struc-
ture, only one water molecule (Wat1) was displaced by the

cyano group in ligand 100. Therefore, we performed an

additional set of FES calculations (using both the 2WI7 and
3FT5 structures), in which all water molecules were

included in the perturbations. For ligand 100 in the 2WI7

structure, Wat2 moved away from the ligand and ended up
in bulk solvent, whereas for the other ligands, Wat2 stayed

in the original position. Wat3 remained in the starting

position in all calculations with the 2WI7 structure (i.e.
also for ligand 100). For the calculations in the 3FT5

structure, Wat1 did not interact directly with any of the

ligands (the distance was *2.7 Å). For ligand 100, Wat3

cFig. 5 Binding modes in the FES calculations. a ligand 80 (set 1; all
the other ligands in this set bind in a similar mode), b set 2 ligands,
based on the 2WI7 crystal structure, c ligands 101, 105, and 106 (set
2) with three water molecules in different colours (the one in magenta
corresponds to Wat2 and that in orange corresponds to Wat3),
d ligand 100 (set 2), based on the 3FT5 crystal structure, and e ligand
10 (set 3; all the other ligands in this set bind in a similar mode).
Hydrogen bonds are indicated by green dotted lines

Table 6 Hydrogen bonds in the structures obtained in the FES calculations (the most stable conformation of the ligand for Sets 1 and 3)

Residues Set 1 Set 2 (2WI7) Set 2 (3FT5) Set 2 (2WI7 ? Wat2) Set 2 (3FT5 ? Wat1) Set 3

n r n r n r n r n r n r

Asp93 5 2.01 ± 0.07 4 1.90 ± 0.03 4 2.15 ± 0.10 4 1.87 ± 0.03 3 1.98 ± 0.01 10 1.69 ± 0.04

Wat1 5 2.57 ± 0.15 4 2.16 ± 0.07 4 2.12 ± 0.07 10 2.39 ± 0.09

Wat2 5 2.28 ± 0.09 4 2.17 ± 0.19 3 2.16 ± 0.03 3 2.12 ± 0.11

Asn51 1 2.11

Wat3 5 2.22 ± 0.04 4 2.33 ± 0.05 1 2.50 4 2.17 ± 0.05 1 2.43 10 1.95 ± 0.27

Gly97 1 2.50 10 2.05 ± 0.05

Thr184 1 2.46 10 1.88 ± 0.09

Asn51a 5 3.94 ± 0.06

For each interaction, the number of structures in which this interaction is found is given (n, out of 5, 4, and 10 structures for sets 1–3,
respectively) and the average distance for the various ligands over average in the k = 0 or 1 simulations (r in Å), together with the standard
deviation over the n ligands. Wat1–Wat3 are crystal-water molecules. No cation–p interactions with Lys122 were found for any ligand
a Interaction in which the plane of the sidechain amide group is nearly parallel to the plane of the aromatic ring. The average distance between
the Ne2 of Asn51 and the centre of the aromatic ring is given

722 J Comput Aided Mol Des (2016) 30:707–730

123



J Comput Aided Mol Des (2016) 30:707–730 723

123



came in and bridged the interaction with Asp93. Thereby, it

interacted very weakly with the protein.
All the ligands from set 3 bound to the protein in a

similar way, with rather small variations between the dif-

ferent ligands. Each ligand forms direct hydrogen bonds
with Gly97, Thr184, and Asp93, and also an additional

water-bridged interaction with the latter residue. Each

ligand also binds to Ser52 and Leu48 via a water molecule
(Fig. 5e). These binding modes are quite similar to the ones

observed in the docking and the QM/MM results for the set
3. However, we do not find any interaction with Ile91, and

Lys112 is far away from the ligand.

For set 1, the perturbations involved mainly the sub-
stituents of one of the three ring systems, involving the

perturbation of one (or in one case two) hydrogen atoms to

methyl, methoxy, or ethoxy groups. In one case, the ben-
zene ring was instead perturbed to a furan ring (ref ? 80).
In another case, a methyl group is perturbed to an acetate

group (81 ? 82). Set 2 involves perturbations of C and N
atoms in a fused six and five-ring system. In one case

(100), a cyano group is also added. Set 3 is more diverse,

although all ligands share a benzimidazolone group joined
to a resorcinol group. By the use of three reference ligands,

the size of the perturbations was in many cases reduced to

the conversion of hydrogen atoms to hydroxyl, chloride,
methoxy, CF3, and isopropyl groups, or to the conversion

of a carbon atom in the benzene ring to a nitrogen atom

(pyridine). However, in one case a hydrogen atom is con-
verted to a benzene ring (19 ? ref1), in one case the

benzene ring is converted to quinoline (23 ? ref2), and in

one case, the benzene and resorcinol rings are joined by a

pyran ring (61 ? ref2).
The raw binding affinities calculated with FES are given

in Table 7. It can be seen that the precision of the FES

results was reasonable: the standard errors of the MBAR
estimates were 0.2–0.9 kJ/mol, indicating good conver-

gence of the perturbations. Results obtained with the BAR,

TI, and EA methods are shown in Table S4 in the Sup-
plementary material. The BAR and TI results agreed with

the MBAR results with MADs of 0.6 and 0.8 kJ/mol,
respectively, which indicates a somewhat worse conver-

gence. In particular, the 21 ? ref3 and 26 ? ref2 pertur-

bations gave alarming differences of 4 and 5 kJ/mol,
respectively. The convergence of all perturbations was

examined by considering a set of six overlap measures, as

described in the Methods section. All 26 individual simu-
lations for each perturbation were checked for poor overlap

and additional simulations were run with intermediate k
values if two of the overlap measures indicated poor
overlap or if P (which is considered to be the most reliable

overlap measure, with the best correlation to the other

measures [10]) was negative. Consequently, the presented
results should be numerically reliable.

As mentioned in the Methods section, many of the

ligands in sets 1 and 3 can bind with two conformations,
differing by an 180" rotation of the perturbed ring. In the

FES calculations, both conformations were tested, starting

from the symmetric reference molecules. The best con-
formation was then selected as the one that gave the most

favourable binding energy, compared to the reference

Fig. 6 Water clusters obtained by GCMC method for the a 2WI7 and
b 3FT5 structures with set 2 ligands. In both figures, ligands and the
corresponding water molecules are presented in different colours:

ligand 100—blue, ligand 101—red, ligand 105—yellow, and ligand
106—green
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molecule (shown in bold face in Table 7). The average

dihedral angles observed during the FES simulations and in
the docked structures are shown in Table S3. In most

structures, the ring systems were not coplanar.

Ligand 61 has two stereoisomers, depending on the
orientation of the hydroxyl and methyl groups. We tested

both and found the S form to bind more favourably than the

R form. This is in striking contrast to the docking calcu-
lations, which indicated that only the R form bound to the

protein. Experimentally, ligand 61 (racemic mixture) was
found to be a non-binder.

For set 2, no reference ligands were employed and

therefore, we can directly compare the results of the three
studied perturbations with experimental relative affinities.

From the results in Table 7, it can be seen that the two

results employing the pose in the 2WI7 crystal structure,

but using either the 2WI7 or the 3FT5 crystal structures
gave similar relative affinities. Therefore, only one of these

results is compared with experiments in Table 8. It can be

seen that the results were poor with a strongly negative
correlation (R = -0.8), an incorrect sign for two of the

perturbations (sr = -0.3, although the sign of one of the

experimental relative affinities in not statistically signifi-
cant), and a MAD of 14 kJ/mol. However, the results based

on the 3FT5 crystal structure were much better with a
positive correlation (R = 0.6), a correct sign of two of the

perturbations (those that have statistically significant

experimental differences) and a MAD of 5 kJ/mol. The
results of the docking and MM/GBSA calculations (for the

same relative affinities, also shown in Table 8) were much

Table 7 Calculated relative binding free-energies and standard errors (obtained with MBAR in kJ/mol) for the studied perturbations

Transformation Exp. Results 1 Results 2 Results 3
Set 1 Conf. 1 Conf. 2

ref ? 80 1.8 ± 0.5 23.6 – 0.5

81 ? 82 10.0 213.2 – 0.5 -16.4 ± 0.5

82 ? ref 13.3 ± 0.3 16.4 – 0.3

83 ? ref 3.6 – 0.5 -3.5 ± 0.5

84 ? ref 8.3 – 0.5 8.3 ± 0.6

Set 2 without Wat1/2 2WI7 3FT5 2WI7/3FT5

101 ? 100 13.9 -12.2 ± 0.5 2.7 ± 0.5 -12.8 ± 0.5

101 ? 105 -0.1 -7.5 ± 0.2 2.7 ± 0.2 -8.4 ± 0.2

101 ? 106 2.0 -7.3 ± 0.3 3.8 ± 0.3 -8.7 ± 0.3

Set 2 with Wat1/2 2WI7 3FT5

101 ? 100 13.9 11.2 ± 0.9 18.0 ± 0.9

101 ? 105 -0.1 -6.2 ± 0.4 3.5 ± 0.4

101 ? 106 2.0 -3.7 ± 0.5 5.5 ± 0.5

Set 3 Conf. 1 Conf. 2

10 ? ref2 -4.9 ± 0.4 20.6 – 0.4

11 ? ref2 2.3 – 0.2

15 ? ref3 4.8 – 0.5 -4.1 ± 0.6

19 ? ref1 2.9 – 0.6

21 ? ref3 7.3 – 0.4 -2.1 ± 0.4

23 ? ref2 26.7 – 0.5 -13.1 ± 0.6

26 ? ref2 3.7 – 0.4 -12.0 ± 0.4

28 ? ref2 1.3 – 0.4 -1.9 ± 0.4

34 ? ref2 20.2 – 0.7 -3.7 ± 0.7

61S ? ref2 24.8 – 0.8

61R ? ref2 -19.8 ± 0.4

ref 2 ? ref1 211.5 – 0.6

ref 3 ? ref2 4.5 – 0.4

Experimental data [23] for the relative energies are also given for the transformations that do not involve any reference ligands
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worse with R = -0.6 and -0.8, sr = -1.0, and MAD = 8

and 28 kJ/mol, respectively. QM/MM results were of
intermediate quality with R = 0.4 and MAD = 13 kJ/mol.

Keeping the Wat2 crystal water molecule in the FES

calculations improved the results for both crystal struc-
tures, giving a perfect correlation (R = 1.0) and low MADs

(5 kJ/mol for 2WI7 and 4 kJ/mol for 3FT5). In particular,

both sets of calculations predicted that ligand 100 has a
much lower binding affinity (*10 kJ/mol) than the other

three ligands. However, in both cases, one of the three
relative affinities had an incorrect sign (sr = 0.3), although

for the 3FT5 structure this involved the transformation for

which the experimental estimate is not statistically signif-
icant. These calculations also gave an ideal slope of 1.0,

whereas it was 1.2 for the calculations based on the 2WI7

structure. Both FES calculations gave better results than the
docking and MM/GBSA calculations including Wat2

(R = 0.5 and MAD = 6 kJ/mol for GScore).

For the other two sets of ligands, no direct comparison

with experiments [23] can be performed, because all
studied perturbations (except one) involved reference

ligands with unknown experimental affinities. This means

that the calculated results need to be combined to compare
with experiments, increasing the uncertainty and making

the comparison dependent on which data are combined.

Moreover, when calculating the correlation coefficient, the
results also depend on the sign of the transformation (i.e.

whether the 81 ? 82 or 82 ? 81 perturbation is consid-
ered, for example). The latter problem was solved by

always considering both directions of the perturbation

when R was calculated.
For set 1, it may seem natural to compare with ligand

82, because all relative affinities can be obtained from this

ligand using one or two perturbations. However, three
additional relative affinities can be obtained by combining

two perturbations and all ten possible relative affinities can

Table 8 Performance of the various methods to calculate relative binding free energies (MAD and maximum error, Max, in kJ/mol) compared
to experimental results [23]

GScore MM/GBSA QM/MM FES

Set 1

MAD 5.8–6.1 20.8–26.3 17.6–29.1 10.9–15.9

R -0.58 to 0.03 -0.69 to -0.60 -0.42 to -0.01 -0.80 to -0.54

s -1.00 to -0.40 -0.43 to 0.00 -0.14 to 0.50 -1.00 to -0.71

Max 10.2 32.2–50.4 33.3–66.8 23.3

2WI7 3FT5

Set 2 without Wat1/2

MAD 7.7 27.8 12.9 14.2 ± 1.0 5.3 ± 0.8

R -0.57 -0.81 0.43 -0.81 ± 0.07 0.59 ± 0.10

s -1.00 -1.00 -0.33 -0.33 ± 0.33 0.33 ± 0.48

Max 16.4 45.6 19.9 26.0 ± 1.8 11.2 ± 1.8

2WI7 3FT5

Set 2 with Wat1/2

MAD 6.1 41.0 4.8 ± 1.3 3.7 ± 1.3

R 0.49 -0.58 1.00 ± 0.04 1.00 ± 0.04

s 0.33 0.33 0.33 ± 0.43 0.33 ± 0.43

Max 15.2 60.2 6.1 ± 1.8 4.1 ± 1.8

Set 3

MAD 4.7–10.4 29.6–56.0 23.6–47.1 8.7–14.6

R -0.45 to 0.70 0.18 to 0.92 -0.32 to 0.57 -0.47 to -0.20

s -0.56 to 0.33 0.33 to 0.78 -0.33 to 0.56 -0.78 to 0.11

Max 8.8–16.9 55.4–95.6 59.1–88.4 17.9–27.9

For set 1, the reported values are the range obtained when doing three comparisons: four relative affinities using ligand 82 as the reference, all
seven relative affinities that can be obtained by combining two perturbations, or all ten possible relative affinities of the five ligands. For set 2, we
present the results of the three perturbations studied by FES, reporting bootstrapped uncertainties, using the observed standard error for FES.
Values in brackets for GScore and MM/GBSA were obtained using the 2WI7 crystal structure. For set 3, we present the range obtained by using
either ligands 10, 11, 23, 26, 28, or 34 as the reference
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be obtained from three perturbations. Therefore, we give in

Table 8 the results of three different comparisons (as ran-
ges): four relative affinities using ligand 82 as the refer-

ence, all seven relative affinities that can be obtained by

combining two perturbations, and all ten possible relative
affinities. Numerically, the results vary somewhat, but all

results were poor: the correlation was negative (R = -0.8

to -0.5), MAD = 11–16 kJ/mol, and sr = -1.0 to -0.7,
i.e. only one relative affinity had the correct sign, but the

signs of four of the measured relative affinities are not
statistically significant. In fact, the largest error (23 kJ/mol)

is obtained for the 81 ? 82 transformation that is directly

comparable with experiments.
The docking gave a smaller MAD and MM/GBSA and

QM/MM larger MADs than FES (6, 21–26, and

18–29 kJ/mol, respectively), owing to a smaller and larger
ranges of the absolute affinities compared to experiments,

4, 45, and 62 kJ/mol, respectively, compared to 11 kJ/mol

for the experimental data. All three methods showed no or
negative correlations (R = -0.0 to -0.7). Likewise, sr was
mostly negative (-0.1 to -1.0) or zero, except when using

ligand 82 as the reference for QM/MM (sr = 0.5).
For set 3, the situation is even more complicated: all

studied transformations involve at least one of the three

reference molecules. Any of ligands 10, 11, 23, 26, 28, 34,
and 61 can be individually compared employing two per-

turbations, whereas ligands 19, 15, and 21 require the

combination of three perturbations. Table 8 shows the range
of results obtained when using any of the six ligands in the

first group as the reference (excluding ligand 61, because it

is experimentally a non-binder). It can be seen that the FES
results were quite poor with a negative correlation

(R = -0.5 to -0.2), a varying sr (-0.8 to ?0.1), a MAD of

9–15 kJ/mol and maximum errors of 18–28 kJ/mol.
From Table 8, it can also be seen that the docked results

for set 3 were somewhat better with a positive correlation

(R = 0.3–0.7), except when ligand 11 was used as the
reference (R = -0.5). The same applies to sr, which was

positive (0.1–0.3), except when using ligand 11 as the

reference (sr = -0.6). MAD was appreciably better
5–10 kJ/mol, but this is mainly because all relative ener-

gies were underestimated: the range of the affinities was

only 7 kJ/mol, whereas the experimental range was at least
19 kJ/mol, and in FEP the range was 21 kJ/mol. The MM/

GBSA calculations vastly overestimated the range

(124 kJ/mol) and therefore gave a very poor MAD of
30–56 kJ/mol and a maximum error of up to 124 kJ/mol

(9–17 kJ/mol for the docking). On the other hand, the

correlation was always positive, reaching an impressive
R = 0.9 when using ligand 26 as the reference. Likewise,

sr was better than for the other methods, 0.3–0.8. QM/MM

gave quite poor results with both R and sr = -0.3 to 0.6
and MAD = 24–47 kJ/mol.

One set of relative affinities was submitted (submission

entry 56af858f31db8). It was based on the data in Table 7
for sets 2 (2WI7 structure) and 3, but the data in Table S5

for set 1 (i.e. obtained without the improper ca–hn–nh–hn

dihedral angle, giving spurious structures, as discussed
above). The data were submitted with ligands 80, 100, and
10 as the reference, which increases the uncertainty and

may affect the calculated quality estimates. Unfortunately,
we selected to submit the set 2 results based on the 2WI7

structure (mainly because the 2WI7/3FT5 results were
similar), although it turned out that the 3FT5 reproduced

the experimental measurements much better.

Conclusions

In this study, we have tried to estimate the binding affini-

ties of three sets of ligands (with five, four and ten ligands

in each) for HSP90 in the D3R 2015 grand challenge blind-
test competition. We have employed four different theo-

retical methods of varying sophistication: docking with the

induced-fit protocol in Glide, MM/GBSA calculations with
single minimised structures performed by Prime, a new

QM/MM approach, based big-QM calculations with vari-

ous energy terms added, and standard FES calculations of
relative binding affinities.

Unfortunately, the results were quite disappointing, with

poor and often negative correlation and s values for most of
the methods and ligand sets. For set 2, the problem could

be traced to the displacement of one or two water mole-

cules by one of the ligands. If this effect was properly
accounted for, FES and some docking scores gave good

results. We employed GCMC calculations to deduce which

water molecules dissociate with the various ligands.
Owing to the poor overall results, it is hard to compare

the four methods employed. However, our results show no

clear-cut advantage of using the more rigorous method FES
approach, which comes with a much higher computational

effort. In general, the docking calculations with GScore

and IFDScore gave small MADtr for all three sets,
4–8 kJ/mol. However, this primarily reflects that these

scores underestimate the differences between the various

ligands. The Emodel score and MM/GBSA gave much
higher MADtr (9–29 kJ/mol) and a strong overestimation

of the range of the calculated binding affinities.

Compared to the other submissions in this blind-test
competition, our calculations gave in general mediocre or

poor results [23]. However, QM/MM was one of the few

methods that gave a non-negative s and a positive corre-
lation for set 2, and without the unfortunate sign error, the

correct QM/MM results would have given the best R and s
among all submissions. For set 3, our docked results gave
the lowest RMSD and MM/GBSA gave the best s among
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all submissions (in fact, our four submissions gave among

the five best s values for set 3). Still, this mainly reflects the
large variation in the performance of the results from both

us and the other groups; the other submissions also gave

rather disappointing overall results: in particular, none of
the submissions gave positive s values for all three sets.

In the new QM/MM method, we first reoptimised the

docked structures with standard QM/MM calculations,
using a quite large QM system (280–320 atoms), including

all atoms within 3 Å of the ligand. Then, the QM system
was enlarged with all atoms within 7.5 Å of the ligand

(970–1160 atoms) and a single-point energy was calculated

in a COSMO continuum solvent (Fig. 2). To the rigid
interaction energies calculated with this model, we added

five energy corrections (Eq. 4), similar to what has been

used for host–guest systems [16, 33, 34]: first, a correction
term for increasing basis set for the smaller QM system to

quadruple-zeta quality. Second, a DFT-D3 dispersion cor-

rection, including third-order terms. Third, a thermostatis-
tical correction, including the zero-point energy and

entropy, calculated at the MM level with a free-rotor

approximation for the low-lying vibrations. Fourth, a
ligand-relaxation energy term, and finally an improved

solvation energy for the ligand, estimated by the COSMO-

RS approach. We also tried to include the solvation free
energy of the whole protein with PB or GB methods, but

could not obtain any consistent results.

Unfortunately, the QM/MM affinities, showed no con-
sistent improvement over the docked results, although most

hydrogen bonds were shortened. Instead, the QM/MM

energies showed a similar overestimation of the differences
in the binding affinities as the MM/GBSA method, giving

MADtr of 17–30 kJ/mol. Still, the results could consistently

be improved for all three sets if the ligand-relaxation and
thermostatistical terms are omitted (e.g. MADtr =

6–23 kJ/mol). It is probably necessary to employ more than

a single minimised structure to obtain consistent and reliable
results with QM/MM.

Clearly, the FES results were disappointing, with MADs

of 4–15 kJ/mol and maximum errors of up to 26 kJ/mol.
Previous large-scale tests of relative FES affinities have

shown that MADs of 2–6 kJ/mol are typically obtained for

well-behaving systems [9–11]. Such results were only
obtained for set 2 if all water molecules are included. The

much larger errors obtained for the other two sets can have

several causes. First, some of the perturbations in this study
are larger than in the large-scale tests. However, we have

thoroughly monitored the overlap, convergence, and pre-

cision of the calculations, and there is not indication that
the perturbations are too large or that the sampling is too

short. On the other hand, HSP90 has a flexible binding site

and the simulations are much too short to sample larger

conformational changes in the binding site or the whole

protein. Second, it is possible that the MM force field is not
accurate enough to model the chemical variation of the

ligands. However, the set 1 ligands show a rather restricted

variation, involving mainly methyl, methoxy, ethoxy, and
acetate groups, for which the general Amber force field is

expected to perform well.

Third, for all FES calculations, we have assumed that all
ligands bind in the same mode as the starting crystal

structure. Some differences have been observed between
the FES and docked structures and also between the various

starting structures. If the binding mode in the crystal

structure is incorrect or if the binding mode changes
between the various ligands, FES is expected to give poor

results, and this would affect also the other calculations,

because docked structures were accepted only if they were
similar to the crystal structures. We believe that this is the

main reason for the poor results in this investigation. It

should also be noted that the variable parts of the ligands do
not show much interactions with the protein. This means

that there is a risk that the ligands may bind in a different

conformation and that some residues in the protein may
show a large change in conformation (to form interactions

with this part of the ligand), or that the binding is mainly

determined by the interaction of this part with solvent.
Clearly, all ranking methods heavily depend on accurate

structures, but unfortunately, crystal structures are lacking

for all ligands in this investigation. This makes the present
test somewhat less informative when it comes to the ranking

of different methods to predict binding affinities. To obtain

improved binding-affinity predictions for such complicated
systems, FES methods involving enhanced sampling could

be tested, e.g. metadynamics, accelerated MD, or replica-

exchange methods [109–114]. However, many of them are
most effective if it is known beforehand which groups need

better sampling, which not always is the case. They also

significantly increase the computational effort.
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66. Klamt A, Schüürmann J (1993) J Chem Soc Perkin Trans
5:799–805
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Abstract
We have estimated free energies for the binding of eight carboxylate ligands to two variants of the octa-acid deep-cavity 
host in the SAMPL6 blind-test challenge (with or without endo methyl groups on the four upper-rim benzoate groups, 
OAM and OAH, respectively). We employed free-energy perturbation (FEP) for relative binding energies at the molecular 
mechanics (MM) and the combined quantum mechanical (QM) and MM (QM/MM) levels, the latter obtained with the 
reference-potential approach with QM/MM sampling for the MM → QM/MM FEP. The semiempirical QM method PM6-
DH+ was employed for the ligand in the latter calculations. Moreover, binding free energies were also estimated from QM/
MM optimised structures, combined with COSMO-RS estimates of the solvation energy and thermostatistical corrections 
from MM frequencies. They were performed at the PM6-DH+ level of theory with the full host and guest molecule in the 
QM system (and also four water molecules in the geometry optimisations) for 10–20 snapshots from molecular dynamics 
simulations of the complex. Finally, the structure with the lowest free energy was recalculated using the dispersion-corrected 
density-functional theory method TPSS-D3, for both the structure and the energy. The two FEP approaches gave similar 
results (PM6-DH+/MM slightly better for OAM), which were among the five submissions with the best performance in the 
challenge and gave the best results without any fit to data from the SAMPL5 challenge, with mean absolute deviations (MAD) 
of 2.4–5.2 kJ/mol and a correlation coefficient (R2) of 0.77–0.93. This is the first time QM/MM approaches give binding 
free energies that are competitive to those obtained with MM for the octa-acid host. The QM/MM-optimised structures gave 
somewhat worse performance (MAD = 3–8 kJ/mol and R2 = 0.1–0.9), but the results were improved compared to previous 
studies of this system with similar methods.

Keywords Ligand binding · Free-energy perturbation · Reference-potential with QM/MM sampling · Semiempirical 
methods · Density functional theory · Entropy

Introduction

Estimating the affinity between a small molecule and a bio-
macromolecule is important in many parts of chemistry, 
especially in drug design [1, 2]. Therefore, numerous com-
putational methods have been developed with this aim [1], 
ranging from simple scoring approaches for ligand docking 

[3], via end-point approaches, like linear interaction energy 
[4] and MM/PBSA (molecular mechanics combined with 
Poisson–Boltzmann and surface area solvation) [5, 6], to 
strict approaches based on free-energy perturbation (FEP) 
[7, 8] with free energies calculated by exponential averaging 
(EA) [9], thermodynamic integration [10] or the Bennett 
acceptance ratio (BAR) approach [11].

The latter methods should in principle be limited only 
by the accuracy of the potential-energy function and the 
sampling of the phase space, although uncertainties in the 
nature of the simulated system (e.g. the protonation state 
of all involved molecules and residues) may also affect the 
results [7, 8]. To reduce the sampling problem and allow 
for a better control of the actual chemical state, there has 
been quite some interest to study simpler systems, in par-
ticular the binding of small molecules to organic molecules 
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of intermediate size (a few hundred atoms), i.e. host–guest 
systems [12, 13].

Most free energy simulations are performed by empirical 
potentials in the form of molecular mechanics (MM) force 
fields. However, during the latest decades, there has been an 
increasing interest in employing quantum mechanical (QM) 
calculations to obtain more accurate binding free energies 
[14]. Such calculations can be performed at many levels of 
approximation. Owing to the much larger computational cost 
of QM calculations, most such studies are based either on 
single-point QM calculations on structures obtained by MM 
sampling or on structures minimised by QM [14–16] or by 
combined QM and MM calculations (QM/MM) [17, 18]. 
Only a few studies have involved sampling at the QM/MM 
level, typically using a semiempirical QM (SQM) method 
[19–23].

Most computational studies of ligand-binding affinities 
are performed on systems for which the experimental affini-
ties are known. Of course, this introduces the risk that the 
results are biased towards the experimental data. Therefore, 
prospective studies, in which the experimental results are 
not known when the calculations are performed, provide a 
more unbiased view of the performance of various methods. 
In this regard, the statistical assessment of the modelling 
of proteins and ligands (SAMPL) blind-test competitions 
have been invaluable to compare the true predictive value 
of various computational methods. Since SAMPL3, it has 
involved host–guest systems [24] and since SAMPL4, it has 
involved the binding of ligands to the octa-acid deep-cavity 
host (OAH, shown in Fig. 1) [25, 26], developed by the Gibb 
group [27, 28].

In a series of publications, we have studied the binding 
of nine cyclic carboxylate guest molecules to OAH with 
computational methods at both the MM and QM/MM level 
[15, 22, 23, 29–31]. In the SAMPL4 challenge, we used 
FEP to calculate the relative affinities of the nine guests at 
the MM level [15], which gave the best results in the com-
petition [25], with a mean absolute deviation (MAD) of 
3.6 ± 0.2 kJ/mol and a correlation (R2) to experimental data 
of 0.84 ± 0.04. We also tried to improve the FEP results by 
performing QM calculations with density functional theory 
(DFT) on snapshots from the MM simulations, using large 
QM systems involving ~ 310 atoms (1800 DFT calculations 
for each ligand). However, the difference between the MM 
and QM potentials was so large that no converged results 
could be obtained. Therefore, the results were very poor with 
an uncertainty of 6–32 kJ/mol and MADs of 17–27 kJ/mol.

However, by using smaller QM systems (less water mol-
ecules and with the acidic groups on OAH removed) and 
SQM calculations with the PM6-DH2X method, we were 
able to obtain converged results with a precision of 1 kJ/
mol for all relative free energies, using 700,000 QM cal-
culations for each ligand [29]. Unfortunately, the results 

were still worse than the MM-FEP results, with a MAD of 
4.9 ± 0.4 kJ/mol and a vanishing correlation. These results 
were obtained without any sampling at the QM/MM level, 
but in our next study such sampling was performed (with 
semiempirical PM6-DH+ calculations and only the ligand 
in the QM system) [22]. This gave even better results with 
a precision of 0.5–0.9 kJ/mol, a MAD of 4.7 ± 0.2 and a 
R2 correlation of 0.86 ± 0.04. Recently, we have shown that 
similar results can be obtained with approximately a fourth 
of the computational effort using multiple short QM/MM 
simulations [23] or by using non-equilibrium simulations 
and Jarzynski’s equality [32–34].

In the SAMPL4 study, we also tried to estimate OAH 
binding affinities with minimised QM structures, using 
a variant of the method suggested by Grimme and cow-
orkers [15, 16]. We optimised the structures of the com-
plexes with three different DFT approaches (in vacuum, in 
a continuum solvent and in a continuum solvent with four 
explicit water molecules). Then, binding free energies were 
obtained with a vacuum DFT calculation with large basis 
set and empirical dispersion corrections, combined with a 
COSMO-RS estimation of the solvation free energy and with 
thermostatistical corrections from a frequency calculation at 
the MM level. This approach gave absolute binding affini-
ties of an intermediate accuracy with MADs of 7–14 kJ/mol 
and R2 of 0.60–0.78. After removing systematic errors (the 
mean signed deviation, MSD), the MADs (called MADtr 
in the following) were 5–9 kJ/mol. Similar results were 
obtained also by Sure and Grimme on the same system [35]. 
An attempt to improve the energies by local coupled-cluster 
calculations gave much worse results with R2, MAD and 
MADtr of 0.28, 37 and 14 kJ/mol, respectively [15, 30].

In SAMPL5, we employed a similar approach to calculate 
binding affinities of six more diverse guest molecules (with 
either a carboxylate or a trimethylammonium group) [31] to 
OAH and also to its tetra-endo-methyl variant (OAM) [36]. 
The calculations were improved by keeping the structures 
as symmetric as possible, reducing the charge and flexibility 
of the ligand and performing a restricted sampling of the 
complexes. Disappointingly, the results were worse than for 
SAMPL4 with MADtr of 11–22 kJ/mol and R2 below 0.30. 
The reason for this is probably the larger diversity of the 
ligands but also problems with some of the geometry opti-
misations (the guest carboxylate groups become too buried 
inside the host). The results were not improved by employing 
DLPNO–CCSD(T) calculations [37] (MADtr = 16–20 kJ/
mol and R2 = 0–0.15). The best results in the SAMPL5 
competition were obtained for free-energy simulations at 
the MM level, dragging the ligand out of the host [26].

In this paper, we study the binding of eight carboxylic 
ligands to both the OAH and OAM hosts in the SAMPL6 
challenge [38, 39] with four different methods: FEP at 
the MM level, FEP at the PM6-DH+/MM level, as well 
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as optimised structures at the PM6-DH+/MM and DFT/
MM levels of theory. For the latter, we used more exten-
sive sampling at the MM level and QM/MM optimised 

structures with explicit solvent. We also re-examine the 
SAMPL4 and 5 test cases with the third method to show 
that it gives improved results. For the first time, we get a 

Fig. 1  a Ligands involved in SAMPL6 challenge (G0–G7) and five ligands added to make the perturbations smaller and connected to experimen-
tal data (MeHx) and A5–A8. b The OAH and c OAM host molecules
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slight improvement of the MM FEP results by employing 
the PM6-DH+/MM correction.

Methods

Setup of the studied systems

We have considered the eight ligands of the SAMPL6 blind-
test competition, G0–G7 [38, 39], as well as four aliphatic 
carboxylates with 5–8 carbon atoms (called A5–A8) and the 
MeHx ligand from SAMPL4 [40]. They are shown in Fig. 1, 
together with the OAH and OAM host structures. For some 
test calculations, we used also the nine cyclic carboxylate 
ligands from SAMPL4 [40] and the four carboxylate ligands 
from SAMPL5 [41] (shown in Figures S1 and S2).

The host–guest complexes for the calculations were built 
from the coordinates for the octa-acid host with the guest 
molecules from previous blind-prediction challenges [15, 
31]. The guest molecules were prepared and modified using 
the Avogadro software [42] and the geometry of the guest 
molecules was optimised with the UFF force field [43]. The 
OAM was constructed by adding four methyl groups at the 
corresponding hydrogen positions on the upper rim of OAH.

Both the host and the guest molecules were treated with 
the general AMBER force field (GAFF) [44], whereas the 
TIP3P model was used for water molecules [45]. Charges 
for the two host molecules have been reported before [15, 
31]. Charges for the ligands were obtained with the same 
restrained electrostatic potential approach [46]: The mol-
ecules were optimised with the SQM AM1 method [47], 
followed by a single-point calculation at the Hartree–Fock/6-
31G* level to obtain the electrostatic potentials, sampled 
with the Merz–Kollman scheme [48], but at a higher-than-
default density (10 layers with 17 points per unit area, giving 
~ 2000 points per atom). These calculations were performed 
with the Gaussian 09 software [49]. The potentials were 
then used by antechamber to fit the charges. The charges 
and atom types of all ligands are given in Table S8 in the 
supplementary material.

A few parameters missing in the force field were esti-
mated with the Seminario approach [50]: The geometry of 
the ligands was optimised at TPSS/def2-SV(P) level [51, 
52], followed by a frequency calculation using the aoforce 
module of the Turbomole software [53]. From the resulting 
Hessian matrix, parameters for the missing dihedrals were 
extracted with the Hess2FF program [54]. These parameters 
are given in Table S1 in the supplementary material.

Molecular dynamics simulation

All molecular dynamics (MD) simulations and FEP calcu-
lations were run with the AMBER 16 software suite [55]. 

Each host–guest complex was solvated in an octahedral box 
of water molecules extending at least 10 Å from the guest 
molecules using the tleap module, so that 1504–1513 water 
molecules were included in the simulations. All nine carbox-
ylic groups on the host and guest molecules were assumed 
to be deprotonated because the binding affinities were 
measured at a pH of 11.7 [39]. Thus, the net charge of the 
host–guest complexes were − 9. No counter ions were used 
in the simulations, as our previous studies have shown that 
they have a small effect on the calculated free energies [15].

Each complex was subjected to 10,000 steps of conjugate-
gradient minimisation, followed by 20 ps constant-volume 
equilibration and 20 ps constant-pressure equilibration, all 
performed with heavy non-water atoms restrained towards 
the starting structure with a force constant of 209 kJ/mol/
Å2. Finally, the system was equilibrated for 2 ns without 
any restraints and with constant pressure, followed by 10 ns 
of production simulation, during which coordinates were 
saved every 10 ps. For each host–guest complex, 10 (OAH) 
or 20 (OAM) independent simulations were run, employing 
different TIP3P solvation boxes and different starting veloci-
ties [56]. Consequently, the total simulation time for each 
complex was 100 or 200 ns.

All bonds involving hydrogen atoms were constrained 
to the equilibrium value using the SHAKE algorithm [57], 
allowing for a time step of 2 fs. The temperature was kept 
constant at 300 K using Langevin dynamics [58], with a col-
lision frequency of 2 ps−1. The pressure was kept constant at 
1 atm using a weak-coupling isotropic algorithm [59] with a 
relaxation time of 1 ps. Long-range electrostatics were han-
dled by particle-mesh Ewald summation [60] with a fourth-
order B spline interpolation and a tolerance of  10−5. The 
cut-off radius for Lennard‒Jones interactions was set to 8 Å.

FEPs

The guest molecules were manually mapped for the FEP 
simulations as is shown in Fig. 2, keeping the perturbations 
as small as possible. To this aim and to connect the relative 
FEP calculations to experimental data [40, 61], we included 
also the A5–A8 and MeHx ligands. The FEP simulations 
were run with the pmemd module of AMBER 16 [37], using 
the dual-topology scheme with both ligands in the topol-
ogy file. Each ligand transformation was divided into 13 
steps, employing a linear transformation of the force-field 
potentials with the coupling parameter λ = 0.00, 0.05, 0.10, 
0.20, …, 0.80, 0.90, 0.95 and 1.00. Electrostatic and van 
der Waals interactions were perturbed concomitantly, using 
soft-core potentials for both types of interactions [62, 63]. 
For the simplest perturbations, involving a H →  CH3 per-
turbation (A5 → A6, A6 → A7, A7 → A8, G5 → G7 and 
G6 → A5), soft-core potentials were used only for the dif-
fering atoms. However, for the other seven perturbations, 
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soft-core potentials were used for all atoms in the ligands, 
except those in the carboxylate group, to allow for larger 
differences in the dynamics of the perturbed groups (atoms 
without soft-core potentials have identical coordinates in the 
perturbations).

For each λ value, 100 steps of conjugate-gradient mini-
misation were performed with the heavy atoms of the host 
and ligand restrained towards the starting structure with a 
force constant of 418 kJ/mol/Å2. This was followed by 20 ps 
constant-volume equilibration with the same restraints and 
1 ns constant-pressure equilibration without any restraints. 
Finally, a 2-ns production simulation was run (still with con-
stant pressure), during which structures and energies were 
sampled every 2 ps.

Relative binding free energies between two ligands,  L0 
and  L1 (∆∆Gbind), were estimated using a thermodynamic 
cycle that relates ∆∆Gbind to the free energy of alchemically 
transforming  L0 into  L1 when they were either bound to the 
host, ∆Gbound(L0 →  L1), or free in solution, ∆Gfree(L0 → 
 L1) [64, 65]:

∆Gbound(L0 →  L1) and ∆Gfree(L0 →  L1) were estimated 
by the multi-state Bennett acceptance-ratio (MBAR) 
method, using the pyMBAR software [66], including only 
statistically non-correlated energies in the calculations. All 
FEP calculations were repeated three times using differ-
ent TIP3P solvation boxes and different starting velocities 
[56]. Reported free energies are the average over these three 

(1)
ΔΔGbind = ΔGbind

(

L1

)

− ΔGbind

(

L0

)

= ΔGbound(L0 → L1) − ΔGfree(L0 → L1)

calculations, whereas the reported uncertainty is either the 
standard deviation over these three calculations divided by 
the square root of three or the square root of the sum of the 
variances of the three individual estimates divided by three, 
depending on which of the two values was largest.

QM/MM FEP calculations

Relative QM/MM binding affinities between two ligands,  L0 
and  L1, were estimated by the reference-potential method 
with QM/MM sampling (RPQS) [22, 23]. In this approach, 
the ∆∆Gbind free energies, calculated at the MM level, as 
described in the previous section, are corrected by a FEP 
calculation for each ligand in the method space, from the 
MM potential to the QM/MM potential, as is shown by the 
thermodynamic cycle in Fig. 3. This was done both for the 
ligand bound to the host and when free in solution. For each 
state (s = bound or free), the QM/MM corrected free energy 
was calculated from

Finally, the net binding free energies were calculated from

All MM → QM/MM FEP simulations were performed 
with the AMBER 16 software [55] and for all host–guest 
systems shown in Fig. 1 except the MeHx ligand. In the 
QM/MM calculations, only the guest molecule was 
included in the QM region and it was treated at the SQM 
PM6-DH+ level of theory [67–69]. The MM → QM/MM 
free energies were calculated based on the energy function 
E(Λ) = (1 − Λ)EMM + ΛEQM∕MM , where EMM is the MM 
energy, EQM∕MM is the QM/MM energy and Λ is a coupling 
parameter going from 0 to 1. Based on our previous study 
of OAH with the SAMPL4 ligands [22], we performed cal-
culations at four Λ values: 0.0, 0.333, 0.666, and 1.0. If the 
overlap with four Λ values was unsatisfactory (see below), 

(2)
ΔG

QM∕MM

L0→L1,s
= ΔGMM

L0→L1,s
− ΔG

MM→QM∕MM

L0,s
+ ΔG

MM→QM∕MM

L1,s
.

(3)ΔΔG
QM∕MM

bind
= ΔG

QM∕MM

L0→L1,bound
− ΔG

QM∕MM

L0→L1,free

Fig. 2  Ligand alchemical transformations studied with FEP

Fig. 3  Thermodynamic cycle used for the RPQS calculations
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additional Λ values were employed (0.1667, 0.5 or 0.8333; 
cf. Table S7).

For each Λ value, we performed 100 steps of conjugate-
gradient minimisation with the heavy atoms of the host 
and guest molecules restrained towards the starting struc-
ture with a force constant of 418 kJ/mol/Å2. This was fol-
lowed by 20 ps constant-volume equilibration with the same 
restraints and 0.5 ns constant-pressure equilibration without 
any restraints. Finally, a 1 ns production simulation was run, 
during which structures and energies were sampled every 
1 ps. The QM/MM MD simulations were performed in the 
same manner as described in the “Molecular dynamics simu-
lations” section. Free energies were estimated by MBAR, 
using the pyMBAR software [66], including only statisti-
cally non-correlated energies in the calculations.

Absolute binding free energies from QM/MM 
minimised structures

Absolute binding free energies were calculated using the 
method suggested by Grimme [16, 70], in which the binding 
free energy is composed of three terms:

where ∆EQM is a single-point vacuum QM energy, which 
also includes the dispersion energy, ∆Gsolv is the solvation 
free energy and ∆Gtherm is a thermostatistical correction 
term. The binding affinity was obtained as the difference in 
this free energy between the complex, host and guest:

Structures for the free host and guest molecules were 
taken from the structures of the complexes, without fur-
ther optimisation (rigid binding free energies; some tests 
were performed to calculate structure-relaxation energies, 
but they did not lead to any improvement). The calculations 
were performed at two levels of QM theory and based on 
two sets of structures. The two approaches will be called 
SQM and DFT in the following.

From each of the independent MD simulations of the 
host–guest complexes at the MM level, the last snapshot was 
minimised at the PM6-DH+/MM level of theory [67–69] 
using the AMBER 16 software suite [55]. The quantum 
system consisted of the host and guest molecules, as well 
as four water molecules that formed hydrogen bonds with 
the guest (viz. the two closest water molecules to each of 
the ligand carboxylate oxygen atoms). It had a net-charge of 
− 9. The solvation box from the MD simulations was kept 
in all calculations. Conjugate-gradient minimisations were 
run for 2000 steps without any bond-length restraint for any 
molecule and with no periodicity (for technical reasons). 
This gave 10 different host–guest structures for each guest 

(4)ΔGtot = ΔEQM + ΔGsolv + ΔGtherm

(5)
ΔGbind = ΔGtot(complex) − ΔGtot(host) − ΔGtot(guest)

bound to the OAH host and 20 different structures for the 
OAM host. The resulting structures were used directly for 
the SQM calculations.

The QM energy for the SQM structures (only isolated 
host and guest, with all water molecules removed) was 
calculated as a PM6-DH+ single-point energy using the 
AMBER sqm program [55]. This method includes disper-
sion and hydrogen-bond corrections [67–69] and is among 
the best SQM methods available in the Amber software.

Solvation free energies in water solution were calculated 
with the conductor-like solvent model (COSMO) [71, 72] 
real-solvent (COSMO-RS) approach [73, 74] using the 
COSMOTHERM software [75]. These calculations were 
based on two single-point BP86 calculations [76, 77] with 
the TZVP basis set [78], one performed in a vacuum and the 
other in the COSMO solvent with an infinite dielectric con-
stant. Owing to the extensive negative charge of the hosts, 
we had to use the undocumented ADEG option to force the 
program to accept that the solvation energy is very large.

Thermal corrections to the Gibbs free energy at 298 K 
and 1 atm pressure (∆Gtherm), including zero-point vibra-
tional energy, entropy and enthalpy corrections, were cal-
culated by an ideal-gas rigid-rotor harmonic-oscillator 
approach [79] from vibrational frequencies calculated at 
the MM level (i.e. with the GAFF force field and the same 
charges as in the MD simulations). The frequency calcula-
tions were preceded by a minimisation at the same level 
of theory. To obtain more stable results, low-lying vibra-
tional modes were treated by the free-rotor approximation, 
using the interpolation model suggested by Grimme with 
ω0 = 100 cm−1 [16]. The translational entropy was corrected 
by 7.99 kJ/mol for the change in the standard state from 
1 atm to 1 M (used in the experiments [39]). Unfortunately, 
we discovered after the submission of the results that for 
most complexes, the ligand dissociated from the host dur-
ing the MM minimisation before the frequency calculations. 
Therefore, the thermal corrections were recalculated after 
the submission, using a restraint to the starting structure 
during the geometry optimisation.

For the SQM calculations, energies obtained according to 
Eqs. (4 and 5) were calculated for all 10 or 20 snapshots and 
the final absolute ∆Gbind energy was obtained by either tak-
ing the minimum value, the average value or the Boltzmann-
weighted average value.

In the second (DFT) approach, the structure with the 
most favourable SQM ∆Gbind energy was further optimised 
at the QM/MM level with the host, the ligand and four water 
molecules in the QM system, treated with the TPSS-D3/
def2-SV(P) method [51, 52]. These calculations were per-
formed with the ComQum program [80, 81], which is an 
interface between AMBER [55] and the QM software Tur-
bomole software [53]. In these calculations, the MM sys-
tem was kept fixed. The minimisations were run until the 



1033Journal of Computer-Aided Molecular Design (2018) 32:1027–1046 

1 3

energy change between two iterations was less than 0.003 kJ/
mol and the maximum norm of the Cartesian gradients was 
below  10−3 a.u. All complexes converged within 150 geom-
etry iterations.

For the optimised structures, ∆EQM was calculated with 
the TPSS functional and the def2-QZVP’ basis set (the def2-
QZVP basis set [52] with the f-type functions on hydro-
gen and the g-type functions on the other atoms deleted). 
The dispersion energy was included using the DFT-D3 
approach [82] with Becke–Johnson damping [83] and third-
order terms included. All DFT calculations were sped up 
by expanding the Coulomb interactions in auxiliary basis 
sets with the resolution-of-identity approximation (RI), 
using the corresponding auxiliary basis sets [84, 85]. The 
multipole-accelerated resolution-of-identity J approach was 
also employed [86]. All DFT calculations were performed 
using the Turbomole 7.1 or 7.2 software [53]. Finally, abso-
lute ∆Gbind energies were obtained with Eqs. (4 and 5), using 
the same approach to get ∆Gsolv and ∆Gtherm as for the SQM 
structures. However, the final ∆Gbind was based on a single 
DFT structure.

Geometric measures

We have used several geometric measures [15] to analyse 
the structures of the host–guest systems, as described below. 
Atom names used in the descriptions are shown in Figure 
S3.

• rDm measures how deep the guest is inside the host; it is 
defined as the closest distance between any guest atom 
and the average of the coordinates of the four HD atoms 
at the bottom of the host (AD).

• αT shows the orientation of the ligand inside the host and 
is defined as the angle between the guest C1–C2 vector 
(C1 is the carboxylate carbon and C2 is the carbon bound 
to C1) and the host AD–AB vector, where AB is the aver-
aged coordinates of the four HB atoms on the top of the 
host.

• rO1 and rO2 describe how much the guest reaches out of 
the host. They are the distance between ligand carboxy-
late O1 or O2 atoms and the average plane defined by the 
four CC atoms of the host. ΔrO = |rO1 − rO2| and shows 
how tilted the carboxylate group is relative to the host.

• ΔrBB is defined as the difference in distance between two 
sets of opposite HB host atoms and measures the distor-
tion of the host.

• rC1 and rC2 describe the orientation of the host carboxy-
late groups. They are defined as the distance between two 
opposite CO atoms. rCav is the average of rC1 and rC2.

Error estimates, quality and overlap measures

All reported uncertainties are standard errors of the mean 
(standard deviations divided by the square root of the number 
of samples). The uncertainty of the MBAR free energies cal-
culated at each λ or Λ value was estimated by bootstrapping 
using the PYMBAR software [66] and the total uncertainty 
was obtained by error propagation.

The performance of the free-energy estimates was quan-
tified by the mean signed deviation (MSD), the mean abso-
lute deviation (MAD), the MAD after removal of the MSD 
(MADtr), the root-mean-square deviation (RMSD), the maxi-
mum error (Max), the correlation coefficient (R2), the slope of 
the best correlation line and Kendall’s rank correlation coef-
ficient (τ) compared to experimental data [39]. For relative 
affinities, τ was calculated only for the transformations that 
were explicitly studied, not for all combinations that can be 
formed from these transformations (this is marked by calling 
it τr). Moreover, it was also evaluated considering only differ-
ences (both experimental and calculated) that are statistically 
significant at the 90% level (τ90 and τr,90 for absolute and rela-
tive affinities, respectively) [87]. Note that R2 and the slope for 
relative affinities depend on the direction of the perturbation 
(i.e. whether  L0 →  L1 or  L1 →  L0 is considered, which is arbi-
trary). This was solved by considering both directions (both 
forward and backward) for all perturbations when these two 
measures were calculated.

The standard deviation of the quality measures was 
obtained by a simple simulation approach [88]. For each trans-
formation, 1000 Gaussian-distributed random numbers were 
generated with the mean and standard deviation equal to the 
MBAR and experimental results [39] for that transformation. 
Then, the quality measures were calculated for each of these 
1000 sets of simulated results and the standard error over the 
1000 sets is reported as the uncertainty.

For all λ and Λ values of all FEP calculations, we have 
monitored five overlap measures, to ensure that the overlap of 
the studied distributions is satisfactory, viz. the Bhattacharyya 
coefficient Ω [89], the Wu and Kofke overlap measures of the 
energy probability distributions (KAB) [90] and their bias met-
rics (Π) [90], the weight of the maximum term in the exponen-
tial average (wmax) [91] and the difference of the forward and 
backward exponential average estimate (ΔΔGEA) [92]. If Π < 0 
or two of the following criteria were not fulfilled: Ω > 0.7, KAB 
> 0.7, Π > 0.5, wmax < 0.3, ΔΔGEA < 4 kJ/mol, additional λ 
or Λ values were included. Overlap measures obtained in the 
various simulations are listed in Table S7.
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Result and discussion

In this study, we have calculated the free energies for the 
binding of the eight ligands G0–G7 in Fig. 1 to the nor-
mal (OAH) and methylated (OAM) deep-cavity octa-acid 
hosts (also shown in Fig. 1) within the SAMPL6 blind-test 
challenge [38, 39]. Thus, the experimental data were not 
known when the calculations were performed and were 
revealed only after the predictions were submitted. The 
experimental affinities were measured by isothermal calo-
rimetry in aqueous 10 mM sodium phosphate buffer at pH 
11.7 and 298 K [39]. We employed four different methods 
and submitted four data sets. The methods are summarised 
in Fig. 4. First, we performed standard relative FEP calcu-
lations at the MM level. Second, we performed QM/MM-
FEP calculations using the reference-potential approach 
with explicit QM/MM sampling (RPQS) [22] at the PM6-
DH+ level of theory (only ligand treated by QM). Third, 
absolute binding free energies were estimated by PM6-
DH+/MM optimisations on 10–20 snapshots from MD 
simulations (host, ligand and 4 water molecules treated 
by QM), with energies supplemented by continuum solva-
tion and thermostatistical corrections (Eq. 4). Fourth, the 
most energetically favourable of the latter structures were 

reoptimised with DFT and energies were calculated with 
DFT and large basis sets. The results are described below 
in separate subsections.

FEP calculations at the MM level

We have calculated the relative binding free energies of the 
SAMPL6 ligands G0–G7 by FEP calculations at the MM 
level. As can be seen in Fig. 1, the eight ligands contain a 
carboxylic group and six to ten carbon atoms. G0 and G2 
involve a five- or six-membered ring and all except G0 and 
G6 have one or two double bonds. Ligands G2, G4 and G5 
are chiral and they were used in the isomers shown in Fig. 1 
(since the host is achiral, the actual form should not matter 
for the binding affinities).

We developed a FEP scheme, shown in Fig. 2, in which 
the eight ligands are connected, keeping the change as small 
as possible. This was partly accomplished by adding four 
extra ligands, which are the aliphatic carboxylates with five 
to eight carbon atoms, A5–A8. Thereby, the perturbations 
are restricted to the introduction of a double bound, the con-
version of a H atom to a methyl group, the closure of a ring, 
or in one case (G2), formation of a cyclohexene ring by the 
addition of two carbon atoms. The aliphatic ligands were 
employed also because experimental binding affinities are 

Fig. 4  Schematic description of the four different approaches employed. H, G and 4W represent the molecules included in the QM system: host, 
guest and four water molecules
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available for A6 and A8 to OAH [61], giving us the opportu-
nity to convert the relative energies to absolute affinities. For 
the same reason, the MeHx ligand from SAMPL4 (shown 
in Fig. 1a) was also added and connected to G2. To connect 
the calculations of OAH and OAM, and to obtain absolute 
affinities for the OAM ligands, we also converted OAH to 
OAM with and without the A6 ligand bound (adding the four 
methyl groups at the same time).

The calculated relative affinities are listed in Table 1 
( ΔΔGMM

bind
 column; free energies calculated with MBAR). 

It can be seen that the statistical uncertainty for most 
∆∆Gbind estimates is low, 0.1–0.5 kJ/mol, owing to the use 
of three independent FEP calculations. This reflects that 
the three estimates give similar results, with a variation of 
up to 1.0 kJ/mol for OAH and 1.6 kJ/mol for OAM. How-
ever, for two perturbations with both hosts, G2 → MeHx 
and G4 → A8, the variation is much larger (9–20 kJ/mol) 
and therefore the precision is much worse, 1.5–2.6 kJ/mol 
even if we employed six independent simulations for these 
perturbations.

Besides the G5 → G7 perturbation, the results in Table 1 
are not directly comparable to the experimental data, 
because they involve the A5–A8 and MeHx ligands that are 
not involved in the SAMPL6 measurements. We have used 
two different approaches to solve this problem. For the sub-
mitted data, we employed previously published experimental 
data for A6, A8 and MeHx in OAH [40, 61] to calculate 
absolute affinities for all ligands. This is a bit risky, because 
∆∆Gbind measured in different studies (at slightly different 
conditions) vary somewhat. For example, the experimental 
free energy of the Hx ligand (Figure S1) binding to OAH, 
involved in SAMPL4, vary between 21.1 and 23.5 kJ/mol in 
two publications by the same group [40, 93] and the results 

for A6, A8 and A10 vary by 1.5–2.8 kJ/mol [61, 93] (we 
employed the newer data in this article).

Our initial calculations along these lines showed that 
the calculated data were somewhat problematic: As can be 
seen in Fig. 2, the A6 and A8 ligands are connected by two 
perturbations, A6 → A7 → A8. However, the initial result 
for these perturbations was quite poor, − 11.3 ± 0.3 kJ/mol, 
compared to the difference in the experimental ∆∆Gbind for 
A6 and A8, − 4.9 or − 6.2 kJ/mol in the two experimental 
studies [61, 93]. We therefore rerun these two perturba-
tions with the whole ligand included in the perturbed group 
(instead of only the differing atoms). For A7 → A8, this did 
not change the results significantly, as can be seen in Table 1 
(entry “entire ligand”). However, for A6 → A7, the result 
changed by 4 kJ/mol, bringing the A6 → A8 estimate closer 
to experiments, − 7.8 ± 1.2 kJ/mol. Unfortunately, we did 
not have time to rerun all the other perturbations with the 
whole ligand in the soft-core group, but we used the latter 
results for the A6 → A7 perturbation and also corrected the 
corresponding results for OAM with the difference between 
the two A6 → A7 perturbations for OAH.

Absolute affinities calculated this way are shown in 
Table 2 (MM columns), together with the reference ligands 
(from which the experimental data was taken, because 
there are several possibilities) and the experimental data for 
SAMPL6 [39] (revealed after submission our results). As can 
be seen in Fig. 5a, the agreement is rather good with errors of 
1.9–9.7 kJ/mol for the 16 predictions. However, the MAD is 
rather high, 5.6 ± 0.3 and 6.2 ± 0.3 kJ/mol for the two hosts. 
For most of the ligands, the predicted affinities are less nega-
tive than the experimental ones—the MSD is 5.0 ± 0.3 and 
2.0 ± 0.4 kJ/mol for the two hosts. Yet, for G4 in both hosts 
and G2 in OAM, the opposite is true (note that these two 

Table 1  Calculated relative 
binding free energies (kJ/mol) 
for the OAH and OAM hosts, 
obtained with FEP at the MM 
and PM6-DH+/MM levels 
for the perturbation scheme in 
Fig. 2

ΔΔGMM

bind ΔΔG
QM∕MM

bind

OAH OAM OAH OAM

A5 → A6 − 14.4 ± 0.1 − 16.1 ± 0.3 − 14.2 ± 0.5 − 17.7 ± 0.5
A6 → A7 − 4.3 ± 0.2 − 7.7 ± 0.2 − 6.2 ± 0.5 − 8.6 ± 0.5

Entire ligand 0.1 ± 0.8 − 1.8 ± 0.9
A7 → A8 − 7.1 ± 0.3 − 8.9 ± 0.1 − 7.2 ± 0.5 − 8.1 ± 0.5

Entire ligand − 7.9 ± 0.8 − 8.0 ± 1.0
G0 → A7 − 1.8 ± 0.4 − 9.0 ± 0.5 − 2.1 ± 0.6 − 5.8 ± 0.7
G1 → A6 − 5.8 ± 0.3 − 2.3 ± 0.3 − 11.2 ± 0.5 − 8.0 ± 1.0
G2 → A7 16.8 ± 0.4 7.7 ± 0.4 6.1 ± 0.5 1.3 ± 1.3
G2 → MeHx − 4.2 ± 1.5 4.3 ± 2.6
G3 → A6 − 8.7 ± 0.4 − 10.9 ± 0.4 − 7.0 ± 0.5 − 8.9 ± 0.6
G4 → A8 3.9 ± 2.1 3.6 ± 1.9 1.2 ± 2.2 3.4 ± 1.9
G5 → A5 2.9 ± 0.3 − 1.6 ± 0.4 2.1 ± 0.6 − 1.2 ± 0.5
G5 → G7 − 10.2 ± 0.2 − 6.9 ± 0.3 − 6.4 ± 0.5 − 4.3 ± 0.6
G6 → A5 9.4 ± 0.2 9.3 ± 0.2 8.4 ± 0.5 9.1 ± 0.5
A6@OAM → A6@OAH 3.6 ± 0.4 5.2 ± 0.6
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ligands were involved in transformations with a poor preci-
sion in Table 1). If the systematic error is removed, the MAD 
is improved significantly. For OAH, the MADtr is good, 
2.6 ± 0.3 kJ/mol, whereas it is worse for OAM, 5.2 ± 0.4 kJ/
mol. The reason for this is probably that the experimental 
data employed to calculate the absolute affinities were all for 
OAH, so the results for OAM involve more perturbations and 
therefore the possibility of accumulation of errors.

On the other hand, the correlation between the 
experimental and calculated results is better for OAM 
(R2 = 0.85 ± 0.02) than for OAH (0.77 ± 0.05), although the 
difference is not fully significant. The same applies also for 
τ90, which is 0.84 ± 0.02 and 0.79 ± 0.02 for OAM and OAH, 
respectively.

Alternatively, we instead considered only relative 
affinities. These were obtained by combining two or three 
perturbations so that they go between only the G0–G7 
ligands. This can be done in a few different ways and one 
connected and consistent set of seven relative energies are 
shown in Table 3 (MM columns). It can be seen that the 
results are quite similar to those of the absolute affini-
ties. The errors vary between 0.4 and 7.3 kJ/mol, except 

for the G0 → G2 difference in OAM, for which the error 
is as much as 13.6 kJ/mol (the calculated result overes-
timates the true difference, but with the correct sign). 
Consequently, the MAD is larger for OAM (5.1 ± 0.2 kJ/
mol) than for OAH (3.1 ± 0.2 kJ/mol). R2 is also better 
for OAH (0.87 ± 0.02, compared to 0.61 ± 0.04). On the 
other hand, τr,90 is perfect for OAM (all statistically sig-
nificant differences have the correct sign), whereas it is 
0.71 for OAH (one difference has the incorrect sign). The 
single perturbation that involves only SAMPL6 ligands 
(G5 → G7) gives errors of the same size as the combined 
perturbations (3–7 kJ/mol), indicating that the results are 
not biased by poor performance of the added A5–A8 and 
MeHx ligands. Similar results are also obtained if relative 
energies involving the G0–G7 ligands, as well as the A6, 
A8 and MeHx ligands are considered (Table S2).

FEP calculations at the QM/MM level

Next, we used the RPQS approach to calculate all the rela-
tive binding affinities at the QM/MM level. For this, we 

Table 2  Calculated absolute 
binding free energies (kJ/mol) 
for the SAMPL6 ligands in the 
OAH and OAM hosts obtained 
with FEP at the MM and 
PM6-DH+/MM levels

The absolute affinities were obtained by using experimental data for A6, A8 or MeHx bound to OAH [40, 
61]. The reference employed is specified in the columns Ref. The experimental data are given in the Exp. 
columns [39]. The last nine rows show quality measures compared to the experimental results
a MeHx for MM-FEP

OAH OAM
Ref Exp MM QM/MM Ref Exp MM QM/MM

A5 A6 − 7.4 ± 0.1 − 7.7 ± 0.5 A6 − 9.3 ± 0.5 − 9.3 ± 0.7
A6 − 21.8 ± 0.1 A6 − 25.4 ± 0.4 − 27.0 ± 0.6
A7 A8 − 21.0 ± 0.3 − 20.9 ± 0.5 A6 − 28.8 ± 1.0 − 31.3 ± 1.1
A8 − 28.0 ± 0.1 A6 − 37.7 ± 1.0 − 39.4 ± 1.1
G0 A8 − 23.8 ± 0.1 − 19.2 ± 0.5 − 18.8 ± 0.7 A6 − 25.4 ± 0.1 − 19.8 ± 1.1 − 25.5 ± 1.2
G1 A6 − 19.5 ± 0.1 − 16.1 ± 0.1 − 10.6 ± 0.5 A6 − 25.0 ± 0.2 − 23.1 ± 0.5 − 19.0 ± 1.1
G2 A8a − 35.1 ± 0.1 − 27.6 ± 0.8 − 27.0 ± 0.6 A6 − 28.5 ± 0.1 − 36.5 ± 1.0 − 32.6 ± 1.6
G3 A6 − 21.7 ± 0.1 − 13.1 ± 0.1 − 14.9 ± 0.5 A6 − 23.4 ± 0.2 − 14.5 ± 0.6 − 18.1 ± 0.7
G4 A8 − 29.7 ± 0.1 − 31.9 ± 2.1 − 29.2 ± 2.2 A6 − 32.6 ± 0.1 − 41.3 ± 2.1 − 42.8 ± 2.2
G5 A6 − 19.2 ± 0.1 − 10.3 ± 0.3 − 9.8 ± 0.6 A6 − 17.4 ± 0.1 − 7.7 ± 0.5 − 8.1 ± 0.7
G6 A6 − 20.8 ± 0.1 − 16.8 ± 0.3 − 16.1 ± 0.5 A6 − 22.6 ± 0.1 − 18.6 ± 0.5 − 18.4 ± 0.7
G7 A6 − 26.0 ± 0.1 − 20.5 ± 0.4 − 16.2 ± 0.6 A6 − 17.3 ± 0.1 − 14.6 ± 0.6 − 12.4 ± 0.8
MeHx − 31.8 ± 0.3 A6 − 32.2 ± 2.8
MAD 5.6 ± 0.3 6.7 ± 0.3 6.2 ± 0.3 5.5 ± 0.4
MADtr 2.6 ± 0.3 2.4 ± 0.4 5.2 ± 0.4 5.0 ± 0.5
MSD 5.0 ± 0.3 6.7 ± 0.3 2.0 ± 0.4 1.9 ± 0.4
RMSD 6.0 ± 0.2 7.3 ± 0.2 6.8 ± 0.4 6.2 ± 0.5
Max 8.9 ± 0.3 9.8 ± 0.5 9.7 ± 0.9 10.2 ± 1.6
slope 1.1 ± 0.1 1.1 ± 0.1 2.0 ± 0.1 2.1 ± 0.1
R2 0.77 ± 0.05 0.81 ± 0.04 0.85 ± 0.02 0.93 ± 0.02
τ 0.79 ± 0.02 0.79 ± 0.06 0.71 ± 0.05 0.86 ± 0.07
τ90 0.79 ± 0.02 0.84 ± 0.02 0.84 ± 0.02 1.00 ± 0.01
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performed MM → QM/MM FEP calculations for all G0–G7 
and A5–A8 ligands both when bound to the host and free in 
solution (cf. Fig. 3). The results are shown in Table 4. The 
individual MM → QM/MM free energies calculated when 
the ligand is bound to the host 

(

ΔG
MM→QM∕MM

L,bound

)

 or free in 

solution 
(

ΔG
MM→QM∕MM

L,free

)

 , ranged from − 507 to − 691 kJ/
mol, except for G4 (around − 260 kJ/mol) and G7 (around 
− 962 kJ/mol). However, for each ligand, the values in the 
host and in solution were of a similar size, and the resulting 
MM → QM∕MM correction to ∆Gbind ( ΔΔGMM→QM∕MM

bind,L
 , 

shown in Table 4) ranged between − 8.8 and + 5.7 kJ/mol.
The standard errors were between 0.2 and 0.4 kJ/mol, 

except for G1 and G2 bound to OAM, for which they were 
0.9 and 1.2 kJ/mol. For G0–G7 in OAM, we run duplicate 
calculations and for these two ligands, the results differed 
by 1.9 and 2.4 kJ/mol, whereas for the other ligands, they 
agreed within 0.5 kJ/mol. In fact, the large variation came 
from the ΔGMM→QM∕MM

L,bound
 term, which varied by 2.6 and 

3.2 kJ/mol for these two ligands, but less than 0.2 kJ/mol 
for the other ligands. For the ΔGMM→QM∕MM

L,free
 term, for which 

we have two or three samples of each, the variation was 
0.1–0.8 kJ/mol, except for G2 and G6 (1.2 and 2.0 kJ/mol).

We used five overlap measures (described in the Method 
section and shown in Table S7) to check that the calculated 
MM → QM corrections are reliable. Based on these, we 
added intermediate Λ values for some of the ligands, as is 
shown in the last two columns of Table 4.

Next, the ΔΔGMM→QM∕MM

bind, L
 corrections in Table 4 were 

combined with the results of the FEP calculations at the MM 

Fig. 5  Comparison of the experimental and calculated absolute affini-
ties obtained with a MM-FEP and b QM/MM-FEP methods. The line 
shows the perfect correlation

Table 3  Calculated relative 
binding free energies (kJ/mol) 
for the SAMPL6 ligands in the 
OAH and OAM hosts obtained 
with FEP at the MM and 
PM6-DH+/MM levels

The relative affinities involving only the SAMPL6 ligands were obtained by using 1–3 perturbations from 
Table 1 and the intermediate ligands are specified in the second column. The experimental results for the 
SAMPL6 ligands [39] are given in the Exp. columns

OAH OAM
Via Exp MM QM/MM Exp MM QM/MM

G0 → G2 A7 − 11.3 ± 0.2 − 18.6 ± 0.4 − 8.2 ± 0.6 − 3.1 ± 0.1 − 16.7 ± 0.5 − 7.1 ± 1.3
G1 → G3 A6 − 2.2 ± 0.1 2.9 ± 0.2 − 4.2 ± 0.5 1.5 ± 0.2 8.7 ± 0.4 0.9 ± 1.1
G4 → G2 A8, A7 − 5.3 ± 0.1 − 5.8 ± 2.1 2.2 ± 2.2 4.1 ± 0.1 4.8 ± 1.9 10.2 ± 2.2
G5 → G6 A5 − 1.6 ± 0.1 − 6.5 ± 0.4 − 6.3 ± 0.6 − 5.2 ± 0.2 − 10.9 ± 0.2 − 10.3 ± 0.5
G5 → G7 − 6.8 ± 0.1 − 10.2 ± 0.3 − 6.4 ± 0.5 0.1 ± 0.1 − 6.9 ± 0.3 − 4.3 ± 0.6
G0 → G1 A7, A6 4.3 ± 0.2 3.9 ± 0.9 10.9 ± 1.0 0.4 ± 0.2 1.0 ± 0.5 10.8 ± 1.1
G5 → G3 A5, A6 − 2.5 ± 0.1 − 2.8 ± 0.4 − 5.1 ± 0.6 − 6.0 ± 0.2 − 6.7 ± 0.5 − 10.0 ± 0.7
MAD 3.1 ± 0.2 3.9 ± 0.4 5.1 ± 0.2 4.9 ± 0.4
MSD − 1.7 ± 0.4 1.2 ± 0.4 − 2.6 ± 0.3 − 0.2 ± 0.5
RMSD 4.1 ± 0.2 4.5 ± 0.6 6.7 ± 0.2 5.6 ± 0.5
max 7.3 ± 0.4 7.5 ± 1.6 13.6 ± 0.5 10.5 ± 1.1
slope 1.4 ± 0.1 0.9 ± 0.1 2.0 ± 0.1 2.0 ± 0.1
R2 0.87 ± 0.02 0.56 ± 0.08 0.61 ± 0.04 0.73 ± 0.04
τr 0.71 ± 0.01 0.71 ± 0.11 0.71 ± 0.13 0.71 ± 0.16
τr,90 0.71 ± 0.01 1.00 ± 0.00 1.00 ± 0.09 1.00 ± 0.06
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level ( ΔΔGMM
bind,L0→L1

 in Table 1) to get the final PM6-DH+/
MM relative binding free energies 

(

ΔΔG
QM∕MM

bind,L0→L1

)

 . These 
results are also included in Table 1. It can be seen that most 
MM → QM corrections are rather small, 0.1–3.7 kJ/mol 
(average 2.2 kJ/mol). However, for the G1 → A6 and G2 → 
A7 perturbations they are − 5.4 to − 10.7 kJ/mol.

These relative energies were then recalculated to abso-
lute affinities in the same way as for the FEP results at the 
MM level. These results are shown in Table 2 (QM/MM 
columns) and in Fig. 4b. They differ from the MM results by 
2 kJ/mol on average with a maximum difference of 5.7 kJ/
mol. For OAH, the results are consistently less negative than 
the experimental results, by 5.0–9.5 kJ/mol for all ligands 
except G4 (0.6 kJ/mol; MSD = 6.7 ± 0.3 kJ/mol). Therefore, 
the MAD is rather high, 6.7 ± 0.3 kJ/mol, but the MADtr is 
excellent, 2.4 ± 0.4 kJ/mol. For OAM, the deviation is less 
systematic and more varying with a MSD of 1.9 ± 0.4 kJ/
mol, MAD = 5.5 ± 0.4 kJ/mol, MADtr = 5.0 ± 0.5 kJ/mol 
and a maximum error of 10.2 kJ/mol for G4. However, the 
correlation is better for OAM (R2 = 0.93 ± 0.02, compared 
to 0.81 ± 0.04 for OAH) and τ90 is perfect for OAM, but 
0.84 ± 0.02 for OAH. Compared to the MM-FEP results, 
the performance for OAH is similar (MAD, MSD and Max 
are worse, but MADtr, R2 and τ90 are better). However, for 
OAM, the QM/MM-FEP results are clearly better for all 
quality measures, except for the maximum error.

We also made the corresponding analysis for the rela-
tive energies in Table 3 (QM/MM columns). The results, 
are similar to those obtained for the absolute energies: The 

MAD is lower for OAH than for OAM (3.9 ± 0.4 compared 
to 4.9 ± 0.4 kJ/mol). However, the correlation coefficient 
(R2) is better for OAM, 0.73 ± 0.04, compared to 0.56 ± 0.08. 
τr,90 is perfect for both hosts. Compared to the MM-FEP 
results, the two methods have a similar performance for 
OAH (MAD, R2 and Max are better for MM-FEP, MSD and 
τr,90 is better for QM/MM-FEP), but QM/MM-FEP is better 
(or equal) for OAM for all quality measures.

Absolute binding affinities from minimised 
semi-empirical structures

Next, we tried to calculate absolute binding affinities for 
all the SAMPL6 host–guest complexes with QM-optimised 
structures, using a variation of an approach developed by 
Grimme [16, 70]. In the SAMPL5 study [31], we noticed 
that vacuum optimisations led to structures that had the guest 
carboxylate groups too much buried inside the host, form-
ing hydrogen bonds with the host, rather than with water. 
This could only partly be remedied by running the optimi-
sations with an implicit solvent method, such as COSMO 
[71, 72] or by including four explicit water molecules in the 
calculations. Therefore, in this study, we decided to base 
the calculations on snapshots from long MD simulations of 
the complex, employing QM/MM optimised structures with 
explicit water molecules in the MM system and including 
the host, guest and four water molecules (that form hydrogen 
bonds with the carboxylate group of the guest) in the QM 
system. We performed 100 or 200 ns MD simulations for 
each host–guest complex and extracted 10 or 20 snapshots 
from these.

To make the calculations rapid, allowing for calibration 
also on the previous SAMPL4 and SAMPL5 structures, 
we chose to employ the semiempirical dispersion- and 
hydrogen-bond-corrected PM6-DH+ method for the QM 
calculations. This reduced the computational effort to 3–5 h 
(single-core) for the QM/MM minimisations, compared to 
2–4 weeks for the previous DFT optimisations. This could 
in principle be further sped up by using parallel calculations 
or by keeping the MM system fixed or restrained during the 
minimisation. After the minimisation, single-point PM6-
DH+ energies were calculated for the isolated host–guest 
complex and these energies were combined with COSMO-
RS solvation energies and thermostatistical corrections from 
a MM frequency calculation, according to Eq. 4. The PM6-
DH+ energy and MM frequency calculations took only some 
tens of seconds to complete, leaving the COSMO-RS solva-
tion energy calculations as the computational bottleneck, 
as these can take as much as 1 day to converge (besides the 
initial MD simulations, which took about 5 h per 10 ns on 
one GPU).

We started by testing the protocol on the nine cyclic car-
boxylates binding to OAH in the SAMPL4 competition [25] 

Table 4  Calculated MM → QM∕MM free ener-
gies (kJ/mol) for ligands G0–G7 and A5–A8 
( ΔΔGMM→QM∕MM

bind, L
= ΔΔG

MM→QM∕MM

L,bound
− ΔΔG

MM→QM∕MM

L,free
)

The last two columns show the number of Λ values used in the cal-
culations

ΔΔG
MM→QM∕MM

bind, L
#Λ

OAH OAM OAH OAM

G0 − 4.7 ± 0.3 − 8.8 ± 0.2 4 4
G1 2.3 ± 0.3 1.0 ± 0.9 5 5
G2 5.7 ± 0.4 0.8 ± 1.2 5 5–6
G3 − 4.8 ± 0.3 − 6.8 ± 0.2 4 4
G4 − 2.4 ± 0.3 − 4.5 ± 0.3 5 5–6
G5 − 2.6 ± 0.3 − 3.5 ± 0.2 4 4
G6 − 2.3 ± 0.3 − 2.9 ± 0.2 4 4
G7 1.2 ± 0.3 − 1.0 ± 0.2 5 4–5
A5 − 3.3 ± 0.3 − 3.1 ± 0.3 4 4
A6 − 3.1 ± 0.3 − 4.7 ± 0.3 4 4
A7 − 5.0 ± 0.3 − 5.6 ± 0.3 4 4
A8 − 5.1 ± 0.3 − 4.8 ± 0.3 4 4
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(Figure S1), the four carboxylic ligands binding to OAH 
and OAM in SAMPL5 [26] (S5–G1, S5–G2, S5–G4 and 
S5–G6, shown in Figure S2; we omitted the two positively 
charged ligands as all SAMPL6 ligands have a single nega-
tive charge), as well as A6, A8 and A10 binding to OAH 
[61].

As described above, the binding energies were obtained 
from 10 to 20 snapshots from the MD simulations. There-
fore, we need to decide how these binding energies should 
be combined to single final estimate. To this end, we com-
pared three different approaches: the averaged energy, the 
minimum energy and the Boltzmann-weighted averaged 
energy. The results are presented in Tables 5 and 6 and 
are shown in Fig. 6. It can be seen that all three methods 
give too weak binding (the calculated ∆Gbind is less nega-
tive than the experimental one). Of course, this underesti-
mation is largest for the averaged energies (MSD = 24 kJ/
mol for both sets) and smallest for the minimum energies 
(11–13 kJ/mol). Besides this systematic error, the minimum 
and Boltzmann-averaged energies give similar results (the 

Table 5  ∆Gbind (kJ/mol) calculated for the SAMPL4 ligands with 
SQM approach and three different ways to combine the 10 energies 
from different snapshots, plain average, the minimum energy (Min) or 
the Boltzmann average (Boltz). The second column shows the experi-
mental results [40]

Exp. Average Min Boltz

Bz − 15.6 ± 0.2 10.9 ± 3.9 − 0.3 0.6
MeBz − 24.5 ± 0.5 7.1 ± 1.9 − 2.4 − 0.9
EtBz − 26.2 ± 0.1 − 0.1 ± 2.8 − 7.6 − 6.5
pClBz − 28.1 ± 0.1 − 9.1 ± 2.4 − 21.2 − 19.9
mClBz − 22.0 ± 0.2 − 6.4 ± 3.6 − 17.3 − 15.6
Hx − 23.5 ± 0.3 − 3.2 ± 3.5 − 19.4 − 18.5
MeHx − 31.8 ± 0.3 − 0.2 ± 1.6 − 7.4 − 5.6
Pen − 15.6 ± 0.2 1.9 ± 2.2 − 9.2 − 8.0
Hep − 27.7 ± 0.1 2.4 ± 3.3 − 7.7 − 6.6
A6 − 21.8 ± 0.1 4.1 ± 3.3 − 10.7 − 9.8
A8 − 28.0 ± 0.1 − 11.4 ± 2.8 − 22.3 − 20.7
A10 − 31.5 ± 0.1 − 5.3 ± 2.3 − 14.9 − 13.2
MAD 23.9 ± 0.8 13.0 14.3
MADtr 5.1 ± 0.7 6.5 6.5
MSD 23.9 ± 0.8 13.0 14.3
RMSD 24.6 ± 0.8 14.8 16.0
Max 31.6 ± 1.6 24.4 26.2
Slope 0.7 ± 0.2 0.5 0.4
R2 0.29 ± 0.10 0.12 0.10
τ 0.36 ± 0.09 0.21 0.21
τ90 0.58 ± 0.04 0.23 0.23

Table 6  ∆Gbind (kJ/mol) calculated for the SAMPL5 ligands with 
SQM approach and three different ways to combine the 10 energies 
from different snapshots, plain average, the minimum energy (Min) or 
the Boltzmann average (Boltz). The  third column shows the experi-
mental values

Ligand Host Exp Average Min Boltz

S5–G1 OAH − 21.09 ± 0.04 5.5 ± 2.8 − 7.0 − 5.5
S5–G2 − 17.78 ± 0.04 10.1 ± 2.6 − 6.2 − 5.7
S5–G4 − 39.20 ± 0.01 − 4.7 ± 3.9 − 21.4 − 20.4
S5–G6 − 22.31 ± 0.02 1.9 ± 2.5 − 10.2 − 9.6
S5–G1 OAM − 21.92 ± 0.21 1.7 ± 2.0 − 9.2 − 7.9
S5–G2 − 21.09 ± 0.13 5.6 ± 6.0 − 13.4 − 12.5
S5–G4 − 9.96 ± 0.08 − 2.2 ± 2.5 − 11.9 − 10.1
S5–G6 − 18.91 ± 0.08 4.6 ± 1.8 − 5.4 − 4.7
MAD 24.4 ± 1.1 11.4 12.0
MADtr 4.6 ± 0.8 4.0 3.9
MSD 24.4 ± 1.1 10.9 12.0
RMSD 25.4 ± 1.2 12.3 13.1
Max 34.5 ± 3.4 17.8 18.9
Slope 0.2 ± 0.2 0.4 0.5
R2 0.17 ± 0.13 0.48 0.52
τ 0.33 ± 0.15 0.41 0.33
τ90 0.33 ± 0.08 0.41 0.33

Fig. 6  Comparison of the experimental and calculated absolute affini-
ties obtained with the SQM method and three different ways to com-
bine the 10 energies from different snapshots, plain average (Av), the 
minimum energy (Min) or the Boltzmann average (Boltz) for the a 
SAMPL4 and b SAMPL5 ligands. The line shows the perfect correla-
tion
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former is slightly better for SAMPL4, whereas the opposite 
is true for SAMPL5). Moreover, the averaged energies actu-
ally give the lowest MADtr and the best R2 and τ90 results 
for SAMPL4. Theoretically, Boltzmann averaging is the 
preferred approach and it gave the best results in SAMPL5 
[36], so we therefore used this approach for the submit-
ted energies. The better performance of the plain averages 
for SAMPL4 may indicate that the sampling was incom-
plete. The averaged energies have the advantage of giving 
an uncertainty. It is quite high for all ligands, 2–6 kJ/mol, 
again showing that much more snapshots are needed to reach 
reliable results.

We have previously studied the same systems with mini-
mised QM structures, but using more expensive DFT-D3 
methods. For SAMPL4, the new results are of a similar 
quality (after removing the systematic error): The MADtr 
is 5.1–6.5 kJ/mol, which is similar or better than the pre-
vious DFT-D3 results, 4.6–8.6 kJ/mol. On the other hand, 
R2 is lower, 0.10–0.29, compared to 0.60–0.78, and τ90 is 
also worse (0.23–0.58, compared to 0.71–0.77). However, 
for SAMPL5, all the new results are much better than the 
old DFT-D3 results: MADtr = 3.9–4.6 kJ/mol, compared to 
11–21 kJ/mol, R2 = 0.17–0.52, compared to 0–0.30 (and in 
many cases negative correlation), and τ90 = 0.33–0.41, com-
pared to − 0.33 to 0.33. Still, it should be remembered that 
we did not include in this study the two ligands with trimeth-
ylammonium groups, which gave problems in the previous 
study. Yet, we believe that the present approach involves an 
important advantage: The geometries were optimised with 

PM6-DH+/MM in water, including four water molecules in 
the quantum system, which resulted in a lower repulsion of 
the negative carboxylate groups and a more realistic bind-
ing pose of the guests (with the guests always above the 
upper rim of the hosts and the carboxylate groups pointing 
upwards, forming hydrogen bonds with water molecules), 
shown in Figure S4 and described in Table S3. However, 
the vibrational frequencies still seem to be a problem, giving 
too positive binding affinities. In fact, the results without the 
frequency term gave a better MADtr for SAMPL4, but not 
for SAMPL5.

The results for the SAMPL6 ligands with the SQM 
approach using Boltzmann-weighted energies are collected 
in Table 7 and shown in Fig. 7a. It can be seen that they are 
quite similar to the results obtained for the SAMPL4 and 
SAMPL5 tests, with a systematic underestimation of the 
binding by MSD = 12–14 kJ/mol. For OAH, the MADtr is 
quite high 7.8 kJ/mol. The correlation is poor (R2 = 0.07), 
as is τ90 = 0.07. However, for the OAM host, all results are 
better: MADtr = 2.9 kJ/mol is excellent, and R2 and τ90 are 
also improved, 0.42 and 0.43, respectively.

Interestingly, all relative results would have been 
improved if we had selected to submit the results of the 
pure average instead. For OAH, they give a MADtr of 
5.1 ± 1.4 kJ/mol, a correlation of 0.16 ± 0.21 and a perfect 
τ90 of 1.00 ± 0.07. For OAM, MADtr = 2.3 ± 0.5 kJ/mol, 
R2 = 0.88 ± 0.08 and τ90 = 1.00 ± 0.05.

In Table S4, the various energy components are shown 
for the SQM calculations for the snapshot with the best 

Table 7  ∆Gbind (kJ/mol) 
calculated for the SAMPL6 
ligands with SQM and DFT 
approaches and three different 
ways to combine the 10 energies 
from different snapshots, plain 
average, the minimum energy 
(Min) or the Boltzmann average 
(Boltz)

OAH OAM
SQM DFT SQM DFT
Av Min Boltz Av Min Boltz

G0 − 1.2 ± 2.7 − 18.9 − 18.5 − 26.2 4.9 ± 1.5 − 8.4 − 6.7 5.8
G1 1.5 ± 3.7 − 15.9 − 14.8 − 22.0 2.5 ± 2.2 − 13.7 − 11.8 − 6.8
G2 3.7 ± 8.6 − 7.6 − 6.5 − 38.0 0.5 ± 2.0 − 13.8 − 11.5 − 3.8
G3 6.9 ± 3.0 − 7.7 − 6.6 − 26.6 1.9 ± 1.3 − 10.8 − 9.1 5.3
G4 − 12.2 ± 4.7 − 35.3 − 35.1 − 55.2 − 10.6 ± 1.4 − 21.7 − 19.3 − 29.8
G5 5.2 ± 3.2 − 8.9 − 8.0 − 26.5 9.8 ± 3.1 − 13.5 − 12.4 5.5
G6 7.9 ± 3.7 − 6.1 − 4.6 − 4.8 4.8 ± 1.3 − 5.2 − 3.4 6.5
G7 3.8 ± 3.3 − 9.1 − 7.7 − 15.5 15.5 ± 2.4 − 4.0 − 2.6 16.3
MAD 26.4 ± 1.5 12.2 13.1 9.0 27.7 ± 0.7 12.6 14.4 23.9
MADtr 5.1 ± 1.4 7.5 7.8 7.8 2.3 ± 0.5 3.0 2.9 7.0
MSD 26.4 ± 1.5 10.8 11.7 − 2.4 27.7 ± 0.7 12.6 14.4 23.9
RMSD 27.1 ± 1.8 14.3 15.2 11.8 27.8 ± 0.7 13.2 15.0 25.6
Max 38.8 ± 6.8 27.5 28.6 25.5 32.8 ± 1.9 17.4 19.2 33.6
Slope 0.5 ± 0.4 0.4 0.5 1.7 1.4 ± 0.2 0.8 0.7 2.3
R2 0.16 ± 0.21 0.07 0.07 0.38 0.88 ± 0.08 0.48 0.42 0.73
τ 0.36 ± 0.22 0.14 0.07 0.29 0.71 ± 0.11 0.64 0.43 0.64
τ90 1.00 ± 0.07 0.14 0.07 0.29 1.00 ± 0.05 0.63 0.41 0.63
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binding energy. It can be seen that the thermostatistical 
term shows a small variation, 46–58 kJ/mol for OAH and 
55–78 kJ/mol for OAM. It shows a weak anti-correlation 
with the experimental binding energies, R2 = 0.55, for 
OAH and 0.28 for OAM. The QM term is always large 
and positive, somewhat lower for OAH than for OAM, 
798–942 and 758–865 kJ/mol. It shows a poor correlation 
with the experimental data for OAH (R2 = 0.16), but appre-
ciably better for OAM (0.66). It is more than compensated 
by the solvation energy, which is again is larger in mag-
nitude for OAH than for OAM, − 875 to − 995 and − 843 
to − 932 for OAM. It shows a similar (anti-)correlation to 
the experimental data as the QM term, 0.12 for OAH, but 
0.68 for OAM. The sum of the latter two terms shows an 
improved correlation to the experimental data for OAH 
(0.28) but a worse correlation for OAM (0.24). Adding the 
thermostatistical correction deteriorates the correlation for 
OAH, but improves it for OAM.

Figure S5 shows the variation of the individual SQM 
∆Gbind results for the eight ligands in the two hosts. It can 
be seen that it is 20–35 kJ/mol for most ligands. However, 
G4 and G6 in OAH, as well as G5 and G7 in OAM show 
a larger variation 40–64 kJ/mol. There is little correlation 
between the variation and the strength of the binding or the 
type of host.

Absolute binding affinities from minimised DFT 
structures

Finally, we tried to improve the absolute binding affinities by 
using DFT calculations both in the geometry optimisations 
and in the energy estimates. Thus, we selected the minimum-
energy snapshot according to SQM calculations and per-
formed DFT/MM optimisation with the surrounding water 
included as a fixed MM system. We then calculated energies 
of the resulting structures in a way similar to that used for 
SQM (Eq. 4), still using thermostatistical corrections from 
MM vibrational frequencies and COSMO-RS solvation ener-
gies, but with TPSS-d3/def2-QZVP’ energies instead of the 
PM6-DH+ energies.

The DFT results are also included in Table 7 and they 
are shown Fig. 7b. They are less positive than the SQM 
results. In fact, the MSD for OAH is actually slightly nega-
tive, − 2.4 kJ/mol, whereas it is 24 kJ/mol for OAM. The 
solvation energies are of a similar magnitude in the two sets 
of calculations, whereas the energies are somewhat more 
positive for the PM6-DH+ calculations on OAH (by 13 kJ/
mol on average), but less positive for OAM (by 9 kJ/mol 
on average). The thermostatistical correction is of a similar 
magnitude. The MADtr is 7.0–7.8 kJ/mol for the two hosts, 
R2 = 0.38–0.73 and τ90 = 0.29–0.63 (better for OAM than 
for OAH), i.e. mostly within the range of the SQM methods.

As mentioned in the “Methods” section, the ligand dis-
sociated in most of the original MM minimisations (to 
calculate the frequencies for the thermostatistical correc-
tions). This was not discovered until after the submissions. 
For the DFT calculations, the ligand did not dissociate, but 
by mistake, the calculations were performed with zeroed 
partial charges on all atoms of the host and the ligand. The 
submitted SQM and DFT results are provided in Table S4. 
The original SQM submission gave a much lower systematic 
error (MSD), but a similar performance in terms of the rela-
tive quality measures (MADtr, R2 and τ).

Finally, we compare structures of the complexes obtained 
in the MD simulations and after minimisation with either 
SQM or DFT, employing a number of geometric measures, 
which are described in the "Methods" section. The results 
are collected in Table S6 and it can be seen that the guests 
always bind inside the host, with the carboxylate group 
0.7–4.6 Å above the upper rim, forming hydrogen bonds 
with the water molecules and not with the host. The average 

Fig. 7  Comparison of the experimental and calculated absolute 
affinities obtained with the a SQM and b DFT methods, the former 
with two different ways to combine the 10–20 energies from differ-
ent snapshots, plain average (Av) or the Boltzmann average (Boltz) 
for the SAMPL6 ligands. The line shows the perfect correlation. In 
a OAH energies are shown with squares and OAM energies with 
crosses
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distances between the carboxylate atoms of the guests and 
the upper rim of the hosts, rO1 and rO2 are always slightly 
smaller for the SQM than the MD structures, but only by 
0.1–0.7 Å, whereas the results for the DFT structures are 
more varying (probably because they are based on a single 
structure). Likewise, the ligand is always less deeply buried 
in the host in the SQM calculations than in the MD simula-
tions, by up to 0.6 Å and the benzoate groups are less tilted 
(rCav is 0.1–0.3 Å smaller). In most cases, the tilt angle (αT) 
of the ligand was also somewhat smaller (4° on average) 
with SQM than in MD. All these differences probably reflect 
differences in the potential-energy method and the fact that 
the SQM structures are minimised and not from a MD simu-
lation rather than a systematic error of the SQM structures, 
observed in our previous approaches [15, 31]. Figure S6 
compares the DFT and SQM structures, showing that they 
are very similar.

Comparison with other submissions

There were 43 submissions for the SAMPL6 octa-acid 
challenge from eight research groups. Of course, the results 
depend on whether the two hosts are considered separately 
or together and how the various measures are combined and 
weighted. Here, we discuss the results based on six quality 
measures (MAD, RMSD, MSD, R2, τ and slope), provided 
by the organisers for the combined OAH and OAM results 
and give a final ranking based on the sum of the ranks for 
these six measures. Irrespectively of how the ranking is 
done, three pairs of calculations always come out among 
the best. Two submissions from the Merz group, gave the 
lowest MAD and RMSD (3.2 and 4.0 kJ/mol, respectively). 
They also gave quite good results for the other measures, 
e.g. R2 = 0.60–0.85 and τ = 0.37–0.74. The best calculation 
employed potential-of-mean-force umbrella-sampling simu-
lations (i.e. dragging the ligand out of the host) and scaled 
the results based on the corresponding results obtained for 
the SAMPL5 ligands (without the scaling, the results were 
appreciably worse, ranking around position 14). The other 
calculation used the movable-type approach, fitted to the for-
mer result. In fact, this group submitted 27 data sets, which 
ranked from the best to the third worst.

A FEP study of absolute free energies by the Michel 
group, employing GAFF with AM1-BCC charges, TIP3P 
water and with or without counter ions also gave good 
results, but only after a linear fit employing the results from 
the SAMPL5 competition. They obtained MAD and RMSD 
of 5.3–5.6 and 6.7–7.4 kJ/mol, respectively, R2 = 0.78–0.79 
and τ = 0.70, making them the fourth and sixth best methods. 
Without the linear fit, the results ranked 19–35.

Our MM-FEP and QM/MM-FEP gave similar results 
with MAD = 5.6–6.1 kJ/mol and RMSD = 6.3–6.8 kJ/mol, 
R2 = 0.66–0.71 and τ = 0.62–0.77. In fact, τ for MM-FEP was 

best among all submissions. Based on the sum of the ranks 
for all six quality measures, MM-FEP gave the third best 
results and QM-FEP the fifth among all 43 submissions. In 
particular, they were clearly the best submissions using only 
the raw SAMPL6 data, without any fit to the SAMPL5 data.

The DFT and SQM results ranked slightly below the 
middle, positions 28 and 29, with MAD = 9–11 kJ/mol and 
RMSD = 11–13 kJ/mol, R2 = 0.1–0.5 and τ = 0.3–0.4. How-
ever, the performance may have improved if relative qual-
ity measures were considered, like MADtr, and they would 
also have improved if we had submitted the average results, 
instead of the Boltzmann-weighted results. Still, it is quite 
satisfying that for the first time, a QM approach, QM/MM-
FEP, come within the best six submissions. Moreover, both 
SQM and DFT gave decent results, better than many of the 
MM FEP results, e.g. a submission employing FEP with 
the polarisable AMOEBA force field [94] and the absolute 
FEP calculations without the linear fit. In particular, they 
are appreciably better than the other purely QM submission, 
employing B3PW91 calculations with complete basis sets 
and a SMD continuum solvent [95], which performed poorly.

Conclusions

We have studied the binding of eight ligands to two vari-
ants of the octa-acid deep-cavity host in the SAMPL6 blind-
test competition [38, 39]. We have employed four different 
approaches (cf. Fig. 4), three of which are based on QM 
methods. First, we performed standard relative FEP calcu-
lations at the MM level with free energies calculated with 
MBAR and employing the GAFF+TIP3P force fields and 
RESP charges. Second, we used the reference-potential 
approach with explicit QM/MM sampling to obtain relative 
FEP free energies at the PM6-DH+/MM level of theory for 
the ligand. Third, we employed the same SQM method to 
obtain QM/MM optimised structures with the ligand, the 
host and four water molecules in the QM system, for which 
free energies were calculated by combining the PM6-DH+ 
interaction energies with COSMO-RS solvation free ener-
gies and thermostatistical corrections calculated at the MM 
level. We employed 10–20 structures taken from a MD simu-
lation of the host–guest complexes. Finally, we reoptimised 
the best structures from the previous approach with the 
TPSS-D3/MM method and calculated QM energies with a 
large basis set, which were then combined with COSMO-RS 
and thermostatistical corrections.

The MM- and QM/MM-FEP methods gave excellent 
results for OAH, with MADtr of 2.4–2.6 kJ/mol and R2 of 
0.77–0.81. For OAM, the MADtr was somewhat larger, 
5.0–5.2 kJ/mol, but the R2 was better, 0.85–0.93. For the 
former, the two approaches gave similar results, whereas for 
OAM, QM/MM-FEP was clearly better. These results were 
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among the five best submissions to SAMPL6 and they were 
actually the best ones using no fit to data from SAMPL5.

The results obtained with QM/MM optimised struc-
tures were somewhat worse, especially for OAH; 
MADtr = 2.3–5.1 kJ/mol and R2 = 0.16–0.88. Unfortunately, 
we selected to submit SQM results based on Boltzmann-
averaged, rather than plain averaged energies, which gave 
somewhat worse results, MADtr = 2.9–7.8  kJ/mol and 
R2 = 0.07–0.42. However, these methods gave similar results 
as our previous calculations with DFT-optimised structures 
in SAMPL4 and much better results for SAMPL5. Compared 
to the other submissions, these results were mediocre, but 
still comparable to many approaches employing MM-FEP 
methods. In particular, they gave better performance than 
other submissions employing QM-optimised structures.

The present results are quite satisfying because for the 
first time we are able to improve MM-FEP results for the 
octa-acid host with QM/MM methods and these results 
are among the best five submissions. These results were 
obtained with the simple and cheap SQM PM6-DH+ 
method, demonstrating that appropriate sampling and prop-
erly converging the MM → QM/MM FEP is of greater 
importance than using more rigorous QM methods. How-
ever, with a functional QM/MM-FEP approach, our next 
challenge will be to extend it to more accurate QM methods 
and larger QM systems.

For the QM-minimised structures, we have shown that 
the results are improved by employing QM/MM-optimised 
structures, rather than QM structures optimised in vacuum 
or in a continuum solvent. This also made the calculations 
significantly faster. However, there are still several problems 
to solve with this approach. In particular, there seems to be 
a problem with absolute free energies, probably related to 
the entropy term, which vary by 10–40 kJ/mol, depending 
on what method is used for the geometries and the frequen-
cies. In particular, we observe that the simple PM6-DH+ 
method gives lower MADtr than the inherently more accu-
rate TPSS-D3 approach. It would be more satisfactory if the 
same method is used for the geometries and the frequencies. 
Moreover, much more sampling seems to be needed before 
the results are stable and reliable. With 10–20 snapshots, 
plain averages gave better results (but with large uncertain-
ties, 1–5 kJ/mol). Finally, improved methods to estimate the 
strain energies of the host and the guest in the complexes 
are needed.

Still it is very satisfying that QM-based methods finally 
start to have some impact on calculated binding affinities for 
host–guest systems.
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Substituted polyfluoroaryl interactions with an
arginine side chain in galectin-3 are governed by
steric-, desolvation and electronic conjugation
effects†
Rohit Kumar,‡a Kristoffer Peterson,‡b Majda Misini Ignjatović,‡c Hakon Leffler, d

Ulf Ryde, c Ulf J. Nilsson b and Derek T. Logan *a

In the β-D-galactopyranoside-binding protein galectin-3, synthetic inhibitors substituted at the 3-position

of a thiodigalactoside core cause the formation of an aglycone binding pocket through the displacement

of an arginine residue (Arg144) from its position in the apoprotein. To examine in detail the role of

different molecular interactions in this pocket, we have synthesized a series of nine 3-(4-(2,3,5,6-tetra-

fluorophenyl)-1,2,3-triazol-1-yl)-thiogalactosides with different para substituents and measured their

affinities to galectin-3 using a fluorescence polarization assay. High-resolution crystal structures (<1.3 Å)

have been determined for five of the ligands in complex with the C-terminal domain of galectin-3. The

binding affinities are rationalised with the help of the three-dimensional structures and quantum-

mechanical calculations. Three effects seem to be involved: Firstly, the binding pocket is too small for the

largest ligands with ethyl and methyl. Secondly, for the other ligands, the affinity seems to be determined

mainly by desolvation effects, disfavouring the polar substituents, but this is partly counteracted by the

cation–π interaction with Arg144, which stacks on top of the substituted tetrafluorophenyl group in all

complexes. The results provide detailed insight into interactions of fluorinated phenyl moieties with argi-

nine-containing protein binding sites and the complex interplay of different energetic components in

defining the binding affinity.

1. Introduction
Structure-based drug design relies on careful analysis of
protein–ligand interactions and the structure and dynamics of
ligand and binding sites. Improving binding affinity involves
modulating the specific interactions that the ligand makes
with the binding site by modifying or substituting chemical
moieties in the ligand.1 Investigating such specific interactions
requires information about the protein–ligand complex that is
often obtained from crystal structures and affinity data.1

Structural analysis of protein–ligand complexes identifies
potential binding interactions and steric restrictions, providing
insight into design of new ligands with enhanced binding
affinity. However, the energetic components contributing to
the binding affinity are not always self-evident from an inspec-
tion of the crystal structure.

The drug target of interest here, galectin-3, belongs to the
galectin super-family that has 14 members in humans. All
galectins have a conserved carbohydrate recognition domain
(CRD) that binds β-D-galactopyranosides, and the binding site
is a shallow, hydrophilic pocket formed by β-sheets and loops.2

Galectins are found everywhere in the cell. They are involved in
cell growth, differentiation, cell-cycle regulation.3 Their role
in cancer, immunity and inflammatory conditions is well-
documented, making them attractive therapeutic targets.4–9

Galectins bind galactosides with affinities in the millimolar
range. Suitable modifications of galactose at the C3 position to
introduce specific groups improves the binding affinity drasti-
cally to micromolar and even nanomolar affinity. A wealth of
structural data is available for the galectin-3 CRD in complex
with different compounds10–15 and we have recently reported
the structures of high-affinity phenyltriazole thiogalactosides in
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complex with galectin-3.16 This ample availability of structural
and affinity data makes galectin-3 an excellent model protein
for studying protein–ligand interactions. The high galectin-3
affinity of thiodigalactosides with mono- to trifluorinated 3-(4-
aryl-1,2,3-triazol-1-yl) moieties at C3 has been explained using
X-ray crystallography by orthogonal multipolar fluorine–amide
interactions with backbone amides and a cation–π interaction
with Arg144.15 Arg144 is raised from its normal position in a
water-mediated salt bridge on the surface of galectin-3 by the
influence of fluorinated phenyl moieties on synthetic ligands,
which creates a small pocket beneath Arg144 that could
accommodate a larger substituent than fluorine in the para
position on the phenyl ring.

Herein we report on a systematic probing of the binding
interactions near Arg144 in galectin-3 by varying the para sub-
stituent on 2,3,5,6-tetrafluorophenyltriazoles through affinity
measurements using fluorescence polarisation combined with
structural analysis and quantum-mechanical calculations.

2. Experimental section
2.1 General

All reagents and solvents were dried prior to use according to
standard methods. Commercial reagents were used without
further purification. 2,3,5,6-tetrafluoro-4-hydroxyphenylacetyl-
ene was synthesized following a published procedure17 for the
alkene analogue and it used without purification. Analytical
TLC was performed using on silica gel 60 F254 (Merck) with
detection by UV absorption and/or by charring following
immersion in a 7% ethanolic solution of sulfuric acid.
Purification of compounds was carried out by column chrom-
atography on silica gel (40–60 μm, 60 Å) and/or preparative
HPLC (Agilent 1260 infinity system, column SymmetryPrep-
C18, 17 ml min−1 H2O–MeCN gradient 10–100% 15 min with
0.1% formic acid). Specific rotations were measured on a
PerkinElmer model 341 polarimeter. NMR spectra 1H, 13C, 19F,
2D COSY, HMQC and HMBC were recorded with a Bruker
Avance II 400 MHz spectrometer (400 Hz for 1H, 100 Hz for 13C
and 376 Hz for 19F) at ambient temperature. Chemical shifts
are reported in δ parts per million (ppm). In the 13C NMR
spectra no signals were observed for the carbons in the fluori-
nated phenyl or the C4 triazole carbon, due to signal splitting
caused by short- and long-range fluorine couplings. However,
in the HMBC spectra the cross peak of the triazole C4 and H5
was observed (exemplified in the ESI† for compound 3). HRMS
was determined by direct infusion on a Waters XEVO-G2 QTOF
mass spectrometer using electrospray ionization (ESI).
Compounds 2–10 were of >95% purity according to HPLC-ana-
lysis (Agilent series 1100 system, column Eclipse XDB-C18,
0.8 ml min−1 H2O–MeCN gradient 5–95% 13 min with 0.1%
trifluoroacetic acid).

2.2 Synthesis of compounds (2–5)

2.2.1 p-Methylphenyl 3-deoxy-3-[4-(2,3,5,6-tetrafluoro-4-
hydroxyphenyl)-1H-1,2,3-triazol-1-yl]-1-thio-β-D-galactopyrano-

side (2). To a solution of compound 1 (18 mg, 0.058 mmol),
2,3,5,6-tetrafluoro-4-hydroxyphenylacetylene (16 mg,
0.087 mmol) and CuI (5 mg, 0.029 mmol) in MeCN (3 mL) was
diisopropylethylamine (0.03 mL, 0.145 mmol) added. The
mixture was stirred for 24 h at 50 °C before quenching with
sat. aq. NH4Cl followed by evaporation of the solvent. The
obtained residue was purified with column chromatography
(CH2Cl2 : MeOH 14 : 1–>5 : 1) to give 2 (14 mg, 48%) as an
amorphous white solid. [α]20D 56.6 (c 0.93, CH3OH). 1H NMR
(CD3OD, 400 MHz): δ 8.32 (s, 1H, Ph), 7.50 (d, J = 8.1 Hz, 2H,
Ph), 7.15 (d, J = 8.1 Hz, 2H, Ph), 4.93 (obscured by water H-3),
4.78 (d, J = 9.5 Hz, 1H, H-1), 4.26 (t, J = 10.0 Hz, 1H, H-2), 4.16
(d, J = 2.8 Hz, 1H, H-4), 3.84–3.70 (m, 3H, H-5 and H-6), 2.33
(s, 3H, CH3). 13C NMR (CD3OD, 100 MHz): δ 138.8, 133.1,
131.6, 130.7, 125.5, 91.8, 80.9, 69.5, 69.2, 68.0, 62.3, 22. 19F
NMR (CD3OD, 376 MHz): δ −145.6 (d, J = 16.0 Hz, 2F), −165.0
(d, J = 15.7 Hz, 2F). HRMS calculated for [C21H19F4N3O5SNa]+,
524.0879; found: 524.0880.

2.2.2 p-Methylphenyl 3-deoxy-3-[4-(2,3,4,5,6-pentafluoro-
phenyl)-1H-1,2,3-triazol-1-yl]-1-thio-β-D-galactopyranoside (3).
To a solution of compound 1 (185 mg, 0.59 mmol) and CuI
(28 mg, 0.15 mmol) in MeCN (15 mL) was pentafluorophenyl-
acetylene (0.14 mL, 0.89 mmol) and diisopropylethylamine
(0.10 mL, 0.59 mmol) added. The mixture was stirred for 4.5 h
at 50 °C before quenching with sat. aq. NH4Cl followed by
evaporation of the solvent. The obtained residue was purified
with column chromatography (heptane : EtOAc 1 : 1–>1 : 2) to
give 3 (295 mg, 99%) as an amorphous white solid. [α]20D 57.6
(c 0.59, CH3OH). 1H NMR (CD3OD, 400 MHz): δ 8.44 (s, 1H,
Ph), 7.50 (d, J = 8.1 Hz, 2H, Ph), 7.15 (d, J = 8.1 Hz, 2H, Ph),
4.95 (obscured by water H-3), 4.78 (d, J = 9.5 Hz, 1H, H-1), 4.26
(t, J = 10.0 Hz, 1H, H-2), 4.16 (d, J = 2.8 Hz, 1H, H-4), 3.84–3.70
(m, 3H, H-5 and H-6), 2.33 (s, 3H, CH3). 13C NMR (CD3OD,
100 MHz): δ 138.8, 133.2, 131.6, 130.7, 126.3, 91.7, 80.9, 69.5,
69.3, 68.0, 62.3, 21.1. 19F NMR (CD3OD, 376 MHz): δ −142.3
(dd, J = 13.7, 7.0 Hz, 2F), −157.8 (t, J = 20.0 Hz, 1F), −165.0 (m,
2F). HRMS calculated for [C21H19F5N3O4S]+, 504.1016; found:
504.1019.

2.2.3 p-Methylphenyl 3-deoxy-3-[4-(4-azido-2,3,5,6-tetrafluoro-
phenyl)-1H-1,2,3-triazol-1-yl]-1-thio-β-D-galactopyranoside (4).
A mixture of compound 3 (25 mg, 0.050 mmol) and NaN3

(5 mg, 0.074 mmol) in dry DMF (5 mL) was stirred at 60 °C for
2 days before water was added followed by extraction with
EtOAc. The organic phase was washed with brine, dried, evapo-
rated and the obtained residue was purified with column
chromatography (heptane : EtOAc 2 : 3–>1 : 2) to give 4 (23 mg,
87%) as an amorphous white solid. [α]20D 53.8 (c 0.89, CH3OH).
1H NMR (CD3OD, 400 MHz): δ 8.42 (s, 1H, Ph), 7.50 (d, J =
8.1 Hz, 2H, Ph), 7.15 (d, J = 8.1 Hz, 2H, Ph), 4.95 (dd, J = 10.5,
3.0 Hz, 1H, H-3), 4.78 (d, J = 9.5 Hz, 1H, H-1), 4.26 (t, J =
10.0 Hz, 1H, H-2), 4.16 (d, J = 2.8 Hz, 1H, H-4), 3.84–3.70 (m,
3H, H-5 and H-6), 2.33 (s, 3H, CH3). 13C NMR (CD3OD,
100 MHz): δ 138.8, 133.2, 131.6, 130.7, 126.2, 91.7, 80.9, 69.5,
69.3, 68.0, 62.3, 21.1. 19F NMR (CD3OD, 376 MHz): δ −143.2
(dd, J = 20.0, 9.0 Hz, 2F), −154.6 (dd, J = 20.0, 9.0 Hz, 2F). HRMS
calculated for [C21H19F4N6O4S]+, 527.1125; found: 527.1124.
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2.2.4 p-Methylphenyl 3-deoxy-3-[4-(4-amino-2,3,5,6-tetra-
fluorophenyl)-1H-1,2,3-triazol-1-yl]-1-thio-β-D-galactopyranoside
(5). To a solution of compound 4 (12 mg, 0.023 mmol) in dry
MeOH (2 mL) was 1,3-propanedithiol (0.009 mL, 0.91 mmol)
added followed by Et3N (0.013 mL, 0.091 mmol) and the
mixture was stirred at rt for 1.5 h. The volatiles were evapor-
ated and the obtained residue was purified with column
chromatography (heptane : EtOAc 1 : 1–>1 : 2) to give 5 (11 mg,
96%) as an amorphous white solid. [α]20D 58.9 (c 0.79, CH3OH).
1H NMR (CD3OD, 400 MHz): δ 8.25 (s, 1H, Ph), 7.50 (d, J =
8.1 Hz, 2H, Ph), 7.15 (d, J = 8.1 Hz, 2H, Ph), 4.91 (obscured by
water H-3), 4.78 (d, J = 9.5 Hz, 1H, H-1), 4.25 (t, J = 10.0 Hz, 1H,
H-2), 4.16 (d, J = 2.8 Hz, 1H, H-4), 3.83–3.70 (m, 3H, H-5 and
H-6), 2.33 (s, 3H, CH3). 13C NMR (CD3OD, 100 MHz): δ 138.8,
133.1, 131.7, 130.7, 125.0, 91.8, 80.9, 69.5, 69.2, 68.0, 62.3,
21.1. 19F NMR (CD3OD, 376 MHz): δ −146.5 (m, 2F), −164.9
(m, 2F). HRMS calculated for [C21H20F4N4O4SNa]+, 523.1039;
found: 523.1034.

2.3 General procedure for the preparation of compounds
(6–10)

Method A for compounds 6–7: Compound 3 (25 mg,
0.050 mmol) was dissolved in ROH (3 mL) and NaOR (1 M,
1 mL) and stirred for 2 days at rt before quenching with dowex.
The mixture was filtered and following evaporation of the fil-
trate the residue was purified with column chromatography
(heptane : EtOAc 1 : 1–>1 : 2).

Method B for compounds 8–10: A mixture of compound 3
(20 mg, 0.040 mmol) and K2CO3 (16.5 mg, 0.12 mmol), amine
(x, 3 equiv.) and DMF (3 mL) was stirred for (t ) time at 50 °C.
After evaporation of the solvent the residue was purified with
column chromatography (heptane : EtOAc 1 : 1–>1 : 2).

2.3.1 p-Methylphenyl 3-deoxy-3-[4-(2,3,5,6-tetrafluoro-4-
methoxyphenyl)-1H-1,2,3-triazol-1-yl]-1-thio-β-D-galactopyrano-
side (6). Method A, R = Me, Yield 18.0 mg, 70%. [α]20D 35.2
(c 0.91, CH3OH). 1H NMR (CD3OD, 400 MHz): δ 8.39 (s, 1H,
Ph), 7.50 (d, J = 8.0 Hz, 2H, Ph), 7.15 (d, J = 8.0 Hz, 2H, Ph),
4.94 (dd, J = 10.5, 3.0 Hz, 1H, H-3), 4.78 (d, J = 9.5 Hz, 1H,
H-1), 4.26 (t, J = 9.6 Hz, 1H, H-2), 4.16 (d, J = 2.8 Hz, 1H, H-4),
4.13 (s, 3H, OCH3), 3.84–3.70 (m, 3H, H-5 and H-6), 2.33
(s, 3H, CH3). 13C NMR (CD3OD, 100 MHz): δ 138.8, 135.4,
133.2, 131.6, 130.7, 125.9, 91.8, 80.9, 69.5, 69.3, 68.0, 62.9,
62.3, 21.1. 19F NMR (CD3OD, 376 MHz): δ −144.1 (dd, J = 19.3,
7.1 Hz, 2F), −160.3 (dd, J = 19.3, 7.0 Hz, 2F). HRMS calculated
for [C22H21F4N3O5SNa]+, 538.1030; found: 538.1035.

2.3.2 p-Methylphenyl 3-deoxy-3-[4-(4-ethoxy-2,3,5,6-tetra-
fluorophenyl)-1H-1,2,3-triazol-1-yl]-1-thio-β-D-galactopyranoside
(7). Method A, R = Et, Yield 13.4 mg, 50%. [α]20D 33.7 (c 0.83,
CH3OH). 1H NMR (CD3OD, 400 MHz): δ 8.39 (s, 1H, Ph), 7.50
(d, J = 8.0 Hz, 2H, Ph), 7.15 (d, J = 8.0 Hz, 2H, Ph), 4.94 (dd, J =
10.5, 3.0 Hz, 1H, H-3), 4.78 (d, J = 9.5 Hz, 1H, H-1), 4.37 (q, J =
7.0 Hz, 2H, CH2), 4.26 (t, J = 9.6 Hz, 1H, H-2), 4.16 (d, J =
2.8 Hz, 1H, H-4), 3.84–3.70 (m, 3H, H-5 and H-6), 2.33 (s, 3H,
CH3), 1.43 (t, J = 7.0 Hz, 3H, CH3). 13C NMR (CD3OD,
100 MHz): δ 138.8, 135.4, 133.2, 131.6, 130.7, 125.9, 91.8, 80.9,
72.3, 69.5, 69.3, 68.0, 62.9, 62.3, 21.1, 15.7. 19F NMR (CD3OD,

376 MHz): δ −144.2 (dd, J = 19.3, 7.0 Hz, 2F), −159.5 (dd, J =
19.5, 7.1 Hz, 2F). HRMS calculated for [C23H23F4N3O5SNa]+,
552.1187; found: 552.1190.

2.3.3 p-Methylphenyl 3-deoxy-3-{4-[2,3,5,6-tetrafluoro-4-
(methylamino)phenyl]-1H-1,2,3-triazol-1-yl}-1-thio-β-D-galacto-
pyranoside (8). Method B, x = methylamine 33 wt% in EtOH,
t = 3 days. Yield 13.1 mg, 64%. [α]20D 55.6 (c 0.90, CH3OH). 1H
NMR (CD3OD, 400 MHz): δ 8.26 (s, 1H, Ph), 7.50 (d, J = 8.0 Hz,
2H, Ph), 7.15 (d, J = 8.0 Hz, 2H, Ph), 4.91 (obscured by water
H-3), 4.78 (d, J = 9.5 Hz, 1H, H-1), 4.26 (t, J = 9.6 Hz, 1H, H-2),
4.16 (d, J = 2.8 Hz, 1H, H-4), 3.84–3.70 (m, 3H, H-5 and H-6),
3.09 (t, J = 2.7 Hz, 3H, NCH3), 2.33 (s, 3H, CH3). 13C NMR
(CD3OD, 100 MHz): δ 138.8, 136.4, 133.1, 131.7, 130.7, 124.9,
91.8, 80.9, 69.5, 69.2, 68.0, 62.3, 32.5, 21.1. 19F NMR (CD3OD,
376 MHz): δ −146.1 (dd, J = 23.3, 10.5 Hz, 2F), −164.1 (d, J =
16.1 Hz, 2F). HRMS calculated for [C22H23F4N4O4SNa]+,
537.1196; found: 537.1199.

2.3.4 p-Methylphenyl 3-deoxy-3-{4-[2,3,5,6-tetrafluoro-4-(di-
methylamino)phenyl]-1H-1,2,3-triazol-1-yl}-1-thio-β-D-galacto-
pyranoside (9). Method B, x = dimethylamine 2 M in THF, t =
4 days. Yield 6.2 mg, 29%. [α]20D 48.7 (c 0.78, CH3OH). 1H NMR
(CD3OD, 400 MHz): δ 8.34 (s, 1H, Ph), 7.50 (d, J = 8.0 Hz, 2H,
Ph), 7.15 (d, J = 8.0 Hz, 2H, Ph), 4.93 (obscured by water H-3), 4.78
(d, J = 9.5 Hz, 1H, H-1), 4.26 (t, J = 9.6 Hz, 1H, H-2), 4.16 (d, J =
2.8 Hz, 1H, H-4), 3.84–3.70 (m, 3H, H-5 and H-6), 3.02 (t, J = 2.2
Hz, 6H, NCH3), 2.33 (s, 3H, CH3). 13C NMR (CD3OD, 100 MHz): δ
138.8, 136.0, 133.2, 131.6, 130.7, 125.5, 91.8, 80.9, 69.5, 69.2, 68.0,
62.3, 43.5, 21.1. 19F NMR (CD3OD, 376 MHz): δ −145.0 (dd, J =
18.6, 7.4 Hz, 2F), −153.8 (d, J = 13.7 Hz, 2F). HRMS calculated for
[C23H25F4N4O4S]+, 529.1533; found: 529.1532.

2.3.5 p-Methylphenyl 3-deoxy-3-{4-[2,3,5,6-tetrafluoro-4-
(pyrrolidin-1-yl)phenyl]-1H-1,2,3-triazol-1-yl}-1-thio-β-D-galacto-
pyranoside (10). Method B, x = pyrrolidine, t = 36 h. Yield
21.9 mg, 99%. [α]20D 40.3 (c 0.67, CH3OH). 1H NMR (CD3OD,
400 MHz): δ 8.27 (s, 1H, Ph), 7.50 (d, J = 8.0 Hz, 2H, Ph), 7.15
(d, J = 8.0 Hz, 2H, Ph), 4.91 (obscured by water H-3), 4.78 (d,
J = 9.5 Hz, 1H, H-1), 4.25 (t, J = 9.6 Hz, 1H, H-2), 4.15 (d, J =
2.8 Hz, 1H, H-4), 3.84–3.70 (m, 3H, H-5 and H-6), 3.66 (m, 4H,
CH2), 2.33 (s, 3H, CH3), 1.96 (m, 4H, CH2). 13C NMR (CD3OD,
100 MHz): δ 138.8, 136.5, 133.1, 131.7, 130.7, 124.9, 91.8, 80.9,
69.5, 69.2, 68.0, 62.3, 52.4, 26.7, 21.1. 19F NMR (CD3OD,
376 MHz): δ −145.6 (dd, J = 22.2, 9.3 Hz, 2F), −158.0 (d, J =
15.1 Hz, 2F). HRMS calculated for [C25H27F4N4O4S]+, 555.1689;
found: 555.1688.

2.4 Competitive fluorescence polarization experiments
determining galectin-3 affinities

Human galectin-3 was expressed and purified as earlier
described.18 Fluorescence polarization experiments were per-
formed on a PheraStarFS plate reader with software PHERAstar
Mars version 2.10 R3 (BMG, Offenburg, Germany) and fluo-
rescence anisotropy of fluorescein tagged probes measured
with excitation at 485 nm and emission at 520 nm.
Experiments were performed at 20 °C with galectin-3 at
0.20 µM and the fluorescent probe 3,3′-dideoxy-3-[4-(fluo-
rescein-5-yl-carbonylaminomethyl)-1H-1,2,3-triazol-1-yl]-3′-(3,5-
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di-methoxybenzamido)-1,1′-sulfanediyl-di-β-D-galactopyrano-
side19 (Kd 80 nM) at 0.02 µM as previously described.10,15,19

Compounds were dissolved in neat DMSO at 20 mM and
diluted in PBS to 3–6 different concentrations to be tested in
duplicate. Kd averages and SEM were calculated from 4 to 25
single-point measurements from at least two independent
experiments showing between 20–80% inhibition.

2.5 Crystallization of galectin-3 C-terminal domain with
compounds (2–5) and (8)

Solutions of the C-terminal CRD of galectin-3C2 (19.2 mg ml−1

in 10 mM phosphate pH 7.4, 100 mM NaCl, 10 mM
β-mercaptoethanol and 2 mM EDTA) were mixed with crystalli-
zation solution (20% PEG 4000, 0.1 M Tris/HCl pH 7.5, 0.4 M
NaSCN, 7.9 mM β-mercaptoethanol). Crystallization drops of
2 + 2 µL were set up over 0.5 mL reservoir solution. The crystals
obtained were soaked with compounds. Compounds 2–5 and 8
were dissolved in DMSO to obtain highly concentrated stocks.
These stocks were then diluted with PEG400 (final concen-
tration 30%), as the compounds were highly insoluble in
water, then a ligand cocktail was prepared using crystallization
reservoir and the ligand stock to obtain a final compound con-
centration of 10 mM. Crystals were placed in 4 µl of these cock-
tails and left for 15–20 hours. These soaked crystals were flash-
cooled in cryoprotectant solution (15% PEG400, 25.5 w/v %
PEG 4000, 250 mM NaSCN, 85 mM Tris/HCl pH 7.5, 2.5 mM
ligand concentration).

2.6 Data collection and structure solution of galectin-3C in
complex with compounds (2–5) and (8)

Data for compounds 3–5 and 8 were collected at 100 K at
station I911-3 of the MAX-II synchrotron, Lund, Sweden (λ =
1.0000 Å), equipped with a marMosaic 225 mm CCD detector.
300–360 images with 0.5° rotation and 1–3 seconds exposure
times were collected for 3–5 and 8. Data for 2 were collected at
ID23-2, ESRF, France on a DECTRIS PILATUS3 2M detector.
600 images were collected with 0.5° rotation and 0.2 seconds
exposure time. Data for all structures were integrated using
XDS and scaled using XSCALE.21 The structures were refined
using phenix.refine22 and PDB entry 3ZSL (stripped of water
molecules and alternate conformations) as starting model,
first by rigid-body refinement. Five percent of the total reflec-
tions chosen at random were set aside for cross validation. The
models were then subjected to model building and maximum
likelihood refinement, gradually increasing the resolution to
the highest resolutions with anisotropic B factors. After initial
refinement of the protein coordinates in phenix.refine,22 the
coordinates of 2–5 and 8 were fitted to the electron density
using Coot.23 Further model building and manipulations were
done in Coot. Restraints were generated using eLBOW24 from
Phenix for 3–7. The structures were refined until convergence
and individual anisotropic atomic displacement parameters
for each atom were refined. Water molecules were added to
positive difference density peaks more than 4.5 or 5 σ above
the mean and also present in the 2m|Fo| − D|Fc| map at the
1 σ level. Riding hydrogen atoms were added in the final stages

of refinement. Refinement statistics are listed in Table S1.†
Molecular images were generated using PyMOL (Schrodinger
LLC). Model validation and analysis were performed using
MolProbity25 and PDB_REDO.26 Coordinates have been deposited
in the Protein Data Bank with accession numbers 6I75 for com-
pound 2, 6I74 for compound 3, 6I76 for compound 4, 6I77 for
compound 5 and 6I78 for compound 8. For detailed structure
refinement statistics, please refer to Table 1 in the ESI.†

2.7 Quantum mechanical calculations

Four sets of quantum-mechanical (QM) calculations at
different levels of theory were employed to obtain energies that
can help to explain the differences in binding affinity of com-
pounds 2–9 to galectin-3. All QM calculations were performed
with the Turbomole 7.2 software.27,28 In all systems, ligands
were modelled as the isolated fluorine-substituted benzene
moiety by replacing the remaining part of the ligand with a
hydrogen atom.

In the first set, we calculated the energy of rotating the vari-
able group of compounds 2, 4, 5, 6 and 8 out of the plane of
the tetrafluorophenyl group by changing the value of a C–C–X–Y
dihedral angle from 0° to 90° in increments of 10°, where the
first and the second carbon atom belong to the ring, whereas
the X and Y atoms belong to the varying group (in case of
compound 8, Y atom is carbon). For each dihedral angle value,
optimization of all the other degrees of freedom was per-
formed at the B3LYP-D3/def2-SV(P) level of theory.29–33

In the next two sets of calculations, we calculated the inter-
action energy between ligands and three nearby residues,
Ser237–Gly238 and Arg144. We performed separate calculations
for each of the two residues. The amide group of Ser237–Gly238
was modelled as CH3–CO–NH–CH3, and the side chain of Arg144
was modelled as [CH3–NH–C(NH2)2]+. The coordinates were
taken from the crystal structures. Arg144 has two conformations
in complex with compounds 3 and 5, and for these, we per-
formed separate calculations on both conformations. The calcu-
lations were performed at the TPSS-D3/def2-TZVP level of
theory.32,34,35 The interaction energy for each compound–residue
system was calculated from three single-point calculations as
ΔE = Ecomplex − Eresidue − Eligand.

Finally, we calculated the solvation free energies for com-
pounds 2–9, using the conductor-like screening model for real
solvents (COSMO-RS),36,37 with the dielectric constant for
water εr = 80 and optimized radii for all atoms.38 These calcu-
lations were based on two single point BP86 calculations29,35,39

with the TZVP basis set,40 as is requested by the method, one
in vacuum and one in a continuum solvent with an infinite
dielectric constant.36,37

3. Results and discussion
3.1 Synthesis and galectin-3 affinities of 3-(4-aryl-1,2,3-
triazol-1-yl)-thiogalactosides

A 1,3-dipolar cycloadditions with alkynes and azide 1 16 pro-
duced penta- and tetrafluoroaryltriazoles 2–3 (Scheme 1).
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Nucleophilic aromatic substitution of the p-fluorine in 3
with alcohols, amines and NaN3 gave tetrafluoroaryltri-
azoles 4 and 6–10, while reduction of azide 4 resulted in
amine 5.

The inhibition potencies of thiogalactosides 2–10 were
evaluated towards galectin-3 using a previously described com-
petitive fluorescence polarization assay10,20 and the results are
presented in Table 1. The pentafluorophenyl 3 had an affinity
of 3.4 μM to galectin-3. Any replacement of the fluorine in the
para position led to a drop in affinity. Replacing the fluorine
with an amine (5) or azide (4) resulted in a 2–3-fold decrease,
while replacement with a hydroxyl (2) resulted in a 7-fold
decrease. Adding methyl groups (8–9) to amine 5 further
decreased the affinity 2-fold per methyl group, while adding a
methyl group (6) to the hydroxide 2 did not affect the affinity.
Fluorine replacement with a bulkier ethoxy group (7) resulted
in an almost 5-fold decrease in affinity compared to methoxide
6, which is indicative of steric restrictions in the binding
pocket. This is further demonstrated by the even bulkier pyrro-
lidine (10) that does not bind galectin-3 at all at the concen-
trations tested.

3.2 Structural analysis of thiogalactosides 2–5 and 8 in
complex with the galectin-3 CRD (galectin-3C)

In order to further investigate the binding interactions in the
pocket below Arg144, high-resolution X-ray structures (all
<1.3 Å resolution; see Table S1 in the ESI†) of thiogalactosides
2–5 and 8 in complex with galectin-3C were determined. X-ray
structures of thiogalactosides 6–7 and 9–10 could not be
obtained owing to solubility issues. The structures revealed a
virtually identical binding mode for the galactose unit as
earlier reported in many publications, and the triazole extends
the para-substituted tetrafluorophenyl group into the pocket
below Arg144.15

The superimposition of all crystal structures (Fig. 1) shows
that the ligands reside in the binding pocket in a similar
manner to that reported previously. The anomeric S-tolyl
group of the ligands is disordered, and in this work, focus is on
the phenyl group below Arg144 and its para-substituents. Fig. 1
also shows that Arg144 adopts two principal conformations,
either directly above the phenyl ring or above the para substitu-
ent, depending on the nature of the phenyl substitutions.
Arg144 has split occupancy in the crystal structures of 3 and 5.
This is likely due to a weakened cation–π interaction as a result
of the electron-withdrawing fluorines. The N-methyl group in 8
is oriented above the phenyl ring plane towards Arg144. As a
result, Arg144 resides only above the phenyl ring in this
complex, while for both 2 and 4, Arg144 shows a single confor-
mation directly above the para substituent.

Compound 2 has the lowest affinity among the successfully
crystallized ligands. The phenolic proton in 2 is, based on
the pKa value of 5.7 for pentafluorophenol,42 likely to be
deprotonated, and the resulting anion could interact favour-
ably with the cation of Arg144. However, as will be discussed
below, it will be more disfavoured by desolvation effects than
the other ligands. Besides the interaction with Arg144, the

Fig. 1 Superimposed view of the five crystal structures showing the
ligand and neighbouring protein residues. The galactose moiety forms a
hydrophobic stacking interaction with Trp181, the triazole linker extends
the tetrafluorophenyl group in to the pocket near Arg144, which makes
a cation–π interaction with the tetrafluorophenyl group. Ligands 2, 3, 4,
5, and 8 are shown in yellow, green, purple, magenta and light blue
colours, respectively (also for Arg144).

Scheme 1 Synthesis of triazoles 2–10. Reagents and conditions: (a)
Alkyne, CuI, DIPEA, MeCN, 50 °C; (b) NaN3, DMF, 60 °C; (c) 1,3-propane-
dithiol, Et3N, MeOH, rt; (d) NaR, HR, rt; (e) amine, K2CO3, DMF, 50 °C.
Tol = p-methylphenyl.

Table 1 Kd (μM) values for aryl triazoles 2–10 and thiodigalactoside as
a reference compound, determined by a competitive fluorescence
polarization assay

R Kd

2 OH 23 ± 1.7
3 F 3.4 ± 0.21
4 N3 8.5 ± 1.2
5 NH2 11 ± 0.6
6 OMe 18 ± 2.1
7 OEt 88 ± 12
8 NHMe 18 ± 0.9
9 NMe2 40 ± 3.3
10 Pyrrolidine >300a

Thiodigalactoside 49 (ref. 41)

aDoes not bind galectin-3 at this concentration.
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binding site is unable to stabilise the negative charge on the
ligand. For example, Ser237 shows two conformations as for
the other ligands, and only one of these forms a rather weak
hydrogen bond to the hydroxyl group of the ligand (O–O dis-
tance of 3.4 Å).

The azide in 4 is located in-plane with the phenyl ring and
pointing outwards to solution, because the connecting nitro-
gen is sp2 hybridized and orienting it inwards to the protein
would result in a steric clash with Ile145. The single occupancy
of Arg144 in the complex with 4 may be due to a more favour-
able interaction with the π-system of the azide than with the
phenyl ring of 3. The azide group is within hydrogen bonding
distance of three water molecules (Fig. 2c), which may stabilize
the ligand, resulting in better affinity than other compounds
except 3. Most of these water molecules are present at very
similar positions in all complexes, but they make more inter-
actions with 4 than with the other ligands.

Compound 3 has the highest affinity, showing that fluorine
is the best candidate at the para position. This fluorine atom
forms multipolar orthogonal interactions with a nearby
peptide bond (Gly238; Fig. 2f) which increases the affinity. The
fluorine atom is at a distance of 3.0 Å from the N atom of the
backbone and 3.6 Å from the carbonyl C atom.

3.3 Quantum mechanical calculations

To rationalize the affinities and the structural observations, we
have made a number of quantum mechanical (QM) calcu-
lations with compounds 2–9. First, we calculated the potential-
energy surface for rotation of the varying para substituent of 2,
4–6, and 8 out of the plane of the tetrafluorophenyl group
(Fig. 3). It can be seen that ligands with OH (2) and N3 (4)
attain their energy minima with the substituent in the plane of
the phenyl group. This is in accordance with the crystal struc-
ture of the azide 4 in complex with galectin-3. The other three
ligands (5, 6, and 8) attain a shallow minimum around ∼20°,
which probably reflects a competition between conjugation
(favouring an angle of 0°) and the bulk of the methyl groups of
6 and 8, which prefer a larger dihedral. The figure indicates
that ligand 8 with NHMe, for which the angle is 72° in the
crystal structure, is strained by ∼8 kJ mol−1, which might be
compensated by polar interactions with the NH groups,
although no such interactions are obvious from the crystal
structure.

Next, we calculated the interaction energy between the
pentafluorophenyl group of 3 and the backbone amide group
of Ser237–Gly238 (modelled by CH3–CO–NH–CH3 with coordi-

Fig. 2 Close-up view of the binding pocket in the crystal structures of galectin-3C in complex with phenyltriazoles (a) 2, (b) 3, (c) 4, (d) 5 and (e) 8.
(f ) Superimposed view of 2 and 3 showing the important hydrogen bonded water and fluorine–amide interactions. Water in 3 is coloured red and
water in 2 is coloured cyan.
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nates taken from the crystal structure). It was 6 kJ mol−1,
which is of the expected size for an F–amide interaction.43 On
the other hand, ligand 5 gave the same interaction energy
(6 kJ mol−1) with an amide group.

Third, we calculated the COSMO-RS solvation free energies
of the nine para-substituted tetrafluorophenyl groups 2–9 (not
pyrrolidine 10). The results are shown in Fig. 4 as a function of
the measured binding affinities. It can be seen that for the
OEt (7), NMe2 (6) and OMe (9), the estimated solvation free ener-
gies are small, −1 to −3 kJ mol−1, and there is no correlation
with the binding free energies. However, for the F (3), N3 (4),
NH2 (5) and OH (2) substituents, there is a good negative corre-
lation to the binding affinity (R = −0.95). The ligand with the
NHMe (8) substituent also falls close to the correlation line,
albeit reducing the correlation to −0.83 if included. Taken
together, these results indicate that the observed affinities can
be explained by two effects. The alkylated substituents,
especially OEt (7), are too large and steric effects give a low
affinity, decreasing further with the number of methyl groups

on the substituent. For the other ligands, the affinity is deter-
mined by desolvation effects: in the binding site, the ligand is
partly buried by the protein and is less solvated than in water
solution. This desolvation is modest for the F and N3 ligands
(3 and 4), which form poor hydrogen bonds and therefore give
low solvation energies (>−5 kJ mol−1). However, for the NH2

and OH ligands (5 and 2), the effect is large and pronounced.
The effect would be even larger if the OH ligand 2 is deproto-
nated (the calculated solvation energy is −240 kJ mol−1). For
the NHMe ligand 8, both steric and desolvation effects seem to
be significant.

Finally, we also calculated the interaction energy between
Arg144 and the substituted tetrafluorophenyl groups, using
the geometry from the crystal structure (and two different
Arg144 conformations for the F and NH2 ligands 3 and 5). The
results are also included in Fig. 4 (red symbols and line). It
can be seen that all ligands give a large cation–π interaction
energy of 18–27 kJ mol−1. All groups give lower interaction
energies with Arg144 than an unsubstituted benzene group
(−37 kJ mol−1). The interaction energies of the two Arg144 con-
formations for the F and NH2 ligands 3 and 5 differ by 3–6
kJ mol−1 (compared to 1 kJ mol−1 for benzene, using the two
conformations for pentafluorophenyl 3). The average inter-
action energies show a good anti-correlation with the ligand-
binding affinities (R = −0.87) and a correlation with the
solvation energies (R = 0.78), illustrating that all three depend
on the polarity of the ligand. Thus, the interaction with Arg144
partly counteracts the desolvation penalty and the difference
of these two energies give an excellent anti-correlation to the
binding free energies of −0.91, although the slope is rather
large at 1.7 (the same as that of the interaction with Arg144,
but half as large as that of the solvation free energy).

4. Conclusions
A series of 2,3,5,6-tetrafluorophenyl derivatives 2–10 with
different para substituents were synthesized to analyse in
detail the binding interactions within a small pocket beneath
Arg144 in galectin-3. The most potent para substituent was the
fluorine (3) that forms a fluorine–amide interaction with the
backbone amide of Ser237–Gly238. However, the QM inter-
action energy between the backbone of Ser237–Gly238 and
ligand 3 is not larger than for some of the other ligands, e.g. 5.
Instead, the relative affinities seem to be determined by three
effects: First, the pocket beneath Arg144 is not large enough
for bulkier groups, e.g. –NMe2 (9) and –OEt (7). Second, the
solvation energy decreases strongly in the series 2–5–4–3 (OH–
NH2–N3–F), implying that the desolvation penalty also
decreases in this series, closely following the affinities of these
ligands. However, this effect is partly counteracted by the inter-
action energy of the substituted tetrafluorophenyl group with
Arg144, which becomes less favourable in this series (cf.
Fig. 4). Taken together, given the frequency of employing
fluorinated phenyl moieties and substituted derivatives thereof
in drug design and drug discovery, the results presented here

Fig. 3 Potential-energy surface for the C–C–X–Y dihedral angle of the
varying group in compounds 2 (OH), 4 (N3), 5 (NH2), 6 (OMe) and
8 (NHMe).

Fig. 4 Solvation free energies (blue squares) and interaction energies
between Arg144 and the substituted tetraphenyl group (red diamonds)
for compounds 2–9.
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provide further in-depth insight into the sometimes conflict-
ing driving forces behind such the interactions of such moi-
eties in arginine-containing protein binding sites.
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ABSTRACT: Understanding the driving forces underlying
molecular recognition is of fundamental importance in chemistry
and biology. The challenge is to unravel the binding thermody-
namics into separate contributions and to interpret these in
molecular terms. Entropic contributions to the free energy of
binding are particularly difficult to assess in this regard. Here we
pinpoint the molecular determinants underlying differences in
ligand affinity to the carbohydrate recognition domain of galectin-
3, using a combination of isothermal titration calorimetry, X-ray
crystallography, NMR relaxation, and molecular dynamics
simulations followed by conformational entropy and grid inhomogeneous solvation theory (GIST) analyses. Using a pair of
diastereomeric ligands that have essentially identical chemical potential in the unbound state, we reduced the problem of
dissecting the thermodynamics to a comparison of the two protein−ligand complexes. While the free energies of binding are
nearly equal for the R and S diastereomers, greater differences are observed for the enthalpy and entropy, which consequently
exhibit compensatory behavior, ΔΔH°(R − S) = −5 ± 1 kJ/mol and −TΔΔS°(R − S) = 3 ± 1 kJ/mol. NMR relaxation
experiments and molecular dynamics simulations indicate that the protein in complex with the S-stereoisomer has greater
conformational entropy than in the R-complex. GIST calculations reveal additional, but smaller, contributions from solvation
entropy, again in favor of the S-complex. Thus, conformational entropy apparently dominates over solvation entropy in dictating
the difference in the overall entropy of binding. This case highlights an interplay between conformational entropy and solvation
entropy, pointing to both opportunities and challenges in drug design.

■ INTRODUCTION
Molecular recognition is fundamental to biology in that it
governs signaling within and between cells, with prominent
examples provided by the immune system, hormonal control of
distant organs in higher organisms, and specificity of enzyme
reactions. Modern medicine is to a large extent based on the
possibility to interfere with and control molecular recognition
by the design of synthetic ligands or effectors that bind to a
specific protein in a given signaling pathway. Drug design aims
to generate such protein ligands that have high affinity and
specificity for the target. Despite the enormous resources
contributed by industry and academia over the past several
decades, rational structure-based design of ligands by
computational approaches remains extremely challenging.
One reason is that the free energy of binding is in most

cases a small difference between large numbers arising from the
different interactions between the protein, ligand, other
solutes, and solvent molecules. In addition, the energy terms
are strongly dependent on the detailed molecular conforma-
tions, due to their sharp dependence on interatomic distances
and orientations. Furthermore, entropic contributions can be
significant because proteins have many degrees of freedom, are
generally flexible, and consequently populate a wide range of
conformations. Recent work has indeed highlighted the role of
protein conformational entropy in ligand binding,1−8 as well as
the highly heterogeneous response of water molecules around
binding sites9−12 and ligands.13
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We have identified the carbohydrate recognition domain
(CRD) of galectin-3 (denoted galectin-3C) as an interesting
system for investigating the role of conformational entropy4,5

and solvation in ligand binding.14 Galectin-3 has a relatively
solvent-accessible binding site placed in a shallow groove
across one of the two β-sheets, with water molecules forming
an integral part of the binding site by bridging between the
ligand and protein.14,15 Galectin-3 is a member of the galectin
family of mammalian lectins, defined by the CRD with its
conserved sequence motif that confers affinity for β-galactoside
containing glycans.16,17 Galectins play important roles in cell
growth, cell differentiation, cell cycle regulation, signaling, and
apoptosis, which target them for pharmaceutical intervention
to treat inflammation and cancer,16−19 with specific examples
reported for galectin-3.20−22

Here, we report a comparative analysis of galectin-3C in
complex with two diastereomeric ligands. The advantage of
this approach is that the differences in binding thermody-
namics are dominated by the properties of the two ligand−
protein complexes, while the unbound diastereomers have
nearly identical chemical potential in the unbound state and
thus cancel in the comparative analysis. We used a
combination of experimental and computational approaches
including isothermal titration calorimetry (ITC), competitive
fluorescence polarization assay, X-ray crystallography, NMR
spectroscopy including 15N backbone and 2H side-chain
methyl relaxation, and molecular dynamics (MD) simulations
followed by conformational entropy and grid inhomogeneous
solvation theory (GIST) calculations. Following on our
previous work,4,5 we focus on entropic contributions to the
free energy of binding. In the present work, we extend the
analysis to include not only conformational entropy of the
protein and ligand but also solvent entropy. Our results show
that conformational entropy makes a greater contribution than
solvent entropy to the difference between ligands in overall
entropy of binding, and further highlight an interplay between
conformational entropy and solvent entropy in contributing
toward ligand binding affinity and specificity.

■ MATERIALS AND METHODS
Ligand Synthesis. The two diastereomeric compounds (2R)- and

(2S)-2-hydroxy-3-(4-(3-fluorophenyl)-1H-1,2,3-triazol-1-yl)-propyl)
2,4,6-tri-O-acetyl-3-deoxy-3-(4-(3-fluorophenyl)-1H-1,2,3-triazol-1-
yl)-1-thio-β-D-galactopyranoside (denoted ligands R and S, respec-
tively) were synthesized from triisoprolylsilyl 2,4,6-tri-O-acetyl-3-
azido-3-deoxy-1-thio-β-D-galactopyranoside23 and R- and S-glycidyl
nosylate. Reaction conditions, physical data, and purity data are given
in the Supporting Information.
Protein Expression and Purification. Galectin-3C was ex-

pressed and purified by the Lund Protein Production Platform (LP3)
at Lund University following published protocols,4,5 yielding a protein
stock solution of 9.2 mg/mL in ME-PBS buffer (10 mM Na2HPO4,
1.8 mM KH2PO4, 140 mM NaCl, 2.7 mM KCl, pH 7.3, 2 mM
ethylenediaminetetraacetic acid (EDTA), 4 mM β-mercaptoethanol),
and 150 mM lactose. The protein stock solution was stored at 278 K.
Isothermal Titration Calorimetry. Galectin-3C samples were

prepared by extensive dialysis against 5 mM 4-(2-hydroxyethyl)-1-
piperazinethanesulfonic acid (HEPES) buffer to remove all lactose,
followed by centrifugation at 14 000 rpm to remove any aggregates.
Both ligands were dissolved in stock solutions of dimethyl sulfoxide
(DMSO) to prepare stock solutions 20.7 mM and 20.3 mM for R and
S, respectively, and sonicated immediately prior to experiments.
Isothermal titration calorimetry (ITC) experiments were performed
on MicroCal iTC200 and MicroCal PEAQ−ITC instruments
(Malvern) at a temperature of 301 K by titrating the protein at a

concentration of 0.22 mM into the cell containing the ligand at a
concentration of 0.02 mM. The DMSO concentrations in the cell and
the syringe were carefully matched to minimize the heat of dilution,
and were the same for the two ligands. Five replicate experiments
were performed for each complex. Peak integration was done using
NITPIC.24 A single-site binding model was fitted simultaneously to
the 5 titrations curves to yield the binding enthalpy (ΔH), fraction of
binding-competent protein (n), and dissociation constant (Kd), using
in-house MATLAB routines with Monte Carlo error estimation.25

The heat released or absorbed during the ith injection is given by26

Q i Q i Q i V V Q i Q i

Q

( ) ( ) ( 1) ( / ) ( ) ( 1) /2i 0

off

Δ = − − + [ − − ]
+

where Vi is the volume of the ith injection, V0 is the cell volume, Qoff is
an offset parameter that accounts for heats of mixing, and Q(i) is the
heat function following the ith injection:

Q i HV nM X( ) ( /2) 4 i i0
2α α= Δ [ − − ]

where α = nMi + Xi + Kd, andMi and Xi are the total concentrations of
protein and ligand, respectively, in the cell at any given point of the
titration. The free energy and entropy of binding were subsequently
determined using the relationships ΔG° = RT ln(Kd) and −TΔS° =
ΔG° − ΔH°.

Competitive Fluorescence Polarization Experiments. The
binding affinity between galectin-3C and each ligand was determined
using competitive fluorescence polarization experiments described
previously,22 using the fluorescent probe 3,3′-dideoxy-3-[4-(fluores-
cein-5-yl-carbonylaminomethyl)-1H-1,2,3-triazol-1-yl]-3′-(3,5-dime-
thoxybenzamido)- 1,1′-sulfanediyl-di-β-D-galactopyranoside.27

X-ray Crystallography. Crystals of lactose-bound galectin-3C
were grown with the hanging drop method in NeXtal plates and with
the following reservoir condition: 28% (w/v) PEG 4000, Tris-HCl
pH 7.5, 0.4 M NaSCN, 15 mM β-mercaptoethanol. The drop volume
was 2 μL and the protein solution:reservoir ratio was varied between
0.5:1, 1:1, and 2:1. The crystals were then moved to drops containing
the same reservoir with the addition of 10 mM of the ligand (R or S),
made from a 100 mM stock solution in neat DMSO. Soaking lasted
for 7 h for the R diastereomer and 20 h for S. Before data collection,
crystals were placed for a couple of seconds in a drop containing 1
volume of 100% PEG400 and 3 volumes of crystallization solution as
a cryoprotectant, before cryocooling to 100 K in a stream of gaseous
N2. Data were collected at 100 K at beamline I911−3 of the MAX-II
synchrotron, Lund, Sweden.28 All data were integrated using XDS.29

Diffraction data for R were collected in a single pass, while that for S
involved two passes, one at low resolution with lower exposure time
followed by one at high resolution, and subsequently scaled and
merged with XSCALE.29

MTZ files were generated with Aimless.30 Cross-validation during
refinement was based on 10% of the reflections. An initial structure
solution was determined through rigid-body refinement in Refmac531

using as a starting model the lactose−galectin-3C structure14 with
lactose and water molecules removed and with the resolution limit set
to 3.5 Å. The structures of the R and S ligand stereoisomers were built
manually using Chimera32 and geometric restraints for the ligands
were obtained through phenix.eLBOW.33 Restrained refinement was
then performed using phenix.refine34 using data to the diffraction
limit. Manual rebuilding, including addition of water molecules, was
done using Coot.35

Ensemble Refinement of Crystal Structures. Ensemble
refinement of the X-ray diffraction data was performed using the
module phenix.ensemble_refinement in the Phenix software suite.36

The X-ray crystal structures of the S-galectin-3C and R-galectin-3C
complexes from the previous section were used as starting structures.
The crystallographic water molecules were kept and hydrogen atoms
and missing atoms in the protein were added using the Leap module
from the Amber 14 software.52 Ligand restraints and coordinates were
the same as those used in the original refinement.
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The collective dynamics of the protein were described using a TLS
model with a single group, which included both the protein and the
ligand atoms. A model including two TLS groups was also tested
one for the ligand and one for the proteinbut it gave worse results
(Rfree values of 0.20 compared to 0.17 for the single TLS model). The
percentage of atoms included in the TLS-fitting (pTLS) was optimized
by testing five different values (0.5, 0.6, 0.7, 0.8 and 0.9) and choosing
the one that yielded the lowest Rfree, which was pTLS = 0.7 for both
protein−ligand complexes. An ensemble of structures was then
generated by running MD simulations, in which the model was
restrained by a time-averaged X-ray maximum-likelihood target
function. The X-ray weight-coupled temperature bath offset was
kept at the default value of 5 K. A 1.25 ps relaxation time of the time-
averaged-restraints was used, resulting in 25 ps long MD simulations,
with structures stored every 0.05 ps. All structures generated by
ensemble refinement were kept, resulting in 500 different structures in
each ensemble. Atomic fluctuations were calculated using the cpptraj
module of Amber after removal of the water molecules.37

NMR Sample Preparation. The galectin-3C concentration was
0.32, 0.2, and 0.34 mM for the 15N, 15N/13C, and 15N/13C/2H
samples, respectively. The ligands were dissolved in neat DMSO to a
concentration of 8.2 mM for S and 35 mM for R. The protein−ligand
complexes were prepared by titrating the ligand into the protein, while
monitoring the 15N heteronuclear single-quantum correlation
(HSQC) spectra. The final DMSO content in the NMR sample
was 4.3% for S and 1.2% for R.
NMR Resonance Assignments and Chemical Shift Analysis.

Backbone chemical shift assignments were based on HNCACB38

spectra and previous assignments for various galectin-3C complexes.5

Methyl groups were assigned using CCH-TOCSY and HCCH-
TOCSY experiments.39,40 All spectra were processed using
NMRPipe,41 employing a processing protocol including a solvent
filter, square cosine apodization, and zero filling to twice the number
of points in all dimensions. All spectra were analyzed using the
CCPNmr program suite.42 Chemical shift differences were evaluated
as weighted distances: ([Δδ(1H)]2 + [0.1Δδ(15N)]2)1/2 for backbone
amides and ([Δδ(1H)]2 + [0.25Δδ(13C)]2)1/2 for methyls.
NMR Relaxation Experiments and Data Analysis. 15N R1, R2,

and {1H}−15N nuclear Overhauser effect (NOE) experiments
targeting the backbone amides were performed at magnetic field
strengths of 11.7, 14.1, and 21.1 T, and a temperature of 301 K.
Spectral widths were 14−16 ppm and 28−30 ppm for 1H and 15N,
respectively, covered by 1024 and 128 points. Relaxation decays were
recorded with 10 relaxation delays ranging between 0−1 s for R1
acquired at 11.7 and 14.1 T, 0−3 s for R1 acquired at 21.1 T, and 0−
0.2 s for R2 (at all fields) with a 1.2 ms delay between refocusing
pulses. The NOE was measured using a 1H saturation time of 7 s and
a recycle delay between experiments of 3 and 7 s for experiments
acquired at 11.7 and 14.1 T, respectively, while the reference
experiment was acquired using a recycle delay of 10 and 14 s at 11.7
and 14.1 T, respectively. NOE experiments performed at 21.1 T
employed a 1H saturation time of 6 s and a recycle delay between
experiments of 2 s, while the reference experiment was acquired with a
recycle delay of 14 s. Peak intensities were evaluated as partial peak
volumes calculated over 3 × 5 points in the direct and indirect
dimension, respectively. Monoexponential functions were fitted to the
R1 and R2 relaxation decays using the CCPNmr program suite and
bootstrap error estimation. NOEs were calculated as the ratio of the
peak intensities in the saturated and reference experiments, and the
standard errors were determined by propagating the errors of
intensities estimated from the baseplane noise.
R1(DZ), R(3DZ

2 − 2), R2(D+), and R(D+DZ + DZD+)
2H relaxation

experiments43 targeting the methyl groups were recorded at 11.7 and
14.1 T. Spectral widths were 16 and 20 ppm for 1H and 13C,
respectively, covered by 1024 points in the 1H dimension at both field
strengths, and 70 and 84 points for 13C at 11.7 and 14.1 T,
respectively. The number of points recorded were 1024 for 1H at both
static magnetic field strengths. Relaxation decays were sampled by 9
points covering 0−0.1 s for R1(DZ) and R(3DZ

2 − 2), 0−20 ms for
R2(D+) and R(D+DZ + DZD+). The recycle delay was 1.8−2 s. Peak

volumes were evaluated using the program suite PINT.44 Mono-
exponential functions were fitted to the relaxation decays using an in-
house MATLAB script with Monte Carlo error analysis.25

15N CPMG relaxation dispersion experiments were performed at
301 K and static magnetic field strengths of 11.7 and 14.1 T on S-
galectin-3C and 14.1 T on R-galectin-3C, using a single experimental
data point per refocusing frequency.45,46 A series of 19 relaxation
dispersion spectra were acquired with CPMG refocusing frequencies
ranging from 50 to 800 Hz, and in addition a single reference
spectrum was recorded without any CPMG refocusing pulses. The
relaxation dispersion data were analyzed using the general equation
for two-state exchange.47−49

Model-Free Analysis of NMR Relaxation Data. Backbone
amide model-free parameters were fitted using the program suite
relax,50−52 using a N−H bond length of 1.02 Å and a 15N chemical
shift anisotropy of −172 ppm. The backbone optimization was
restricted to five different models defined by the parameter sets: {O2},
{O2, τe}, {O

2, Rex}, {O
2, τe, Rex}, or {O

2
f, O

2
s, τs}, where O

2, O2
f, and

O2
s denote the order parameter with subscripts f and s indicating that

the order parameter can be resolved into amplitudes of fluctuation
taking place on separate time scales (fast and slow), τe and τs denote
effective correlation times for the internal motion with subscript s
indicating that the correlation time is associated with the slower time
scale, and Rex denotes exchange contributions to R2; in addition, the
correlation time for overall rotational diffusion, τc, was also fitted.53

Side-chain methyl-axis model-free optimization was performed using
in-house routines implemented in MATLAB. The 2H quadrupolar
coupling constant was set to 167 kHz.54 Three different models were
fitted using two {O2, τf}, three {O

2, τf, τeff}, or four {Of
2, Os

2, τf, τeff}
parameters, where τf is associated with fast motions, τeff = (1/τc + 1/
τs)

−1, and τs denotes the correlation time for slow internal motions on
par with τc.

55 The global correlation time was fixed to the value
obtained from the backbone model-free optimization. Model selection
was performed using an F-test at the level α = 0.95 (p < 0.05).56

Conformational Entropy Estimates from Order Parameters.
The backbone conformational entropy change, going from state A to
B, was estimated from the NMR order parameters using the
relationship1,57

S R O Oln (1 )/(1 )
k

k kAB B,
2

A,
2∑Δ = [ − − ]

(1)

where OX,k is the order parameter for residue k in state X, and the sum
runs over all residues. In a similar way, the conformational entropy
change of the side chain methyl-axis was determined using57

S R C O O( )
m

m
n

n nAB B,
2

A,
2∑ ∑Δ = −

(2)

where Cm is a function of the residue type. The sums run over all
residues n of type m. Cm = 1.32 for Val and Thr, 3.1 for Ile and Leu,
and 2.31 for Met. The entropy for Ala side chains was calculated using
eq 1.

The entropy estimated from eqs 1−2 rests on a number of
assumptions that have been discussed in the literature.1,58,59 Most
importantly, the approach does not account for contributions from
conformational fluctuations with correlation times greater than τc, and
does not consider the effects of correlated motion. An alternative
approach, based on empirical calibration, has been proposed
recently.60 Here, the total conformational entropy is estimated from
the average methyl-axis order parameters:

S s N OAB d
2

ABΔ = Δ⟨ ⟩χ (3)

where sd = −(4.8 ± 0.5) × 10−3 kJ/mol/K is an empirically
determined constant,60 Nχ denotes the number of dihedral angles, and
Δ⟨O2⟩AB is the difference between states A and B in their average
methyl-axis order parameter. This empirically calibrated estimate of
conformational entropy is believed to capture also the effects of
correlated motion and motions occurring on time scales greater than
τc.

60
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Molecular Dynamics Simulations and Analysis. All MD
simulations were run with the Amber 14 software suite.61 The X-ray
crystal structures of the S-galectin-3C and R-galectin-3C complexes
were used as the starting points for MD simulations. The PDB
structure 3ZSL was used for the simulations of apo galectin-3C.
Separate simulations were run for the two different conformations
observed for ligand S. All crystal-water molecules were kept in the
simulations. Each galectin-3C complex was solvated in an octahedral
box of water molecules extending at least 10 Å from the protein using
the tleap module, so that 4965−5593 water molecules were included
in the simulations. The simulations were set up in the same way as in
our previous studies of galectin-3C.4,62,63 All Glu and Asp residues
were assumed to be negatively charged and all Lys and Arg residues
positively charged, whereas the other residues were neutral. The
active-site residue His158 was protonated on the ND1 atom, whereas
the other three His residues were protonated on the NE2 atom, in
accordance with the neutron structure of the lactose-bound state,15

NMR measurements, and previous extensive test calculations with
MD.64 This resulted in a net charge of +4 for the protein. No
counterions were used in the simulations.
The protein was described by the Amber ff14SB force field,65 water

molecules with the TIP4P-Ewald model,66 whereas the ligands were
treated with the general Amber force field.67 Charges for the ligands
were obtained with the restrained electrostatic potential method.68

The ligands were optimized with the semiempirical AM1 method,
followed by a single-point calculation at the Hartree−Fock/6-31G*
level to obtain the electrostatic potentials, sampled with the Merz−
Kollman scheme.69 These calculations were performed with the
Gaussian 09 software.70 The potentials were then used by
antechamber to calculate the charges. A few missing parameters
were obtained with the Seminario approach:71 The geometry of the
ligands was optimized at TPSS/def2-SV(P) level, followed by a
frequency calculation using the aoforce module of Turbomole 7.01.72

From the resulting Hessian matrix, parameters for the missing angles
and dihedrals were extracted with the Hess2FF program.73 These
parameters are given in Table S1 in the Supporting Information.
For each complex, 10 000 steps of minimization were used,

followed by 20 ps constant-volume equilibration and 20 ps constant-
pressure equilibration, all performed with heavy nonwater atoms
restrained toward the starting structure with a force constant of 209
kJ/mol/Å2. Finally, the system was equilibrated for 2 ns, followed by
10 ns of production simulation, both performed with constant
pressure and without any restraints. For each protein−ligand complex,
10 independent simulations were run, employing different solvation
boxes and different starting velocities.74 Consequently, the total
simulation time for each complex was 100 ns. All bonds involving
hydrogen atoms were constrained to the equilibrium value using the
SHAKE algorithm,75 allowing for a time step of 2 ps. The temperature
was kept constant at 300 K using Langevin dynamics,76 with a
collision frequency of 2 ps−1. The pressure was kept constant at 1 atm
using a weak-coupling isotropic algorithm77 with a relaxation time of 1
ps. Long-range electrostatics were handled by particle-mesh Ewald
(PME) summation78 with a fourth-order B spline interpolation and a
tolerance of 10−5. The cutoff radius for Lennard−Jones interactions
between atoms of neighboring boxes was set to 8 Å. The snapshots
were analyzed with the cpptraj module.37

Conformational Entropy Estimates from MD Simulations.
To validate the MD trajectories by NMR, we calculated order
parameters from the MD trajectories. The N−H order parameters
were obtained using isotropic reorientational eigenmode dynamic
analysis.79 The covariance matrix of the NH bond vectors was
obtained from the trajectories by the cpptraj module37 in the Amber
14 software.61

A total of 10 000 snapshots with a 10 ps sampling frequency were
used for entropy and order parameter estimates, employing separate
simulations for the complexes, for free galectin-3C and for the
solvated ligands. Conformational entropies were calculated from the
ensemble of configurations of the protein and ligands by analyzing the
dihedral angle fluctuations.4,63,80,81 The Cartesian coordinates from
the trajectories were transformed to internal coordinates and the

entropies were then calculated from probability distributions over all
possible states of these coordinates using a bin size of 5° (i.e., 72 bins
per dihedral). Entropies were normalized to that of a free rotor.4 All
entropies are reported as −TΔS at 301 K.

Both entropies and order parameters were calculated as averages
over 50 simulations of 2 ns each (with 200 snapshots in each, i.e., each
of the 10 simulations were divided into five parts of equal length).
The 2 ns time window is similar to the rotational correlation time of
the protein. This procedure yields more stable entropy estimates by
restricting the dependence on rare events.63 The reported
uncertainties are standard errors over these 50 simulations.

To estimate the effect of correlation, entropies were also calculated
employing the maximum information spanning tree algorithm82,83

(MIST), with the pdb2entropy program.84 Entropies were calculated
to the tenth nearest neighbor to account for high-order correlations,
whereas entropies calculated to the first nearest neighbor were
considered correlation-free.

Water Structure and Solvation Thermodynamics. We
analyzed the structure and thermodynamics of the solvent around
the two ligands (R and S) bound to galectin-3C, using GIST,85

implemented in the cpptraj module of the Amber 14 software. The
method requires snapshots from MD simulations in which the solute
is kept restrained. Therefore, we first performed clustering of the
trajectories from the unrestrained simulations described above, using
the hierarchical agglomerative clustering approach, implemented in
the cpptraj module, with average-linkage criteria and the ligand RMS
as distance metric. The minimum distance between clusters was set to
3.5 Å. Subsequently we performed 10 independent 10 ns long MD
simulations for each identified cluster. In these simulations the protein
was kept restrained toward the starting crystal structure, and the
ligand was kept restrained toward the conformation which best
represents the cluster, both with a force constant of 10 kcal/mol/Å2.

For each cluster, the water−water interaction energy, Ew−w, and
solute−water interaction energy, Es−w, as well as translational, Strans,
and rotational, Srot, entropy contributions were calculated for a
rectangular grid of dimensions 30 Å × 21 Å × 21 Å, centered on the
ligand and extended at least 3 Å on each side of the ligand. The grid
was divided into cubic boxes (0.5 Å × 0.5 Å × 0.5 Å), for which the
thermodynamic properties were calculated. The sum of these
properties over the entire region reveals changes in the hydration
thermodynamics of the region for each cluster, relative to the
thermodynamics of the bulk water. For each of the two ligands, the
solvation free energy, ΔGsolv, was calculated as a sum over solvation
free energies for each cluster, ΔGsolv(i), multiplied by the probability
of finding the ligand in conformation i, p(i):

G G i p i( ) ( )
i

solv solv∑Δ = Δ

A separate set of solute-restrained MD simulations was performed in
which both the protein and the ligand were restrained toward the
crystal structure. To analyze these simulations, we used a 27 Å × 14 Å
× 15 Å grid.

■ RESULTS AND DISCUSSION
Ligand Design and Synthesis. We investigated the

driving forces underlying affinity and selectivity in ligand
binding by carrying out a comparative analysis involving the
binding of two diastereomeric ligands R and S (Figure 1) to
galectin-3C. The design of ligands R and S was inspired by the
high-affinity (Kd = 2 nM) galectin-3 ligand 1−1′-sulfanediyl-
bis-{3-deoxy-3-[4-(3-fluorophenyl)-1H-1,2,3-triazol-1-yl]-β-D-
galactopyranoside}22,86 (Figure 1A). The high-affinity ligand
interacts with galectin-3 via one of the galactose residues (that
on the left-hand side in Figure 1A) in the conserved galactose
binding site and the fluorophenyltriazolyl moieties interacts via
face-to-face stacking with arginine side chains and one
fluorine−amide orthogonal multipolar interaction.22 The
second galactose moiety interacts with only a single hydrogen
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bond (Figure 1A; the noninteracting parts are depicted in
gray) to the protein, leading us to hypothesize that this
galactopyranose ring could be mimicked by a 2-hydroxypropyl
chain, which would open up for the synthesis of two
diastereomeric ligands R and S (Figure 1B).
Synthesis of the ligands R and S relied on fine-tuning the

reactivity between a 1-sulfhydryl-galactopyranose nucleophile
and a doubly electrophilic glycidyl derivative: In situ fluoride-
mediated activation of the masked nucleophilic triisopropylsilyl
thiogalactoside and (R)- and (S)-glycidyl nosylate, respec-
tively, proceeded stereoselectively in high yields, while other
galactose nucleophiles (-SAc, -SH, thiouronium salts, and

thioxanthate) and glycidyl electrophiles (glycidyl tosylate, tert-
butyl dimethyl silyl glycidyl, and epi-chlorohydrin) gave lower
yields and stereochemical scrambling due to nucleophilic
attack occurring on both C1 and C3 of the glycidyl derivatives,
or due to epoxide opening followed by intramolecular
substitution to epoxide reclosing. Regioselective ring-opening
of the epoxide with NaN3, Cu(I)-catalyzed cycloadditions with
1-ethynyl-3-fluorobenzene, and finally Zemplen transesterifica-
tion gave ligands R and S in 99+% purities.

Overall Binding Thermodynamics.We characterized the
thermodynamics of ligand binding using ITC. We carried out
five replicate titrations for each of ligands R and S, and
analyzed the binding isotherms by performing a combined fit
of the replicate data sets (Figure 2; Figure S1). Table 1 lists the

resulting binding thermodynamics. Both ligands have dissoci-
ation constants in the low micromolar range, Kd(R) = (1.0 ±
0.03) × 10−6 M and Kd(S) = (2.1 ± 0.1) × 10−6 M, and the
results correlate well with those obtained in competitive
fluorescence polarization experiments, Kd(R) = (0.43 ± 0.04)
× 10−6 M and Kd(S) = (0.67 ± 0.5) × 10−6 M. As reported
previously,5 Kd values determined by ITC are typically found
to be higher by a factor of 2−4 than those measured by
fluorescence polarization, but the relative affinities are
unchanged within errors. The free energies of binding differ

Figure 1. Chemical structures and synthesis of ligands. (A) Chemical
structure of the parent, high-affinity ligand 1−1′-sulfanediyl-bis-{3-
deoxy-3-[4-(3-fluorophenyl)-1H-1,2,3-triazol-1-yl]-β-D-galactopyrano-
side}. The noninteracting atoms of one galactopyranose are depicted
in gray. (B) Synthesis and structures of the two ligands R (red) and S
(blue). The stereocenter is located at the propyl C2 (marked by an
asterisk). Reagents and conditions: (i) TBAF·3H2O, dry THF. (ii)
NaN3, NH4Cl, dioxane/H2O 1:1. (iii) 1-Ethynyl-3-fluorobenzene,
CuI, Et3N, DMF. (iv) MeONa, MeOH.

Figure 2. ITC experiments of ligand binding to galectin-3C. Example
isotherms describing the titration of galectin-3C with ligand R (left-
hand side) and ligand S (right-hand side). The top panels show the
raw thermograms of differential power plotted versus the
ligand:protein molar ratio, while the lower panels show the resulting
isotherms. The binding curve results from global fitting of 5 replicate
data sets. Error bars are smaller than the size of the symbols, except
for the last titration point for ligand S. (Figure S1 shows all 5
isotherms for each ligand).

Table 1. Overall Binding Thermodynamics from ITC

complex Kd (10−6 M)
ΔG°tot

(kJ/mol)
ΔH°tot
(kJ/mol)

−TΔS°tot
(kJ/mol)

R-galectin-
3C

1.0 ± 0.03 −34.6 ± 0.1 −60.4 ± 0.4 25.8 ± 0.4

S-galectin-
3C

2.1 ± 0.1 −32.7 ± 0.1 −55.7 ± 0.9 22.9 ± 0.9

difference
(R − S)

−1.9 ± 0.1 −5 ± 1 3 ± 1
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by only ΔΔG°(R − S) = −1.9 ± 0.1 kJ/mol, but the
differences in ΔH° and −TΔS° are greater and consequently
opposite in sign, indicating enthalpy−entropy compensation:
ΔΔH°(R − S) = −5 ± 1 kJ/mol and −TΔΔS°(R − S) = 3 ±
1 kJ/mol.
Crystal Structures Reveal Subtle Differences in

Binding Modes. The crystal structures of the R- and S-
galectin-3C complexes were refined to resolutions of 1.34 and
1.19 Å, respectively (see Table S2 for a summary of refinement
statistics). The quality of the electron density data is sufficient
to reveal the chirality of the ligands unambiguously (Figure 3
and Figure S2). As shown in Figure 3, the two complexes have
closely similar structures, with essentially no difference in the
protein backbone conformation. The RMS deviation between
the two structures is 0.13 Å for 473 backbone atoms and 0.59
Å when 2054 atoms are compared, including side chains.
Below we will denote the aromatic ring substituents on

galactose C3 as the “left hand side” (LHS), while the aromatic
rings connected to the propylic chain will be referred as the
“right hand side” (RHS); this notation is according to the
viewpoint of Figure 3 and all subsequent renditions of the
structures. The LHS shows perfect overlap between the two
complexes. The 3-fluorophenyl substituent sits in a pocket
generated by the displacement of Arg144, with the fluorine
atom pointing toward the protein backbone. Key interactions
involving the meta-fluorinated phenyl triazole on the LHS have
been described previously.22

The B-factors of the ligand atoms on the LHS are very
similar in the two complexes (10−15 Å2), and lower than those
of the RHS (20−35 Å2 in R and 20−40 Å2 in S), indicating
that the LHS is more ordered. The electron density for
Arg144, which stacks with the fluorinated phenyl ring of the
LHS, is slightly less well-defined in R than in S. The difference
in mobility of Arg144 does not seem to be correlated to the
minor differences in water structure (see below).
Although R and S have a different configuration at propyl

C2, the conformation of the ligand adjusts to allow the
hydroxyl group of the stereocenter to maintain a hydrogen
bond with Glu184. The configuration of the R-stereoisomer
enables the propyl linker to adopt the same conformation as
the corresponding segment in the glucose ring of the parent
compound (cf. Figure 1). Thus, the C2 hydroxyl group of R
makes an H-bond to Glu184 with its hydrogen atom in a
staggered conformation with respect to the aliphatic hydrogen
atom on the C2 carbon, as observed in the lactose and glycerol
complexes by neutron crystallography.15 In contrast, the
hydroxyl group in S is positioned in an eclipsed conformation
with respect to the aliphatic hydrogen, which is expected to be
energetically less favorable. This conformational adjustment
results in different interactions of the two ligands with the
protein at the RHS of the binding site. Furthermore, the RHS
of R is modeled with a single conformation, whereas the RHS
of S is modeled as two conformations in which the fluorinated
ring has two orientations related by an 180° flip. At the RHS,
both R and S interact with Arg186, despite the differences in
conformation at this end of the ligand. S appears at first glance
to have tighter interaction with Arg186 due to a better
alignment between the π orbitals of the ligand phenyl ring and
the face of the arginine guanidinium group. However, the
results from ensemble refinement suggest that the S isomer in
fact has higher mobility (see below).
Water molecules are well conserved around the binding site.

Particularly, we see that waters around the LHS overlap very

Figure 3. X-ray crystal structures of the ligand−galectin-3C
complexes. (A) R-galectin-3C (PDB ID 6QGF). (B) S-galectin-3C
(PDB ID 6QGE). (C) Overlay of the two complexes. The protein
backbone is shown in ribbon representation (gray), key ligand-
coordinating side chains are shown in stick representation, and
hydrogen bonds to the ligands are shown as dashed lines. The 2m|
Fo|−D|Fc| electron density map of the ligand and water molecules,
contoured at 1.0 σ, is shown as a gray mesh. Carbon atoms of the R
ligand are colored red, while those of the S ligand are blue. Water
molecules that are within 5 Å of either ligand are represented as small
spheres. In panels A and B, water molecules are colored by B-factor,
on a spectrum from dark blue at 15 Å2 to bright red at 70 Å2. Water
molecules shown without electron density are visible at <1.0 σ, but are
poorly ordered. In panel C, water molecules belonging to R-galectin-
3C are colored red and those belonging to S-galectin-3C are colored
blue.
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well between the two complexes. The minor differences
observed could be due to the slightly different resolutions of
the two complexes. For the RHS the different conformations of
the ligands result in more distinct water structures.
Chemical Shift Mapping of Ligand Binding. Chemical

shift assignments of R-galectin-3C and S-galectin-3C were
based on a HNCACB experiment and the apo galectin-3C
assignments reported previously.4,5 Minor chemical shift
differences are observed for the backbone amides throughout
the protein; the RMS chemical shift difference between the
ligand-bound and apo forms of galectin-3C in the 1H and 15N
dimensions are 0.06 and 0.30 ppm for R-galectin-3C (Figure
S3A) and 0.05 and 0.26 ppm for S-galectin-3C (Figure S3B).
The methyl chemical shifts show changes similar to those of
the backbone, with RMSDs of 0.03 ppm (1H) and 0.1 ppm
(13C) for S-galectin-3C, and 0.04 and 0.1 ppm for R-galectin-
3C. The largest chemical shift changes induced by ligand
binding are observed for residues in close proximity to the
ligand in the crystal structure (Figure S3C), demonstrating
that the binding mode observed in the crystal structure is
maintained in solution.
Significant chemical shift differences between the R- and S-

galectin-3C complexes are observed in the binding site (Figure
4). The overall chemical shift RMSD is 0.02 and 0.14 ppm for

backbone 1H and 15N, respectively, and 0.04 and 0.02 ppm for
methyl 1H and 13C, respectively. Two methyl groups, Val170γ1
and Val172γ1, show a weighted chemical shift difference
greater than 0.05 ppm between the two complexes.
Furthermore, the 1H and 15N chemical shifts of the Arg162
and Arg186 guanidine groups differ between the two
complexes. In both cases, the 1H chemical shift is greater in
R- than in S-galectin-3C, suggesting that the NHε atom forms
a stronger hydrogen bond or that the population of hydrogen
bonded conformations is greater in the R-complex. These four
side chains are located closely together and in proximity of the
stereocenter of the ligand. Notably, chemical shift differences
are also observed in regions of the protein where the average

structures are virtually identical between the two complexes,
such as the backbone amides of Leu147 and Phe159, which
form a pair of NH−CO hydrogen bonds. This observation
indicates that subtle differences exist in the conformational
ensembles sampled by the two complexes, a topic that we
address in more detail below.

Ensemble Refinement of Crystal Structures High-
lights Differences in Flexibility. To investigate the
conformational mobility of each complex in the crystal we
carried out ensemble refinement of the structure against the X-
ray diffraction data.36 The resulting ensembles yield Rfree =
0.1709 and R = 0.1358 for R-galectin-3C, and Rfree = 0.1625
and R = 0.1339 for S-galectin-3C, values that are comparable
to those resulting from traditional refinement (Table S2).
The results indicate that the S diastereomer shows larger

fluctuations in the crystal than does R, due to a large variation
in the RHS sp3 dihedral angles, as shown in Figure 5. This
result agrees with the dual conformation of ligand S observed
in the traditionally refined crystal structure, although the
conformational variation is much greater in the ensemble
representation. In particular, the H-bond between the C2
hydroxyl group and Glu184 is broken in a much larger
proportion of the ensemble structures for S than for R. The
ensemble refinement also confirms that the R ligand stays in a
single conformation, although with some translational move-
ment of the RHS end.
The protein also exhibits variable flexibility. The side chains

of Asn160, Arg162, Glu165, and Arg186, which form hydrogen
bonds with both ligands, have well-defined positions, whereas
larger fluctuations are observed for Arg144, which interacts
through π−π stacking with the ligand phenyl ring at the LHS,
and Arg168, which does not interact with the ligand. Arg144
shows slightly greater amplitudes of motion in the R-complex,
in keeping with the difference in B-factors of the traditionally
refined structures. The great variability in the side-chain
orientation of Arg144 is also reflected by the NMR data (see
below). On the other hand, the ensemble-refined crystal
structure of S-galectin-3C shows higher fluctuations of several
parts of the protein, e.g., the Asn164−Arg168 loop region
(neighboring the RHS of the bound ligand), Lys138−Ala142,
and Pro113−Va118 (Figure 5, insets).
The resulting ensembles indicate that the S-galectin-3C

complex shows considerably higher mobility than does R-
galectin-3C, providing qualitative evidence that protein and
ligand conformational entropy is greater in S-galectin-3C. We
attempted to quantitate the entropy difference from the
ensembles, resulting in calculated values that were qualitatively
consistent with our other results; however, the estimated
standard errors were far greater than the difference between
the R- and S-complexes (data not shown).

Differences in Conformational Fluctuations Meas-
ured by NMR. We carried out a suite of NMR relaxation
experiments that probe conformational dynamics on the
picosecond to nanosecond time scale to yield the amplitudes
of conformational fluctuations in terms of order parameters,
denoted O2. We measured 15N backbone relaxation rates at
three static magnetic field strengths and methyl 2H relaxation
rates at two static magnetic field strengths. Out of 138 residues,
15N relaxation data could be measured for 101 and 100
backbone amides in R-galectin-3C and S-galectin-3C,
respectively. Likewise, out of a total of 85 methyl groups, 2H
relaxation rates could be measured for 65 and 47 methyl
groups in R-galectin-3C and S-galectin-3C, respectively. The

Figure 4. Chemical shift differences between the R- and S-galectin-3C
complexes. Residues with weighted chemical shift differences | Δδ(R
− S)| ≥ 0.05 ppm are highlighted in green on the structure of the R-
galectin-3C complex with ligand S superimposed. These include the
backbone amides of residues Leu147, Phe159, Cys173, Thr175, and
Arg186, as well as the methyl groups of Val170 and Val172 and
guanidine groups of Arg162 and Arg186, all located in the binding
site. Val172 is situated beneath the side chain of Arg162 in the view of
the figure.
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missing residues had cross-peaks that were overlapped or too
broadened to allow for quantitative analysis.
We characterized the amplitudes of conformational fluctua-

tions using the model-free formalism.87,88 The best-fit
rotational diffusion tensor is anisotropic with a correlation
time (τc) of 7.5 and 8.1 ns, anisotropy of 1.1 and 1.1, and
rhombicity of 0.9 and 1.2 for R-galectin-3C and S-galectin-3C,
respectively. The higher value of τc observed for S-galectin-3C
is fully explained by the slightly higher concentration of DMSO
in this sample, which increases the solvent viscosity.89,90

The backbone order parameters are very similar in the two
complexes; the mean values and standard deviations are ⟨O2⟩ =
0.85 ± 0.05 and 0.84 ± 0.05 for R-galectin-3C and S-galectin-
3C, respectively. A significant difference in O2 is observed for
residues Tyr118, Ile132, Ile171, Asp178, Arg183, and Leu242,
none of which is located directly in the binding site (Figure 6).

Figure 5. Ensemble refined X-ray crystal structures. Overlay of the
100 structures with the lowest Rfree generated by ensemble refinement
for (A) R-galectin-3C (red ligand) and (B) S-galectin-3C (blue
ligand). Insets: The protein backbone is displayed as a tube with a
diameter corresponding to the ensemble RMS fluctuations for all
atoms of that residue (the ligand is shown in its crystal structure
conformation).

Figure 6. NMR order parameters for R- and S-galectin-3C. (A)
Backbone O2 values. (B) Side chain O2 values for arginine 15Nε and
methyl axes. Data for R- and S-galectin-3C are shown in red and blue,
respectively. Gray bars indicate residues in contact with the ligand
(residues for which any backbone amide atom or methyl atom is
within 5 Å of any ligand atom). (C) Scatter plot comparing the
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This result indicates that the different stereochemistry of the
ligand and the associated differences in protein conformation
affect the amplitudes of backbone fluctuations at remote
locations. Backbone order parameters are relatively low in the
loop regions at the top of the structure in the view of Figure 6.
There is also a difference in order between the two complexes
with O2 being higher for the R-complex. Both of these
observations agree well with the ensemble-refined crystal
structures.
The order parameters for the methyl-bearing side chains

vary significantly over the protein (Figure 6B,C). However, the
differences between the two complexes are overall small, except
for residues Val127, Ile132, Val172, Val189, Ala216, Leu228,
and Ile231, which show |ΔO2(R − S)| > 0.10; Figure S4A
shows the distribution of ΔO2(R − S). Out of these residues,
only Val172 is located in the binding site, next to the
stereocenter of the bound ligand. The side chain of Val172
shows a greater degree of freedom in the R-galectin-3C
complex. The mean values and standard errors of the mean for
the methyl-axis order parameters are ⟨O2⟩ = 0.68 ± 0.02 and
0.64 ± 0.03 for R-galectin-3C and S-galectin-3C, respectively,
when calculated over all residues, and ⟨O2⟩ = 0.66 ± 0.03 and
0.65 ± 0.03, when calculated over those residues for which
data are available for both complexes.
Arginine side chains play a special role in ligand

coordination by galectin-3C. Arg144, Arg162, and Arg186
form close interactions with the ligand (cf. Figure 3). However,
the side-chain guanidine group of Arg144 is not observed in
the NMR spectra, presumably as a consequence of
intermediate exchange between alternative positions. This
result is in agreement with the ensemble-refined crystal
structures, in which Arg144 shows extensive flexibility. The
fact that Arg168, which also is highly variable in the structure
ensembles, is observed in the NMR spectra indicates that this
side chain undergoes dynamic averaging on a faster time scale
than does Arg144.

15Nε side-chain order parameters could be measured for 5
out of 9 arginines. Arg162 and Arg186, which interact with the
bound ligands, have O2 values (0.78−0.81) that are higher than
the average value of the guanidine groups and only slightly
lower than the average value of the backbone. However, there
is no significant difference in O2 between the R- and S-
complexes for these two side chains. Only Arg129 and Arg224
show minor differences between the two complexes, |ΔO2(R −
S)| of 0.09 and 0.04, respectively (Figure 6B), and both of
these residues are located peripherally to the binding site.

Order parameters derived from relaxation measurements
report on conformational entropy due to fluctuations with
correlation times shorter than τc. To investigate whether there
are motions occurring on slower time scales, we performed 15N
CPMG relaxation dispersion experiments, which sample
motions on the 100 μs to 100 ms time scales.45 In both the
R- and S-bound states, a single residue, Val189, exhibits
conformational exchange. The exchange rate is identical,
within error: kex= 6300 ± 1300 s−1 (R) and 4900 ± 300 s−1

(S), indicating that there are no major differences between the
two complexes in the extent of conformational sampling on
this time scale.

Differences in Conformational Fluctuations Deter-
mined by MD Simulations. To complement the information
on conformational fluctuations obtained via NMR order
parameters for the backbone, guanidine- and methyl-bearing
side chains, we performed MD simulations that probe the
intramolecular dynamics of all parts of the protein and ligand.
Since the crystal structures of the ligand−galectin-3C
complexes show two conformations of S, we initiated separate
MD simulations for the two conformers. We validated the MD
simulations by comparing order parameters calculated from the
MD trajectories with those measured by NMR. There is
reasonable, but variable, residue by residue agreement between
the backbone O2 values determined by NMR and MD for each
complex. The RMSD is 0.05 in all 3 comparisons (Figure
S4B,C), which is on par with previous results for other
proteins.65,91

We studied how the conformation of the ligand varied in the
MD simulations by following the dihedral angle representing
the orientation of the RHS phenyl ring. In each of the three
trajectories, the ligand samples a unimodal and equally wide
(∼50°) distribution of the dihedral, indicating that the rotation
barrier is high enough that the ligand does not change
conformation on the nanosecond time scale.

Conformational Entropy Differences Estimated by
NMR. On the basis of the experimental order parameters, we
estimated the difference in the conformational entropy
between the two complexes, see eqs 1−2. Despite the average
values of O2 being highly similar for the two complexes,
residue-specific differences lead to a significant difference in
backbone conformational entropy between galectin-3C in the
R- and S-bound states, −TΔΔSbb(R − S) = 17 ± 5 kJ/mol. By
contrast, the corresponding result for the methyl-axis O2 is not
statistically significant: −TΔΔSsc(R − S) = −5 ± 6 kJ/mol.
Taken together, the NMR order parameters yield an estimate
of −TΔΔSbb+sc(R − S) = 12 ± 8 kJ/mol, indicating that
galectin-3C in the R-bound state has lower conformational
entropy than in the S-bound state (Table 2). That is, the
conformational entropy difference between the two complexes
has the same sign as, but a greater magnitude than the
difference in total entropy, −TΔΔS°(R − S), obtained by ITC,
suggesting that the conformational entropy makes a significant
contribution to the overall binding thermodynamics. It should
be noted that the NMR-based estimate, −TΔΔSbb+sc(R − S),
covers only a subset of the dihedral angles in the protein.
However, it serves as a useful reference for validating the MD
simulations, which provide the total conformational entropy of
both galectin-3C and the bound ligand.
We also used the empirically calibrated approach,60

embodied in eq 3, to estimate the change in the total
conformational entropy of the protein. The results yield
−TΔΔSconf(R − S) = 16 ± 14 kJ/mol, suggesting, as might be

Figure 6. continued

methyl-axis O2 values for R- and S-galectin-3C presented in panel B.
The straight line with slope of 1 is drawn to guide the eye. (D) ΔO2

color coded onto the R-galectin-3C structure with ligand S
superimposed. Residues with ΔO2(R − S) > 0 are colored blue,
while those with ΔO2(R − S) < 0 are colored red. The intensity of the
color scales with the magnitude of ΔO2 from red via pink to white
(−0.1 ≤ ΔO2(R − S) < 0) and from white via light blue to dark blue
(0 < ΔO2(R − S) ≤ 0.1). Residues for which no data are available are
colored white. Side chains are shown in stick representation for
residues with a difference in side-chain order parameters of |ΔO2(R −
S)| > 0.05, and labeled residues have |ΔO2(R − S)| > 0.1. Backbone
and side-chain ΔO2 are represented by the color of the tube and
sticks, respectively. The width of the tube indicates the average
backbone O2 values in the two complexes: a wider tube indicates a
lower order parameter and vice versa.
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expected, that −TΔΔSbb+sc underestimates the change in total
conformational entropy (Table 2).
Conformational Entropy Differences Determined by

MD. We calculated the conformational entropy of galectin-3C
and the bound ligands in both complexes, using dihedral angle
distributions from the MD simulations.4,63 Table 2 shows the
difference in conformational entropy between the two
complexes. For both complexes, the dihedral flexibility of
galectin-3C decreases upon ligand binding (Table S3). The
effect yields a change in conformational entropy, −TΔSconf, of
86 ± 5 kJ/mol and 74−75 ± 5 kJ/mol for the protein in the R-
and S-bound states, respectively (separate MD simulations
were initiated from the two conformations of S observed in the
crystal structure and these resulted in entropies that agree
within 1 kJ/mol). Comparing directly with the NMR-based
estimate of conformational entropy associated with the
backbone and methyl-bearing side chains, −TΔΔSbb+sc(R −
S) = 12 ± 8 kJ/mol, the corresponding value obtained by MD
is 8 ± 3 kJ/mol (Table 2).
The decrease in entropy is greatest for Arg186 in both

complexes (−TΔSconf = 8−9 kJ/mol). This residue forms
hydrogen bonds with Glu184, which interacts with both
ligands R and S, and shows the second largest decrease in
entropy when ligand S binds (−TΔSconf = 4 kJ/mol), but a
rather small decrease upon binding ligand R (−TΔSconf = 1 kJ/
mol). Arg144 also gives a rather large negative entropy
contribution upon binding either ligand (−TΔSconf = 3−4 kJ/
mol). Ile171 gives a large contribution (−TΔSconf = 4 kJ/mol)
when binding S, but smaller when binding R (1 kJ/mol). This
difference is also observed in the backbone O2 determined by
NMR (Figure 6), whereas there is no significant difference
between the two complexes in the methyl-axis O2 values for
this residue, whose side chain is oriented away from the
binding site. However, the NMR data reveal greater flexibility
in the R-complex for the side chains of the neighboring
residues Val170 and Val172, which are both oriented toward
the binding site. Significantly increased conformational entropy
is observed for 3−5 of the residues upon ligand binding, with
the largest contribution coming from Asp148 (−TΔSconf = −1
kJ/mol).
The total conformational entropy of the protein is greater

for S-galectin-3C than for the R-complex, −TΔΔSconf(R − S)
= 11 ± 5 kJ/mol (taking into account both MD trajectories for
S-galectin-3C), which is statistically significant at the 95% level.
This result agrees well with the estimate obtained from NMR
methyl-axis order parameters, −TΔΔSconf(R − S) = 16 ± 14
kJ/mol, which implicitly includes the effects of correlated
motions and motions on time scales greater than τc. Thus, the

general agreement supports the conclusion from MIST
calculations that effects from correlated motions are minor,
and further suggests that slower motions have no major
bearing on ΔΔSconf in keeping with the relaxation dispersion
data.
The difference between complexes arises from small

contributions from many residues (Figure 7). At the level of

individual residues, 22−23% show a statistically significant
contribution with the same sign as the total difference, whereas
9−11% show the opposite behavior. Among the latter, the
largest contributions (−3 kJ/mol) come from Ile171 and
Glu184 (Figure 7).
The change in conformational entropy of the ligand upon

complex formation is −TΔS = 24 ± 1 kJ/mol and 25−26 ± 1
kJ/mol for R- and S-galectin-3C, respectively. The difference
between R and S is not statistically significant, neither in the
bound nor in the free states. The indistinguishable conforma-
tional entropy of the free ligands is in line with the expectation
that they should have nearly identical chemical potential in the
free state, based on their diastereomeric relationship.
We used the MIST approach82,83 to investigate whether

correlated motions affect the estimates of conformational
entropy. The results show that the effect of correlation on
−TΔΔSconf(R − S) is minimal, with 1 kJ/mol difference
between the first- (without correlation) and tenth-order (with
correlation) approximation. Thus, correlations are highly
similar in the two states, in agreement with previous results
for other proteins.92

Thus, taking into account the results for both ligand and
protein, the difference in conformational entropy between the
two complexes, −TΔΔSconf(R − S) = 10 ± 5 kJ/mol, is slightly
greater than the difference in the net binding entropy,
−TΔΔS°tot(R − S) = 3 ± 1 kJ/mol, indicating that protein
conformational entropy makes a dominant contribution to
ΔΔG°tot(R − S). Note that we have designed this comparative

Table 2. Conformational Entropy Differences between R-
and S-Galectin-3C

method −TΔΔS (kJ/mol)

NMR backbone + methylsa 12 ± 8
MD backbone + methylsb 8 ± 3
NMR proteinc 16 ± 14
MD proteind 11 ± 5
MD protein + ligande 10 ± 5

aIncludes protein dihedrals of the backbone and methyl-bearing side
chains, calculated using eqs 1−2. bIncludes protein dihedrals of the
backbone and methyl-bearing side chains. cIncludes all protein
dihedrals, calculated using eq 3. dIncludes all protein dihedrals.
eIncludes all protein and ligand dihedrals.

Figure 7. Conformational entropy contributions to −TΔΔSconf(R −
S), reported per residue. −TΔΔSconf(R − S) is color coded onto the
galectin-3C structure with blue hues indicating −TΔΔSconf(R − S) >
0 and red hues indicating −TΔΔSconf(R − S) < 0, with the color
intensity ranging from weak (white) for TΔΔSconf = 0 to intense
(maximally blue or red) for |TΔΔSconf| = 2.8 kJ/mol. The width of the
tube indicates the average conformational entropy values per residue
in the two complexes: a wider tube indicates higher average
conformational entropy and vice versa. The figure is based on the
crystal structure of S-galectin-3C.
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study in such a way that the only other contribution to the
entropy of binding should originate from differences in
solvation entropy of the two complexes, a topic we turn to
next.
Grid Inhomogeneous Solvation Theory Reveals Key

Differences in Solvation between the Two Complexes.
In the standard GIST protocols, sampling of water sites is
carried out while keeping the protein and ligand restrained.85,93

The present case, where the protein and ligand show
significant conformational fluctuations in the bound state,
presents a challenge to calculations of hydration thermody-
namics. We approached the problem by clustering trajectories
from the unrestrained MD simulations, which resulted in three
clusters for ligand R and four clusters for ligand S (two clusters
for each of the two sets of unrestrained MD simulations in the
latter case). The subsequent solute-restrained MD simulations,
started from each of the clusters for R-galectin-3C and S-
galectin-3C, reveal differences in their hydration thermody-
namics (Table 3). Figure 8 affords an overview of water sites,

i.e., regions with higher density than bulk water, surrounding
the bound ligands. Overall, the distributions of highly
populated water sites are similar in the two complexes
(compare Figures 8A and 8B) and agree well with the crystal
structures. However, the close-up view in Figure 8C reveal
subtle differences in water positions, especially in the RHS
region, where the two structures differ the most. Water
molecules in the crystal structures with a low B factor overlap
well with the highly populated water sites from the GIST
analysis, whereas the overlap is poorer for water molecules with
a higher B factor (Figure S5). Those GIST water densities also
have a less spherical shape, indicating a larger mobility of the
water structure.
There is a large difference in solvation enthalpy, which is

compensated by protein−protein and protein−solvent en-
thalpies (outside the grid) that are large and hard to estimate
accurately, whereas the difference in protein−ligand inter-
action energies between the R- and S-complexes is modest.
Thus, we conclude that the higher binding affinity for the R
diastereomer includes a contribution from favorable hydration
enthalpy that is dominated by solute−water interactions
around the binding site.
Focusing next on solvent entropy, we note that the

difference between the two complexes amounts to only
−TΔΔSsolv(R − S) = 3 ± 2 kJ/mol. Although barely

significant, the entropic contribution from solvation appears
to add constructively to the conformational entropy
(−TΔΔSconf(R − S) = 10 ± 5 kJ/mol). Arguably, this result
is intuitive, as greater disorder in the protein and ligand
conformations might be expected to translate to the
surrounding water molecules. However, the opposite behavior
has also been observed in MD simulations of other systems.11

Table 3. Solvation Thermodynamics from GIST
Calculationsa

complex R-galectin-3C S-galectin-3C difference (R − S)

−TΔSrot 398.8 ± 0.6 397.7 ± 1.3 1.2 ± 1.5
−TΔStrans 319.3 ± 0.4 317.4 ± 0.3 1.9 ± 0.5
−TΔSsolv 718.1 ± 0.9 715.0 ± 1.4 3.1 ± 1.6
ΔHs−w −2914.1 ± 2.0 −2805.4 ± 1.1 −108.7 ± 2.3
ΔHw−w −12813.8 ± 2.0 −12877.0 ± 2.0 63.2 ± 2.9
ΔHsolv −15727.9 ± 2.3 −15682.4 ± 2.2 −45.5 ± 3.2
ΔGsolv −15009.7 ± 1.8 −14967.3 ± 2.7 −42.4 ± 3.3

aRotational, ΔSrot, and translational, ΔStrans, entropy as well as the
solute−water interaction energy, ΔHs−w, and water−water interaction
energy, ΔHw−w, of the studied region, shown relative to bulk water.
ΔSsolv = ΔSrot + ΔStrans, ΔHsolv = ΔHs−w + ΔHw−w, and ΔGsolv =
ΔHsolv −TΔSsolv. All terms are in kJ/mol. Reported uncertainties are
the standard errors over the ten independent MD simulations.

Figure 8. Differences in solvation around the binding site. Regions
with high density of water relative to bulk water (six times the bulk
water density) are represented as (A) red mesh for R-galectin-3C and
(B) blue mesh for S-galectin-3C. (C) Close-up view of the binding
site with the R- and S-complexes superimposed. For clarity, only the
highest-occupancy clusters are shown for R and S (both
conformations in the latter case) in panel C. See the text for details.
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The net contribution from conformational and solvent
entropy, −TΔΔSconf+solv(R − S) = 13 ± 5 kJ/mol, is greater
than the overall entropy difference determined by ITC,
−TΔΔStot(R − S) = 3 ± 1 kJ/mol (Figure 9), but the

difference is not significant at the 95% confidence level. Taken
together, the present results indicate that conformational
entropy dominates over solvation entropy in determining the
difference in binding entropy between the two ligand−galectin-
3C complexes. It remains an open question to what extent
these results are general, but we surmise that the relative
contributions from conformational entropy and solvent
entropy are highly system dependent.
Galectin-3 has a relatively exposed and solvent-accessible

binding site, which engages numerous water molecules, a
feature that certainly contributes greatly to the present results.
It would be of great interest to carry out future research to
investigate other proteins with different types of binding sites,
e.g., those that are less solvent accessible.12

■ CONCLUDING REMARKS
We have carried out a comparative analysis of ligand binding to
galectin-3C using two diastereomeric ligands and a range of
experimental techniques combined with computational
methods. This approach has the important advantage that
any differences in the thermodynamics of the two binding
processes can be related to the bound state, while the
contributions from the free states are expected to cancelas
borne out by the present results. Thus, on the basis of this
experimental design, we were able to dissect the thermody-
namics underlying the difference in ligand affinity.
The two ligands exhibit closely similar free energies of

binding, as might be expected for diastereomers. However, the
pair exhibits enthalpy−entropy compensation, so that the two
complexes still manifest meaningful differences in both binding
enthalpy and entropy that we investigated to pinpoint the
driving forces underlying the thermodynamic signatures of
binding. Our results demonstrate that the enthalpy−entropy
compensation involves interplay between the protein and
solvent degrees of freedom. GIST analyses of MD trajectories
indicate that the difference in enthalpy includes a sizable
contribution from solute−water interactions in favor of the R-
galectin-3C complex. This contribution is counteracted by a
difference in conformational entropy of the protein and a

minor entropic component from the solvent that both favor
the S-galectin-3C complex. Thus, conformational entropy
dominates over solvation entropy in determining the difference
in binding entropy between the two stereoisomers.
The sum of the conformational and solvation entropies,

determined by NMR, MD simulations, and GIST calculations
has the same sign as, but is greater than, the total entropy of
binding, determined by ITC. Thus, the individual estimates of
conformational and solvent entropy correctly identify which
protein−ligand complex is favored, but the remaining deviation
of ΔΔSconf+solv from ΔΔStot suggests room for further
methodological refinements.
The combination of high-resolution crystal structures,

analyzed by ensemble refinement, NMR relaxation data, and
MD simulations enable us to examine the structural origin of
the thermodynamic differences outlined above. Differences in
the interactions involving the hydroxyl group at the stereo-
center of the diastereomers apparently lead to conformational
strain and more pronounced conformational fluctuations in the
S-stereoisomer at the RHS of the binding site, which couple
with increased fluctuations of the surrounding protein. These
results reinforce the notion that structure-based ligand design,
when guided solely by static X-ray structures, addresses only
one part of the picture and might be misleading.
In a broader perspective, improved knowledge about the

sensitive interdependence of solvent entropy and protein
conformational entropy adds to our understanding of
molecular recognition. The phenomenon indicates both
opportunities and challenges in rational drug design. On the
one hand, contributions from solvation entropy to the free
energy of binding are well-known, and the present results
reiterate the concept of targeting individual water sites to
achieve increased binding affinity.12,94 On the other hand,
efforts to design ligands that perturb the solvent structure
around the binding site might not achieve the expected result
due to changes in conformational entropy of the ligand and
protein, as exemplified herein.
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