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ABSTRACT

Recent work has highlighted the benefits of exploiting ro-
bust Capon beamformer (RCB) techniques in passive sonar.
Unfortunately, the computational requirements for comput-
ing the standard RCB weights are cubic in the number of
adaptive degrees of freedom, which may be computationally
prohibitive in practical situations. Here, we examine recent
computationally efficient techniques for computing the RCB
weights and evaluate their performances for passive sonar.
We also discuss the implementation of these efficient algo-
rithms on parallel architectures, such as graphics processing
units (GPUs), illustrating that further significant speed-ups
are possible over a central processing unit (CPU) based im-
plementation.

Index Terms— Passive sonar, computationally efficient
robust adaptive beamforming.

1. INTRODUCTION

In many passive sonar systems, beamforming is used to form
receive beams on hydrophone arrays for the purposes of
source localisation, power estimation (acoustic imaging)and
for increasing the signal-to-noise ratio (SNR). Conventional
delay-and-sum (DAS) beamforming, which applies delays to
the hydrophone outputs so that a source signal received in
the specified beam direction will appear aligned in the de-
layed hydrophone outputs, is most often used. Summing the
delayed outputs leads to coherent summation of the source
signal, but not of noise that is uncorrelated between hy-
drophone outputs, leading to an increase in SNR. In fact, it is
well-known that the DAS beamformer is optimal for a single
source in uncorrelated (spatially white) noise [1]. However,
in practice, there are typically multiple sources of noise that
have significant correlations between hydrophone outputs,
including contacts (e.g., shipping) not in the steer direction,
platform noise (such as machine induced vibration), flow and
flow-induced vibration, ambient noise and biological noise.
Shading can be used with DAS beamformers to trade in-
creased mainlobe width (leading to reduced resolution) for
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lower sidelobe levels, though the desired sidelobe levels are
often not met due to imperfect sensor calibration and/or faulty
sensors. Alternatively, adaptive beamformers based on Capon
or minimum variance distortionless response (MVDR) tech-
niques design data-dependent weights that minimise the array
output power subject to a look direction constraint, which,
in theory, optimise the array output SNR, even for correlated
noise environments. These beamformers are able to adapt
their beampatterns to null out correlated noise sources as and
when required. The Capon/MVDR weights are a function of
the signal-of-interest (SOI) array steering vector (ASV),i.e.,
the spatial signature due to a SOI in the beam steer direction,
and the array covariance matrix. In practice, a model for the
SOI ASV, here termed the assumed ASV, and an estimate
of the array covariance are used. Unfortunately, errors in
these lead to a significant degradation in output SNRs for the
standard MVDR/Capon beamformers. SOI ASV errors arise
as a result of angle-of-arrival or pointing errors, sensor cal-
ibration errors, source wavefront distortions (e.g., due to in-
homogeneities in the ocean) and scattering, all of which lead
to SOI cancellation. Thus, a wealth of robust adaptive tech-
niques have been proposed to deal with errors in the SOI ASV
and covariance matrix estimates (see, e.g., [2, 3] and the ref-
erences therein). In [4–7], robust Capon beamformer (RCB)
techniques [8, 9], exploiting ellipsoidal (including spherical)
ASV uncertainty sets, have been shown to systematically al-
low for mismatch in passive sonar applications, without the
need for the ad hoc parameter choices that are often needed
with other robust adaptive beamforming methods. Further-
more, they are significantly more robust than Capon/MVDR
beamformers to errors in the sample covariance matrix es-
timate. However, like the Capon/MVDR beamformers, the
complexity required to compute the RCB weights is cubic
in the number of adaptive degrees of freedom, which can
be prohibitive in practice. Further, RCB weight computa-
tion requires eigenvalue decomposition (EVD) and New-
ton search, neither of which are amenable to implementa-
tion on parallel hardware such as graphical processing units
(GPUs). The purpose of this work is to examine various re-
cent low complexity approximative implementations for com-
puting RCB weights, which require a complexity that is only
quadratic in the number of adaptive degrees of freedom and



are amenable to implementation, e.g., on GPUs. In [9], it was
shown that the RCB weights coincide (within a scale factor)
with the worst-case robust adaptive beamformer WC-RAB
weights [10, 11] and we will therefore also consider efficient
implementations of the WC-RAB. Specifically, we examine
the (second-order) constrained Kalman filter implementation
of the WC-RAB [12], the gradient-based iterative implemen-
tation of the WC-RAB [13], a recursive version of the RCB
exploiting variable diagonal loading [14], and a steepest-
descent based RCB exploiting scaled projections [15].

2. DATA MODEL, RCB AND WC-RAB

Here, we implement the beamformers in the frequency-
domain (see, e.g., [7] for more details) and model thekth
frequency-domain snapshot, from frequency bin with centre
frequencyf , from anM element array as

xk
△
=

[

x1,k . . . xM,k

]T
= a0s0,k + nk, (1)

where xm,k, a0, s0,k, and nk denote thekth frequency-
domain output of themth sensor, the SOI ASV, the SOI
complex amplitude, and the noise-plus-interference vector,
defined similarly toxk, respectively. Assuming that the noise
and interference are uncorrelated with the SOI and that both
are zero mean, the array covariance is given by

R
△
= E

{

xkx
H
k

}

= σ2
0a0a

H
0 +Q, (2)

whereσ2
0 = E

{

|s0,k|2
}

is the desired signal power andQ =

E
{

nkn
H
k

}

is the noise-plus-interference covariance. In prac-
tice, R is replaced by the sample covariance matrix (SCM)
estimate

R̂ =
1

K

K
∑

k=1

xkx
H
k . (3)

The ASV model for the SOI at frequencyf , impinging on the
array from locationθ, is written as

a(f,θ)
△
=

[

e−i2πfτ1(θ) . . . e−i2πfτM (θ)
]T

, (4)

whereτm(θ) denotes the propagation delay to themth sen-
sor, relative to some reference point, for the desired signal
impinging from a location described byθ.

2.1. The Robust Capon Beamforming Weights

For a spherical uncertainty set with radius
√
ǫ, the RCB esti-

mates the SOI ASV by solving [8,9]

min
a

aHR−1a s.t. ‖a− ā‖22 = ǫ, (5)

whereā is the assumed ASV and is usually formed from (4),
with θ set as the beam direction. The Lagrangian function
associated with (5) is given by

L(λ,a) = aHR−1a+ λ
(

‖a− ā‖22 − ǫ
)

, (6)

whereλ denotes a real-valued Lagrange multiplier. Minimiz-
ing (6) with respect toa yields

∂L(λ,a)

∂aH
= R−1a+ λ(a− ā), (7)

which can be re-arranged to yield

â =

(

R−1

λ
+ I

)−1

ā = ā− (I+ λR)
−1

ā. (8)

The Lagrange multiplierλ is found from

g(λ) =
∥

∥

∥
(I+ λR)

−1
ā

∥

∥

∥

2

2
= ǫ, (9)

which can be solved via the EVD ofR and a Newton search.
Substituting thêλ that solves (9) into (8) yields the estimated
ASV, â. The RCB weight vector is then given by

wRCB =
R−1â

âHR−1â
. (10)

Using the re-scaled estimated ASV̂̂a =
√
M â/ ‖â‖2 instead

of â in (10) leads to more accurate power estimation, but as
it amounts to a re-scaling of the weights, it has no effect on
the signal-to-interference-plus-noise ratio (SINR). Dueto the
required EVD, solving the RCB requiresO(M3) operations.

2.2. The WC Robust Adaptive Beamforming

The worst-case robust adaptive beamformer (WC-RAB)
problem, under spherical uncertainty, is formulated as [10]

min
w

wHRw s.t.
∣

∣wHa
∣

∣ ≥ 1

∀a ∈ ‖a− ā‖2 ≤ ǫ (11)

where the constraints ensure that the distortionless constraint
is maintained for the worst-case steering vector containedin
the set, i.e., for the steering vectora such that

∣

∣wHa
∣

∣ has
the smallest value. The optimization (11), which contains an
infinite number of non-convex constraints, can be beneficially
re-written using a convex constraint as [10]

min
w

wHRw s.t.wH ā = 1 +
√
ǫ ‖w‖2 (12)

providing that
∣

∣wH ā
∣

∣ >
√
ǫ ‖w‖2 . (13)

The weights that solve (12), here termed the WC-RAB
weights, have been shown to be equivalent to the RCB
weights in (10) [9]. Thus, in the following sections, we
examine efficient approximative implementations of both the
RCB and the WC-RAB.



3. KALMAN BASED WC-RAB

The Kalman filter based implementation of the WC-RAB,
proposed in [12], starts from the worst-case formulation in
(12). The mean square error (MSE) between a desired signal
of 0 and the beamformer output is given by

MSE= E
{

∣

∣0−wHx
∣

∣

2
}

= wHRw. (14)

Therefore, minimizing the MSE in (14) is equivalent to min-
imizing the beamformer output power, which is the objective
function in (12). The constraint function in (12) may be ex-
pressed as

∣

∣1−wH ā
∣

∣

2
=

∣

∣−
√
ǫ ‖w‖2

∣

∣

2
, (15)

or, equivalently,

h2(w)
△
= ǫ ‖w‖22 −wH āāHw +wH ā+ āHw = 1, (16)

allowing the WC-RAB problem (12) to be written as

min
w

MSE s.t.h2(w) = 1. (17)

Since the Kalman filter is a minimum MSE (MMSE) filter, it
can be used to solve (17). We refer the reader to [12] for fur-
ther details, terming the algorithm the WC-KF beamformer.
In this paper, we set the user parametersγ = 1, σ2

s = 0,
σ2
1 = M−2āHR̂ā, andσ2

2 = 10−12.

4. GRADIENT MINIMIZATION BASED WC-RAB

We proceed to discuss the gradient minimization based
WC-RAB implementation proposed in [13]. It was there
noted that the Lagrange function for the WC-RAB problem
(12) may be written as

J(w, λ) = wHRw − λ
(

wH ā− 1−
√
ǫ ‖w‖2

)

, (18)

whereλ denotes the Lagrange multiplier. One approach is
to set the derivatives of (18) with respect towH andλ to
zero and solve forw andλ; however, this requires anO(M3)
complexity. Instead, the approach proposed in [13] uses an
iterative gradient minimization scheme to update the weight
vector as

wk+1 = wk − µkδk, (19)

where, for thekth snapshot,µk andδk denote the step-size
parameter and the gradient vector of the cost function (18),
respectively. Thus, the weight vector is updated in the direc-
tion of steepest descent. The gradient is given by

δk = Rwk − λ

(

ā−
√
ǫ

wk

‖wk‖2

)

. (20)

We refer the reader to [13] for the derivation of the algorithm,
which we here term the WC-IG beamformer. After initializ-
ing with R0 = I, w0 = ā, andα = 1, the WC-IG algorithm
iterates the steps given in Algorithm 1.

Algorithm 1 The WC-IG algorithm
1: Update the sample covariance matrixRk.

2: Computeµk = α
w

H

k
R

2

k
wk

wH

k
R3

k
wk

.

3: Update the unconstrained MV weight vectorŵk+1 =
wk − µkRkwk.

4: if Re
{

ŵH
k+1ā

}

− 1 <
√
ǫ ‖ŵk+1‖2 then

5: Computeλ = −b±
√
b2−4ac
2a , where

a = µ2
k

[

(

Re
{

pH
k ā

})2 − ǫ ‖pk‖22
]

b = 2µk

[

XRe
{

pH
k ā

}

− ǫRe
{

ŵH
k+1pk

}

]

c = X 2 − ǫ ‖ŵk+1‖22

with X = Re
{

ŵH
k+1ā

}

− 1 andpk = ā −√
ǫ wk

‖wk‖2

.
Then, update weights aswk+1 = ŵk+1 + µkλpk

6: else
7: Setwk+1 = ŵk+1.
8: end if

5. THE RCB-VDL-SD ALGORITHM

The steepest-descent based RCB with variable diagonal load-
ing (RCB-VDL-SD), introduced in [14], minimises the RCB
Lagrange function (6) using gradient minimisation tech-
niques, updating the SOI ASV recursively using

âk = âk−1 − µSD,kgk, (21)

where the gradientgk is obtained via (7) as

gk = R−1
k âk−1 + λ(âk−1 − ā), (22)

and the optimal step size is given by

µSD,k =
αVDL ‖gk‖22

gH
k R−1

k gk + δ
. (23)

The inverse covariance matrixR−1
k is also updated recur-

sively. We refer the reader to [14] for further details, not-
ing that the algorithm is initialized withR−1

0 = I, â0 = ā,
λ0 = 0, g0 = ā, andαVDL = 0.01. The updated SOI ASV̂ak
and inverse covarianceR−1

k are inserted in the weight equa-
tion (10).

6. THE RCB-SP-SD ALGORITHM

In the steepest-descent based scaled projection RCB (RCB-
SP-SD), introduced in [15], the RCB Lagrange function (6) is
minimised iteratively using gradient minimisation, wherethe
SOI ASV is updated recursively using

ãk = ak−1 − µSD,kg̃k, (24)
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Fig. 1. Spatial spectra for simulated data, assumingK = 128.

where

µSD,k =
1

tr
{

R−1
k

} , (25)

g̃k = R−1
k ak−1. (26)

To satisfy the spherical constraint in (5),ãk is projected onto
the uncertainty set constraint boundary, yielding

ak =

√
ǫ (ãk − ā)

‖ãk − ā‖2
+ ā. (27)

The updated SOI ASVak and inverse covarianceR−1
k are

inserted in the weight equation (10).

7. SIMULATED DATA EXAMPLES

Initially, we evaluate the above discussed algorithms on a
simulated half-wavelength spaced uniform linear array with
M = 64 elements, recreating the simulated scenario de-
scribed in [6]. The data were simulated using (2) with

Q =
d

∑

i=1

σ2
i aia

H
i + σ2

sI+ σ2
isoQiso. (28)

Thus, the simulated noise plus interference covariance,Q,
consists of terms due tod zero-mean uncorrelated interfer-
ing sources, where, for theith interferer,σ2

i andai denote
the source power and the ASV, respectively, as well as a term
modeling the sensor noiseσ2

sI, with sensor noise powerσ2
s ,

and a term modeling an isotropic ambient noise,σ2
isoQiso, with

powerσ2
iso. The isotropic noise covariance is given by

[Qiso]m,n = sinc[πλ(m− n)]. (29)

In the following, unless otherwise stated,d = 3, σ2
s = 0 dB,

σ2
iso = 1 dB, σ2

0 = 10 dB, σ2
1 = 10 dB, σ2

2 = 20 dB,
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andσ2
3 = 45 dB. The AOAs of the discrete interferers are

θ1 = 70◦, θ2 = 88◦, andθ3 = 100◦, where the angle of
arrival is measured from along the axis of the line array, i.e.,
from end-fire, so thatθ ∈ [0, 180◦]. The azimuth space is
sampled using3M = 192 equally cosine-spaced beams and
the tightest possible spherical uncertainty sets are calculated
for each beam, where the sphere centers correspond to theo-
retical ASVs for the beam centers and the sphere radii were
calculated, according to the AOA uncertainty resulting from
the spacing of the beams (see, e.g., [4, 5] for further details).
The SOI is assumed to belong to the beam whose center is at
θ̄0 = 90.25◦. The uncertainty sphere radius (squared) for the
SOI beam isǫ = 4.2029. To allow for the typical case that
AOA errors exist, the SOI is simulated anywhere in the inter-
val [θl, θu], whereθl (θu) is the angle midway between the
center of the SOI beam and the center of the adjacent beam
with lower (higher) angle. Furthermore1, we assume that the
SOI and interference ASVs are subject to independent arbi-
trary errors and, at each Monte-Carlo simulation, add to each
ASV an arbitrary error vector

e = ẽ/‖ẽ‖2, (30)

where each element ofẽ is drawn from a zero-mean circularly
symmetric distribution with unit variance. In the following,
we examine the beamformer SINR, defined as

SINR=
σ2
0 |wHa0|2
wHQw

. (31)

It is well known that the optimal SINR is given by

SINRopt = σ2
0a

H
0 Q−1a0. (32)

1We note that our simulated scenario differs slightly to that in [6], as here
we have added arbitrary ASV errors to the source ASVs.
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Since we simulate mismatch in the source ASVs, we com-
pare the beamformer SINRs to the mean optimal SINR, ob-
tained by averaging SINRopt over the Monte-Carlo simula-
tions. We assume thatK = 2M = 128 snapshots are avail-
able for covariance matrix estimation. Figure 1 illustrates
the spatial spectra, indicating that MVDR, RCB-SP-SD, and
RCB-VDL-SD all exhibit severe SOI cancellation. The stan-
dard RCB-EVD provides the best power estimates, followed
closely by WC-IG. The Kalman-filter based WC-KF gives
poor spatial power estimates. Figure 2 shows the SINR versus
the SOI power, clearly showing that WC-IG performs the best
out of the efficient techniques and even better than the more
complex standard EVD-based RCB. In summary, on simu-
lated data, the WC-IG approach performs the best out of the
efficient schemes examined.

8. EXPERIMENTAL DATA RESULTS

We proceed to examine the performance using experimental
data from a hull-mounted sonar withM = 35 adaptive de-
grees of freedom, details of which can be found in [7], which
contains signals from a known, strong, controlled acoustic
source in the far-field of the array, on which we were able
to check if the algorithms protected against (desired) sig-
nal cancellation, when pointing towards the source, and also
their ability to null out the strong source when pointing away
from it. We thus proceed to compare results obtained from
the RCB-based NBRCB used in [4, 7], which requires EVD
and is here denoted NBRCB-EVD, with an implementation
based on the WC-IG, which we denote NBWC-IG. In the
following, we assumeK = 80 frequency-domain snapshots
per frequency-bin are available for covariance estimation.



SinceK ≥ 2M , we are not here concerned with snapshot
deficiency. We also examine results obtained from a shaded
DAS (SDAS) beamformer. Figure 3(a)–(c) shows the bearing
time records (BTRs), clearly showing that the robust adap-
tive methods improve the output SNR and spatial resolution
compared to the SDAS. Notably, when using robust adap-
tive beamforming, it is possible to see four weaker sources
around beams 40, 90, 125, and 150, which are masked by
high sidelobes when using SDAS. Figure 3(d) shows the
azimuth spectra for sample 75, which indicates that, for
the strong controlled source, the RCB-based NBRCB-EVD
power estimates converge to the DAS estimate. Since the
strong controlled source power is at least 20 dB greater than
any other source or background noise, and is well separated
from any other source at sample 75, we expect that its DAS
power estimate will be close to the true power [4]. The WC-
based NBWC-IG power estimates do not converge to the
DAS estimate as a result of the scaling ambiguity that occurs
in the worst-case based algorithms.

9. GPU IMPLEMENTATION OF WC-IG

The most computationally intensive step in the standard
RCB [8, 9] is the EVD of the covariance matrix, which re-
quiresO(M3) operations. Further, the EVD is not amenable
to implementation on multiple processing units, such as
GPUs, as the EVD is not easily parallelisable. As shown
by the steps in Algorithm 1, the WC-IG algorithm comprises
simple matrix-vector, vector-vector, and scalar operations,
which can be performed independently for each beam once
the covariance matrix has been updated. Thus, the opera-
tions for each beam can be performed on separate process-
ing units, leading to a highly parallelisable implementation.
Our C-code version, based on Matlab generated C-code, ran
six times slower than real-time on a single core of an Intel
Xeon X5670 @ 2.93 GHz, when running 192 frequency bins
and 192 beams. Our GPU implementation on an NVIDIA
GeForce GTX 580 and coded in CUDA ran more than 20
times faster, confirming that the algorithm is amenable to
implementation on GPUs. We remark that in an earlier study
we found that the standard RCB ran tens of times slower on
GPUs than on a CPU.

10. CONCLUSIONS

In this paper, we have examined four recent efficient (ellipsoid-
based) robust adaptive beamforming algorithms. Using sim-
ulated data, we conclude that the iterative gradient based im-
plementation of the worst-case robust adaptive beamformer,
termed WC-IG, performed the best for the considered passive
sonar application. We used the WC-IG approach to imple-
ment the recent NBRCB algorithm, terming the efficient
implementation NBWC-IG, and evaluated it on recorded
passive sonar data in non-snapshot deficient conditions. We

found that NBWC-IG performed similarly to NBRCB, and
significantly better than the conventional shaded DAS beam-
former. In summary, the efficient WC-IG based implementa-
tion provide excellent performance at a significantly reduced
computationally complexity. We also found that the WC-IG
algorithm is amenable to implementation on GPUs and was
able to provide significant speed increases over a CPU-based
implementation.
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