LUND UNIVERSITY

Parallel and Distributed Graph Cuts

Strandmark, Petter; Kahl, Fredrik

2010

Link to publication

Citation for published version (APA):
Strandmark, P., & Kahl, F. (2010). Parallel and Distributed Graph Cuts. Paper presented at Swedish Symposium
on Image Analysis (SSBA) 2010, Uppsala, Sweden.

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/8c2b9673-cb42-4b1e-9e9e-dda08046e12d

Parallel and Distributed Graph Cuts

Petter Strandmark, Fredrik Kahl
Centre for Mathematical Sciences, Lund University
Email: {petter,fredrik } @maths.lth.se

Abstract—Graph cuts methods are at the core of many
state-of-the-art algorithms in computer vision due to their
efficiency in computing globally optimal solutions. In this
paper, we solve the maximum flow/minimum cut problem
in parallel by splitting the graph into multiple parts and
hence, further increase the computational efficacy of graph
cuts. Optimality of the solution is guaranteed by dual
decomposition, or more specifically, the solutions to the
subproblems are constrained to be equal on the overlap
with dual variables.

We demonstrate that our approach both allows (i) faster
processing on multi-core computers and (ii) the capability
to handle larger problems by splitting the graph across
multiple computers on a distributed network. Even though
our approach does not give a theoretical guarantee of speed-
up, an extensive empirical evaluation on several applications
with many different data sets consistently shows good
performance.

I. INTRODUCTION

Maximum flow algorithms are the foundations for
many algorithms in computer vision. Examples include
segmentation, image restoration, dense stereo estimation
and shape matching, see [1], [2], [3], [4]. The approach is
also useful for inferring the maximum a posteriori solution
of a discrete MRF [2], [5].

Our work builds on the following two trends: the
ubiquity of maximum flow computations in computer
vision and the tendency of modern microprocessor man-
ufacturers to increase the number of cores in mass-
market processors. This implies that an efficient way of
parallelizing maximum flow algorithms would be of great
use to the community. Due to a result from Goldschlager
et al. [6], there is little hope in finding a general algorithm
for parallel maximum flow with guaranteed performance
gains. However, the graphs encountered in computer vision
problems are often sparse with much fewer edges than
the maximum n? — n in a graph with n vertices. The
susceptibility to parallelization depends on the structure
and costs of the graph.

II. GRAPH CUTS AS A LINEAR PROGRAM

Finding the maximum flow, or, by duality, the minimum
cut in a graph can be formulated as a linear program. Let
G = (V,c) be a graph where V = {s,t} U{1,2,...,n}
are the source, sink and vertices, respectively, and ¢ the
edge costs. A cut is a partition S, T of V such that s € .S
and ¢ € T. The minimum cut problem is finding the
partition where the sum of all costs of edges between the

costs.

(b) Subproblems with vertices in M and N, respectively.

Fig. 1: The graph decomposition into sets M and N. The pairwise
energies in M N N are part of both Fys and En and has to be
weighted by % Four dual variables A ... A4 are introduced.

two sets is minimal. It can be formulated as [7]:

miniwmize Z C; %
i,jEV

subjectto x; ; +x; —x; >0, i,7€V (D
xs =0, =1
x > 0.

The variable x; indicates whether vertex ¢ is part of
S or T (x; = 0 or 1, respectively) and x; ; indicates
whether the edge (4, ) is cut or not. The variables are not
constrained to be 0 or 1, but there always exists one such
solution, according to the duality between maximum flow
and minimum cut, cf. [8, p. 119]. We write Dy for the
convex set defined by the constraints in (1).



A. Splitting the graph

Now pick two sets M and N such that M UN =V
and {s,t} C M N N. We assume that when i € M \ N
and j € N\ M, c;; = cj; = 0. That is, every edge is
either within M or N, or within both. See Fig. 1.

We now observe that the objective function in (1) can
be rewritten as:

> cig®iy =

i,JEV
> Cig®igt D Ciig— Y Gy (2)
ijEM i,jEN i,jEMNN

We define two energy functions on M and N:

1
Eu(m)= ) ¢ijmi;— 3 Y. cigmiy
ijeEM 1 i, jEMNN 3)
En(y) = Z Cii¥%ij = 5 Z CijYij-
ijEN i,jEMNN

This leads to the following equivalent linear program:
minimize

En(z) + En(y)
xED s
yEDN 4)
subjectto x; =y;, 1€ MNN.

Here x is the variable belonging to the set M (left in
Fig. 1b) and y belongs to N. The two variables « and y
are constrained to be equal in the overlap. The Lagrange
dual function of this optimization problem is:

g(A) =

mré%rllw (EM(:B)—FEN(y)-F Z )\i(ﬁci_yi)> =
v i€eMNN

min (EM(:I:)+ > Am>+ (5)
z€Dum ieMNN

min (EN(y)— > )\iyi>'

yebN ieMNN

We now see that evaluating the dual function g amounts
to solving two independent minimum cut problems of
the type (1). Let *, y* be the solution to (4) and let
A" maximize the dual function g. Because strong duality
holds, we have g(A*) = Ep(z*)+ En(y*). The solution
to the subproblems may in general have multiple solutions,
so to obtain a unique solution we always connect a vertex
to the sink, if possible.

B. Algorithm

For an optimal choice of dual variables, the constraints
in (4) will be satisfied. Solving the original problem (4)
then amounts to finding the maximum value of the dual
function. Since the dual function is concave, it can be
maximized with an ascent method. However, it is not
differentiable, but we use the supergradient' of g to find an
ascent direction. The supergradient is given by x; —y, for

Icompletely analogous to subgradients for convex functions

(b) 2 x 2 x 2

Fig. 2: Splitting a graph into several components. The blue, green
and red parts are weighted by 1/2, 1/4 and 1/8, respectively.

each 7 on the overlap M N N. The following maximization
method® was found to converge quickly:

Start with A; = 0 and a step length 7.
repeat
while g(A+ 7(x; —y;)) > g(A) do
A= A+71(z; —y,;)
Update = and y
end

T — T/2
until =z, =y, i€ MNN

This iterative scheme is very efficient, since the search
trees of the already solved graphs can be reused. Only
a small number of costs are changed between iterations
and our experiments show that these subsequent max-flow
computations can be completed within microseconds, see
Table I.

C. More than two subproblems

Splitting a graph into more than two components can
be achieved with the same approach. The energy functions
analogous to (3) might then contain terms weighted by
1/4 and 1/8, depending on the geometry of the split. See
Fig. 2.

III. EXPERIMENTS ON A SINGLE MACHINE

In this section we describe experiments performed in
parallel on a single machine executed across multiple
threads. All times include any overhead associated with
starting and stopping threads, allocation of extra memory
etc. We have only considered the time for actual maximum
flow calculations, i.e. the time required to construct the
graphs is not taken into account. We note, however,
that graph construction trivially benefit from parallel
processing.

A. Image segmentation

We applied our parallel method for the 301 images in
the Berkeley segmentation database [9], see Fig. 5 for
examples. The segmentation model used was a piecewise
constant model with the boundary length as a regulating
term. The boundary length can be approximated with a
neighborhood of edges around each pixel, usually of sizes
4, 8 or 16 in the two-dimensional case.

2For our experiments in this paper we used an individual step length
for each 4, which led to slightly better performance.



60

Frequency
=
L

3
L

0.25 0.5 0.75 1 1.25
Relative time

Fig. 3: Relative times with 2 (blue) and 4 (red) computational
threads for the 301 images in the Berkeley segmentation database,
using 4-connectivity. The medians are 0.596 and 0.455. See
sections III-A and III-D.

Frequency
) 'S
S S

0.5 0.75 1 .05

Relative time

Fig. 4: Relative times using 8-connectivity and 2 computational
threads. The median is 0.628.

The relative times (fmulti-thread/tsinglc) USINg two com-
putational threads are shown in Figs. 3 and 4. Since the
images in the database are quite small, the total processing
time for a single image is around 10 milliseconds. Even
with the overhead of creating threads and iterating to find
the global minimum, we were able to get a significant
speed improvement for almost all images. The exceptions
are discussed in Section III-D.

Table I shows how the processing time varies with each
iteration. In the last steps, very few vertices change and
solving the maximum flow problems can therefore be done
very quickly within microseconds.

It is very important to note that the problem complexity
depends heavily on the amount of regularization used.
That is, a segmentation problem in which boundary length
is given a low cost is easy to solve and to parallelize.
In the extreme case where no regularization is used,
the problem reduces to simple thresholding, which of
course is trivial to parallelize. Therefore, it is relevant
to investigate how the algorithm performs with different
amounts of regularization. We have done this and can
conclude that our graph decomposition scheme performs
well for a wide range of different settings, see Fig. 7. We
see that the relative improvement in speed remains roughly
constant over a large interval of different regularizations,
whereas the absolute processing times vary by an order
of magnitude.

When the number of computational threads increase,
the computation times decrease as shown in Fig. 3.

B. Stereo problems

The “Tsukuba” dataset (which we obtained from [10])
consists of a sequence of max-flow instances corresponding
to the first iteration of a-expansions [2]. First, we solved

Fig. 6: “Worst-case” test. The left and right side of the image
is connected to the source and sink, respectively. The edge
costs are determined by the image gradient. All flow must be
communicated between the two computational threads when
splitting the graph vertically. Even with this poor choice of split,
the dual approach finished 30% faster.

the 16 problems without any parallelization and then, with
two computational threads. The relative times ranged from
0.51 to 0.72, with the average being 0.61.

C. Three-dimensional graphs

We used the graph construction described in [4] with
data downloaded from [10] to evaluate the algorithm in
three dimensions. For the “bunny” dataset the relative time
was 0.67 with two computational threads.

D. Analysis of limitations

To see how our algorithm performs when the choice of
split is very poor, we took a familiar image and split it
in half from top to bottom as depicted in Fig. 6. We then
attached the leftmost pixel column to the source and the
rightmost to the sink. Splitting horizontally would have
been much more preferable, since splitting vertically severs
every possible s-t path and all flow has to be communicated
between the threads. Still, the parallel approach finished
processing the graph 30% faster than the single-threaded
approach. This is a good indication that the choice of the
split is not crucial for a speed improvement.

Figs. 3 and 4 contain a few examples (< 1%) where
the multi-threaded algorithm actually performs slower or
almost the same as the single-threaded algorithm. The
single example in Fig. 3 is interesting, because solving
one of the subgraphs once takes significantly longer
than solving the entire graph. This can happen for the
BK algorithm, but is very uncommon in practice. We
have noted that slightly perturbing any of the problem
parameters (regularization, image model etc.) makes the
multi-threaded algorithm faster also for this example.

The other slow examples have a simpler explanation:
there is simply nothing interesting going on in one of
the two halves of the graph, see e.g. the first image in
Fig. 5. Therefore, the overhead of creating and deallocating
the threads and extra memory gives the multi-threaded
algorithm a slight disadvantage.



0.6

0.4

Relative speed

Fig. 7: Relative improvement in speed with two computational threads when the regularization parameter changes. Although the
processing time ranged from 230 ms to 4 seconds, but the relative improvement was not affected.

Iteration | 1 2 3 4 5

6 7 8 9 10 11

Differences | 108 105 30 33 16

16 16 16 9 9 0

Time (ms) | 245 1.5 1.2 0.1 0.08

0.09 0.07 015 006 007 047

TABLE I: Detailed information about the processing time for each iteration for a 1152 x 1536 example image (shown in Fig. 7).
The number of overlapping pixels (M N N) was 1536 (one column). Deallocating memory and terminating threads is the cause of
the processing time increase in the last iteration. The advantage of reusing search trees is clearly seen in the short processing times

after the first iteration.

IV. SPLITTING ACROSS DIFFERENT MACHINES

We now turn to another application of graph decom-
position. Instead of assigning each part of the graph to a
computational thread, one may assign each subgraph to a
different machine and let the machines communicate the
flow over a network.

Memory is often a limiting factor for maximum flow
calculations. Using splitting we were able to segment 4-
dimensional (space+time) MRI heart data with 95 x 98 x
30 x 19 = 5.3M voxels. The connectivity used was 80,
requiring 12.3 GB memory for the graph representation. By
dividing this graph among 4 (2-by-2) different machines
and using MPI for communication, we were able to solve
this graph in 1980 seconds. Since only a small amount
of data (54 kB in this case) needs to be transmitted
between machines each iteration, this is an efficient way of
processing large graphs. On the system we used (LUNARC
Iris), the communication time was about 7-10 ms per
iteration, for a total of 68 iterations until convergence.

The largest data set we used was a 256 x 256 x 1159 =
76M voxel CT scan with 6-connectivity. Solving this
dataset required 16.6 GB of memory divided among 8
machines. We are not aware of any previous methods
designed to solve problems of this magnitude.

We also evaluated the algorithms for some of the big
problems available at [10]. The largest version of the
“bunny” dataset is 401 x 396 x 312 = 50M with 300M
edges was solved in 7 seconds across 4 machines. As a
reference, a slightly larger version of the same dataset
(not publicly available) was solved in over a minute with
an (iterative) touch-and-expand approach in [4].

Splitting graphs across multiple machines also saves
computation time, even though the MPI introduces some
overhead. A single machine solved the small version of
the “bunny” dataset [10] in 268 milliseconds, while two
machines used 152 ms. Four machines (2-by-2) required
105 ms. The elapsed times were 2.3, 1.34 and 0.84 seconds,
for the medium sized version respectively.

V. CONCLUSIONS

We have shown that it is possible to split a graph and
obtain the global maximum flow by iteratively solving
subproblems in parallel. Two applications of this technique
were demonstrated:

o Faster maximum flow computations when multiple

CPU cores are available (Section III).

o The ability to handle graphs which are too big to fit
in the computer’s RAM, by splitting the graph across
multiple machines (Section 1V).

Good results were demonstrated even if the split severs
many, or even all s-¢ paths of the graph (Fig. 6). Exper-
iments with different amounts of regularization suggest
that the speed-up is relatively insensitive to regularization
(Fig. 7).

REFERENCES

[1] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124-1137, Sept. 2004. 1
Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields with
efficient approximations,” in Conf. Computer Vision and Pattern
Recognition, 1998. 1, 3
[3] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut -interactive
foreground extraction using iterated graph cuts,” ACM Transactions
on Graphics (SIGGRAPH), 2004. 1
V. Lempitsky and Y. Boykov, “Global optimization for shape fitting,”
in Conf. Computer Vision and Pattern Recognition, Minneapolis,
USA, June 2007. 1, 3, 4
[5] D. M. Greig, B. T. Porteous, and A. H. Seheult, “Exact maximum
a posteriori estimation for binary images,” Journal of the Royal
Statistical Society, 1989. 1
[6] L. M. Goldschlager, R. A. Shaw, and J. Staples, “The maximum
flow problem is log space complete for P,” vol. 21, no. 1, pp.
105-111, Oct. 1982. 1
Wikipedia, “Max-flow min-cut theorem — Wikipedia, the Free
Encyclopedia,” [Online; accessed 9-January-2010]. 1
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization;
Algorithms and Complexity. Dover Publications, 1998. 1
[9] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of
human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in
Int. Conf. Computer Vision, 2001. 2, 3
[10] U. of Western Ontario, “Max-flow problem instances in vision,”
http://vision.csd.uwo.ca/maxflow-data. 3, 4

2

[

[4

finary

[7

—

[8

—


http://en.wikipedia.org/wiki/Max-flow_min-cut_theorem
http://vision.csd.uwo.ca/maxflow-data

