
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Concurrency and locality of content demand

Nordell, Viktor; Aurelius, Andreas; Gavler, Anders; Arvidsson, Åke; Kihl, Maria

2013

Link to publication

Citation for published version (APA):
Nordell, V., Aurelius, A., Gavler, A., Arvidsson, Å., & Kihl, M. (2013). Concurrency and locality of content
demand. Paper presented at First International Workshop on Quality Monitoring (IWQM 2013) Conference,
Paris, France.

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/bb9462bf-0a67-40f8-9ac7-dfdb0c2c12d0


Concurrency and locality of content demand
Viktor Nordell1, Andreas Aurelius1,3, Anders Gavler1, Åke Arvidsson2, Maria Kihl3

1Acreo AB, Networking and transmission lab, Electrum 236, SE-164 40 Kista, Sweden
2Ericsson AB, Ericsson Research; Packet Technologies, SE-164 80 Kista, Sweden

3Dept. of Electrical and Information Technology, Lund University, Sweden

Abstract—Distribution of media data over the Internet is
increasing in popularity and volume. This poses challenges not
only for network operators but also for service providers when
it comes to serving the demand in a cost-efficient way. In this
paper, we approach this problem by investigating the potential
of co-operative approaches where locality in space (users in
the same network) and locality in time (concurrent downloads)
are exploited such that as many requests as possible may be
handled inside the access and metro networks. This approach
may contribute not only to reducing transport costs (less traffic
in core networks and at peering points) by but also improve the
end user experience (by reduced round trip times and exclusion
of some possible bottlenecks). To this end we develop a method
to measure the possible gains from, firstly, optimal handling
of concurrent downloads and, secondly, optimal utilization local
availability. We apply the method to BitTorrent data from two
metropolitan access networks and find that the bandwidth savings
amount to between 10% and 20% when optimizing concurrent
downloads and between 56% and 66% when exploiting local
availability with a simulated network cache.

Index Terms—Locality, content demands, concurrency, access
networks, P2P, ICN, CDN, BitTorrent, distributed caches

I. INTRODUCTION

Internet media applications, such as TV and music services,
have a heavy impact on today’s networks, and there is a com-
mon understanding that the capacity demands will continue to
increase at least over the next few years. In order to design
service-optimized architectures for networks and protocols in
future content delivery solutions, it is important to understand
the interplay between network topology, service characteristics
and user interests.

One solution is to keep the traffic more local, by using var-
ious locality-aware mechanisms, for example local caches and
peer-to-peer offloading. Caches could be deployed at strategic
points in the networks where devices may store data and where
other devices may fetch the content from, or via transparent
caching proxies. With peer-to-peer offloading, the content is
fully or partly distributed between clients using software which
also runs in a distributed fashion, most commonly on the client
devices themselves. These solutions could be made locality-
aware so that clients prefer peers that are geographically close
to themselves.

These solutions have benefits for all parties in the content
distribution chain, from content providers, through network
operators, and finally to end customers. Content providers will
benefit from reduced bandwidth costs as less traffic flows
from their own servers. Network operators will see lower
costs for peering as less external traffic is transited via other

providers and, with local bridging enabled, for their core
networks as less internal traffic is tromboned (none optimal
routing/switching design) internally. Finally end customers
may experience better QoS in terms of lower delay and higher
throughput as content is fetched from nearby locations in their
local network.

Inter ISP traffic analysis has been presented in, e.g., [1],
where the focus is on traffic flows between ISPs but not the
actual content. Various measurement studies of P2P applica-
tions have shown that there are large bandwidth gains for ISPs
if caches can be implemented in the networks, see for example
[2], [3], [4]. In [5], a university network was monitored for
three days with focus on BitTorrent files. The analysis showed
that 10.4%–18.2% of the content files could be downloaded
locally. In [6], it was shown that up to 88% of the traffic for
a P2P live video distribution could be kept locally within an
ISP if the P2P application used a locality–aware peer selec-
tion scheme. Further, different locality–aware content fetching
solutions have been proposed, with or without assistance from
ISPs [7], [8], [9], [10], [11], [12].

The purpose of this paper is to investigate the extent to
which traffic related to content such as videos, music etc.
could be kept local. To this end we examine how the demand
is distributed between users in access networks, especially
focusing on shared user interests and the timing of content
accesses. The minimum (exploiting only direct concurrency)
and maximum (exploiting an infinite network cache) potential
for bandwidth savings in realistic cases are evaluated.

The contribution of the paper is threefold. First, we analyst
data from ordinary, residential users (as opposed to campus
network users). Second, the data is collected close to the end
users, which means that the measurement is rather distributed,
and we can quantify the gains from relatively small user
groups (on the order of thousands). Third, we propose a
scheme for analyzing direct user concurrency and cache
assisted concurrency of content demand. The measurement
data is retrieved from Bit Torrent tracker traffic in two fiber
based access networks in Sweden with residential users.

The measurement procedure and the networks are described
in Section II-B. The BitTorrent protocol is described briefly
in Sections III-A and III-B. The methods for post processing
of data and for defining sessions are presented in Sections
III-C and III-D. In Section III-E, we provide precise definitions
of direct user concurrency and network assisted concurrency.
Finally, our measurement results are presented in Section IV
and the conclusions are given in Section V.



Figure 1. The info-hash is based on hashes of chunks of the real content,
this means that the same content will always have the same info-hash.

II. MEASUREMENT PROCEDURE AND NETWORKS

In this section, the measurements are described regarding
the networks and the equipment used.

A. Networks

The data in this paper is collected in two residential
metropolitan access networks in Sweden. The networks are
fiber based, and provide connectivity to residential users,
with connection speeds ranging from 1 Megabit per second
(Mbps) to 100 Mbps. Most subscriptions are symmetrical. The
networks are denoted network one and network two. Network
one has a customer base of approximately 5000 households,
and network two has 1500 households.

B. Measurement procedure

The measurements in this paper are performed by the
network operators. Post processed data is made available to
the researchers for analysis. The equipment for acquiring data
is PacketLogic [13], a traffic management device capable of
identifying IP traffic by deep-packet-inspection and deep-flow-
inspection. A signature database is used for matching to the
traffic characteristics. A large portion of the traffic is identified
and matched to a signature, around 95%. The probe location
in the networks is on the Internet edge, which means that
all traffic between the metro network and the Internet is
monitored.

There are several ways to retrieve statistics from the device.
The most common way is to use the statistics database, which
stores data per 5 minutes, per host and application (a host
here is an IP number). In order to enable post processing of
data, traffic matching certain conditions may be dumped to a
pcap file. This has been the main method for collection of the
statistics used in this study.

III. DATA PROCESSING AND SESSION CALCULATION

In this section the data processing procedure is described.
Also specific characteristics of the BitTorrent protocol are
described, since the understanding of this is essential for the
processing procedure.

A. BitTorrent Info-hash

Each object distributed with the BitTorrent protocol is
described in a “torrent” file which contains information about
the content and information to bootstrap the download of the
content. The content information includes a list of files (data
chunks) and a list of hashes (of the data chunks), these hashes
were in turn calculated from chunks of the original content. By
hashing all the file chunk hashes, a unique hash of the entire

content called the info-hash is obtained, cf. Figure 1. This
means that the info-hash uniquely identifies the content, and
it is therefore possible to know that two clients with identical
info-hashes are downloading exactly the same content.

B. BitTorrent Tracker

Traditionally each client in the BitTorrent system would
contact the BitTorrent Tracker to receive new peers that
participate in the distribution of a BitTorrent file. This is still
partly the case today, but only as one of several possible
sources of peers as, e.g., modern clients also exchange peers
directly between each other. For the work in this paper it is
important to note that most clients still contact trackers and
that this traffic can be intercepted by traffic analyzers using
deep packet inspection (DPI).

A BitTorrent client will send information to the tracker
via HTTP GET messages, containing a set of parameters
encoded in the request URL [14]. The most important of
these parameters for this work is the “info_hash” parameter
which specifies the info hash, which, as explained above,
identifies the content that the client is downloading. Other
interesting parameters in our case are “left”, “downloaded”
and “uploaded”, which respectively specify the amount left to
download, the downloaded amount and the uploaded amount.
The BitTorrent client continues to send these messages after
it has fully downloaded the content, as long as it keeps this
content active and allows for uploading.

We remark that encrypted HTTP traffic cannot be analyzed
as above, but fortunately this seems to be quite uncommon
among BitTorrent trackers.1 The results of this study should
therefore not be greatly affected; even if some BitTorrent traf-
fic may be left out of the measurements because of encryption,
the locality results will be valid for the captured traffic.

C. Data processing

The measurement device described in Section II-B was
configured to dump packets matching BitTorrent tracker traffic
into PCAP packet dump files.

These files where downloaded from the collection point, and
the addresses were anonymized. Data was analyzed by Wire-
shark [15] and converted to XML after which the following
parameters were extracted:

• The time when the request to the tracker was made.
• The source IP address of the client, hashed and salted to

protect the privacy of individual users.
• The info hash that the request refers to.
• The amount of bytes downloaded, uploaded and left to

download.
• The host name of the tracker.

The extracted information was inserted in an SQL database,
and used in the next step as described below. Using the cap-
tured information, an approximation of size of the BitTorrent
files was calculated, based on the maximum value of the “left”

1A large random sample of trackers was downloaded, and it was found
that none of them were HTTPS enabled. Nevertheless, encryption may be
supported by some trackers.



parameter reported by the BitTorrent clients. This gives a good
estimation of file size, since a starting client will report the full
size of content, as it has not yet started the actual download.

D. Session identification

In order to obtain detailed records of user activities, i.e.,
downloads or uploads of specific pieces of content, it is
necessary to identify sessions for each combination of user (IP
address) and content (info hash) delimited in time by a start
time and an end time. A particular challenge in this context
is that we must cater for the fact that users may turn off their
computers temporarily (i.e., a single user-content combination
may be described by multiple sessions). Our solution to this
problem was to form user-content sessions from the extracted
data in the following manner:

1) Extract all data points for (observations of) client A and
info hash X , sorted by ascending time.

2) Set session starting time from the time of the first data
point.

a) Analyst next data point.
b) Is the time stamp of the above data point within a

time period α from the last data point?
i) If yes, assume that the session continues, go to

a.
ii) If no, assume that the session has ended, insert

the session in to the database and go to 2.
This calculation requires a parameter, α which represents the
maximum time period between two data points for which the
two data points can be considered to be part of the same
session.

To find suitable values for α the “interval” parameter which
is reported from the tracker was examined. This parameter
specifies the recommended interval between tracker updates.
The result of a small sample of data showed that, by far, the
dominating choices for update interval were 30 minutes and
100 minutes, and no message specified a number higher than
100 minutes. We propose that α should be slightly longer than
this and thus settled for α = 101 minutes.

E. Concurrency

Direct user concurrency and cache assisted concurrency
are two concepts that may be exploited in a locality-aware
mechanism. We define direct user concurrency as two users
that download and/or upload the same content at the same
time, and we define network assisted concurrency as one
user downloading content that has already been downloaded
and now exists in a cache located in operator domain of the
network.

From the data, direct user concurrency can be determined,
as illustrated by the example in Figure 2.

The example contains two clients, A and B, and a network
cache. Both A and B are at some point active with torrent
X . Please note that there is a difference between being active
and still downloading, and being active with fully downloaded
torrent X , denoted by dashed and full lines, respectively. When

Figure 2. Example of calculation of concurrent active sessions with torrent X,
for client A and B. A represents a standard user with a BitTorrent client that
is switched off periodically and B represents a user with a network attached
storage (NAS) in the home which is always on. Also present is a simulated
network cache so that when no client is active with X, it is available from
the network cache, if it has previously been downloaded by any peer in the
network.

Table I
MEASUREMENT META DATA

Network Start date End date
1 2011-07-01 2011-10-10
2 2011-04-14 2011-06-23

a client requests X , a check is performed to see if any other
client or the network cache is active with X . If not, the X must
be downloaded externally, see e.g., client A in the beginning
of the example figure. However, if a peer is active with X ,
this peer is preferred, and we define that there is direct user
concurrency between the two respective sessions. Another case
is when a peer has been active with (and fully downloaded) X ,
but has been deactivated. This time, X is found in the network
cache, and we thus have network assisted concurrency. Content
may be deleted or paused from the “active torrent list” by the
user, which means that the client stops uploading that torrent,
at least for some period. It is common for torrent clients to
automatically stop uploading or being active with a torrent
after it has uploaded 150% of it.

This procedure was used to estimate the number of down-
loads which could could have been kept local by exploiting
concurrency. We also translated the results from requests to
bandwidth by means of approximate sizes as described in
III-C.

IV. RESULTS

A. Traffic measurements

The measurements were performed during 2011, for slightly
over two months in network two, and slightly over three
months in network one. The exact dates of the measurements
are displayed in Table I.

B. General traffic characteristics

To see the role of BitTorrent we analyzed both networks and
found very similar results. For reasons of brevity we restrict
ourselves to network two in what follows.

During the measurement period 2036 MAC addresses from
1399 households in network 2 generated 200 (320) TB of
data in the inbound (outbound) direction. The significance of
BitTorrent is clearly demonstrated by the fact that 46 (84)
per cent of this was generated by BitTorrent in the inbound



Table II
TRAFFIC MIX IN % OF TRANSMITTED BYTES FOR NETWORK TWO DURING

THE MEASUREMENT PERIOD.

Category % of downlink % of uplink
Entertainment 0.8 0.1
File Sharing 55.6 93.3
File Transfer 1.7 0.6
Messaging and Collaboration 1.1 0.9
Network Infrastructure 4.7 1.2
Remote Access 1.1 1.3
Streaming Media 24.0 1.9
Web Browsing 10.9 0.8

Table III
AVERAGE DAILY TRAFFIC PER USER (TOTAL MACS FOR THE WHOLE

PERIOD), IN GIGABYTES (GB) IN NETWORK TWO.

Traffic type Inbound Outbound
Total traffic 1.4 2.3
BitTorrent 0.65 1.9
Encrypted BitTorrent 0.068 0.26

(outbound) directions respectively. File sharing thus made up
56 % of the downlink traffic, and 93 % of the uplink, as can
be seen in Table II.

A similar picture is given in Table III which displays the
average daily traffic for the measurement period, measured in
Gigabytes (GB) per MAC seen during the entire measurement
period, in total, for BitTorrent and for encrypted BitTorrent and
separated by inbound (to the user) and outbound (to Internet).
It is seen that the outbound traffic is dominating (2.3 GB per
day compared with 1.4 GB inbound) and that this is entirely
because of BitTorrent. We also note that the percentage of
encrypted BitTorrent downloads is around 10% of the total
BitTorrent downloads and about 14% of the uploads.

The traffic volume produced by an application does not
reveal its popularity in number of users. To analyze this
further, the number of users per day that used BitTorrent was
calculated and compared to the overall number of users and
we found that, averaged on a daily basis, 51% of the MAC
addresses in network two used BitTorrent. This means that the
application is not only dominant in terms of traffic volume, it
also has a high penetration among users.

C. Demand patterns and popularity

This section describes the popularity distributions and the
concurrency characteristics of the most popular objects. User
request characteristics are commonly described by Zipf-like
distributions. This is the case in our data as well. The fre-
quency of downloads, averaged over each day of the measure-
ment period, are shown in Figure 3 (left) versus the popularity
rank of the objects in a log-log scale. Clearly, the most popular
objects are totally dominant in the request characteristics, and
the curve resembles a Zipf distribution (which manifests as a
straight line in log-log).

The popularity over time is an important factor to char-
acterize, in order to exploit concurrency. The objects in the
trace show very different characteristics regarding the number
of daily requests (sessions). The number of daily sessions in

Figure 3. Frequency vs popularity rank for all objects in network 2 (left),
averaged over each day of the measurement period. To the right, number
sessions per day for three of the four most popular objects in network 2.

Figure 4. Concurrent sessions over time for objects 1 and 3 in network two.

network 2 for the objects ranked 1, 3 and 4 by popularity
respectively are shown in Figure 3 (right). Object 1 exhibits a
rapid increase in popularity and then remains popular with a
varying demand until it decays after around 25 days. Object
4 has a very low demand at first, then rapidly ramps up,
and also decays after roughly 25 days. Completely different
characteristics are shown by object 3, which is the only one
of these three that is present at the start of the measurement
and which is requested at quite a low frequency throughout
the whole measurement period. The concurrency patterns of
objects 1 and 3 are also quite different, which is illustrated
in Figure 4, where the number of concurrent sessions on
a per second timescale is shown. Object 1 exhibits a high
popularity in the beginning of its lifetime, and fades slowly
to a state with only occasional requests. Object 3, however,
hardly reaches up to a fourth of the amount of concurrent
sessions as compared to object 1, but it maintains a certain
level of popularity throughout the measurement period.

D. Concurrency and network assisted concurrency analysis

The post processing of the BitTorrent data revealed that
4821 (1848) distinct IP addresses requested 71612 (27018)
distinct BitTorrent hashes in network one (two) respectively.
This accounted for 678194 (170564) unique sessions accord-
ing to the definition of sessions in Section III-D.

We find that for network one, direct user concurrency
could handle on average 18% of the requests (20% of the
bandwidth, where the bandwidth savings are calculated as
described in Section III-C.) Adding a network cache, i.e.
exploiting network assisted concurrency, 56% of the requests
(62% of the bandwidth) could be saved.



Table IV
CONCURRENCY RESULTS IN % OF TOTAL

Network Direct user Cache assisted
Requests Bandwidth Requests Bandwidth

1 18 20 56 62
2 10 10 66 68

For network two, 10% of the requests (10% of the band-
width) could be handled by fully exploited direct user concur-
rency and 66% of the requests (68% in terms of bandwidth)
could be handled by adding network assisted concurrency.

The numbers are summarized in Table. IV.

V. CONCLUSIONS

In this paper, content demand patterns have been investi-
gated in order to analyze the potential to keep traffic local
within the metro access network. For this purpose, two metrics
of concurrency were defined, namely direct user concurrency
and network assisted concurrency, together with a method
to estimate these metrics in live networks. The results were
derived from detailed traffic measurements during more than
two months in two metro access networks in Sweden. The
application chosen for the analysis was non-encrypted BitTor-
rent, which has a high penetration (51% of MACs) among end
users and generates a large amount (46% of downlink, 83% of
uplink) of data. Our results show that a considerable amount
of the content demands could be kept local, thereby lowering
the load on the aggregation network, the core network and the
peering links.

The larger network, network 1, showed a lower percentage
(56%) of potential local content downloads (network assisted
concurrency) compared to the smaller one, network 2, for we
noted 66%. This may sound counter intuitive, but the BitTor-
rent activity is higher in network 2, and this naturally yields
higher possibilities for exploiting locally available content. The
number of concurrent requests were 18% and 10%, for the two
networks, respectively. This is the fraction of traffic that could
have been kept local within the metro access network without
adding any network cache, simply by utilizing the active local
peers.

Looking closer at the concurrency pattern of individual ob-
jects, we showed that there were quite different characteristics
among the most popular objects. Some exhibited a pattern of
quick rise and steady fall in popularity, but there was also
examples of steadily maintained popularity with no evident
peak. This indicates that caching decisions are non-trivial,
and that this data is useful for future work in on caching
algorithms.

ACKNOWLEDGEMENT

This research has received funding from the European
Community’s Seventh Framework Programme under project
249 025 OASE and EUREKA/CELTIC under project CP07-
009 IPNQSIS. Maria Kihl and Andreas Aurelius belong to the
Lund Center for Control of Complex Engineering Systems
(LCCC). Also, Maria Kihl is a member of the Excellence

Center Linköping-Lund in Information Technology (ELLIIT).
Andreas Aurelius is partly financed by the Swedish National
Strategic Research Area (SRA) within the program TNG (The
Next Generation) and the project eWIN.

REFERENCES

[1] J. S. Otto, M. A. Sánchez, D. R. Choffnes, F. E. Bustamante, and
G. Siganos, “On blind mice and the elephant: understanding the
network impact of a large distributed system,” SIGCOMM Comput.
Commun. Rev., vol. 41, no. 4, pp. 110–121, Aug. 2011. [Online].
Available: http://doi.acm.org/10.1145/2043164.2018450

[2] F. Lehrieder, G. Dan, T. Hossfeld, S. Oechsner, and V. Singeorzan, “The
impact of caching on bittorrent-like peer-to-peer systems,” in Peer-to-
Peer Computing (P2P), 2010 IEEE Tenth International Conference on,
aug. 2010, pp. 1–10.

[3] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak, “Cache
replacement policies revisited: the case of P2P traffic,” in Cluster
Computing and the Grid, 2004. CCGrid 2004. IEEE International
Symposium on, April 2004, pp. 182–189.

[4] R. B.-S. N. Leibowitz, A. Bergman and A. Shavit, “Are file swapping
networks cacheable? characterizing P2P traffic,” 2002.

[5] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should internet
service providers fear peer-assisted content distribution?” in Proceedings
of the 5th ACM SIGCOMM conference on Internet Measurement, ser.
IMC ’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 6–6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1251086.1251092

[6] Y. Liu, L. Guo, F. Li, and S. Chen, “A case study of traffic locality in
internet P2P live streaming systems,” in Distributed Computing Systems,
2009. ICDCS ’09. 29th IEEE International Conference on, June 2009,
pp. 423–432.

[7] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and
A. Zhang, “Improving traffic locality in bittorrent via biased neighbor
selection,” 2012 IEEE 32nd International Conference on Distributed
Computing Systems, p. 66, 2006.

[8] L. Sheng and H. Wen, “Reducing cross-network traffic in P2P systems
via localized neighbor selection,” in Communications and Networking
in China, 2009. ChinaCOM 2009. Fourth International Conference on,
aug. 2009, pp. 1–5.

[9] B. Liu, Y. Cui, Y. Lu, and Y. Xue, “Locality-awareness in bittorrent-like
P2P applications,” Multimedia, IEEE Transactions on, vol. 11, no. 3,
pp. 361–371, april 2009.

[10] V. Aggarwal, O. Akonjang, and A. Feldmann, “Improving user and ISP
experience through ISP-aided P2P locality,” in INFOCOM Workshops
2008, IEEE, April 2008, pp. 1–6.

[11] D. R. Choffnes and F. E. Bustamante, “Taming the torrent:
a practical approach to reducing cross-isp traffic in peer-to-
peer systems,” in Proceedings of the ACM SIGCOMM 2008
conference on Data communication, ser. SIGCOMM ’08. New
York, NY, USA: ACM, 2008, pp. 363–374. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1403000

[12] H. Xie, A. Krishnamurthy, A. Silberschatz, and R. Y. Yang, “P4P:
Explicit Communications for Cooperative Control Between P2P and
Network Providers.”

[13] “Procera networks,” http://www.proceranetworks.com.
[14] B. Cohen, “The bittorrent protocol specification,” 2008. [Online].

Available: http://www.bittorrent.org/beps/bep_0003.html
[15] “Wireshark.” [Online]. Available: http://www.wireshark.org/


