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Abstract

Industrial robots typically require very structured and predictable working environ-
ments, and explicit programming, in order to perform well. Therefore, expensive
and time-consuming engineering work is a major obstruction when mediating tasks
to robots. This thesis presents methods that decrease the amount of engineering
work required for robot programming, and increase the ability of robots to handle
unforeseen events. This has two main benefits: Firstly, the programming can be done
faster, and secondly, it becomes accessible to users without engineering experience.
Even though these methods could be used for various types of robot applications,
this thesis is focused on robotic assembly tasks.

Two main topics are explored: In the first part, we consider adjustment of robot
trajectories generated by dynamical movement primitives (DMPs). The framework
of DMPs as robot trajectory generators has been widely used in robotics research,
because of their convergence properties and emphasis on easy modification. For in-
stance, time scale and goal state can be adjusted by one parameter each, commonly
without further considerations. In this thesis, the DMP framework is extended with
a method that allows a robot operator to adjust DMPs by demonstration, without
any traditional computer programming or other engineering work required. Given a
generated trajectory with a faulty last part, the operator can use lead-through pro-
gramming to demonstrate a corrective trajectory. A modified DMP is formed, based
on the first part of the faulty trajectory and the last part of the corrective one. Further,
a method for handling perturbations during execution of DMPs on robots is con-
sidered. Two-degree-of-freedom control is used together with temporal coupling,
to achieve practically realizable reference trajectory tracking and perturbation re-
covery. In the second part of the thesis, a method that enables robots to learn to
recognize contact force/torque transients acting on the end-effector, without using
a force/torque sensor, is presented. A recurrent neural network (RNN) is used for
transient detection, with robot joint torques as input. A machine learning approach
to determine the parameters of the RNN is presented.

Each of the methods presented in this thesis is implemented in a real-time ap-
plication and verified experimentally on a robot.
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1
Introduction

Compared to humans, typical industrial robots are very good at performing se-
quences of pre-defined movements, with high speed and high accuracy in the po-
sition domain. This has promoted automation of repetitive tasks where position
control suffices, such as spray painting and welding. However, standard industrial
robots perform well only in carefully structured workcells, specifically designed to
fit the robot and the given task. In general, it is required that the task is highly repet-
itive, and possible deviations from the original plan must have been foreseen by the
robot programmer. See, e.g., [Spong et al., 2006; Siciliano et al., 2010] for an intro-
duction to robot modeling and control in general. Even under favorable conditions,
traditional robot programming is time consuming and requires expert knowledge.
As a result, human labor is still more cost effective than automation for many tasks,
such as most assembly tasks. Even though these tasks might appear monotonous
and predictable, small tolerances and tiny variations between similar parts make it
inadequate to just perform a series of accurate movements. Robotic assembly has
been addressed in, e.g., [Björkelund et al., 2011]. Further, there is a trend toward
manufacturing a given product in a smaller volume and for a shorter time, and then
changing to a new one. These circumstances have motivated the following two re-
search objectives:

1. Enable easier and faster robot programming;

2. Enable robots to take proper action with respect to their surroundings.

In this thesis, research toward these objectives is presented. Paper I mainly addresses
Objective 1. More specifically, it is investigated how a human could correct a faulty
movement performed by a robot, by demonstrating a desired behavior. Paper II
deals with online replanning of robot movements to handle unforeseen events, and
hence Objective 2 is mainly addressed. In both Paper I and Paper II, robot motion
is modeled by dynamical movement primitives (DMPs). The concept of DMPs is
introduced in Sec. 1.2.

It should be noted that the two objectives are partly overlapping. For instance,
if a robot is able to replan with respect to its workspace, the robot programmer does
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Chapter 1. Introduction

not have to take all eventualities into account, which reduces the required program-
ming work. Vice versa, intuitive means of robot programming could allow for a
human to mediate suitable behavior, given certain states or events, to the robot. In
Paper III, it is investigated how robots could learn to detect force transients from
previous experience, and use this as a decision basis. A closely related topic is force
estimation and control, see, e.g., [Olsson et al., 2002; García et al., 2006; Stolt et
al., 2012]. In Paper III, explicit programming of the detection model is eschewed,
to make the human–robot interaction as easy as possible for the human. Instead, a
machine learning approach is used. How machine learning can promote robot pro-
gramming is described in Sec. 1.3.

1.1 Thesis Outline

This thesis consists mainly of three papers, and it is organized as follows. In Chap-
ter 2, the publications authored or co-authored by the thesis author are listed. A
discussion and ideas for continuation of the work are presented in Chapter 3, and a
conclusion is presented in Chapter 4.

The first part of the thesis consists of Paper I and Paper II, where the DMP
concept is augmented to support corrective demonstrations and enhance replanning
capabilities. In this part, demonstrations and robot motion control are mainly con-
sidered. The second part of the thesis consists of Paper III, and in contrast to the first
part, the main focus is not on motion control. Instead, the aim is to enable recog-
nition of sensor data sequences. Despite this difference between the two parts, all
three papers present research toward faster and more intuitive mediation of skills
from humans to robots, and consider assembly scenarios in particular.

1.2 Dynamical Movement Primitives

Representation and execution of movements is an important area within robotics.
An industrial robot program commonly consists of a sequence of movement instruc-
tions, each containing some details that specify the movement, such as velocity and
end point. Further, the ability to handle deviations from the planned movement is
usually very low. Instead, some motion supervision algorithm would typically stop
the robot if it would be too far from its position reference or experience too large
joint torques, for instance due to some unexpected physical contact.

To enhance real-time motion modulation, DMPs have been proposed in [Ijspeert
et al., 2002; Schaal et al., 2003]. The concept has been inspired by the biologi-
cal movement models presented in [Giszter et al., 1993; Mussa-Ivaldi, 1999]. It
was used for robotic learning from unstructured demonstrations in [Niekum et al.,
2015], and for object handover in [Prada et al., 2014]. Trajectory-based reinforce-
ment learning has been applied to automatically tune DMP parameters in, e.g., [Pas-
tor et al., 2013; Kober et al., 2008; Abu-Dakka et al., 2015; Kroemer et al., 2010]. A
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1.3 Supervised Machine Learning

DMP is a movement model, defined by a weakly nonlinear dynamical system with
attractor behavior, so that the state converges to a desired end point. Although there
are other alternatives, the most ubiquitous movement model in the DMP framework,
which is the one that Paper I and Paper II proceed from, is based on the following
damped-spring system.

τ
2ÿ = α(β (g− y)− τ ẏ)+ f (x) (1.1)

Here, y denotes robot position, g is the goal position, and α and β are positive
constants chosen such that the system is critically damped for f (x) = 0. Further,
f (x) is a learnable forcing term, with significant magnitude only in a finite time
window, that allows for detours before reaching g. The evolution rate is scalable
through the time parameter τ , and explicit time dependence is avoided with the
phase variable x. Once determined, a DMP can be used as a robot motion controller,
by sending control signals so that the robot moves according to the evolution of y.
As explained in [Ijspeert et al., 2013], coupling terms are easily incorporated in the
DMP framework while retaining its convergence properties, which facilitates online
motion modulation with respect to the surroundings of the robot.

Comparison with alternative movement representations
Potential fields and splines are often brought up as two alternatives to DMPs for
movement representation. Similar to DMPs, potential fields represent attractor land-
scapes, with convergence to a goal position and without explicit time dependence.
Potential fields have been considered for robot control by many researchers, see,
e.g., [Khatib, 1986; Koditschek, 1987; Li and Horowitz, 1999]. Vector fields define
the movement based on given positions, but determining the vector field given a
desired behavior is not straight forward. Design of potential fields for some obsta-
cle avoidance scenarios has been done in, e.g., [Koditschek, 1987]. Further, while
DMPs allow for different control signals from the same position, this can not be
achieved with conventional potential fields.

For imitation learning, splines have been widely used. Splines are functions that
are defined piecewise by polynomials, and retain smoothness where the polynomials
connect. It has been shown in, e.g., [Miyamoto et al., 1996; Wada and Kawato,
2004] that demonstrated trajectories can be represented and successfully reproduced
by means of splines. However, online replanning is not supported, and temporal and
spatial scaling can be done only by recomputation of the spline polynomials.

1.3 Supervised Machine Learning

Traditionally, computers and robots have been programmed by writing explicit
code, specifying sets of rules and behaviors in detail. This works well in predictable
scenarios, but most of the tasks that humans perform in their everyday life, are far
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Chapter 1. Introduction

too complex to mediate in such fashion. For instance, consider the task of distin-
guishing whether a certain image represents a car or a bicycle, which is in gen-
eral easy for humans. Indeed, both categories could take different forms, and hand-
crafting the rules for classification from raw image data would not be feasible.

It is better to address such problems with machine learning approaches. This
field consists of two major parts; supervised and unsupervised learning, see [Bishop,
2007; Murphy, 2012]. In this thesis, supervised learning is considered. In general,
supervised machine learning is used to approximate a given function, y(x), with a
parameterized function, ŷ(x|θ), which takes some input data x, and maps it to an
output ŷ. Here, θ denotes the model parameters. In the example of image recogni-
tion, x could be pixel values, y would be the true image category, and ŷ(x) could
be interpreted as the probability distribution over the two categories, i.e., car and
bicycle, given x.

In order to learn ŷ(x), the model is exposed to a large data set of examples, called
training data. In supervised learning, the training data consist of both input data and
the corresponding known outputs, usually manually labeled. In the training phase,
the elements of θ are adjusted to fit the training data by means of optimization. A
loss function, L, in which some measurement of the error of ŷ(x) compared to y(x)
is included, is minimized with respect to the model parameters.

Since the training data can only include a small subset of all possible data points,
an important aspect of machine learning is generalization, i.e., to predict the output
given input not used during training. In order to achieve this, the complexity of
the model is typically restricted, by keeping the number of parameters low, or by
penalizing the complexity by including it in L. Further, test data, not directly used
to optimize the model parameters, are used to estimate how well models generalize.
It is, however, common to determine some model hyperparameters based on the
performance on test data. Therefore, it is good practice to use yet another data set to
investigate the generalizability, without affecting the model in any way. Such data
are called validation data.

This general approach is adopted in Paper III, where the aim is to take a step to-
ward more intuitive human–robot interaction. Ideally, a non-expert operator should
be able to provide a robot with data, enabling it to learn from experience. Similar
to the image classification example, a model is trained to determine the class of the
data given x. In particular, x consists of robot joint torques, and the task is to de-
termine whether a certain force/torque transient, acting on the robot end-effector, is
present or not. One important difference from the image recognition example is that
x consists of a time-series rather than a static representation, which should be taken
into account when choosing the structure of the model. In Paper III, a recurrent neu-
ral network (RNN) is used as classification model. Prior to the training phase, data
are gathered by letting the robot experience the force/torque transient, while log-
ging the joint torques. After that, the data sets are formed by labeling the data. Even
though this implies some work by the operator, the required time and traditional
programming skills can be reduced significantly with this method compared to ex-
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1.4 Problem Formulation

plicitly programmed conditions for classification. Related approaches have been
presented in [Rodriguez et al., 2010; Rojas et al., 2012; Stolt et al., 2015], but then,
the force/torque acting on the end-effector has been measured directly, which re-
quires a force/torque sensor.

1.4 Problem Formulation

The first aim of this thesis is to answer the question of whether it is possible to
automatically interpret a correction, made by an operator, of the last part of a robot
trajectory generated by a DMP, while retaining the first part. The human–robot in-
teraction must be intuitive, and the result of a correction predictable enough for its
purpose. The result should be a new DMP, of which the first part behaves qualita-
tively as the first part of the original DMP, whereas the last part behaves according
to the corrective demonstration. Discontinuities between the original and corrective
trajectories must be mitigated.

Further, it should be investigated whether perturbations of trajectories generated
by DMPs could be recovered from, while using control signals of moderate magni-
tudes only. In the absence of significant perturbations, the behavior should resemble
that of the original DMP framework described in [Ijspeert et al., 2013].

The above problems will be addressed by augmenting the original DMP frame-
work. Meanwhile, the benefits of the DMP framework, i.e., scalability in time and
space as well as guaranteed convergence to the goal g, should be preserved.

It should also be investigated whether robot joint torques could be used to rec-
ognize contact force transients during robotic assembly, despite uncertainties intro-
duced by, e.g., joint friction. Finally, it is desirable to explore how the performance
of the detection algorithm is affected by the length of the joint torque sequences
used as input.

1.5 Thesis Contributions

The main contributions of this thesis are:

• A framework for modification of DMPs by means of corrective demonstra-
tions;

• An augmentation of the DMP framework that enables recovery from pertur-
bations during DMP execution;

• A machine learning procedure for detecting force/torque transients acting on
a robot end-effector, by measuring the robot joint torques.
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2
Publications

This licentiate thesis is based on the following three papers.

Paper I

Karlsson, M., A. Robertsson, and R. Johansson (2017). “Autonomous interpreta-
tion of demonstrations for modification of dynamical movement primitives”.
In: IEEE International Conference on Robotics and Automation (ICRA). May
29–June 3, Singapore.

In this publication, M. Karlsson formulated the method for updating a partly
faulty trajectory representation, based on a corrective demonstration. Further,
M. Karlsson implemented the method and verified it experimentally. A. Robertsson
and R. Johansson contributed with comments on the research and the manuscript.

Paper II

Karlsson, M., F. Bagge Carlson, A. Robertsson, and R. Johansson (2017). “Two-
degree-of-freedom control for trajectory tracking and perturbation recovery
during execution of dynamical movement primitives”. In: 20th IFAC World
Congress. July 9–14, Toulouse, France. Accepted for publication.

M. Karlsson and F. Bagge Carlson identified the necessity of augmenting the ex-
isting DMP framework, to make related research approaches on DMP perturbation
recovery practically realizable. M. Karlsson formulated the augmentation, and veri-
fied it in simulations and experimentally, while frequently discussing the work with
F. Bagge Carlson. Further, F. Bagge Carlson implemented the method presented as
an open-source Julia package, which can be found on [Bagge Carlson, 2016]. Ex-
ample code in Matlab, written by M. Karlsson, can be found on [Karlsson, 2017].
Throughout the work, A. Robertsson and R. Johansson supervised the research and
assisted in structuring the manuscript.
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Chapter 2. Publications

Paper III

Karlsson, M., A. Robertsson, and R. Johansson (2017). “Detection of contact force
transients during robotic assembly without a force sensor”. Manuscript prepared
for submission to review for publication.

M. Karlsson formulated the transient detection method, implemented it, and
performed the experimental work. A. Robertsson and R. Johansson contributed
with insights regarding related work, provided comments on the research, and as-
sisted in structuring the manuscript.

The following publications, authored or co-authored by the author of this the-
sis, cover topics in robotics, nonlinear state estimation, and positioning. They are,
however, not included in this thesis.

Bagge Carlson, F., M. Karlsson, A. Robertsson, and R. Johansson (2016). “Parti-
cle filter framework for 6D seam tracking under large external forces using 2D
laser sensors”. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). October 9–14, Daejon, South Korea.

Haage, M., S. Profanter, I. Kessler, A. Perzylo, N. Somani, O. Sörnmo, M. Karls-
son, S. G. Robertz, K. Nilsson, L. Resch, et al. (2016). “On cognitive robot
woodworking in SMErobotics”. In: ISR 2016: 47th International Symposium
on Robotics. VDE. June 21–22, Munich, Germany, pp. 1–7.

Karlsson, F., M. Karlsson, B. Bernhardsson, F. Tufvesson, and M. Persson (2015).
“Sensor fused indoor positioning using dual band wifi signal measurements”.
In: European Control Conference (ECC). July 15–17, Linz, Austria, pp. 1669–
1672.

Karlsson, M., F. Bagge Carlson, J. De Backer, M. Holmstrand, A. Robertsson, and
R. Johansson (2016a). “Robotic seam tracking for friction stir welding under
large contact forces”. In: 7th Swedish Production Symposium (SPS). October
25–27, Lund, Sweden.

Karlsson, M., F. Bagge Carlson, J. De Backer, M. Holmstrand, A. Robertsson, R.
Johansson, L. Quintino, and E. Assuncao (2016b). “Robotic friction stir weld-
ing, challenges and solutions”. Welding in the World, The International Journal
of Materials Joining. ISSN: 0043-2288. Submitted to review for publication.

Karlsson, M. and F. Karlsson (2016). “Cooperative indoor positioning by exchange
of bluetooth signals and state estimates between users”. In: European Control
Conference (ECC). June 29–July 1, Aalborg, Denmark, pp. 1440–1444.
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Chapter 2. Publications

Wadenbäck, M., M. Karlsson, A. Heyden, A. Robertsson, and R. Johansson (2017).
“Visual odometry from two point correspondences and initial automatic camera
tilt calibration”. In: 12th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, Volume 6. VISI-
GRAPP. February 27–March 1, Porto, Portugal, pp. 340–346.
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3
Discussion and Future
Work

Much more work is still required, both in terms of research and engineering, before
robot programming could be considered non-problematic. In the future, one natu-
ral way to extend the DMP functionality presented here, would be to incorporate
trajectory-based learning of suitable actions based on sensor data. Such learning
could be warm-started by defining DMP parameters from one initial demonstration.
Under the DMP execution, the robot could then deviate from the demonstrated tra-
jectory, based on sensor feedback. Further, albeit the control algorithm in Paper II
worked satisfactorily in the simulations and experiments, and some stability prop-
erties were addressed, it remains to construct a formal proof of convergence to the
goal state.

It would be reasonable to expect that the method for force/torque transient
recognition in Paper III would work well for other tasks than that presented, since no
assumptions were made in the method design regarding task, parts to be assembled,
etc., except that a transient would be generated. However, it remains to evaluate the
approach experimentally on various tasks, e.g., assembly of other parts, to verify
robustness and generalizability. Further, the data acquisition and labeling is still a
bottleneck in this approach, requiring half a working day for the thesis author per
task to learn. A natural continuation would therefore be to automatize the work flow
as much as possible. For instance, the operator could be aided by a GUI, showing
plots of the robot joint torques, and asking the operator to indicate where the tran-
sients occur. Perhaps, the operator could be provided with suggestions, already after
labeling a few examples, by forming a preliminary, less complex, detection model.

The movement before and after the transient, i.e., moving down in the scenario
in Paper III, does not necessarily take much time to implement, but requires tra-
ditional coding with the current setup. It would be more accessible, if it could be
demonstrated by, e.g., lead-through programming. However, physical contact with
the robot arm would affect the joint torques, and by that corrupting the training
data and test data. A possible solution for this has been presented in [Ghazaei Ar-
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Chapter 3. Discussion and Future Work

dakani, 2016], where one of the two robot arms has been used for lead-through tele-
operation of the other. That approach would allow one robot arm to perform the
task, without physical contact with the operator, according to the operator’s demon-
stration on the other arm. Ideally, from such demonstrations, the robot should not
only learn recognition of transients, but also desired actions before and after these. It
would therefore be valuable to integrate the approach in [Ghazaei Ardakani, 2016]
with that in Paper III.
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4
Conclusion

The aim of the research presented in this thesis was to facilitate robot programming
by enhancing the ability of robots to learn from demonstrations and from experi-
ence. More specifically, the DMP framework described in [Ijspeert et al., 2013] was
augmented with two new functionalities. First, an algorithm was developed that al-
lowed an operator to correct the last part of a faulty trajectory generated by a DMP,
while retaining the first part. The correction could be done in an intuitive way by
demonstrating a corrective trajectory. The first part of the resulting DMP behaved as
the first part of the original DMP, and the last part behaved according to the correc-
tion. Discontinuities between the first and last parts were eschewed by formulating
and solving a convex optimization problem. Secondly, a control algorithm that en-
abled trajectory tracking and perturbation recovery during execution of DMPs was
presented. The algorithm was based on a combination of two-degree-of-freedom
control and temporal coupling. Since the required control signals were of moder-
ate magnitude only, the controller was practically realizable, which was the main
benefit compared to state of the art. In the absence of perturbations, the controller
behaved like the original DMP framework.

Further, a machine learning procedure was presented for model-based de-
tection of force/torque transients acting on the robot end-effector without direct
force/torque measurement. Instead, robot joint torque sequences were used as model
inputs. Therefore, a force/torque sensor was not required, which was the main bene-
fit as compared to previous research. A systematic approach for choosing a suitable
length of the input sequences was presented. An RNN was used as classification
model for the detection. The approach presented seems promising, since the result-
ing model showed high performance for the test data as well as during the experi-
ments.
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Paper I

Autonomous Interpretation of
Demonstrations for Modification of

Dynamical Movement Primitives

Martin Karlsson Anders Robertsson Rolf Johansson

Abstract

The concept of dynamical movement primitives (DMPs) has become popular
for modeling of motion, commonly applied to robots. This paper presents a
framework that allows a robot operator to adjust DMPs in an intuitive way.
Given a generated trajectory with a faulty last part, the operator can use lead-
through programming to demonstrate a corrective trajectory. A modified DMP
is formed, based on the first part of the faulty trajectory and the last part of the
corrective one. A real-time application is presented and verified experimentally.

Originally published in the 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 29–June 3, Singapore. Reprinted with permission.
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1. Introduction

High cost for time-consuming robot programming, performed by engineers, has be-
come a key obstruction in industrial manufacturing. This has promoted the research
toward faster and more intuitive means of robot programming, such as learning
from demonstration, to which an introduction is presented in [Argall et al., 2009].
It is in this context desirable to make robot teaching available to a broader group of
practitioners by minimizing the engineering work required during teaching of tasks.

A costumary way to quickly mediate tasks to robots is to use lead-through pro-
gramming, while saving trajectory data so that the robot can reproduce the motion.
In this paper, the data are used to form dynamical movement primitives (DMPs).
Early versions of these were presented in [Ijspeert et al., 2002], [Schaal et al., 2003]
and [Ijspeert et al., 2003], and put into context in [Niekum et al., 2015]. Uncompli-
cated modification for varying tasks was emphasized in this literature. For example,
the time scale was governed by one parameter, which could be adjusted to fit the
purpose. Further, the desired final state could be adjusted, to represent a motion
similar to the original one but to a different goal. DMPs applied on object handover
with moving targets were addressed in [Prada et al., 2014]. The scalability in space
was demonstrated in, e.g., [Ijspeert et al., 2013].

The scenario considered in this paper is the unfavorable event that the last part
of the motion generated by a certain DMP is unsatisfactory. There might be several
reasons for this to occur. In the case where the starting points differ, the generated
trajectory would still converge to the demonstrated end point, but take a modified
path, where the modification would be larger for larger differences between the
starting points. Further, the DMP might have been created in a slightly different
setup, e.g., for a different robot or robot cell. There might also have been a mistake
in the teaching that the operator would have to undo. If the complete last part of the
trajectory is of interest, it is not enough to modify the goal state only. One way to
solve the problem would be to record an entirely new trajectory, and then construct
a corresponding DMP. However, this would be unnecessarily time consuming for
the operator, as only the last part of the trajectory has to be modified. Instead, the
method described here allows the operator to lead the manipulator backwards, ap-
proximately along the part of the trajectory that should be adjusted, followed by a
desired trajectory, as visualized in Fig. 1.

Hitherto, DMPs have usually been formed by demonstrations to get close to the
desired behavior, followed by trajectory-based reinforcement learning, as presented
in, e.g., [Pastor et al., 2013; Kober et al., 2008; Abu-Dakka et al., 2015; Kroemer
et al., 2010]. Compared to such refinements, the modification presented here is less
time consuming and does not require engineering work. On the other hand, the
previous work on reinforcement learning offers modulation based on sensor data,
and finer movement adjustment. Therefore, the framework presented in this paper
forms an intermediate step, where, if necessary, a DMP is modified to prepare for
reinforcement learning, see Fig. 3. This modification can be used within a wide
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Figure 1. Trajectories of the robot’s end-effector from one of the experiments. The
arrow indicates the motion direction. The deficient trajectory was generated from
the original DMP. After that, the operator demonstrated the corrective trajectory.
Merging of these, resulted in the modified trajectory. The projection on the xy-plane
is only to facilitate the visualization.

range of tasks. In this paper, we exemplify by focusing on peg-in-hole tasks.
In [Pastor et al., 2013], online modulation, such as obstacle avoidance, was im-

plemented for DMPs. This approach has been verified for several realistic scenarios,
but requires an infrastructure for obstacle detection, as well as some coupling term
parameters to be defined. It preserves convergence to the goal point, but since the
path to get there is modified by the obstacle avoidance, it is not guaranteed to follow
any specific trajectory to the goal. This is significant for, e.g., a peg-in-hole task.

The paper is outlined as follows. Two example scenarios in which the framework
would be useful are presented in Sec. 3, followed by a description of the method in
Sec. 4. Experimental setup and results are described in Secs. 5 and 6, and finally a
discussion and concluding remarks are presented in Secs. 7 and 8, respectively.

2. Problem Formulation

In this paper, we address the question whether it is possible to automatically inter-
pret a correction, made by an operator, of the last part of a DMP trajectory, while
still taking advantage of the first part. The human–robot interaction must be intu-
itive, and the result of a correction predictable enough for its purpose. The correc-
tion should result in a new DMP, of which the first part behaves qualitatively as the
first part of the original DMP, whereas the last part resembles the last part of the cor-
rective trajectory. Any discontinuity between the original and corrective trajectories
must be mitigated.
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3. Motivating Examples

We here describe two scenarios where the framework proves useful. These are eval-
uated in Secs. 5 and 6, where more details also are given.

3.1 Inadequate precision – Scenario A
Consider the setup shown in Fig. 2, where the button should be placed into the yel-
low case. A DMP was run for this purpose, but, due to any of the reasons described
above, the movement was not precise enough, and the robot got stuck on its way to
the target. Hitherto, such a severe shortcoming would have motivated the operator
to teach a completely new DMP, and erase the old one. With the method proposed
in this paper, the operator had the opportunity to approve the first part of the tra-
jectory, and only had to modify the last part. This was done by leading the robot
arm backwards, approximately along the faulty path, until it reached the acceptable
part. Then, the operator continued to lead the arm along the desired path to the goal.
When this was done, the acceptable part of the first trajectory was merged with the
last part of the corrective trajectory. After that, a DMP was fitted to the resulting
trajectory. Compared to just updating the target point, this approach also allowed
the operator to determine the trajectory leading there. This scenario is referred to as
Scenario A.

3.2 New obstacle – Scenario B
For the setup in Fig. 4, there existed a DMP for moving the robot arm from the
right, above the button that was already inserted, to a position just above the hole in
the leftmost yellow case. However, under the evaluation the operator realized that
there would have been a collision if a button were already placed in the case in the
middle. A likely reason for this to happen would be that the DMP was created in
a slightly different scene, where the potential obstacle was not taken into account.
Further, the operator desired to extend the movement to complete the peg-in-hole
task, rather than stopping above the hole. With the method described herein, the
action of the operator would be similar to that described in Sec. 3.1, again saving
work compared to previous methods. This scenario is referred to as Scenario B.

4. Description of the Framework

In this section, the concept of DMPs is introduced. A method to determine what
parts of the deficient and corrective trajectories to retain is presented, followed by
a description of how these should be merged to avoid discontinuities. Finally, some
implementation aspects are addressed. Figure 3 displays a schematic overview of
the work flow of the application, from the user’s perspective.
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(a) (b)

(c) (d)

Figure 2. Scenario A. The evaluation started in (a), and in (b) the robot failed to
place the button in the hole due to inadequate accuracy. Between (a) and (b), the
deficient trajectory was recorded. The operator led the robot arm backwards (c),
approximately along a proportion of the deficient trajectory, and subsequently led it
to place the button properly, while the corrective trajectory was recorded. The robot
then made the entire motion, starting in a configuration similar to that in (a), and
ending as displayed in (d).

4.1 Dynamical movement primitives
A review of the DMP concept was presented in [Ijspeert et al., 2013], and here
follows a short description of how it was applied in this paper. A certain trajectory,
y, was modeled by the system

τ ẏ = z (4.1)

where z is determined by

τ ż = αz(βz(g− y)− z)+ f (x) (4.2)

In turn, f (x) is a function given by

f (x) =
∑Nb

i=1 wiΨi(x)

∑Nb
i=1 Ψi(x)

x · (g− y0) (4.3)
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Figure 3. Schematic visualization of the work flow, from an operator’s perspec-
tive. A DMP was created based on a demonstration. Subsequently, the DMP was
executed while evaluated by the operator. If unsuccessful, the operator demonstrated
a correction, which yielded a modified DMP to be evaluated. Once successful, fur-
ther improvement could be done by, e.g., trajectory-based reinforcement learning,
though that was outside the scope of this work. Steps that required direct, continu-
ous interaction by the operator are marked with light red color. Steps that required
some attention, such as supervision and initialization, are marked with light blue.
The operations in the white boxes were done by the software in negligible compu-
tation time, and required no human involvement. The work in this paper focused on
the steps within the dashed rectangle.

where the basis functions, Ψi(x), take the form

Ψi(x) = exp
(
− 1

2σ2
i
(x− ci)

2
)

(4.4)

τ ẋ =−αxx (4.5)

Here, τ is a time constant, while αz, βz, and αx are positive constants. Further, Nb
is the number of basis functions, wi is the weight for basis function i, y0 is the
starting point of the trajectory y, and g is the goal state; σi and ci are the width and
center of each basis function, respectively. Given a DMP, a robot trajectory can be
generated from (4.1) and (4.2). Vice versa, given a demonstrated trajectory, ydemo,
a corresponding DMP can be formed; g is then given by the end position of ydemo,
whereas τ can be set to get a desired time scale. Further, the solution of a weighted
linear regression problem in the sampled domain yields the weights

wi =
sT Γi f target

sT Γis
(4.6)
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where

s =


x1(g− y1

demo)
x2(g− y1

demo)
...

xN(g− y1
demo)

 , Γi = diag(Ψ1
i ,Ψ

2
i · · ·ΨN

i ) (4.7)

f target = τ
2ÿdemo−az(bz(g− ydemo)− τ ẏdemo) =


f 1
target

f 2
target

...
f N
target

 (4.8)

Here, N is the number of samples in the demonstrated trajectory.

4.2 Interpretation of corrective demonstration
If the evaluation of a trajectory was unsuccessful, a corrective demonstration and
DMP modification should follow, as in Fig. 3. Denote by yd the deficient trajectory,
and by yc the corrective one, of which examples are shown in Figs. 1, 5, and 6. A
trajectory formed by simply appending yc to yd was likely to take an unnecessary
detour. Thus, only the first part of yd and the last part of yc were retained. This is
illustrated in Fig. 6. Denote by ycr the retained part of the corrective trajectory. The
operator signaled where to separate the corrective trajectory, during the corrective
demonstration. In the current implementation, this was done by pressing a button in
a terminal user interface, when the robot configuration corresponded to the desired
starting point of ycr, denoted y1

cr.
The next step was to determine which part of yd to retain. This was chosen as

the part previous to the sample of yd that was closest to y1
cr, i.e.,

ym
dr = ym

d , ∀m ∈ [1;M] (4.9)

where

M = argmin
k=1...K

d(yk
d ,y

1
cr) (4.10)

Here, d denotes distance, and K is the number of samples in yd , see Fig. 5 for an
illustration. The approach of using the shortest distance as a criterion, was moti-
vated by the assumption that the operator led the robot arm back, approximately
along the deficient trajectory, until the part that was satisfactory. At this point, the
operator separated the corrective demonstration, thus defining y1

cr (see right marker
in Fig. 6). By removing parts of the demonstrated trajectories, a significant discon-
tinuity between the remaining parts was introduced. In order to counteract this, ydr
was modified into ym, of which the following features were desired:
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Scenario B. The initial goal was to move the button to the leftmost yellow
case, above the hole, to prepare for placement. The evaluation started in (a), and in
(b) the trajectory was satisfactory as the placed button was avoided. In (c), however,
there would have been a collision if there was a button placed in the middle case.
Further, it was desired to complete the peg-in-hole task, rather than stopping above
the hole. Hence, the evaluated trajectory was considered deficient. In (d), the operator
led the robot arm back, and then in a motion above the potential obstacle, and into
the hole, forming the corrective trajectory. Based on the modified DMP, the robot
started in a position similar to that in (a), avoided the potential obstacle in (e) and
reached the new target in (f).
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Figure 5. Visualization of shortest distance, here denoted dm, used to determine
the left separation marker in Fig. 6. The trajectories are the same as in Figs. 1 and 6,
except that the modified trajectory is omitted.

• ym should follow ydr approximately;

• The curvature of ym should be moderate;

• ym should end where ycr began, with the same movement direction in this
point.

To find a suitable trade-off between these objectives, the following convex optimiza-
tion problem was formulated and subsequently solved:

minimize
ym

‖ydr− ym‖2 +λ‖T(∆2)ym‖2 (4.11)

subject to yM
m = y1

cr (4.12)

yM
m − yM−1

m = y2
cr− y1

cr (4.13)

Here, λ denotes a constant scalar, and T(∆2) is a second-order finite difference oper-
ator. Thereafter, ycr was appended on ym, and one corresponding DMP was created,
with the method described in the previous subsection. The next step in the work
flow was to evaluate the resulting DMP, as shown in Fig. 3.

4.3 Software implementation
The research interface ExtCtrl [Blomdell et al., 2005; Blomdell et al., 2010], was
used to send references to the low-level robot joint controller in the ABB IRC5
system [ABB Robotics, 2017a], at 250 Hz. Most of the programming was done in
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Figure 6. Same trajectories as in Fig. 1, but zoomed in on the corrective trajec-
tory. Arrows indicate directions. The parts of the trajectories between the separation
markers were not retained. The right, blue, separation point was determined explic-
itly by the operator during the corrective demonstration. The left, green, separation
point was determined according to (4.10). Further, what was left of the deficient
trajectory was modified for a smooth transition. However, the part of the corrective
trajectory retained was not modified, since it was desired to closely follow this part
of the demonstration. Note that the trajectories retained were not intended for direct
play-back execution. Instead, they were used to form a modified DMP, which in turn
generated a resulting trajectory, as shown in Figs. 8, 9 and 10.

C++, where DMPs were stored as objects. Among the data members of this class
were the parameters τ , g and w1...Nb , as well as some description of the context of
the DMP and when it was created. It contained member functions for displaying
the parameters, and for modifying g and τ . The communication between the C++
program and ExtCtrl was handled by the LabComm protocol [LabComm, 2017].
The C++ linear algebra library Armadillo [Sanderson and Curtin, 2016] was used
in a major part of the implementation. Further, the code generator CVXGEN [Mat-
tingley and Boyd, 2012] was used to generate C code for solving the optimization
problem in (4.11) to (4.13). By default, the solver code was optimized with respect
to computation time. This resulted in a real-time application, in which the compu-
tation times were negligible in teaching scenarios. The optimization problem was
typically solved well below one millisecond on an ordinary PC.

5. Experiments

The robot used in the experimental setup was a prototype of the dual-arm ABB
YuMi [ABB Robotics, 2017b] (previously under the name FRIDA) robot, with 7
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Figure 7. The ABB YuMi [ABB Robotics, 2017b] prototype robot used in the
experiments.

joints per arm, see Fig. 7. The experiments were performed in real-time using the
implementation described in Sec. 4.3. The computations took place in joint space,
and the robot’s forward kinematics were used for visualization in Cartesian space
in the figures presented. The scenarios in Sec. 3 were used to evaluate the proposed
method. For each trial, the following steps were taken:

• An initial trajectory was taught, deliberately failing to meet the requirements,
as explained in Sec. 3;

• Based on this, a DMP was created;

• The DMP was used to generate a trajectory similar to the initial one. This
formed the deficient trajectory;

• A corrective trajectory was recorded;

• Based on the correction, a resulting DMP was formed automatically;

• The resulting DMP was executed for experimental evaluation.

First, Scenario A was set up for evaluation, see Sec. 3.1 and Fig. 2. The scenario
started with execution of a deficient trajectory. For each attempt, a new deficient
trajectory was created and modified. A total of 50 attempts were made.
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Similarly, Scenario B (see Sec. 3.2 and Fig. 4) was set up, and again, a total of
50 attempts were made.

A video is available as a publication attachment, to facilitate understanding of
the experimental setup and results. A version with higher resolution is available on
[Karlsson, 2017].

6. Results

For each attempt of Scenario A, the robot was able to place the button properly in
the yellow case after the modification. Results from two of these attempts are shown
in Figs. 8 and 9. In the first case, the deficient trajectory went past the goal, whereas
in the second case, it did not reach far enough.

Each of the attempts of Scenario B was also successful. After modification, the
DMPs generated trajectories that moved the grasped stop button above the height of
potential obstacles, in this case other stop buttons, and subsequently inserted it into
the case. The result from one attempt is shown in Fig. 10.

7. Discussion

The subsequent step in this work is to integrate the presented framework with
trajectory-based reinforcement learning [Pastor et al., 2013; Stulp et al., 2012],
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Figure 8. Trajectories from the experimental evaluation of Scenario A. The defi-
cient trajectory went past the goal in the negative y-direction, preventing the robot
from lowering the button into the hole. After correction, the robot was able to reach
the target as the modified DMP generated the resulting trajectory.
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Figure 9. Similar to Fig. 8, except that in this case, the deficient trajectory did not
reach far enough in the negative y-direction.
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Figure 10. Trajectories from experimental evaluation of Scenario B. The deficient
trajectory was lowered too early, causing a potential collision. After the correction,
the robot was able to reach the target while avoiding the obstacles. The movement
was also extended to perform the entire peg-in-hole task, rather than stopping above
the hole.
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in order to optimize the motion locally with respect to criteria such as execution
time. The program should also be augmented to take the purpose of, and relation
between, different DMPs into consideration. This extension will emphasize the ne-
cessity of keeping track of different states within the work flow. To this purpose, a
state machine implemented in, e.g., JGrafchart [Theorin, 2014], or the framework of
behavior trees, applied on robot control in [Marzinotto et al., 2014], would be suit-
able. Extending the user interface with support for natural language, would possibly
make this framework more user friendly.

Performing the computations in joint space instead of Cartesian space allowed
the operator to determine the entire configuration of the 7 DOF robot arm, rather
than the pose of the tool only. However, one could think of situations where the
operator is not concerned by the configuration, and the pose of the tool would be
more intuitive to consider. It would therefore be valuable if it could be determined
whether the operator aimed to adjust the configuration or just the pose of the tool.
For example, a large configuration change yielding a small movement of the tool,
should promote the hypothesis that the operator aimed to adjust the configuration.

It should be stated that the scenarios evaluated here are not covering the whole
range of plausible scenarios related to this method, and it remains as future work
to investigate the generalizability, and user experience, more thoroughly. The last
part of the resulting movement is guaranteed to follow the retained part of the cor-
rective demonstration accurately, given enough DMP basis functions. Hence, the
only source of error on that part is a faulty demonstration. For instance, the move-
ment might require higher accuracy than what is possible to demonstrate using lead-
through programming. Another limitation with this method is that it is difficult for
the operator to very accurately determine which part of the faulty trajectory to re-
tain, since this is done autonomously. However, for the experiments performed here,
the estimation of the operator was sufficient to demonstrate the desired behavior.
The benefit with this approach is that it saves time as the operator does not have to
specify all details explicitly.

8. Conclusion

In this paper, an approach for modification of DMPs, using lead-through program-
ming, was presented. It allowed a robot operator to modify the last part of a faulty
generated trajectory, instead of demonstrating a new one from the beginning. Based
on the corrective demonstration, modified DMPs were formed automatically. A real-
time application, that did not require any additional engineering work by the user,
was developed, and verified experimentally. A video showing the functionality is
available as a publication attachment, and a version with higher resolution is avail-
able on [Karlsson, 2017].
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Paper II

Two-Degree-of-Freedom Control for
Trajectory Tracking and Perturbation

Recovery during Execution of Dynamical
Movement Primitives

Martin Karlsson Fredrik Bagge Carlson Anders Robertsson

Rolf Johansson

Abstract

Modeling of robot motion as dynamical movement primitives (DMPs) has be-
come an important framework within robot learning and control. The ability of
DMPs to adapt online with respect to the surroundings, e.g., to moving targets,
has been used and developed by several researchers. In this work, a method for
handling perturbations during execution of DMPs on robots was developed.
Two-degree-of-freedom control was introduced in the DMP context, for ref-
erence trajectory tracking and perturbation recovery. Benefits compared to the
state of the art were demonstrated. The functionality of the method was verified
in simulations and in real-world experiments.
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1. Introduction

Industrial robots have mostly operated in structured, predictable, environments
through sequential execution of predefined motion trajectories. This implies high
cost for engineering work, consisting of robot programming and careful work-space
preparation. It also limits the range of tasks that are suitable for robots. Improving
their ability to operate in unstructured environments with unforeseen events is there-
fore an important field of research.

This has motivated the development of dynamical movement primitives
(DMPs), that are used to model and execute trajectories with an emphasis on
online modification. Early forms were presented in [Ijspeert et al., 2002; Ijspeert
et al., 2003; Schaal et al., 2000], and a review can be found in [Ijspeert et al., 2013].
The framework has been widely used by robot researchers. For instance, the ability
to generalize demonstrated trajectories toward new, although static, goal positions
has been used in [Niekum et al., 2015]. Online modulation with respect to a moving
goal has been applied in [Prada et al., 2014] for object handover. A method to
modify DMP parameters by demonstration has been presented in [Karlsson et al.,
2017]. Learning and adaptation based on force/torque measurements has been ex-
plored in, e.g., [Abu-Dakka et al., 2015; Pastor et al., 2013]. Previous work on DMP
perturbation recovery in particular is elaborated on in Sec. 2.2.

In the standard form, without temporal coupling, a DMP would continue its time
evolution regardless of any significant perturbation, as discussed in [Ijspeert et al.,
2013]. Therefore, its behavior after the perturbation would likely be undesirable and
not intuitive.

The research described in this paper addressed perturbation recovery for DMPs,
and a method was developed where a two-degree-of-freedom controller was inte-
grated with the DMP framework, see, e.g., [Åström and Wittenmark, 2013] for an
introduction to the two-degree-of-freedom control structure. The feedforward part
of the controller promoted tracking of the DMP trajectory in the absence of sig-
nificant perturbations, thus mitigating unnecessarily slow trajectory evolution due
to temporal coupling acting on small tracking errors. The feedback part suppressed
significant errors. The functionality of this method was verified in simulations, as
well as in experiments in a real-time robot application. The robot used for experi-
mental evaluation is shown in Fig. 1.

A code example is available on [Karlsson, 2017], to allow exploration of the
system proposed. The system was also integrated in the Julia DMP package on
[Bagge Carlson, 2016], originally based on [Ijspeert et al., 2013].

42



2 Preliminaries

Figure 1. The ABB YuMi robot prototype used in the experiments, [ABB
Robotics, 2017b].

2. Preliminaries

2.1 Dynamical movement primitives
A review of the DMP concept for robotics has been presented in [Ijspeert et al.,
2013], and here follows a condensed description of the fundamentals. A trajectory,
y, is modeled by the system

τ
2ÿ = αz(βz(g− y)− τ ẏ)+ f (x) (4.1)

Here, τ is a time constant, αz, βz and αx are positive constants, and x is a scalar
phase parameter that evolves as

τ ẋ =−αxx (4.2)

Equation (4.1) is commonly written in the following equivalent form.

τ ż = αz(βz(g− y)− z)+ f (x) (4.3)
τ ẏ = z (4.4)

In (4.1) and (4.3), f (x) is given by

f (x) =
∑Nb

i=1 wiΨi(x)

∑Nb
i=1 Ψi(x)

x · (g− y0) (4.5)
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where the basis functions, Ψi(x), are determined as

Ψi(x) = exp
(
− 1

2σ2
i
(x− ci)

2
)

(4.6)

Here, Nb is the number of basis functions, wi is the weight for basis function i, y0
is the starting point of the trajectory y, and g denotes the goal state; σi and ci are
the width and center of each basis function, respectively. Based on the dynamical
system in (4.3) and (4.4), a robot trajectory could be generated. Vice versa, given
a demonstrated trajectory, ydemo, a corresponding DMP could be formed. The goal
point g would then be given by the end position of ydemo, whereas τ could be set to
get a desired time scale. Further, the weights could be determined by, e.g., locally
weighted linear regression, see [Atkeson et al., 1997; Schaal and Atkeson, 1998],
with the solution

wi =
sT Γi f target

sT Γis
(4.7)

where

s =


x1(g− y1

demo)
x2(g− y1

demo)
...

xN(g− y1
demo)

 (4.8)

Γi = diag(Ψ1
i ,Ψ

2
i · · ·ΨN

i ) (4.9)

ftarget = τ
2ÿdemo−az(bz(g− ydemo)− τ ẏdemo) (4.10)

Here, N is the number of samples in the demonstrated trajectory.

2.2 Related work on DMP perturbation recovery
We here consider the case where a disturbance is introduced, such that the actual
trajectory, denoted ya, evolves differently from y, where y evolves according to (4.1)
to (4.6). Without any coupling terms, the time evolution of (4.2) and (4.5) would
be unaffected by a perturbation. This behavior is undesired, since it is then likely
that the actual trajectory ya deviates significantly from the intended trajectory even
after the cause of the perturbation has vanished. This is more thoroughly described
in [Ijspeert et al., 2002; Ijspeert et al., 2013]. To mitigate this problem, the solution
described in the following paragraph has been suggested in [Ijspeert et al., 2013].

The following coupling terms were introduced.

ė = αe(ya− yc− e) (4.11)
Ct = kte (4.12)

τa = 1+ kce2 (4.13)
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3 Problem Formulation

Here, αe, kt and kc are constant parameters. The parameter τa was used to determine
the evolution rate of the entire dynamical system. Further, the term Ct was added to
(4.3) so that the coupled version of y, denoted yc, fulfilled the following.

τaż = αz(βz(g− yc)− z)+ f (x)+Ct (4.14)
τaẏc = z (4.15)

A PD controller, given by

ÿr = Kp(yc− ya)+Kv(ẏc− ẏa) (4.16)

was used to drive ya to y. Here, ÿr denotes the reference acceleration, while Kp and
Kv are control gains.

This approach from previous research has taken several important parts of dis-
turbance recovery into account, and it should be emphasized that it forms the foun-
dation of this presented work. In this section, however, some aspects are considered
where there is room for improvement.

Denote by yu an unperturbed trajectory generated by an uncoupled DMP, as de-
scribed in Sec. 2.1. It is desirable that, in the absence of significant perturbations, ya
should follow yc closely. If this would not be achieved, in addition to the deviation
itself, ya and yc would be slowed down, compared to yu, due to the temporal cou-
pling in (4.13). This phenomenon is visualized in Fig. 5. In [Ijspeert et al., 2013],
very high controller gains for (4.16) were suggested, which would have mitigated
the issue under ideal conditions and unlimited magnitude of the control signals.
Specifically, Kp = 1000 and Kv = 125 were chosen. However, even for moderate
perturbations, this would imply control signals too large to be realized practically.
For instance, a position error in Cartesian space of 1 dm would yield ÿr = 100m/s2.
In Figs. 2 and 3, two example scenarios are displayed; one where the actual move-
ment was stopped, and one where it was moved away from the nominal path. The
method described in [Ijspeert et al., 2013] was used for recovery, with prohibitively
large values of ÿr as a consequence. Moreover, this control system is sensitive to
noise and has a dangerously low delay margin of 12 ms.

Feedforward control has been used in the DMP context previously, but then
only for low-level joint control, with motor torque commands as control signals, see
[Pastor et al., 2009; Park et al., 2008]. This control structure was also applied in the
internal controller used in the implementation in this present paper, see Sec. 6. This
inner control design should not be confused with the feedforward control described
in Sec. 4, which operated outside the internal robot controller, and was used to
determine the reference acceleration for the robot.

3. Problem Formulation

In this paper, we address the question of whether perturbations of DMPs could be
recovered from, while fulfilling the following requirements. Only moderate control
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Figure 2. Simulated trajectories, where ya was subjected to a stopping perturbation
from 2 s to 3 s, using the approach in [Ijspeert et al., 2013]. When ya was stopped,
the evolution of yc slowed down, and when ya was released, it was driven to yc and
then behaved like a delayed version of yu. This behavior was desired. However, a
prohibitively large accelereration ÿr was generated.
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Figure 3. Similar to Fig. 2, except that ya was moved away from the nominal path
between 2 s to 3 s. Again, a prohibitively large accelereration ÿr was generated.
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4 Method

Robot∑kp + kv
d
dt (·)∑DMP

yc ÿr ya

-1

ÿc

Figure 4. Schematic overview of the control structure described in Sec. 4. The
block denoted ’Robot’ includes the internal controller of the robot.

signals must be used. The benefits of the DMP framework described in [Ijspeert
et al., 2013], i.e., scalability in time and space as well as guaranteed convergence to
the goal g, must be preserved. Further, in the absence of significant perturbations,
the behavior of ya should resemble that of the original DMP framework described
in Sec. 2.1.

4. Method

Our proposed method extends that in [Ijspeert et al., 2013] as follows. The PD con-
troller in (4.16) was augmented with feedforward control, as shown in (4.17). Fur-
ther, the PD controller gains were moderate, to get a practically realizable control
signal. Additionally, the time constant τ was introduced as a factor in the expression
for the adaptive time parameter τa, see (4.13) and (4.18). Our method is detailed be-
low.

In order for ya to follow yc, we applied the following control law.

ÿr = kp(yc− ya)+ kv(ẏc− ẏa)+ ÿc (4.17)

Here, ÿc was obtained by feedforwarding the acceleration of yc. This allowed the
controller to act also for zero position- and velocity errors. In turn, the trajectory
tracking worked also for moderate controller gains; kp = 25 and kv = 10 are used
throughout this paper. With these gains, the closed control loop had a double pole in
-5 rad/s. Since the real parts were negative, the system was asymptotically stable,
and since the imaginary parts were 0, it was critically damped. The delay mar-
gin was 130 ms, which was an improvement compared to 12 ms for the previous
method, described in Sec. 2.2. A schematic overview of the control system is shown
in Fig. 4.

Further, (4.13) was modified in order to include the nominal time constant τ , as
follows.

τa = τ(1+ kce2) (4.18)
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The coupling term Ct was omitted in this present method. This choice is elaborated
on in Sec. 9.

Since τa was not constant over time, determining ÿc was more involved than
determining ÿ by differentiating (4.4). One option would be to approximate ÿc by
discrete-time differentiation of ẏc. However, instead we determined the instanta-
neous acceleration analytically as follows.

ÿc =
d
dt
(ẏc) =

d
dt

(
z
τa

)
=

żτa− zτ̇a

τ2
a

=
żτa−2τkczeė

τ2
a

(4.19)

where ż and ė are given by (4.11) and (4.14), respectively. It is noteworthy that the
computation of ÿc did not require any first- or second-order time-derivative of any
measured signal, which would have required prior filtering to mitigate amplification
of high-frequency noise. Similarly, ẏc was determined by (4.14) and (4.15). In con-
trast, the computation of ẏa was complemented with a low-pass filter, to mitigate
amplification of measurement noise.

5. Simulations

Two different perturbations were considered in the following simulations; one
where ya was stopped, and one where it was moved. The perturbations took place
from time 2 s to 3 s. The systems were sampled at 250 Hz. The same DMP, yielding
the same yu, was used in each trial. The adaptive time parameter τa was determined
according to (4.18) in all simulations, to get comparable time scales. First, the con-
troller detailed in [Ijspeert et al., 2013] was applied. Except for the perturbations
themselves, the conditions were assumed to be ideal, i.e., no delay and no noise
were present. The results are shown in Figs. 2 and 3. Despite ideal conditions, pro-
hibitively large accelerations were generated by the controller in both cases.

Figure 5 shows the result from a simulation where the controller detailed in
[Ijspeert et al., 2013] was used, except that the gains were lowered to moderate
values. The conditions were ideal, and no perturbation was present. This resulted in
reasonable control signals. However, small control errors in combination with the
temporal coupling slowed down the evolution of the coupled system as well as the
actual movement.

Thereafter, the controller proposed in this paper, described in Sec. 4, was used.
In order to verify robustness under realistic conditions, noise and time delay were in-
troduced. Position measurement noise, and velocity process noise, were modeled as
zero mean Gaussian white noise, with standard deviations of 1 mm and 1 mm/s, re-
spectively. Further, an additional configuration dependent forward kinematics error
was modeled as a slowly varying position measurement error with standard devia-
tion 1 mm. The time delay between the process and the controller was L = 12 ms.
This delay was suitable to simulate since it corresponds both to the delay margin
of the method suggested in [Ijspeert et al., 2013], and to the actual delay in the im-
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Figure 5. Simulation with the control structure in [Ijspeert et al., 2013], except
that the gains were lower (Kp = 25 and Kv = 10). The reference acceleration was of
reasonable magnitude, but the coupled and real systems were slowed down due to
small tracking errors combined with temporal coupling.

plementation presented in this paper, see Sec. 6. (It is, however, a coincidence that
these two have the same value. Nevertheless, this shows that a 12 ms delay margin
is not necessarily enough.) The results are shown in Figs. 6 and 7. For comparison,
the method in [Ijspeert et al., 2013], with the large gains, was also evaluated under
these conditions, although without any perturbation except for the noise. Because
of the time delay, this system was unstable, as shown in Fig. 8.

6. Implementation of Real-Time Application

The implementation presented here was performed on a prototype of the dual-arm
ABB YuMi robot (previously under the name FRIDA), [ABB Robotics, 2017b],
with 7 joints per arm, see Fig. 1. The method described in Sec. 4 was implemented
in C++, and the linear algebra library Armadillo, see [Sanderson and Curtin, 2016],
was used in a large proportion of the program. The research interface ExtCtrl,
[Blomdell et al., 2005; Blomdell et al., 2010], was used to send references to the
low-level robot joint controller in the ABB IRC5 system, [ABB Robotics, 2017a].
The LabComm protocol, [LabComm, 2017], was used to manage the communica-
tion between the C++ program and ExtCtrl. Similar to the simulations, the control
system ran at 250 Hz, and the delay between process and controller was 3 sample
periods, corresponding to 12 ms.
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Figure 6. Similar to Fig. 2, but with modeled noise and delay, and using the con-
troller presented in this paper. The behavior was satisfactory both regarding position
and acceleration.
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Figure 7. Similar to Fig. 6, except that ya was moved away from the nominal path
between 2 s to 3 s. Again, the behavior was satisfactory both regarding position and
acceleration.
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Figure 8. Using the control system in [Ijspeert et al., 2013], subject to the simu-
lated noise and time delay, resulted in unstable behavior.

7. Experimental Setup

The real-time implementation described in Sec. 6 was used for evaluation. The com-
putations took place in joint space, and the robot’s forward kinematics were used
for visualization in Cartesian space in the figures presented. The functionality of
the method was evaluated in two assembly scenarios. The assembly parts used are
shown in Fig. 9.

Figure 9. Yellow case (left), stop button (upper right) and gasket (lower right) used
in the experiments.
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For both scenarios, a new DMP for placing a stop button into the hole of a
corresponding case had been taught to the robot by lead-through programming,
based on [Stolt et al., 2015], prior to each trial. This implied some variation among
the demonstrated trajectories, even though they were qualitatively similar. Subse-
quently, the DMP was executed on the robot. During the execution, a human per-
turbed the movement of the robot by physical contact. A wrist-mounted ATI Mini
force/torque sensor was used to measure the contact force, and a proportional ac-
celeration, in the same direction as the force, was added to ÿr as a load disturbance.

In the first scenario, the human introduced two perturbations during the DMP
execution. The first perturbation was formed by moving the end-effector away from
its path, and then releasing it. The second perturbation consisted of a longer, un-
structured, movement later along the trajectory.

In the second scenario, a human co-worker realized that the stop buttons in the
current batch were missing rubber gaskets, and acted to modify the robot trajectory,
allowing the co-worker to attach the gasket on the stop button manually. During
execution of the DMP, the end-effector was stopped and lifted to a comfortable
height by the co-worker. Thereafter, the gasket was attached, and finally the end-
effector was released. For the sake of completeness, the modified trajectory was
used to form yet another DMP, which allowed the co-worker to attach the gaskets
without perturbing the trajectory of the robot, for the remaining buttons in the batch.
To verify this functionality, one such modified DMP was executed at the end of each
trial.

The first and second scenarios are visualized in Figs. 10 and 11, respectively. To
verify repeatability, 50 similar trials were performed for each scenario.

8. Experimental Results

Data from a trial of the first scenario are displayed in Fig. 12. The two disturbances
were successfully recovered from as intended. The reference acceleration was of
reasonable magnitude. The results from all 50 trials were qualitatively mutually
similar.

Data from a trial of the second scenario are displayed in Fig. 13. First, the per-
turbation was successfully recovered from as intended. The reference acceleration
was of reasonable magnitude. When the modified DMP was executed, it behaved
like a smooth version of the perturbed original trajectory. Again, the results from all
50 trials were qualitatively mutually similar.

To facilitate understanding of the experimental setup and results, a video is pub-
licly available on [Karlsson, 2016].
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(a) (b)

(c) (d)

Figure 10. First scenario. In (a), the robot started to execute a DMP for placing
the stop button in the rightmost yellow case. A human perturbed the motion twice.
The first perturbation (b) was formed by moving the end-effector away from its path,
and then releasing it. The second perturbation (c) lasted for a longer time, and con-
sisted of unstructured movement. The robot recovered from both perturbations, and
managed to place the stop button in the case (d). Data from one trial are shown in
Fig. 12.

9. Discussion

Compared to previous related research, described in [Ijspeert et al., 2013], the
method in this paper contained the following extensions. Feedforward control was
added to the PD controller, thus forming a two-degree-of-freedom controller. Fur-
ther, the PD controller gains were reduced to moderate magnitudes. The expression
for τa was also modified, to include the nominal time constant τ as a factor. These
changes resulted in the following benefits, compared to the previous method. The
feedforward part allowed the controller to act also for insignificant position- and
velocity error, thus improving the trajectory tracking. Because of this, the large
controller gains used in [Ijspeert et al., 2013], that were used to mitigate significant
tracking errors, could be reduced to moderate magnitudes. In turn, using moderate
gains instead of very large ones, resulted in control signals that were practically
realizable, instead of prohibitively large. It also improved the delay margin signifi-
cantly. The aspects above form the main contribution of this paper. In contrast, the
modification of the expression for τa was not the main focus of this paper, but it was
necessary since it allowed the actual trajectory to converge to the trajectory defined
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(a) (b)

(c) (d)

(e) (f)

Figure 11. Second scenario. The robot started its motion toward the rightmost yel-
low case in (a). The end-effector was stopped and lifted, and the gasket was mounted
in (b). The robot was then released, and continued its motion to the case, (c) and (d).
The actual trajectory was saved and used to form a modified DMP, and the robot was
reset to a configuration similar to that in (a). When executing the modified DMP, the
human co-worker could attach the gasket without perturbing the motion of the robot
(e). The robot finished the modified DMP in (f). Data from one trial are shown in
Fig. 13.
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Figure 12. Experimental data from a trial of the first scenario. The first (from
above) plot shows the path of the end-effector in the Cartesian base frame of the
robot, projected on the yz-plane. The arrow indicates the movement direction, which
started in the upper right and finished in the lower left of the plot. The two perturba-
tions are clearly visible. The second plot shows the distance between ya and yc over
time. In the third plot, it can be seen that the evolution of yc slowed down during each
perturbation. Subsequently, ya recovered, and when it was close to yc, the movement
continued as a delayed version of yu. The reference acceleration was of reasonable
magnitude, as shown in the fourth plot.
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Figure 13. Experimental data from a trial of the second scenario. The organization
of this figure is similar to that of Fig. 12. The perturbation for stopping and lifting
the end-effector took place from time 10 s to 17.5 s, and is clearly visible in each
plot. This perturbation was recovered from as intended, and the reference accelera-
tion was of reasonable magnitude. The uppermost plot also displays the measured
trajectory obtained by executing the modified DMP, denoted ym. It behaved like a
smooth version of the perturbed original trajectory ya.
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by the DMP, with time constant τ . Without this modification, the time parameter
τ would not have affected the trajectory generated by the DMP. Instead, τa would
have converged to 1, regardless of τ , which would not have been desirable.

The work presented here focused on the control structure for trajectory tracking
and perturbation recovery, rather than on the perturbations themselves. Even though
the perturbations in the experiments considered here emerged from physical contact
with a human, the control structure would work similarly for any type of perturba-
tion. There are many other possible perturbations, e.g., a pause of the movement
until a certain condition is fulfilled, superpositioned motion control signals to ex-
plore the surroundings with a force/torque sensor, a detour to allow line-of-sight
between a camera and a part of the work-space, or any other unforeseen deviation
from the reference trajectory defined by a DMP.

It is necessary to implement saturation on the control signals, in order to prevent
too large acceleration and velocity for large perturbations. Such boundaries were
implemented, but never reached in the experiments in this work.

The coupling term Ct has been introduced in previous research to drive yc toward
ya when these were different, see Sec. 2.2. However, whether this effect is desired,
and to what extent, is context dependent. Further, the effect would be mitigated by
the temporal coupling, that would slow down the evolution of yc in (4.14) and (4.15).
Which of these effects that would be dominant in different cases would be difficult
to predict intuitively. For these two reasons, the coupling term was not included
in the method proposed here, though it would be straight forward to implement. It
was, however, included in the simulations where the previous method, described in
Sec. 2.2, was evaluated. During the perturbations in Figs. 2 and 3, the effect of the
temporal coupling was dominant, as yc did not approach ya significantly.

Apart from the perturbations induced by the human, the motion of the robot was
affected by process- and measurement noise. After applying the forward kinematics
to determine the position of the end-effector, the accuracy was typically ± 1 mm.
Furthermore, some movement might require higher precision than what would be
possible to demonstrate using lead-through programming. Then, e.g., teleoperation
could be used for demonstration instead.

In the current implementation, the actual trajectory returned to the reference tra-
jectory, approximately where it started to deviate. This might not always be desired.
For instance, it might sometimes be more practical to connect further along the ref-
erence trajectory, e.g., after avoiding an obstacle. A lower value of kc would result
in such behavior, however, it must then be known what value of kc that should be
used. Further, one could think of scenarios where it would not be desirable to con-
nect to the reference trajectory, e.g., if a human would modify the last part of the
trajectory to a new end point. Hence, future work includes development of a method
to determine the desired behavior after a perturbation.
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The method presented in this paper would be useful for executing the desired
behavior, once it could be determined. Nevertheless, one can think of various sce-
narios where the recovery presented here would be desirable, such as those in Sec. 7.

10. Conclusion

In this work, it was shown how perturbations of DMPs could be recovered from,
while preserving the characteristics of the original DMP framework in the absence
of significant perturbations. Feedforward control was used to track the reference
trajectory generated by a DMP. Feedback control with moderate gains was used to
suppress deviations. This design is the first, to the best of our knowledge, that takes
the following aspects into account. In the absence of significant disturbances, the
position error must be small enough, so that the dynamical system would not slow
down unnecessarily due to the temporal coupling. Very large controller gains would
result in small errors under ideal conditions, but are not practically realizable. On
the other hand, if the gains are moderate and only feedback control is used, too large
errors occur.

Feedforward allowed the controller to act even without significant error, which
in turn allowed for moderate controller gains. The suggested method was verified
in simulations, and a real-time application was implemented and evaluated, with
satisfactory results. A video of the experiments is available on [Karlsson, 2016].
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Paper III

Detection of Contact Force Transients during
Robotic Assembly without a Force Sensor

Martin Karlsson Anders Robertsson Rolf Johansson

Abstract

In this research, robot joint torques are used to recognize contact force tran-
sients induced by snap-fit assembly, thus detecting when the task is completed.
The approach does not assume any external sensor, which is a benefit compared
to the state of the art. The joint torque data is used as input to a recurrent neural
network (RNN), and the output of the RNN indicates whether a snap-fit has
occurred or not. A real-time application for snap-fit detection is developed, and
verified experimentally on an industrial robot.

Manuscript prepared for submission to review for publication.

61



Paper III. Detection of Contact Force Transients...

1. Introduction

In the context of robotic assembly, robots commonly make series of movements,
and switch between these when certain criteria are fulfilled. Such criteria usually
consist of thresholds on measured signals, e.g., positions and contact forces.

In this paper, a method to detect snap-fits during robotic assembly is presented
and evaluated. In [Stolt et al., 2015], this was achieved by detecting contact force
transients induced by the snap-fit, using a force/torque sensor. This detection re-
duced the assembly time, compared to using a force threshold. It also removed the
necessity to determine any level of the force threshold, which would have required
considerable engineering work and explicit programming of the robot.

Here, we continue the work presented in [Stolt et al., 2015], with the following
extensions. In [Stolt et al., 2015], a force/torque sensor was used to measure the
contact force/torque. Such sensors and systems are usually expensive, with costs
comparable to the robot itself. If attached to the wrist of the robot, it would introduce
extra weight that the robot would have to lift and move. Further, some robot models
do not support any seamless attachment of such sensors. If the force sensor would
be attached to an object in the work space, e.g., a table, this would imply restrictions
on where the assembly could take place. In this work, we use robot joint torque mea-
surements for the detection, thus avoiding the requirement of a force/torque sensor.
This introduces a new difficulty; due to friction in the robot joints, some informa-
tion is lost when using joint torques compared to a force/torque sensor. In [Stolt
et al., 2015], a support vector machine (SVM) was used for classification, whereas
in the present approach, a recurrent neural network (RNN), which is an artificial
neural network specialized in processing sequential data, was used. The RNN was
implemented and trained using TensorFlow [Abadi et al., 2016; TensorFlow, 2017],
a software library for numerical computation.

Machine learning for analyzing contact forces in robotic assembly was also ap-
plied in [Rodriguez et al., 2010], where force measurements were used as input
to an SVM, to distinguish between successful and failed assemblies. A verifica-
tion system, specialized in snap-fit assembly, was developed in [Rojas et al., 2012].
Similar to [Stolt et al., 2015] and [Rodriguez et al., 2010], a force/torque sensor
was assumed in [Rojas et al., 2012]. Such a requirement has been avoided in some
previous research, by using internal robot sensors instead. For instance, a method to
estimate contact forces from joint torques was presented in [Linderoth et al., 2013].
Further, force controlled assembly without a force sensor was achieved in [Stolt et
al., 2012], by estimating contact forces from position errors in the internal controller
of the robot.

1.1 Problem formulation
In this work, we address the question of whether robot joint torques could be used
to recognize contact force transients during robotic assembly, despite uncertain-
ties introduced by, e.g., joint friction. Further, we investigate how long parts of the
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Figure 1. The parts to be assembled. Box (upper left), switch (lower left), and
switch attached to box (right).

transients that should be included as input for the detection algorithm, in order to
distinguish whether a transient is present or not.

2. Method

The snap-fit scenario considered here consisted of attaching a switch to a box, see
Fig. 1. The objective of the robot was to move toward the box while holding the
switch, thus pushing the switch against the box, until it snapped into place. The
robot should detect the snap-fit automatically, stop moving toward the box, and
possibly start a new movement.

2.1 Sequence model
An RNN [Goodfellow et al., 2016; Graves, 2012] was used as a sequence classifier.
This choice is discussed in Sec. 5. It had a sequence of joint torques as input, one
single output indicating whether the sequence contained a snap-fit or not, one hid-
den layer, and recurrent connections between its hidden neurons. Each input torque
sequence consisted of T = npre +1+npost time samples, where npre and npost were
determined as explained in Sec. 2.3. In turn, each time sample consisted of nch = 7
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channels; one per robot joint. The dimension of the hidden layer was chosen to be
the same as the number of input channels, nch.

Denote by h(t) the activation of the hidden units at time step t. The activation
was defined recursively as

h(1) = tanh(b+Ux(1)) (4.1)

h(t) = tanh(b+Wh(t−1)+Ux(t)) t ∈ [2;T ] (4.2)

where U and W are weight matrices, both of size nch× nch, b is a bias vector with
dimension nch, and x(t) is the input at time t. Further, tanh(·) represents the hyper-
bolic tangent function. After reading an entire input sequence, the RNN produced
one output o(T ) given by

o(T ) = c+V h(T ) (4.3)

where V is a weight matrix of size 2×nch, and c is a bias vector with dimension 2.
Finally, the softmax operation was applied to generate ŷ, a vector that represented
the normalized probabilities of the output elements.

ŷ =

[
eo(T )1

eo(T )1 + eo(T )2

eo(T )2

eo(T )1 + eo(T )2

]T

(4.4)

Here, o(T )i represents the i:th element of the output vector. If the first element of ŷ
was larger than the second, or equivalently, larger than 0.5, the data point was clas-
sified as positive, i.e., it was indicated that a snap-fit occurred within the sequence.
Vice versa, if the first element was less than than 0.5, the data point was classified as
negative, meaning that no snap-fit was present. The RNN architecture is visualized
in Fig. 2.

2.2 Gathering of training data and test data
Training data and test data were obtained as follows. The right arm of the robot
was used to grasp the switch, just above the box, as shown in Fig. 3. Thereafter,
a reference velocity was sent to the internal controller of the robot, causing the
robot gripper to move toward the box at 1.5 mm/s, thus pushing the switch against
the box. Once the switch was snapped into place, the robot was stopped manually
by the robot operator. The robot joint torques were recorded in 250 Hz through
the ABB research interface EGMRI. The torque transient, induced by the snap-fit,
was labeled manually, and used to form a positive data point. This procedure was
repeated N = 50 times, which yielded 50 positive data points. Data prior to each
transient was used to form negative data points.

Given npre and npost, a positive data point was formed by extracting a torque se-
quence, from npre samples previous to the peak value of the transient (inclusive), to
npost samples after (inclusive). Negative data points, with the same sequence length
T as the positive ones, were extracted from torque measurements that ranged from
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Figure 2. The RNN visualized as an unfolded computational graph, where each
node is associated with a certain time step. The biases b and c, as well as the activa-
tion function tanh(·), are omitted for a clearer view, but the computations are detailed
in (4.1) to (4.4). The input torque was used to determine the hidden state, which was
updated each time step. The last hidden state was used to determine the normalized
probability ŷ of whether a snap-fit was present in the time sequence or not.

a couple of seconds before the snap-fit, until the positive data point (exclusive). The
negative data points were chosen so that overlap was avoided. For each data point,
the target was labeled as a two-dimensional one-hot vector y, where y = [1 0]T

represented a positive data point, and y = [0 1]T represented a negative one.
Note that with the approach above, it was possible to extract several negative

data points, but only one positive data point, for every snap-fit experienced by the
robot.

Half of the positive and negative data points were used in the training set, and
the other half was used in the test set.

2.3 Model training
Given the training set, the model parameters U,V,W,b, and c were determined by
minimizing a loss function L.

The training set contained much more negative data points than positive ones.
If not taken into account, this type of class imbalance has been reported to obstruct
the training procedure of several different classifiers. The phenomenon has been
described in more detail in [Japkowicz and Stephen, 2002; Japkowicz, 2000], and
should be taken into account when designing the loss function. Consider first the
following loss function L̄, which is the ordinary cross-entropy between training data
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(a)

(b) (c)

Figure 3. Experimental setup. An overview is shown in (a). The ABB YuMi [ABB
Robotics, 2017] robot was used to grasp the switch, and attaching it to the box by
pushing downwards. The downward motion began in (b), where the switch was not
yet snapped into place. It ended when the snap-fit assembly was complete (c). These
photos were taken during the experimental evaluation (see Sec. 3), and the same
setup was used for gathering training and test data (see Sec. 2.2).
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and model predictions, averaged over the training examples.

L̄ =− 1
D

D

∑
d=1

A

∑
a=1

yd
a log ŷd

a (4.5)

Here, a and d are indices for summing over the vector elements and training data
points, respectively. This cross-entropy is commonly used as a loss function in ma-
chine learning [Goodfellow et al., 2016; Rubinstein and Kroese, 2013]. Due to the
class imbalance in the present training set, it would be possible to yield a relatively
low loss L̄ by simply classifying all or most of the data points as negative, regardless
of the input, even though that strategy would not be desirable.

In order to take the class imbalance into account, weighted cross-entropy was
used as loss function. Denote by r the ratio between negative and positive data points
in the training set, and introduce the weight vector wr = [r 1]T . The loss function
was defined as

L =− 1
D

D

∑
d=1

A

∑
a=1

yd
a log ŷd

a ·wT
r yd (4.6)

The RNN in Sec. 2.1 was implemented as a computational graph in the Julia
programming language [Bezanson et al., 2014], using TensorFlow [Abadi et al.,
2016; TensorFlow, 2017] and the wrapper TensorFlow.jl [J. Malmaud, 2017]. The
Adam algorithm [Kingma and Ba, 2014] was used for minimization of the loss
function L.

The values of npre and npost were determined using both the training set and the
test set as follows. All positive data points available were used, and r = 20 times
as many negative data points. Starting with npre = npost = 1, the model was trained
using the training set, and its performance was measured using the test set. Sub-
sequently, both npre and npost were increased by 1, and the training and evaluation
procedure was repeated. This continued until perfect classification was achieved, or
until the values of npre and npost were large. (30 was chosen as an upper limit, though
it was never reached in the experiments presented here.) Thereafter, npre was kept
constant, and it was investigated how much npost could be lowered with retained
performance. This was done by decreasing npost one step at a time, while repeating
the training and evaluation procedure for each value. Once the performance was de-
creased, the value just above that was chosen for npost. This way, the lowest possible
value of npost was found, that resulted in retained performance.

Once npre and npost were determined, new model parameters were obtained by
training on a larger data set, with r = 100. The reason for using a lower value for the
other iterations, was that it took significantly longer computation time to use such a
large data set.

Due to the class imbalance in the test set, ordinary classification accuracy, as
defined by the number of correctly classified test data points divided by the total
number of test data points, would not be a good model performance measurement.
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Instead, the F-measurement [Hripcsak and Rothschild, 2005] was used, defined as

F1 = 2
PR

P+R
(4.7)

where P is the precision, i.e., the number of correctly classified positive data points
divided by the number of all data points classified as positive by the model, and R
is the recall, i.e., the number of correctly classified positive data points divided by
the number of all data points that were truly positive. The value of F1 ranges from
0 to 1, where 1 indicates perfect classification.

2.4 Implementation of real-time application
The ABB YuMi robot [ABB Robotics, 2017] was used for experimental evalua-
tion. The robot is shown in Fig. 4. The RNN model obtained according to Secs. 2.1
to 2.3 was saved on a server, and loaded into a Julia program on a PC, which com-
municated with the internal controller of the robot through the LabComm protocol
[LabComm, 2017]. The sample frequency was 250 Hz. The robot joint torques were
logged and saved, and for each time sample t, a joint torque sequence was formed
by the samples in [t− npre− npost; t], and sent as input to the RNN. Measurements
after time t were not available at t, which is why the input only contained samples
up until t. Each sequence was classified in real-time. The computation time for one
classification was short; well below the sample period. To move the robot, desired
velocity references for the gripper in Cartesian space were first specified in the Julia
program. Then, the corresponding joint velocities were computed using the robot
Jacobian, and these were sent as references to the internal controller of the robot.

3. Experiments

Since the test set was used to determine the hyper parameters of the RNN, i.e.,
npre and npost, it was necessary to gather new measurements to evaluate the general
performance of the RNN. The experimental setup was similar to that in Sec. 2.2,
except that the measured torque sequences were saved and classified by the RNN,
instead of just saved to the training and test sets. The implementation in Sec. 2.4
was used for robot control and snap-fit detection. The robot was programmed to
first move its gripper down, thus pushing the switch against the box. Once a snap-fit
was detected, it was programmed to stop its downward motion, and instead move
the box to the side. The snap-fit assembly was repeated 50 times, to evaluate the
robustness of the proposed approach. The experimental setup is visualized in Fig. 3.

4. Results

The performance of the RNN on the test set, for different values of the hyper pa-
rameters, is shown in Table 1. The abbreviations are as follows: number of true
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Figure 4. The ABB YuMi robot [ABB Robotics, 2017] used in the experiments.

positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
The hyper parameters were increased until npre = npost = 5, for which perfect clas-
sification was obtained. Then, npost was decreased until the performance decreased
at npost = 2. With this value of npost, larger values of npre were tested (see second
last row in Table 1), which did not yield perfect classification for any values, i.e.,
F1 < 1. Thus, (npre,npost) = (5,3) was chosen for the final model.

After training, the RNN detected all 50 snap-fits in the experiments in Sec. 3
correctly, without any false positives prior to the snap. The torque data and RNN
output from one of the trials are shown in Figs. 5 and 6. The other trials gave quali-
tatively similar results.

5. Discussion

There are several alternatives to RNN for classification. Using an RNN is motivated
as follows. Two simpler models, matched filter and logistic regression, were tried
initially, without achieving satisfactory performance on test data. RNNs are special-
ized in processing sequential data, and the torque measurements used in this work
were sequential. Thanks to the parameter sharing of the RNN, it is possible to es-
timate a model with significantly fewer training examples, than would be needed
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Table 1. RNN performance on the test set, for different values of the hyper pa-
rameters. The row with the lowest value of npost that yielded perfect classification is
marked in blue. With these values, the model was trained and tested again, but now
with more negative data points (see last row, marked in red).

npre npost TP TN FP FN P R F1
1 1 20 500 0 5 1 0.80 0.89
2 2 22 500 0 3 1 0.88 0.94
3 3 23 498 2 2 0.92 0.92 0.92
4 4 23 500 0 2 1 0.92 0.96
5 5 25 500 0 0 1 1 1
5 4 25 500 0 0 1 1 1
5 3 25 500 0 0 1 1 1
5 2 22 500 0 3 1 0.88 0.94

[6;30] 2 - - - - - - <1
5 3 25 2500 0 0 1 1 1
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Figure 5. Data from one of the experiments. The robot joint torques (upper plot)
were used as input for the RNN. These are represented by one channel (Ch.) per joint.
The first element of the RNN output (ŷ1 in the lower plot) was close to 0 before the
snap-fit occurred, and increased to close to 1 at the time of the snap-fit. A snap-fit
was indicated when ŷ1 was above the decision boundary (DB, at 0.5) for the first
time. Thus, for detection purposes, the RNN output generated after this event was
not relevant.
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Figure 6. Same data as in Fig. 5, but zoomed-in on the time of the snap-fit. The leg-
end of the upper plot is absent for better visualization, but can be found in Fig. 5. The
snap-fit was detected at time t = 6.308 s. The first torque sequence to be classified as
positive was that within the vertical dashed lines in the upper plot.

without parameter sharing. Compared to models that are not specialized in sequen-
tial data, e.g., logit models, SVMs, and ordinary neural networks, the RNN is less
sensitive to variations of the exact time step in which some information in the in-
put sequence appears. An RNN can also be generalized to classify data points of
sequence lengths not present in the training set, though this was not used in this
present work. General properties of RNNs are well described in [Goodfellow et al.,
2016].

Compared to [Stolt et al., 2015], the approach proposed here had three new
benefits. A force sensor was no longer required, the detection delay was reduced,
and the computation time for model training was shortened. In [Stolt et al., 2015],
npost > 10 (corresponding to > 40 ms) was required for perfect classification,
whereas our proposed method required npost = 3 (12 ms). The training time of the
RNN was in the order of minutes on an ordinary PC, which was an improvement
compared to days in [Stolt et al., 2015].

The concept of weighted loss to compensate for class imbalance in machine
learning has been evaluated in [Japkowicz and Stephen, 2002], and successfully
applied to a deep neural network in [Panchapagesan et al., 2016]. Equation (4.6)
extends (4.5) by the factor wT

r yd , which evaluates to r for positive data points, and
to 1 for negative ones.

In Fig. 5, it should be noted that ŷ1 raised significantly above 0 at t ≈ 4.2 s,
even though no snap-fit occurred at that time. Even though the values were still
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well below the decision boundary, this leaves room for improvement in terms of
robustness of the detection.

Given a certain contact force/torque acting on the end-effector of the robot, the
corresponding joint torques depend on the configuration, as well as gravity and
friction. In order to generalize the detection to other robot states than the one used
in the training, it would be a good idea to estimate the contact forces/torques, by first
modeling the gravity and friction-induced torques, and subsequently compensating
for these.

Whereas the evaluation of the model was done in real-time in this work, the
RNN training was performed offline. It therefore remains as future work to create a
user interface that allows for an operator to gather training data and test data, label
them, and run the training procedure.

It is also important to shorten the reaction time of the robot, i.e., to further reduce
the value of npost. This could be done by including more sensors. For instance,
the snap-fit assembly generates a sound, easily recognized by a human. Adding a
microphone to the current setup, would therefore add information to the detection
approach. In turn, this could be used to decrease the required amount of training
data, improve robustness of the detection, or detect the snap-fit earlier.

6. Conclusion

In this work, we have addressed the question of whether robot joint torque measure-
ments, together with an RNN model, could be used for detection of snap-fits during
assembly. First, training and test data were gathered and labeled. Then, these were
used to determine the model parameters. Finally, a real-time application for snap-
fit detection was implemented and tested. The method presented seems promising,
since the resulting model had high performance, both on the test data and during the
experiments.
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