
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Guiding Development of Contribution and Community Strategies in Open Source
Software Requirements Engineering

Linåker, Johan

2019

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Linåker, J. (2019). Guiding Development of Contribution and Community Strategies in Open Source Software
Requirements Engineering. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/eb18263c-763c-4279-9e71-6e33faf2d4dc

Guiding Development of
Contribution and Community Strategies

in Open Source Software
Requirements Engineering

Johan Linåker

Doctoral Dissertation, 2019
Department of Computer Science

Lund University

ii

LU-CS-DISS 2019-03
Doctoral Dissertation 63, 2019

ISBN: 978-91-7895-173-4 (Printed)
ISBN: 978-91-7895-174-1 (Electronic)
ISSN: 1404-1219

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: johan.linaker@cs.lth.se
WWW: http://cs.lth.se/johan_linaker

Printed in Sweden by Tryckeriet i E-huset, Lund, 2019

© 2019 Johan Linåker

ABSTRACT

Background: For software-intensive organizations, Open Source Software (OSS)
may provide a pivotal building block in business models and strategies, product
and service offerings, as well as in tool and infrastructure setups. The Require-
ments Engineering (RE) and development processes of OSS take place inside
communities where the focal organization is a stakeholder among many, including
competitors. Therefore, to exploit the potential benefits of OSS, an organization
has to consider what it shares as OSS and how it engages with the OSS communi-
ties. By being too open, an organization may expose itself to risks such as giving
away differentiating functionality. On the contrary, being too closed may cause
misalignment between an organization’s RE process and that of a community.
Objective: The objective of this thesis is two-fold. Firstly, to create guidance for
organizations in making decisions of what to share as OSS in line with the orga-
nization’s business goals. Secondly, to create guidance for how an organization
can identify OSS communities where they need to have an influence on the RE
process, and how they can gain it, in order to achieve its internal agenda.
Research Methodology: We used a design science research approach, applying
empirical software engineering research methods to investigate the problem con-
text and design and validate solution artifacts that may be used as treatments in
the problem context. The relevance of the research has been maintained through a
close industry collaboration with several case studies and interview surveys.
Results: To address the two objectives, we introduce the two concepts of con-
tribution and community strategy. Contribution strategies answer the questions if
a software artifact (e.g., a feature or project) or parts of it should be released as
OSS, when in time, and if it should be contributed to an existing OSS community,
or if a new community should be established. Community strategies answer the
questions what OSS communities an organization considers as important and need
to have an influence on in terms of their RE process, and also how this influence
may be gained. The thesis offers problem understanding of how organizations rea-
son in terms of these questions, as well as guidance for how the different types of
strategies may be developed. In regards to contribution strategies, results also offer
guidance on how to create supporting guidelines, processes, and infrastructure on
an organizational level.

iv

Conclusion: The results of this thesis are captured in a number of frameworks,
models, and methods. These artifacts contribute to an understanding of the prob-
lem context and provide design knowledge and exemplars that may be transferred
and implemented by organizations in a real-world problem context. Evaluation of
such a technology transfer is a topic for future work.

POPULAR SCIENCE
SUMMARY

ÖPPEN KÄLLKOD ÖPPNAR
NYA DÖRRAR

JOHAN LINÅKER, DEPARTMENT OF COMPUTER SCIENCE

Organisationer inom både privat och offentlig sektor har mycket att vinna på att
börja utveckla och dela med sig av sin mjukvara som öppen källkod. Ökad inno-
vation och produktivitet, och likaså nya affärsmöjligheter är några av fördelarna.
Men för att kunna ta del av fördelarna behöver organisationer bestämma vilken
mjukvara de delar med sig av, när och hur. Eventuella kostnader och risker be-
höver övervägas, hanteras och vägas mot det potentiella värdeskapandet. Organ-
isationer kan då skapa tydliga strategier för hur de kan öppna både sig själva och
sin mjukvara.

Denna avhandling har undersökt hur organisationer inom privat och offentlig sek-
tor kan utforma dessa typer av strategier. Undersökningarna har resulterat i besluts-
stöd bestående av tre delar vilka denna artikel ger en översiktlig introduktion till.

Mjukvara som öppen källkod

När en mjukvara benämns som öppen källkod betyder det att källkoden som mjuk-
varan är uppbyggd av får användas, läsas och redigeras samt distribueras vidare
fritt, givet vissa villkor som finns definierade i en licens. Öppenheten medför
att källkoden kan utvecklas transparent tillsammans av både enskilda personer,

viii

företag och offentliga organisationer. Dessa intressenter deltar i utvecklingen av
projekten drivna av deras egna motiv och agendor.

Delningsstrategier för öppen källkod

Den första delen av beslutsstödet hjälper berörda organisationer att utveckla vad
vi benämner som delningsstrategier. Dessa strategier definierar vilken mjukvara
som bör öppnas upp, när och med vem. Med hjälp av beslutsstödet kan organ-
isationer skapa dessa strategier samt utforma nödvändiga besluts- och uppföljn-
ingsprocesser som krävs för att implementera dessa.

För att skapa en delningsstrategi bör en organisation dels sätta upp relevanta mål
som de önskar uppnå genom att öppna upp sin mjukvara, och dels analysera hur
dessa mål ska uppnås och är motiverade i förhållande till identifierade risker, kost-
nader samt andra komplicerande aspekter. Beslutsstödet pekar ut ett antal mål och
aspekter baserat på fallstudier och observationer hos fyra större organisationer som
på olika sätt nyttjar och delar med sig utav mjukvara som öppen källkod.

Bland de vanligast förekommande målen som identifierats kan exempelvis näm-
nas att skapa kostnadsbesparingar genom delat underhåll, öka inflöde av innovativa
funktioner, samt förbättra ryktet som arbetsgivare för utvecklare. Ett mer strate-
giskt mål kan vara att skapa en ny standardlösning för att på så sätt ta sig in på nya
marknader och skapa plattformar för tredjepartsprodukter. För privata organisa-
tioner kan ytterligare en anledning vara att försvåra affärsmöjligheter för konkur-
renter genom att öppna upp mjukvara som är differentierande för bägge parter.
Motsatt sätt kan det för offentliga organisationer vara ett sätt att tillgängliggöra
en infrastruktur och plattform för att möjliggöra för fler privata organisationer att
konkurrera på aktuell marknad.

En av de vanligaste riskerna som identifierats bland privata organisationer är att
de skulle råka ge bort sina ”kronjuveler”, det vill säga mjukvara som är differen-
tierande för organisationen och som utgör en viktig konkurrensfördel. Dock är det
vanliga fallet att det är en begränsad del av mjukvaran som är så pass värdefull
att den bör hållas stängd. Genom att identifiera och separera de delar som ger en
konkurrensfördel kan övriga delar fortfarande öppnas upp. För offentliga organi-
sationer kan ambitionen vara den motsatta. Där kan syftet vara att dela den mest
differentierande mjukvaran för att skapa störst värde för mjukvarans potentiella
användare. En risk är dock att detta potentiellt kan skada vissa organisationers
affärsmöjligheter, varför en noggrann analys bör göras innan mjukvaran delas.

En relaterad fråga till vad som bör delas och när, är om mjukvaran ska delas med ett
befintligt öppen källkodsprojekt eller om ett nytt bör skapas. Att dela med sig till
ett befintligt projekt är ofta att föredra då alternativet är både kostsamt och riskfyllt.
För att tryggt kunna dela med sig mjukvara till ett befintligt projekt kan berörd
organisation behöva en viss nivå av inflytande över projektets utveckling. Detta
då det kan finnas andra intressenter involverade i projektet som har avvikande

ix

agendor och skulle kunna motsätta sig att den aktuella mjukvaran accepteras som
ett bidrag till projektet.

Projektstrategier för öppna källkodsprojekt

Den andra delen av beslutsstödet fokuserar därför på att hjälpa organisationer
skapa projektstrategier som beskriver hur de bör agera för att få ett inflytande samt
identifiera de projekt där inflytandet behövs. Beslutsstödet beskriver hur en projek-
tstrategi ska ta hänsyn både till den affärsmässiga och tekniska kopplingen mellan
ett projekt och en organisation, likaså möjligheten att faktiskt bygga upp infly-
tandet i projektet. Därutöver pekas åtta tillvägagångssätt ut som en organisation
sedan kan nyttja för att bygga upp detta inflytande. Inom samtliga tillvägagångssätt
är det avgörande att organisationen engagerar sig i utvecklingen av projektet och
delar med sig av exempelvis kunskap, mjukvara och andra typer av resurser.

Intressentanalyser av öppna källkodsprojekt

För att underlätta utformande och beslut av delnings- respektive projektstrategier
omfattar den tredje delen av beslutsstödet en metod för att utföra intressentanalyser
av öppna källkodsprojekt. En sådan analys besvarar frågor kring vilka intressen-
terna till projektet är, hur stort inflytande de har över projektets utveckling, samt
vad deras respektive agenda utgör. Metoden kan därigenom exempelvis hjälpa
med att identifiera potentiella samarbetspartners samt konkurrenter, och bygger på
att interaktioner mellan individer involverade i utvecklingen av projekt visualiseras
och analyseras i form av sociala nätverk. Genom dessa nätverk kan sedan de indi-
vider, och därigenom de organisationer, som är de mest centrala eller inflytelserika
identifieras och därefter deras respektive agendor undersökas närmre.

Öppen källkod öppnar nya dörrar

Det finns flera faktorer som kan tala både för och emot om en mjukvara bör öpp-
nas upp, tillika när och hur. Dessa bör identifieras, analyseras och vägas mot
varandra för att ett välgrundat beslut ska kunna fattas. Vilka faktorer som är rele-
vanta varierar mellan olika sammanhang, exempelvis typen av organisation, dess
affärsmodell samt hur aktuell mjukvara och eventuella öppna källkodsprojekt kop-
plar till denna. Vårt forskningsbaserade beslutsstöd visar hur delnings- och pro-
jektstrategier kan skapas och hjälpa berörda organisationer i deras arbete med att
öppna upp både sig själva och sin mjukvara, och därmed kunna ta del av de många
fördelar som öppen källkod öppnar upp för.

ACKNOWLEDGEMENTS

This work was funded by the Swedish National Science Foundation Framework
Grant for Strategic Research in Information and Communication Technology, project
Synergies (Synthesis of a Software Engineering Framework for Open Innovation
through Empirical Research), grant 621-2012-5354, and the industrial excellence
center EASE (Embedded Applications Software Engineering)1.

Funding aside, I would like to express my deepest gratitude to everyone, with-
out whose help this doctoral thesis would not be possible. Special thanks goes out
to Prof. Dr. Björn Regnell and Prof. Dr. Per Runeson for providing excellent and
comforting guidance throughout this process. A special thanks also goes to Prof.
Dr. Daniela Damian at University of Victoria for both her mentorship and support.

Thanks to Dr. Hussan Munir for the long and intellectual discussions ;) And
thanks to everyone else, past and present, at the Software Engineering Research
Group and Department of Computer Science at Lund University for being awe-
some colleagues and providing a stimulating and fun working-atmosphere. Also,
thanks to Sony Mobile in Lund, as well as the other case organizations for pros-
perous collaborations and for making the research relevant for practitioners.

Lastly, I would like to thank those who tolerate me outside of work, like my
beautiful and loving wife Christine Cleyton Jørgensen and two wonderful sons
Vilhelm and Folke, and also to the rest of my family and friends for making life
joyful, great and awesome in all regards.

Cheers!
Johan Linåker

1http://ease.cs.lth.se

LIST OF PUBLICATIONS

In the introduction chapter of this thesis, the included and related publications
listed below are referred to by Roman numerals.

Publications included in the thesis
I Open Innovation using Open Source Tools: A Case Study at

Sony Mobile
Hussan Munir, Johan Linåker, Krzysztof Wnuk, Per Runeson and Björn
Regnell. Empirical Software Engineering, 2018, 23:186-223.

II Motivating the Contributions: An Open Innovation perspective on What
to Share as Open Source Software
Johan Linåker, Hussan Munir, Krzysztof Wnuk and Carl Eric Mols. Journal
of Systems and Software, 2018, 135:17-36.

III A Community Strategy Framework – How to obtain Influence on
Requirements in Meritocratic Open Source Software Communities?
Johan Linåker, Björn Regnell and Daniela Damian. Information and Soft-
ware Technology, 2019, in press.

IV A Method for Analyzing Stakeholders’ Influence on an Open Source
Software Ecosystem’s Requirements Engineering Process
Johan Linåker, Björn Regnell and Daniela Damian. Requirements Engineer-
ing, 2019, in press.

V A Contribution Management Framework – What to share as Open Source
Software?
Johan Linåker and Björn Regnell. Unpublished manuscript.

xiv

Related Publications

Related publications that are not included in this thesis:

VI High-level software requirements and iteration changes: a predictive
model
Kelly Blincoe, Ali Dehghan, Abdoul-Djawadou Salaou, Adam Neal, Johan
Linåker and Daniela Damian. Empirical Software Engineering, 2018, in
press.

VII Predicting likelihood of requirement implementation within the planned
iteration: an empirical study at IBM
Ali Dehghan, Adam Neal, Kelly Blincoe, Johan Linåker and Daniela Damian.
In Proceedings of the 14th International Conference on Mining Software
Repositories (MSR), Buenos Aires, Argentina, pp. 124-134, 2017.

XIII A Contribution Management Framework for Firms Engaged in Open
Source Software Ecosystems-A Research Preview
Johan Linåker and Björn Regnell. In Proceedings of the 23rd International
Working Conference on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ), Essen, Germany, pp. 50-57, 2017.

IX The open source officer role - experiences
Carl Eric Mols, Krzysztof Wnuk and Johan Linåker. In Proceedings of the
13th IFIP International Conference on Open Source Systems (OSS), Buenos
Aires, Argentina, pp. 55-59, 2017.

X How firms adapt and interact in open source ecosystems: analyzing
stakeholder influence and collaboration patterns
Johan Linåker, Patrick Rempel, Björn Regnell, Patrick Mäder. In Proceed-
ings of the 22nd International Working Conference on Requirements Engi-
neering: Foundation for Software Quality (REFSQ), Gothenburg, Sweden,
pp. 63-81, 2016.

XI Requirements Analysis and Management for Benefiting Openness
Johan Linåker and Krzysztof Wnuk. In Proceedings of the 9th International
Workshop on Software Product Management (IWSPM), Beijing, China, pp.
344-349, 2016.

XII A survey on the perception of innovation in a large product-focused
software organization
Johan Linåker, Hussan Munir, Per Runeson, Björn Regnell and Claes Schrewelius.
In Proceedings of the 6th International Conference of Software Business
(ICSOB), Braga, Portugal, pp.66-80, 2015.

xv

XIII Requirements engineering in open innovation: a research agenda
Johan Linåker, Björn Regnell, Hussan Munir. In Proceedings of the 1st In-
ternational Workshop of Open Innovation in Software Engineering (OISE),
Estonia, Tallin, pp. 208-212, 2015.

XIV On infrastructure for facilitation of inner source in small development
teams
Johan Linåker, Maria Krantz, Martin Höst In Proceedings of the 15th In-
ternational Conference on Product-Focused Software Process Improvement
(PROFES), Helsinki, Finland, pp. 149-163, 2014.

xvi

Contribution statement
All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-V are as follows:

Paper I
Dr. Hussan Munir was the lead author and together with Johan Linåker were
responsible for the design, execution, analysis and reporting of the study. Dr.
Krzystof Wnuk was involved in performing the interviews. Together with Prof.
Dr. Per Runeson and Prof. Dr. Björn Regnell, he was also involved in design and
review of the study.

Paper II
Johan Linåker was the lead author and together with Dr. Hussan Munir were
responsible for the design, execution, analysis and reporting of the study. Dr.
Krzysztof Wnuk was also involved throughout the study, including both writing
and reviewing the paper. Carl-Eric Mols was involved in the creation the CAP-
model and its usage.

Paper III
Johan Linåker was overall responsible for the study regarding design, execution,
analysis and reporting. Prof. Dr. Björn Regnell and Prof. Dr. Daniela Damian
contributed by providing reviews and design-inputs throughout the study.

Paper IV
Johan Linåker was overall responsible for the study regarding design, execution,
analysis and reporting. Prof. Dr. Björn Regnell and Prof. Dr. Daniela Damian
contributed by providing reviews and design-inputs throughout the study.

Paper V
Johan Linåker was overall responsible for the study regarding design, execution,
analysis and reporting. Prof. Dr. Björn Regnell contributed by providing reviews
and design-inputs throughout the study.

CONTENTS

Introduction 1
1 Introduction . 1
2 Research Approach . 4
3 Background and Related Work 13
4 Results . 21
5 Synthesis and Main Contributions 29
6 Threats to Validity and Ethical Aspects 35
7 Future Work . 37
8 Conclusions and Main Contributions 39

Included papers 41

I Open Innovation through the Lens of Open Source Tools: An ex-
ploratory case study at Sony Mobile 43
1 Introduction . 44
2 Related work . 46
3 Case study design . 48
4 Quantitative analysis . 58
5 Qualitative analysis . 63
6 Results and discussion . 73
7 Conclusions . 80

Appendix A Supplementary interview questionnaire 83

II Motivating the Contributions: An Open Innovation Perspective on
What to Share as Open Source Software 87
1 Introduction . 88
2 Related work . 89
3 Research methodology . 97
4 The Contribution Acceptance Process (CAP) Model (RQ1) 106
5 Operationalization of the CAP model (RQ2) 116

xviii CONTENTS

6 Combining the CAP Model and the Information Meta-model . . . 119
7 Case studies . 122
8 Discussion . 130
9 Conclusion . 133

III A Community Strategy Framework –
How to obtain Influence on Requirements in
Meritocratic Open Source Software Communities? 135
1 Introduction . 136
2 Related Work . 138
3 Research Design . 142
4 Community Strategy Framework 146
5 Framework application example: Jenkins and Gerrit 155
6 Discussion . 158
7 Threats to Validity . 161
8 Conclusions . 162

IV A Method for Analyzing Stakeholders’ Influence on an Open Source
Software Ecosystem’s Requirements Engineering Process 165
1 Introduction . 166
2 Research Approach . 168
3 The Stakeholder Influence Analysis (SIA)

method . 169
4 Case Study of Apache Hadoop OSS Ecosystem 182
5 Discussion . 190
6 Conclusions . 193

Bibliography 195
References . 195

INTRODUCTION

1 Introduction

Sharing internally developed software as Open Source Software (OSS), as well
as partaking in the open development of such software may seem counter-intuitive
for some software-intensive organizations [82]. By contributing the software to an
existing community, or by releasing it within a new community, the software is
commoditized, and free to use, modify, and also distribute given that conditions
defined in the software’s OSS license are met. Chesbrough explains the rationale
with the term Open Innovation (OI) which implies a distributed innovation pro-
cess where an organization goes beyond its own borders in a process of creating,
delivering and capturing value (monetary or non-monetary) [29]. Instead of solely
relying on their internal research and development, organizations are encouraged
to open up and take advantage of external ideas, resources, and knowledge, e.g.,
through sourcing or acquisition [36]. In a similar fashion, organizations should
also consider if and how internal knowledge and intellectual property could be
exploited in a more profitable manner externally, e.g., through revealing or sell-
ing [36]. Either way, or combined, OI highlights the importance of recognizing
the external workforce that resides outside of the organization, and the knowledge
and competencies that they possess [210].

In the case of OSS, the external workforce is constituted by the community of
actors that through one or more common incentives collaboratively see to the de-
velopment and maintenance of the OSS [201]. The community may also be framed
as a software ecosystem using the definition by Jansen et al. [93] where the OSS
constitutes the ”common technological platform” that underpins the relationships
and interactions between the actors. Through this analogy, organizations applying
OSS from an OI perspective may be seen as members of an OSS ecosystem [132].

From a business model perspective, the OSS may be used as a direct part of an
organization’s product offering, e.g., through an open core or platform-extension
model [205], as a basis for support, subscriptions and professional services [31], or
as part of a duel-licensing model [210]. However, it may also be the case that the

2 INTRODUCTION

value comes indirectly when the OSS is used as an enabler for the organizations’
product offerings, e.g., as a development component or as part in the tool and in-
frastructure setup, supporting the development and delivery of the organization’s
product [81]. It may also be a combination of such direct and indirect factors. For
example, in asymmetric business models, the software is made open in order to
capture value from additional products, services and data gathering that is man-
aged through the OSS [184]. The potential value that motivates these different
usages of OSS has its foundation in the external workforce that is available in the
OSS community [149]. As explained by OI [29], this can help the organization
to strengthen and advance its internal technology capabilities, both in regards to
their product and process levels. The new workforce can further help to share the
burden of maintenance and development, as well as potentially increase the quality
of the software and decrease in the time-to-market [193].

To gain the potential benefits, an organization needs to ”open up” as hinted by
Chesbrough [33]. However, deciding what should be opened-up, or contributed, is
a complex matter [82,149]. Giving away differentiating, or in other ways sensitive
intellectual property rights, especially to competitors, may have negative effects
on both for existing and future business (e.g., [82, 83, 92, 200, 210, 219]). The
timing of a contribution is expressed by Wnuk et al. [219] as a balance between
losing a competitive edge and increased maintenance costs. Waiting too long may
imply alternative solutions being adopted with the focal organization2 having the
choice to either adapt or maintain their internal solution [147]. Where to contribute
is a third challenge. When contributing the software artifact to an existing OSS
community, not governed by the organization itself [162], the organization needs
to consider the RE process of the community [181]. An option is to release the
software as an independent OSS project and build a new community around it,
which may require significant investment as well [104, 211]. The answers to what
should be contributed, where, and when, are defined in this thesis as a contribution
strategy.

However, as exemplified, to answer these questions and decide on a contribu-
tion strategy a number of complexities may need to be considered. Some of these
may not be relevant to all organizations. Contribution processes can, for example,
be more liberal in organizations or business units where the OSS used is not con-
sidered to provide a competitive advantage [147]. Contextual factors also play a
role in terms of how value is perceived for an organization, which motivates why
a contribution should be made [121]. By not considering relevant complexities or
benefits, an organization may risk making a contribution that could be harmful,
or on the opposite, block a contribution that could have been beneficial for the
organization and its business goals [219]. Organizations hence need to link their
business goals with their contribution strategies, why the first research goal of this
thesis is:

2The organization which perspective is implied.

1 Introduction 3

RG1: To design a solution that supports software-intensive organizations in de-
veloping contribution strategies that align with the organizations’ business
goals.

If the organization intends to contribute to an existing OSS community, they
have to consider participation in the external RE process of the community, and
how to bridge such participation with their internal process [123]. In contrast to the
latter, the RE process in OSS communities can usually be characterized as being
informal and decentralized with a focus on collaboration and transparency [52,
181]. These characteristics further highlight that the focal organization may no
longer be the vantage point as the case in their internal RE process [178]. In the
OSS community, the focal organization may be considered as a stakeholder among
others in the fluctuating and open stakeholder population. This may imply risks
of conflicting agendas [149] and difficulty in aligning internal strategies and pro-
cesses with those of the community [149]. To manage such risks an organization
may need to gain and maintain a suitable position in the community’s governance
structure [10] in order to have the influence needed in regards to the community’s
RE process [219].

With influence, we refer to the Merriam-Webster dictionary3 which defines it
as “the power to change or affect someone or something”. In our context, influ-
ence relates to the power of an organization to change or affect a requirement of
interest in an OSS community, for example, how a requirement is specified, pri-
oritized, and realized, both short-term in release-planning, and long-term on the
road-map [71, 113, 157].

In OSS communities with a meritocratic governance structure [45,134], either
in part or in full [186], influence may be gained by proving merit and earning
trust and status within the community [56]. What merit constitutes depends on
the context [49, 164], but is generally gained by building an active and symbiotic
relationship with the community where an organization dedicates resources, con-
tributes internal requirements and actively participates in the development of the
OSS [24, 37, 39, 156, 183, 194]. Besides enabling an organization to contribute,
gaining influence in a meritocratic OSS community also offers an opportunity to
influence the community’s RE process according to the organization’s own agenda
while competing and collaborating with the other stakeholders in the commu-
nity [156]. An organization in the problem context may, therefore, have to consider
the questions what OSS communities they view as important and need to have an
influence on in terms of the RE process, and also how this influence may be gained.
Answers to these question are defined in what this thesis refers to as a community
strategy. As with contribution strategies, organizations should strive to align the
community strategies with business goals, why the second research goal of this
thesis is:

3http://www.merriam-webster.com/dictionary/influence

4 INTRODUCTION

RG2: To design a solution that supports software-intensive organizations in de-
veloping community strategies that align with the organizations’ business
goals.

The challenges infused by an OSS community’s stakeholder population illus-
trates the importance of stakeholder identification and analysis as input to the con-
tinuous and complex decision-making process which RE constitutes [8]. Such
analysis could help an organization engaged (or thinking of getting engaged) in
a community by answering the questions which other stakeholders exist in the
community, what are the different stakeholders’ agendas, and how do they aim
to achieve their respective agendas [63]? Answers may help an organization to
identify possible partners and competitors [178], as well as to learn how to adapt
its own strategies and processes with the OSS community’s and how to build its
own influence and position the community’s governance structure [10]. The know-
ledge output can then be leveraged towards other stakeholders through the politics
and negotiations that take place in the community’s RE process [137]. The third
research goal of this thesis is, therefore:

RG3: To design a solution that supports software-intensive organizations in an-
alyzing stakeholders’ influence on an Open Source Software community’s
Requirements Engineering process.

To address RG1-3, this thesis and its included papers use a design science
research approach which is further explained in Section 2. In Section 3, more
background, and related work are presented to provide further contextualization of
the research goals as well as the contributions of this thesis. The results of each
of the included papers are presented in Section 4, followed by a presentation of
the synthesis and main contributions of this thesis in Section 5. Threats to validity
and ethical aspects of the research are discussed in Section 6. Lastly, future work
is discussed in Section 7, followed by the conclusions and a summary of the main
contributions of this thesis in Section 8.

2 Research Approach

This thesis has used a design science research approach within and between
Papers I-V. Below, a conceptualization of design science as a research approach is
first presented to provide a common frame of reference for the rest of the thesis.
This is followed by a short description of the case study research method which is
used in a majority of the included papers. The research design is then presented of
the of the thesis on a general level, and in regards to the individual papers included.

2 Research Approach 5

2.1 Conceptualization of Designs Science

Wieringa [216] describes design science as consisting of two parts, the design and
investigation of an artifact in a problem context. The artifact is designed to in-
teract with the problem context and provide an improvement. The design part is
focused on solving design problems by designing artifacts that may improve the
problem contexts for concerned stakeholders. The investigation part is focused
on answering knowledge questions about the artifacts in their respective problem
contexts. Wieringa views design problems and knowledge questions as two inter-
related types of research problems. The former “calls for a change in the world”,
while the latter calls for knowledge about the world as is [215]. This generates an
iteration between the design and investigation, where a design problem renders in
knowledge questions or vice versa [216].

Aligning with van Aken [3], the focus of design science can, therefore, be
said to investigate and understand a real-world problem in its context and develop
knowledge that can be used to design artifacts that may provide an improvement,
or solve the problem in question in the real world. Producing such prescriptive
knowledge, also referred to as design knowledge [3], aligns with the aim of most
software engineering research which is to provide advice for practitioners within
the problem context on how to act given various situations [192]. The prescription-
driven design sciences, such as software engineering [216], can be contrasted with
the description-driven explanatory sciences where the focus is to describe, explain
and possibly predict observable phenomena in the field of study [3].

The design knowledge can be captured and described in a technological rule,
defined by van Aken [3] as “a chunk of general knowledge, linking an interven-
tion or artefact with a desired outcome or performance in a certain field of ap-
plication”. Storey et al. [192] continue and explain how a technological rule cap-
tures general knowledge mapping between a problem-solution pair. A rule can be
phrased as: “to achieve <Effect> in <Situation> apply <Intervention>” [192].

A technological rule can in this sense be compared to what Wieringa refers
to as a treatment [216] which he borrows from the health care domain - “. . . it
naturally suggests an artifact (medicine) interacting with a problem context (the
human body) to treat a real-world problem (contribute to healing)”. Design sci-
ence research should hence consider not just the artifact independently, but also
how it interacts with the problem context. The artifact can conceptually be “any
designed object in which a research contribution is embedded in the design” [169],
e.g., methods, frameworks, and algorithms [86, 216]. The artifact can thereby be
seen as a container for what van Aken refers to as design knowledge.

The process for conducting design science research is a creative and iterative
process carried out in design cycles [216]. A design cycle consists of three tasks:
problem investigation, treatment design, and treatment validation (cf. processes
suggested by Peffers et al. [169] and Hevner [85, 86]). In the problem investi-
gation, the mission is to understand the problem and gather knowledge about its

6 INTRODUCTION

context. Knowledge gained is then used to design a treatment which is then vali-
dated in a modeled version of the problem context. Knowledge gathered from the
validation is then used to refine problem understanding and the treatment design
in the next design cycle. When the validity of the treatment is deemed acceptable,
the treatment is implemented, i.e., transferred and applied to a real-world prob-
lem context and evaluated (cf. technology transfer [76]). The implementation and
its evaluation are not part of the design cycle, but of a larger engineering cycle,
usually carried out outside of the scope of design science research projects [216].
This aligns with van Aken who emphasizes that design knowledge and technolog-
ical rules should be used by the practitioners in the problem context who in turn
can develop context-specific solutions.

In this thesis we use the terminology proposed by Wieringa with the differ-
ence that we refer to the artifact directly instead of the treatment. The interaction
between the artifact and the problem context is described implicitly in the presen-
tation of the artifacts. For example instead of treatment design and validation, we
refer to these phases as artifact design and validation.

As highlighted in literature [192], rigor and relevance are two important crite-
ria in design science research. A risk is that one of the criteria will suffer to the
benefit if the other. For example, if a study is too focused on rigor and the theoret-
ical contributions, design of the artifact and relevance for practitioners may suffer.
Conversely, if the research design is too pragmatic and flexible, rigor and quality of
the artifact’s underlying design knowledge may suffer. Hence, design science re-
search needs to consider and balance both rigor and relevance when design cycles
are conducted [85, 86].

2.2 The Case Study Research Method

Within a design science research project, several empirical software engineering
research methods may be applied, e.g., case studies [180], experiments [221], sur-
veys [141] and considering expert opinions [216]. In the artifact validation phase
specifically, technical action research [217] may be a further option where a pro-
totype of the artifact is field-tested in a real-world problem context. Of these, the
case study is the primary method used in this thesis (see Papers I, II, IV and V).
van Aken mentions the multiple case study as a typical method to study and test
technological rules [3]. Design knowledge generated from one case can be tested
and refined in another.

Following the definition by Runeson et al. [180], a case study investigates an
instance of a contemporary software engineering phenomenon within a real-world
context [180]. The method can offer in-depth knowledge and understanding of the
phenomena in how and why it occurs [48]. In the problem investigation phase, the
case study will focus on observing and investigating the phenomenon without in-
tervening [216], i.e., maintaining either an exploratory, descriptive or explanatory
purpose [180]. Case studies with an improving purpose, similar to action research,

2 Research Approach 7

may also be applied in the latter phase of a design cycle, i.e., the artifact valida-
tion [180, 216]. In this phase, the case study will focus on the introduction of an
artifact prototype into a real-world problem context and study the effects that arise,
and whether these are in line with the stakeholders’ expectations.

A case study can be either inductive or deductive in its investigation [180].
The former implies that theory is derived from the observations, while in the latter,
research starts from a theory with a set of hypotheses which are either confirmed
or rejected in the analysis.

2.3 Research Design
This thesis presents five papers referred to as Papers I-V as presented in Fig. 1 and
Table 1. Depending on the research objective, the papers can have an exploratory
or improving focus. Paper I investigates the problem context and creates a know-
ledge base for Papers II-V by exploring how a software-intensive organization
engages with OSS communities’ RE and development processes from an OI per-
spective through a case study on Sony Mobile. The paper rendered in the definition
of RG1 of this thesis, which was addressed through a continued research collabo-
ration with Sony Mobile in Paper II. The collaboration provided an opportunity to
get in-depth knowledge on their ways of working with contribution strategies and
designing a first artifact that may be used to develop such strategies.

Figure 1: Overview of Papers I-V, and how they relate to RG1-3 and each other.

Based on the new understanding of the problem context, RG2-3 of this thesis
were defined. RG2 is addressed in Paper III where a framework for developing
community strategies is presented based on an iterative interview survey. Paper IV
proposes a method for analyzing stakeholders’ influence on an OSS community’s
RE process in response to RG3. The method is based on a social network analysis
approach used in earlier work [124] and a literature review, and is demonstrated
through a case study of the Apache Hadoop OSS community. Lastly, Paper V

8 INTRODUCTION

Table 1: Overview of the different papers and their main objective, type of data
and design cycle phases represented.

Paper RG Research
method

Main
objective

Type of data Design cycle phases

I 1-3 Single-case
study

Exploratory Quantitative
and Qualitative

Problem investigation

II 1 Single-case
study

Improving Quantitative
and Qualitative

Problem investigation,
artifact design, artifact
validation

III 2 Interview
survey

Improving Qualitative Problem investigation,
artifact design, artifact
validation

IV 3 Single-case
study

Improving Quantitative Problem investigation,
artifact design, artifact
validation

V 1 Multiple-
case study

Improving Qualitative Problem investigation,
artifact design, artifact
validation

advances the results from Paper II and addresses RG1 by presenting a framework
for developing contribution strategies and setting up a contribution process based
on a multi-case study with two private and one public organization. Below we
present the research design of each paper in detail.

Paper I

Title: Open Innovation using Open Source Tools: A Case Study at Sony Mobile

Paper I addresses RG1-3 through an exploratory case study [180] at Sony Mo-
bile and its Tools department. The Tools department consists of about 15 engi-
neers which develop and maintain the development infrastructure for Sony Mo-
bile’s product development teams. One such infrastructure includs the continuous
intergration tool-chain. Units of analysis for this study were the Jenkins and Gerrit
OSS, which both constituts pivotal parts of the this tool-chain. Jenkins4 is a build
server, and Gerrit5 a tool enabling peer-review of code commits.

From an OI perspective (see Fig. 2), the Tools department constituted the focal
point of Sony Mobile through which the interactions with the Jenkins and Gerrit
OSS communities was performed. A case-study protocol was created and main-
tained during the process of conducting the study. The study started with mining

4https://jenkins.io/
5https://www.gerritcodereview.com/

2 Research Approach 9

Figure 2: The Jenkins and Gerrit OSS communities surrounded by Sony Mobile
and other members. Arrows represent knowledge transfer in and out of the com-
munity members such as other software organizations, non profit organizations
(NPO) and individuals, which in turn are illustrated by funnels, commonly used in
OI literature [29].

and analyzing commit data for both OSS projects, after which a number of sub-
projects were identified having involvement from Sony Mobile employees. These
sub-projects were then analyzed quantitatively in regards to stakeholder population
on an organizational level, and type and distribution of commits. Semi-structured
interviews were conducted with three developers at Sony Mobile that was iden-
tified through the commit-data. Two more interviews were performed where the
interviewees were recommended by the first three. The five interviews were audio-
recorded, transcribed and coded thematically [35]. The output from the coding
processes was communicated and validated with interviewees.

Paper II

Title: Motivating the Contributions: An Open Innovation perspective on
What to Share as Open Source Software

Paper II addresses RG1 using a design science research approach [86] with
a case study of Sony Mobile. Sony Mobile is a multinational organization with
roughly 5,000 employees, developing mobile phones and tablets. The studied
branch is focused on developing Android based phones and tablets and has 1600
employees, of which 900 are directly involved in software development. Sony
Mobile develops software using agile methodologies and uses software product

10 INTRODUCTION

line management with a database of more than 20,000 features suggested or im-
plemented across all product lines [170]. Sony Mobile is a mature user of OSS
with involvement in several OSS projects. Their existing processes for managing
contribution strategies and compliance issues is centrally managed by an internal
group referred to as their OSS governance board [147].

Iterative design cycles included informal consultations with four experts at
Sony Mobile who were involved in the decision-making regarding the contribu-
tion process to OSS communities. Internal documentation of the contribution pro-
cess and policies was also used and analyzed. A Contribution Acceptance Process
(CAP) model was designed based on a purchasing and sourcing model proposed by
Kraljic [109]. To allow for operationalization of the CAP model, an information
meta-model was created to support the communication and follow-up of contri-
bution strategies attached to software artifacts. This meta-model was created, in
consultation with experts Sony Mobile and based on an exploratory analysis of
Sony Mobile’s software artifact repositories connected to the Android platform
used in their products. The CAP model was validated on three case organizations
in terms of applicability and usability.

Paper III

Title: A Community Strategy Framework – How to obtain Influence on
Requirements in Meritocratic Open Source Software Communities?

Paper III addresses RG2 using a design science research approach [216]. The
problem investigation phase included a series of ten semi-structured interviews
with industry professionals to explore the problem context. The interview tran-
scripts were coded with an inductive approach resulting in the first design of a
Community Strategy Framework (CSF). To validate and refine the design, seven
interviews were conducted, where the interviewees were presented with the CSF
and asked questions regarding its completeness and correctness. To evaluate the
applicability and utility of CSF [86], in one of these interviews, the framework was
also applied to a fictitious example based on an earlier reported case study [147].
As the last step, a case validation was conducted by interviewing four industry pro-
fessionals from a software-intensive organization engaged in multiple OSS com-
munities. Questions focused on the validity of CSF in the context of the organiza-
tion’s community engagements.

In total, we conducted 21 interviews with 18 industry professionals from 12
different software-intensive organizations. The interviewees all held positions
with responsibilities relevant to understanding how their respective firms work
and engage with OSS communities. Role titles included OSS Program Officer,
Community manager and OSS Strategist. Interviewees were selected based on
convenience sampling. In their respective organizations, OSS was used in tool and
infrastructure setups, as well as in software- and hardware-based products. 9 out
of the 12 organization had a size of 250 employees or more.

2 Research Approach 11

Paper IV

Title: A Method for Analyzing Stakeholders’ Influence on an Open Source
Software Ecosystem’s Requirements Engineering Process

Paper IV addresses RG3 using a design science research approach [216]. The
problem investigation phase consisted of the earlier reported case study the Apache
Hadoop OSS community [124] and a review of literature related to OSS RE, stake-
holder theory and analysis, and social network analysis. A Stakeholder Influence
Analysis (SIA) method was designed by conceptualizing the research approach
used in the aforementioned case study [124] and considering the identified liter-
ature. SIA was demonstrated in terms of applicability and utility through an ex-
tension of the earlier reported case study on the Apache Hadoop OSS community
by also considering comments made by stakeholders to common issues. Hence,
both patch and comments-based networks could be created. The stakeholders’ in-
teractions were studied based on their contribution of patches to and comments
on issues included in releases R2.2.0 (2013-10-15) to R2.7.1 (2015-07-06). These
issues were mined from the community’s JIRA issue tracker by implementing a
crawler. Directed affiliation-networks were created where two stakeholders (rep-
resented as nodes) were connected with edges if they had both contributed a patch
to or commented on a common issue. These edges were weighed based on the size
of each stakeholder’s contribution relative to the other in terms of net changed lines
of code or the relative number of comments. Developers’ organizational affiliation
was determined based on email-domain analysis complemented with a qualitative
heuristical analysis of electronic sources [18, 75]. The patch and comments-based
networks were then analyzed based on a fictive case. The extended case study
helped to refine the design of SIA.

Paper V

Title: A Contribution Management Framework – What to share as Open Source
Software?

Paper V addresses RG1 using a design science research approach [216] with
three design cycles. Through collaboration with Sony Mobile, the first design
cycle presented by Linåker et al. in earlier work [121] designed a Contribution
Acceptance Process (CAP) model for creating contribution strategies [121]. The
second and third design cycles cover a multiple-case study involving three case
organizations (CaseOrg1-3) and are presented in this study.

CaseOrg1 is a US-based media and technology company providing video,
high-speed internet, smart home and voice services. They have 1000+ employ-
ees and develop their own software in order to enable and deliver their services to
the customers. Having been passive consumers before 2006, they became active
contributors starting in 2006. Since, they have released a number of OSS projects

12 INTRODUCTION

and are active contributors in several others, as well as members of a number of
OSS foundations.

CaseOrg2 is a European-based hardware electronics manufacturer serving both
business and private customers. They have 1000+ employees and develop their
own software in order to enable and deliver their services to the customers. This
study has focused on its Tools department which develops and maintains devel-
opment tools and infrastructure projects used by the organization’s product devel-
opment teams. A majority of the tools and infrastructure projects are OSS-based
with active engagement from the Tools department in their respective commu-
nities. The active engagement includes continuous contributions of features and
plugins to existing OSS communities as well as the release of new OSS projects.

The Swedish Public Employment Service6 makes up the third case organiza-
tion but is referenced to as CaseOrg3 for consistency. CaseOrg3 is a public sector
agency in Sweden with the main goal to facilitate and enable matching between
job-seekers and employers on the Swedish labor market. The organization has 10
000+ employees of which 600 are employed within their IT division. The focus
of this study is on a department within the IT division which aims to create a plat-
form7 on which private actors can build complementary products and services for
matching job-seekers and employers. The platform, consisting of OSS projects
and Open Data sources, is intended to help CaseOrg3 move from the role of be-
ing a service provider to becoming a service enabler, and helping the platform’s
ecosystem members to collaborate and co-create, potentially resulting in acceler-
ated innovation and a more efficient job-matching on the Swedish labor market.

In the second design cycle, a questionnaire was developed based on constructs
from the CAP model and used in six semi-structured interviews at CaseOrg1. A
first draft of the CoMn framework was the created based an inductive coding of the
interview transcripts. Archival analysis of contribution request forms from seven
organizations were also performed and cross-mapped against the first draft of the
framework. In the third design cycle, a new questionnaire was developed based on
results from the previous cycle and used in five and nine interviews respectively
in CaseOrg2 and CaseOrg3. Using the coding schema from the second design
cycle, transcripts from CaseOrg2 was first coded and followed by the transcripts
from CaseOrg3. Transcripts from all case organizations were then reiterated, and a
final coding scheme assembled. The revised version of the CoMn framework was
then presented to interviewees from the three case organizations who were asked
questions regarding the framework’s completeness and correctness, which resulted
in minor modifications.

6See: https://arbetsformedlingen.se/
7See: https://jobtechdev.se/

3 Background and Related Work 13

3 Background and Related Work

First, in subsection 3.1, we give a background on how RE in OSS communities
may function and the need for influence to affect, e.g., selection and prioritization
of requirements. Second, in subsection 3.2, we present the role of governance
and authority structure in an OSS community in regards to how influence may be
gained. Third, in subsection 3.3, we continue on the role of governance and au-
thority structure but focus on cases where a community is institutionalized through
a foundation. Fourth, in subsection 3.4, we present earlier work on how organi-
zations can gain influence on the RE process in meritocratic OSS communities.
Lastly, in subsection 3.5 and 3.6, we focus on previous work describing the ra-
tionale for an organization to share software as OSS and engage with an OSS
community, both concerning intangible benefits and more commercial reasons re-
spectively, and end with a summary in subsection 3.7.

3.1 Open Source Software Requirements Engineering

In OSS communities, requirements practices are often informal and overlapping [27,
181]. Ernst and Murphy refer to it as a lightweight and evolutionary process of re-
quirements refinement and labels it Just-In-Time (JIT) requirements, compared to
the more traditional upfront requirements characterized by heavy processes and
tool support [52]. Further, Alspaugh and Scacchi contrast how OSS RE moves
away from what they refer to as Classical Requirements, characterized as having a
central repository, with requirements defined in the problem space, describing the
product of need, along with processes for examining the requirements for com-
pleteness and consistency [4].

In traditional RE, requirements are elicited from the stakeholders using suit-
able elicitation techniques compared to OSS RE where requirements are com-
monly asserted by the OSS project’s stakeholders, i.e., developers and users. This
is done through transparent discussions and suggestions and often together with
prototypes or proof-of-concepts [4, 71]. The assertion may also be done post-hoc,
simultaneously as the requirement realization [52, 71]. These assertions are spec-
ified and managed in what Scacchi refers to as informalisms [181], e.g. reports in
an issue tracker, messages in a mailing list, or commits in a version control system.
Through continual social interaction facilitated by the infrastructure persisting the
informalisms, requirements are further enriched and validated [27, 52, 71, 197].
This interaction can however also occur centralized in ”off-line” events such as
conferences, meet-ups, and hackathons [37, 147, 190].

Prioritization is commonly conducted by the core-team overseeing the project
management, though care is often taken to the opinions of other developers and
users [2, 71, 113, 157]. This hierarchy between the roles in OSS communities is
often depicted with the help of an onion model [151]. In its multi-layered con-
struction, central and leadership roles can be found among the core layers, while

14 INTRODUCTION

the passive users can be found in the outer ones (cf. Core-Periphery Model [99]).
The structure implies that the further out a community member is, the less direct
influence and knowledge the person has over the project’s state and direction [97].
Furthermore, what roles that exist in a community, specifically regarding leader-
ship, may differ between communities. Some may, for example, have a project
lead as with Linus Torvalds in the Linux kernel community, while some may have
a core team of entrusted members as in the PostgreSQL community [151].

Migration between layers can be fluid and agile depending on the project, e.g.,
community members can move between multiple layers, or be recruited into one,
bypassing outer ones [97]. This migration further depends on the type of gover-
nance in the community.

3.2 Governance in Open Source Software Communities

De Laat [45] describes OSS governance as different configurations, primarily based
on the authority structure, i.e., the way that authority is established, distributed, and
exercised, either through autocratic or democratic principles. In the former, leader-
ship is centralized and top-down, while in the latter it is decentralized and bottom-
up. Building on this distinction, De Noni et al. [46] refines the two configurations
further as presented in Fig 3. Concerning communities with autocratic tendencies,
they differentiate between sponsor-based and tolerant dictator-based communities.
In the former, leadership is centered around the sponsoring organization(s), while
in the latter it is centered around a single project leader (tolerant dictator). In re-
gards to communities with democratic tendencies, De Noni et al. [46] separates
open-source-based and collective communities. In open-source based communi-
ties leadership is characterized as institutionalized, democratic, and distributed,
often inside the walls of a foundation. In collective communities, leadership is
seen as collective, meritocratic, and distributed.

Figure 3: Overview of governance and authority structures in OSS projects.
Adopted from Paper III in this thesis.

3 Background and Related Work 15

Capra and Wasserman [26] makes a distinction between commercial and com-
munity OSS. In the former, the OSS project is owned and managed by a single or-
ganization [176], i.e., a special case of sponsor-based communities [46]. In the lat-
ter, the community is owned and managed by the community, which may include
one or more organizations, also aligning with the community-managed governance
model as described by O’Mahony [162]. Schaarschmidt et al. [183] further label
these types of projects as single-vendor projects and multivendor projects respec-
tively.

Even with the categorizations of OSS governance models and their author-
ity structures shown in Fig 3, other research shows that the picture can be more
blurry. According to the literature review by Shaikh and Henfridsson [186], re-
search has been consistent in describing how communities can only have one au-
thority structure (with one notable exception [72]). Even though a community can
evolve its authority structure in hybrid forms with time, a single authority struc-
ture will result in the end [164]. However, based on their view of a duality between
governance and coordination, Shaikh and Henfridsson [186] move to suggest that
multiple forms of authority structures can co-exist in parallel, each embedded in
and operationalized by a coordination process. These coordination processes can
integrate, and evolve together within a community, of which some may pass out
with time and be replaced by others. In their longitudinal analysis of the Linux
kernel community, they identified a varying mix of autocratic and oligarchic struc-
tures, but also semi-autonomous governing in terms of the different sub-modules.
Meritocracy was continuously present through the analysis. Hence, even tolerant
dictator-based communities can show traits of a community-managed [162] and
meritocratic [45] governance model.

Although literature lists a number of them, meritocracy may be considered
one of the more common authority structures, or type of governance in OSS com-
munities (e.g., [24, 56, 151, 156, 161, 182]). Based on merit and the earning of
trust and status in the community, individuals are granted further responsibility
and authority [56]. Merit correlates to the quality and quantity of the individual’s
contributions [71,194]. A common assumption is that these contributions are lim-
ited to technical code contributions, however, as is shown by Eckhardt et al. [49],
this can be a simplification. Considering the onion model [151], several paths are
depending on the type of role an individual possesses. Proven coordination and
leadership skills are aspects that may be considered [97, 164], but not obviously
captured in code commits. As pointed out by O’Mahony and Ferraro [164] in their
study of the Debian community, “Any examination of meritocracy must develop a
context-specific understanding of how merit is conceptualized”.

3.3 Open Source Software Foundations

As identified by O’Mahony [161], there is a tendency that as projects grow larger
and attract more attention from organizations and other types of organizations, the

16 INTRODUCTION

communities become institutionalized through the creation of non-profit software
foundations, either standalone or embedded in an existing (e.g., the Eclipse or
Linux foundations). By moving ownership of all copyright to a foundation, a legal
shell is created around the community that can manage potential legal and patent
issues, removing any liability from the community members [45,125,173]. A sec-
ond reason is that it creates a single entity that can speak on behalf of the commu-
nity and uphold its assets, e.g., copyrights, brand name, and trademarks [125,173].

Membership in the community and foundation often overlap meaning that
community members are eligible to vote in elections for committees and boards
in the foundation. There are however cases as in the Linux Foundation where
foundation membership is reserved to external organizations who join by paying
membership fees [45, 125].

Organizations with interest in a community may have different reasons to ad-
vocate for the creation of a foundation. As O’Mahony [161] reports, in the case
of the Apache Software Foundation, organizations primarily wanted an entity that
they could make secure transactions to in terms of technical contributions as well
as financial support and hardware. In the case of the GNOME foundation, on
the other hand, organizations were more interested in using the foundation to get
a more significant influence on the decision making in the GNOME community.
As a return for the organizations’ sponsorship and support, they are offered seats
in on relevant boards and committees where they influence the project indirectly,
depending on the power of the foundation in terms of technical decision mak-
ing [24, 163]. In the case of GNOME, organizations were given seats on an Advi-
sory Board without any formal power on the development of the project [161].

A related observation made by de Laat [45] is that as foundations grow more
critical, the barrier of non-interference between a foundation and a community
may come to be erased [45]. The two may instead become more intertwined, with
the project becoming a mirrored reflection of an organization-governed pooled
R&D/product development project [210].

3.4 Influencing Open Source Software
Requirements Engineering

The members of an OSS community all have their motives for participating, social
or economic [117, 173]. It may, therefore, be considered a challenge for organi-
zations to align their internal agenda with that of the community [38, 163, 183].
A decision to add functionality may require consensus in the community and ap-
proval by the community leadership depending on the type of governance. Being
too aggressive with one’s agenda may have an adverse effect and result in the
functionality being blocked [2].

Dahlander et al. [37] differentiate how organizations can adapt their relation-
ship with an OSS community based on the level of influence needed. On a con-
tinuum scale, a relationship can be characterized as parasitic, commensalistic or

3 Background and Related Work 17

symbiotic. In the parasitic approach, the organization takes without giving back,
by some referred to as a “free-rider”. In the commensalistic approach, the organi-
zation contributes back when motivated, but focus on internal development. In the
symbiotic approach, the organization also sees to the best of the community, work-
ing to align internal and external development. The alignment is created through
working as peers, and building status and recognition inside the community [39].

To build a symbiotic relationship, organizations should first understand and
learn to respect the needs, norms, and structure of the community [2, 24, 37, 39,
155], a form of ”good citizenship” [163]. If there is a foundation encapsulating
the OSS community, organizations may have the option to gain influence through
membership or sponsorship [161,163], or in other ways supporting the foundation,
e.g., by supporting development with infrastructure [37], or general subject matter
expertise [24]. In return, they may receive seats at relevant boards and committees
through which they can make their voice heard [24,161]. Foundations and similar
boundary organizations between organizations and an OSS community are often
limited to managing the technical direction of an OSS project [163].

A more direct and general approach to the control of code contributions is by
having “a man on the inside”, letting employees engage with the community [39,
83, 155, 156, 163, 183]. An alternative is to contract members of the community
directly to have them work on matters of importance to the organization [38, 71,
163, 175, 183]. Through their engagement, these sponsored community members
can take part in the RE processes by participating in discussions and providing
both technical and non-technical contributions and support [24, 147]. This work
may take place both online and offline, because being visible and active on both
ends is essential [147, 164, 183, 190].

According to Schaarschmidt et al. [183], this approach to gain influence through
active engagement can be divided into two categories, control by leadership, and
resource deployment control. In the former, influence is obtained by having em-
ployees in leadership positions of a community. In the later, influence is gained by
having employees work in the community and infusing the community with the
organization’s norms and values.

3.5 Intangible Benefits for Sharing Open Source Software

Sharivar et al. [185] distinct between two types of benefits that may come out from
from sharing software as OSS; tangible revenues and intangible benefits. Tangible
revenues are generated from sales in cases where an organization offers comple-
mentary products and services based on the OSS [6, 185, 188] while intangible
benefits are gained as an effect of sharing software OSS. Reasons for why an or-
ganization would choose to share software as OSS does not have to be limited to
one or the other [6]. Below we focus on the intangible benefits, which has been
systematically surveyed in literature to different extents [80, 89, 149, 185]. We
categorize the benefits into four different themes.

18 INTRODUCTION

A first theme and type of rationale for sharing software as OSS may be to gain
influence on the development direction of the community by participating in the
development and maintaining a symbiotic relationship [24, 37, 39, 156, 183, 194],
as also noted in Section 3.4. This may help steer the community including com-
petitors and to manage potentially conflicting agendas [129, 149, 183, 213]. In-
fluence may also come implicitly when an organization’s project or a feature is
released and accepted as a standard solution, either within an existing or as a new
community [147]. If contributed to an existing community, other organizations
will either have to accept and adapt, maintain internal forks of their own solu-
tions, or attempt to contribute their solutions in competition with the solution al-
ready established within a community [121]. If released as a new community and
traction is gained, it can potentially become a new standard or compete with ex-
isting [82, 94, 126, 207], and create a surrounding community with complements
from other organizations [208].

Another common theme in literature concerns cost-saving aspects [6,149]. By
extending the resource-base [38] and agreeing on a common standard [210], or-
ganizations can share the maintenance and quality assurance, accelerate the de-
velopment and potentially decrease their time-to-release and market [82, 87, 126,
147, 193]. By freeing up internal resources, they can focus on more value-adding
activities [126, 147, 200]. On the contrary, by adopting a less symbiotic relation-
ship to the OSS community [37], an organization will have to maintain an internal
branch of the OSS project which may become costly depending on the number of
modifications that need to be applied to new releases of the OSS project [201,219].
Hence, to attain these potential benefits, an active engagement and symbiotic rela-
tionship may be needed with the OSS community [28, 39]

A third common theme concerns innovation aspects [6,149], which can be both
product and process-oriented [148]. By opening up the innovation process [31]
and ”pooling” the R&D/product development [210], organizations get access to
an external workforce which may bring increased knowledge sharing [150] and
innovation at a lower cost [193, 222]. However, this external workforce should
rather be seen as a complement rather than a substitute for internal knowledge and
development [38, 190]. Munir et al. [149] describe it as a catalyst for ideas that
may help organizations in broadening their offerings. Hence, an organization may
question how much of its internal R&D and innovation process it should outsource
to a community [2].

A fourth theme can be tied to improved reputation [149, 201]. By creating
a community or contributing to an existing one, an organization can create a
marketing channel both towards (potential) customers, as well as future employ-
ees [38, 82, 175, 193]. The improved reputation can turn into a competitive advan-
tage [84] and legitimize the use of the OSS from a public perspective [39]. An
organization’s customers are offered an opportunity to avoid vendor-lockin, and
the ability to customize the software to internal needs [147].

3 Background and Related Work 19

3.6 Open Source Software in the Business Model
To consider the tangible revenues as described by Sharivar et al. [185], the Busi-
ness Model (BM) concept provides a potential framework as it describes how the
pieces of an organization’s business fit together [131]. This puzzle explains how
an organization creates and delivers value to its customers, and then captures the
value [195]. However, even though research is converging, there is still some
heterogeneity in the definition of what a BM is, and of what components it con-
sists [44, 218]. As a consequence, there is also confusion in how OSS connects to
a BM with multiple and overlapping definitions (e.g., [31, 185, 204]).

Below follows an attempt in categorizing how OSS may be used as a comple-
ment to the value proposition of an organization, either as part of or enabler for the
creation of products or services [117]. As reported in literature, these can often
overlap and be combined [31, 38]

Professional services and consulting: An organization builds its value propo-
sition on the knowledge and absorptive capacity they possess in relation to an
OSS project and become product specialists. Services such as consulting, training,
support and customization of the OSS project are offered based on a customer’s
needs [6, 30, 81, 107, 174, 204]. Red Hat8, and IBM9, two large software product
organizations which base their products on OSS, both sell complementary services
such as training and consulting [30, 146].

Subscription and support: An organization offers a stable and maintained
version of a specific OSS project to a customer. During a subscription period, a
customer is provided with updates, upgrades and support [30, 81, 107, 174, 204].
Red Hat, again a prime example, offers its customers maintained versions of pop-
ular OSS projects such as OpenStack10, Kubernetes11 and Fedora12 [30, 146].

Open core and proprietary extensions: An organization uses one or more
OSS projects as an open core which is used in a commercial version with en-
terprise features only available under a proprietary license [174]. The enterprise
features may also be available as extensions and plugins which can be integrated
and used on top of the intended OSS project [31,204]. Hortonworks13, a large soft-
ware vendor, uses an open core model by selling its distribution, the Hortonworks
Data Platform, of the Apache Hadoop14 project bundled together with comple-
mentary OSS projects such as Apache Hive15 and Apache Spark [124]. MySQL16,
a database vendor, on the other hand, is focused on selling proprietary extensions
to its database which is available as OSS [31, 38, 107].

8See: https://www.redhat.com/en
9See: https://www.ibm.com/

10See: https://www.openstack.org/
11See: https://kubernetes.io/
12See: https://getfedora.org/
13See: https://hortonworks.com/products/
14See: https://hadoop.apache.org/
15See: https://hive.apache.org/
16See: https://www.mysql.com/products/

20 INTRODUCTION

Dual licensing: An organization has released its product as an OSS project
under a copy-left license (usually GPL2, GPL3 or AGPL) [160]. This requires
a user of the project to contribute any changes back that the user makes to the
project, but only if the user re-distributes the project outside of its legal entity.
To bypass this requirement, a customer can pay for a proprietary license in which
there are no copy-left requirements [107]. This is possible as the organization
owns the full copyright to the OSS project and thereby determines what license
apply [176]. MySQL and their database software is a well-reported example of
this model [29, 38, 107, 204].

Hardware device enabler: An organization embeds an OSS project into a
hardware device and thereby enabling their value proposition which may be to sell
hardware devices or services related to the devices [31, 81, 107]. Sony Mobile,
a consumer electronics organization, uses the Android Open Source Project17 to
enable selling of their mobile handset devices [121]. Cable providers like Comcast,
on the other hand, use the Reference Design Kit18 project in their set-top boxes
which allows Comcast to sell cable services to their customers.

Online service enabler: An organization uses an OSS project as the basis
for value propositions including online services [81]. These services may, for
example, be hosted instances of the OSS project or providing the OSS project using
a Software-as-a-Service (SaaS) model [107]. The customer is offered a current,
stable and maintained an instance of the OSS project without having to install
it in on its premises. Amazon Web Services19, a cloud service provider, offers
customers to run OSS projects such as Kubenetes and OpenStack on their cloud
platform. As another example, Wordpress20, an OSS content management system
vendor, offers customers their OSS project through a SaaS-model.

Complement enabler: An organization develops and sells hardware and soft-
ware products and services in adjacent and independent layers of a software stack,
on top of an OSS-based layer [173,174]. As reported by Koenig [107], by support-
ing and optimizing Linux to work on their hardware platforms, Oracle can offer
customers a solution at a lower cost, and equal or better performance compared to
proprietary solutions and avoiding vendor lock-in at the same time.

Tools and infrastructure: An organization uses OSS as part of internal tools
and infrastructure that enables the development and delivery of the organization’s
product or service [107]. The OSS is developed based on internal needs with an
indirect, rather than direct, connection to the organization’s value proposition [31,
204]. As an example, Sony Mobile leverages OSS projects such as Jenkins and
Gerrit in their internal continuous integration tool-chain [147]. This enables Sony
Mobile to tailor the tools based on internal requirements, which can result in higher
quality products with a faster time-to-market.

17See: https://source.android.com/
18See: https://rdkcentral.com/
19See: https://aws.amazon.com/
20See: https://wordpress.com/

4 Results 21

3.7 Summary of Background and Related Work

For an organization engaged in an OSS community, it is pivotal to consider how
much influence that is needed on the community’s RE process for the organization
to maintain its agenda [24,37,38,183]. In a community, the focal organization is a
stakeholder among many, all with their motives for engaging [124, 149, 163]. The
RE process in these communities can often be described as informal and decentral-
ized with a just-in-time mentality [4,52,182]. Also considering the variety in gov-
ernance processes [45, 46, 164, 186], aligning external and internal RE along with
building up influence needed can be a big challenge for firms [38, 149], especially
as there is no contractual arrangement to refer to [2,37]. In meritocratic OSS com-
munities, an organization can gain influence by proving merit and earning trust and
status among its peers through an active and symbiotic engagement [37, 56, 194].
Technical contributions are often cited as a way to prove merit although this may
be a simplification [49, 164].

The ways in how OSS can help an organization to create and capture value
from a business model perspective are manys [6, 30, 81, 107, 174, 204], as are the
number of more intangible benefits such as cost-savings, improved innovation and
reputation, but also influence on a community’s RE process [80,89,149,185]. Eval-
uating how an OSS project and its community provide such value, both monetary
and non-monetary, may help an organization prioritize which communities that re-
ally matter [122]. Such evaluation may also provide input to decision-makers on
questions and requests of contributing internally developed software as OSS [121].
These matters are explicated in RG1-3 which this thesis aims to address with the
included Papers I-V.

4 Results

In this section, results of each paper as listed in Table 1 are presented with par-
ticular focus on research goals stated in section 1 with the corresponding research
methodology as presented in section 2.

4.1 Paper I: RG1-3

Title: Open Innovation using Open Source Tools: A Case Study at Sony Mobile

In Paper I we explore how a software-intensive organization engages with OSS
communities’ RE and development processes from an OI perspective. Its results
provide a knowledge base for the following solution-oriented papers II-V.

The study shows that the main reason for Sony Mobile to ”open up” was a
general shift towards adopting OSS as a platform for the organization’s products.
As a consequence, this mentality transferred to the Tools department and made
them adopt OSS for the internal continuous integration tool-chain. Developers

22 INTRODUCTION

were assigned to work with the Jenkins and Gerrit OSS communities in order to
tailor and adapt the tools according to Sony Mobile’s needs. To build the influence
needed to impose their agenda (e.g., in regards to scaling capabilities), the Tools
department’s developers were active in contributing software artifacts as well as
knowledge and support. They were transparent and communicated their internal
tool-chain setup and problems at events and directly with competitors. A main
enabler for this openness was that tools and infrastructure such as Jenkins and
Gerrit were considered as non-competitive and non-pecuniary.

The importance of having an active presence and influence in a community
was exemplified in the reported example of the Gerrit-Trigger-plugin. The plugin
was first considered a source of competitive edge, but when the developers at Sony
Mobile heard about an alternative solution they were quick to share the plugin as
OSS. As reported in literature [219] and in Paper V, this is a trade-off between
keeping a competitive edge and having to maintain the internal solution or adapt
to the alternative solution. By being first to contribute a solution that gets accepted,
Sony Mobile got a first-mover advantage as other organizations were faced with
the decision to adapt, compete, or continue with their own solution.

The Tools department’s RE process that interfaced the OSS communities was
informal and managed internally in an agile manner through a combination of
Scrum and Kanban methods. Prioritization of issues in the OSS communities
was made in relation to internal needs. Collaborations were common and often
performed on a feature-by-feature basis, including direct competitors. The main
outputs of the adoption of Jenkins and Gerrit, along with the collaboration with
their communities included new and improved functionality for the two tools, as
well as less maintenance and shorter internal release cycles.

The main perceived benefit however regarded the flexibility to adapt and tailor
the two tools based on internal requirements, rather than troublesome and costly
change-requests to customized off-the-shelf products. Although no metrics were
available, it was further perceived that this possibility to tailor the two tools also
implied faster build-cycles, higher quality assurance, and in the end improved
products with a faster time-to-market. Further, the experiences attained by the
Tools-department in terms of working with OSS communities and adaption in de-
velopment practices have had the effect of introducing an Inner-source initiative to
Sony Mobile.

As the study focused on tools and infrastructure OSS, it was pointed out that
future work should also investigate the rationale for sharing proprietary software
as OSS. This led to the definition of RG1 of this thesis.

4 Results 23

Figure 4: The Contribution Acceptance Process (CAP) model as presented in Pa-
per II. Based on how a software artifact is valued in regards to its business impact
and control complexity, a contribution strategy is elicited pending the artifact’s
placement on the grid.

4.2 Paper II: RG1
Title: Motivating the Contributions: An Open Innovation perspective on

What to Share as Open Source Software

In Paper II we propose a Contribution Acceptance Process (CAP) model to
guide organizations in developing contribution strategies for internally developed
software artifacts that align with an organization’s internal product strategies and
planning. The study uses an earlier definition of a contribution strategy (compare
to Section 1), adopted from Wnuk et al. [219] that focused on what should be
contributed back to an OSS community and when.

From the functional perspective, the model allows for software artifacts (rang-
ing from bugs to features and larger components) to be classified based on their
business impact and control complexity. The former regards how much profit the
artifact represents, and the latter how difficult it is to control or acquire the arti-
fact. This classification is done by answering a series of questions and should be
done by a cross-functional group of internal stakeholders that can value artifacts
according to the two factors. Depending on the classifications, four different types
of contribution strategies may be adopted for the artifact. For example strategic

24 INTRODUCTION

artifacts are those with a high business impact and control complexity. These are
differential and makes up a competitive edge for the organization. These should
be developed either internally or in strategic alliances. However, parts that are
considered as enablers for the differential functionality, such as supporting frame-
works, may be contributed. A special screening process may, therefore, be needed
for these artifacts.

A user of the CAP model also needs to consider the commoditization of soft-
ware artifacts and how the artifacts deprecate in value and differentiation over
time. Considering the importance of contributing certain solutions before others,
the CAP model should be used in an iterative process as an artifact may move
between from a strategic to a commodity state and in different paces.

Recommendations to either contribute to existing communities or create new
communities vary between the contribution strategies that the CAP model applies
to the four different types of software artifacts. The recommendations recognize
that there is a substantial cost connected to creating a new community. When there
is a need for control, and the organization does not have the necessary influence
in a suitable target community, a new community may be preferred. This may
also be the case when the interest in existing communities is limited and when a
smaller industry consortium is more suitable. In other cases, it is more preferable
to contribute to existing communities as far as possible.

To support the operationalization of the CAP model, we designed an infor-
mation meta-model. The meta-model presents how a series of software artifact
repositories may be set up and linked, from a product platform, via requirements
and architectural components, to patches, contributed patches and related commits.
This structure allows for contribution strategies attached to a software artifact to
be communicated through a development organization, but also to be followed up.

Results from the artifact validation phase showed that the CAP model provide a
good foundation for discussion. Feedback pointed out that the questions and scale
used to value a software artifact in terms of business impact and control complex-
ity, was found useful but in need of being tailored to the context where the CAP
model is applied. A concern identified for future design cycles was not to ”over-
engineer” the following versions of the CAP model. The study also points out that
future work should consider the influence an organization needs in an OSS com-
munity to be able to exercise control and introduce new features as needed. The
study further shows the importance of considering what other stakeholders that are
present in a community and what their agendas are. This led to the definition of
RG2 and RG3 respectively.

4 Results 25

4.3 Paper III: RG2

Title: A Community Strategy Framework – How to obtain Influence on
Requirements in Meritocratic Open Source Software Communities?

In Paper III we propose the Community Strategy Framework (CSF) to help
organizations develop and tailor community strategies which describe if and why
an organization needs influence on the RE process in a specific OSS community,
and how the organization could gain it.

The Community Strategy Framework (CSF) therefore consists of two parts.
The first of these contains aspects an organization should consider when assessing
its need to influence the RE process in an OSS community. The second part of
the CSF consists of practices an organization should consider in order to gain
influence on the RE process in an OSS community with meritocratic governance
or aspects thereof [186]. Figure 5 shows an overview of the CSF. An organization
constructs a community strategy by firstly assessing the community of interest
based on four Business Aspects (BA1-4) and four Technical Aspects (TA1-4), and
secondly determine the actual need for and feasibility of gaining influence using
the four Community Aspects (CA1-4). It may be that not all aspects are applicable
or relevant. It may also be that one aspect may indicate a need for influence,
while another may not. With this in mind, it is up to the user to consider the
different aspects in relation to the community of interest, and weigh these against

Figure 5: Overview of the Community Strategy Framework’s related process. An
organization first values the community of interest with the business and technical
aspects and then uses the community aspects to determine the feasibility of gaining
influence and potential engagement goals. Engagement goals are then decided and
engagement practices chosen.

26 INTRODUCTION

each other. The CSF should, therefore, be viewed as a support for the user to
arrive at a decision on if and how much influence is needed by the organization
on the RE process in the OSS community. Once such a decision has been made,
the organization then formulates important engagement goals and selects which
Engagement Practices (EP1-8) to apply, and finally determine how to apply them.

4.4 Paper IV: RG3

Title: A Method for Analyzing Stakeholders’ Influence on an Open Source
Software Ecosystem’s Requirements Engineering Process

In Paper IV we propose the Stakeholder Influence Analysis (SIA) method
which aims to help organizations involved in an OSS community to characterize
the community’s stakeholders according to their level of influence on the com-
munity’s RE process. SIA enables organizations to see in which requirements a
stakeholder holds a certain interest, and thereby create an overview of a stake-
holder’s agenda. This also allows organizations to understand how stakeholders
invest their resources, and with whom they collaborate according to their agenda.
Thus, SIA offers input to how organizations involved in OSS communities may
develop their contribution and community strategies and how to act in the poli-
tics and negotiations of the community’s RE process in order to align it with their
internal RE process and product planning.

SIA consists of seven steps (see Fig. 6) which consider the nature in how re-
quirements are fragmented as multiple requirement artifacts persisted in a decen-
tralized manner in as many repositories [4, 52].

To create an overview of how stakeholders interact in the community, the
framework describes how the most important repositories should be identified and

Figure 6: Overview of SIA’s seven steps (S1-S7) divided in Purpose and Scope,
Data gathering, processing and analysis.

4 Results 27

mined for requirements artifacts based on the scope and limitations of the analy-
sis. After identification of developers’ organizational affiliations, a network should
then be created to represent each requirements repository. Influence profiles can
then be created by considering a series of centrality measures that have proven to
be useful in characterizing the influence of stakeholders [166,178], but also effec-
tive when analyzing an organization’s participation in OSS communities [166,196]
and requirement-centric stakeholder collaborations [17, 42, 133].

An influence analysis can then be performed by using a stakeholder mapping
approach based on earlier work [100,135,152]. This may provide the focal organi-
zation with a useful tool for classifying stakeholders on a rough level to help deter-
mine what kind of engagement and relationship is needed with different stakehold-
ers, and identify aspects that need special consideration. In this step, the quanti-
tative picture which is generated through the networks is best complemented with
qualitative insights which may be gained through observing or even taking part in
the communication of the community.

Care needs to be taken to planning and executing the analysis, e.g., when
defining the purpose and scope, as well as identifying organizational affiliations
and creating the networks. The case study of the Apache Hadoop OSS commu-
nity shows the importance to consider all requirements artifact repositories that
are used within a community, and also how the different centrality metrics com-
plement each other. Each measure can present a different social structure than
another and different measures provide different perspectives on who are the most
active [166]. In smaller and simpler network structures such measures may co-
vary, while in larger and more complex networks, they may characterize actors
very differently [78].

SIA does show potential in terms of applicability and utility through a proof
of concept demonstration in a case study on the Apache Hadoop OSS community
with a fictive setting. The study emphasizes the need for further validation in future
work.

4.5 Paper V: RG1

Title: A Contribution Management Framework – What to share as Open Source
Software?

In Paper V we propose a Contribution Management (CoMn) framework to en-
able software-intensive organizations to align its business goals and contribution
strategies by supporting the organization in creating contribution strategy guide-
lines and related contribution processes for internally developed software artifacts.

While Paper II used the definition by Wnuk et al. [219] that focused on what
should be contributed back to an OSS community and when, Paper V extends the
definition to also consider where. For a specific software artifact, the ”what” indi-
cates if the artifact should be contributed in full or kept closed, or if certain parts

28 INTRODUCTION

Figure 7: Overview of a contribution process, where an individual wishing to
contribute a software artifact fills out a contribution request form, which is then
analyzed based on an organization’s contribution strategy guidelines, after which
a contribution strategy is decided on. The CoMn framework can help an organiza-
tion implement the contribution strategy guidelines as well as the related contribu-
tion request form.

can be contributed under certain conditions. The the ”when” indicates when an
artifact should be contributed in time. Finally, ”where” indicates whether the arti-
fact should be contributed to an existing OSS community or if a new community
should be established.

The framework consists of a series of contribution objectives (COs) and com-
plexities (CCs) which an organization may consider and weigh against each other
when deciding on a contribution strategy for a certain software artifact. A contri-
bution objective is defined as a purpose for contributing a software artifact, mo-
tivated by a monetary or non-monetary benefit that is enabled or resulted directly
or indirectly as a consequence the contribution.

5 Synthesis and Main Contributions 29

A contribution complexity is defined as an aspect of or related to a software arti-
fact that may complicate the contribution of the artifact, or imply a cost or risk as
a result thereof, either directly or indirectly.

Not all contribution objectives and complexities may be relevant for the orga-
nization in general or in certain cases. To help guide decision-makers and those
making contribution requests, contribution strategy guidelines can be developed
based on the objectives and complexities that are identified as generally relevant
for the organization. The identified objectives and complexities can then be de-
scribed in the context of the focal organization and relevant questions asked in a
contribution request form when setting up a contribution process within the orga-
nization. An individual intending to file a request is then enabled to beforehand
understand the rationale used by the decision makers when deciding on a contribu-
tion strategy, and thereby to provide motivated arguments why the request should
be accepted. To also support the request step of the contribution process as visu-
alized in Fig. 7, the CoMn framework also provides a series of template questions
mapping to the contribution objectives and complexities that can be used for de-
signing suitable contribution request forms.

5 Synthesis and Main Contributions
Following the recommendations by Storey et al. [192], the main contributions

of this thesis are summarized in the following Technological Rules (TR) [3], re-
lated to the three research goals:

TR1: To achieve alignment between business goals and what is shared as OSS,
software-intensive organizations should develop contribution strategies as
well as contribution strategy guidelines and related contribution processes
for internally developed software artifacts using the CAP model and the
CoMn framework presented in Papers II and V respectively.

TR2: To identify OSS communities that align with business goals and achieve its
internal agenda within these communities, software-intensive organizations
should develop community strategies using the CSF presented in Paper III.

TR3: To create a contextual awareness of an OSS community’s stakeholder popu-
lation and input its contribution and community strategies, software-intensive
organizations should analyze stakeholders’ influence on the community’s
RE process using the SIA method presented in Paper IV.

The four artifacts mentioned above and presented in Papers II-V interplay and
provide input to each other as visualized in Fig. 8.

From the perspective of a stakeholder influence analysis, knowledge about
whom is present in a community, their agenda, and level of influence on the com-
munity’s RE process, can provide input to the development of both contribution

30 INTRODUCTION

Figure 8: Overview of how the main contributions addressing RG1-3 of this thesis
interplay and complement each other.

5 Synthesis and Main Contributions 31

and community strategies. Concerning contribution strategies, knowledge about
competitors that are present in a community may, e.g., affect ”what” the focal or-
ganization considers as differentiating and as a competitive edge. Such knowledge
may also impact the ”when” as the focal organization may want to keep certain
software artifacts closed as long as possible, or release it as quickly as possible.
The ”where” in a contribution strategy may also be impacted, e.g, as conflicting
agendas may prevent a contribution of being accepted in a specific community.
This example further highlights the interplay between a stakeholder influence anal-
ysis and a community strategy, i.e., if the focal organization should invest in the
community to gain the influence needed, and if this is even possible.

In terms of community strategies, these may enable the execution of contribu-
tion strategies and to maintain an influence on important software artifacts once
they have been contributed. A community strategy may also help set more gen-
eral contribution strategies for software artifacts that targets a certain community,
e.g., in the case where the OSS project is considered as non-competitive and an
important asset for the organization (as exemplified in Paper I). Conversely, a con-
tribution strategy may help to identify communities where an organization need to
build an influence and develop or revise a community strategy accordingly.

These dependencies, as visualized in Fig. 8, come natural as RG2-3 evolved
when initially investigating RG1 in Paper II. An organization interested in devel-
oping contribution or community strategies should, therefore, consider both parts
as complements to each other, and also how a continuous stakeholder influence
analysis in concerned communities may provide input to both types of strategies.

Below, we present a synthesis of the results from Paper I-V in relation to each
other and their respective research goals (RG1-3) as presented in Fig. 1 and Table 1.

5.1 Research Goal 1

In regards to RG1, two artifacts are presented, the Contribution Acceptance Pro-
cess (CAP) model (Paper II) and the Contribution Management (CoMn) frame-
work (Paper V). Even though the intent of the two artifacts is similar there are
some differences. This comes naturally as Paper V extends the problem investi-
gation beyond Sony Mobile (Paper I and II) to consider three other organizations,
referred to as CaseOrg1-3.

The CAP model provides a visual tool with its two-by-two matrix and step-
by-step process to classify software artifacts and identify pre-defined contribution
strategies that can then be adjusted. The CoMn framework extends the two di-
mensions of the CAP model with the two categories of contribution objectives and
contribution complexities. The contribution objectives explicate different types of
benefits that may be gained as a consequence of a contribution, while the contri-
bution complexities exemplify aspects that may complicate the contribution, or in
other ways imply cost or risk for the organization.

32 INTRODUCTION

An organization may elicit those objectives and complexities relevant to them
and can develop custom contribution strategy guidelines accordingly. A contribu-
tion process can then be set up with tailored contribution request forms that can
help decision-makers ask the right questions, and for the person filing the request,
to better motivate why the request should be accepted. The guidelines can then
help to guide decision-makers in a similar manner as for the CAP model, but as a
checklist when deciding on a contribution strategy for a software artifact. Based
on the checklist and similar to the CAP model, examples can be created, what
Kemp [102] refers to as ”Do’s and Dont’s”, which can help to guide both decision
makers and those wanting to make a contribution.

Hence, while the CAP model provides an operational tool, the intention with
the CoMn framework is for an organization to use it as a tool to develop their
own custom contribution strategy guidelines. The two artifacts could, therefore,
be seen as complements, providing context and input to each other when setting
up a contribution process. The CoMn framework provides a foundation for creat-
ing the guidelines and template questions for creating contribution request forms.
The CAP model provides concrete examples of contribution strategies and related
software artifacts, but also a context for how the contribution strategy guidelines
may be used in a proactive and reactive approach.

Adopting these approaches may help to streamline and decentralize decision-
making in the contribution process. For example., when using the reactive ap-
proach and answering to more complex contribution requests, a cross-functional
group with an executive mandate may have to decide what contribution strategy
to proceed with, while smaller and less complex contribution requests may be
managed on a lower organizational level, e.g., by the engineering managers. In
the proactive approach, i.e., when using the contribution strategy guidelines in the
product planning process, the guidelines can provide support for a software prod-
uct manager when deciding if e.g., certain features should be released as OSS.

Considering the contribution objectives of the CoMn framework, the cost-
saving and innovation-related benefits of an extended workforce and open in-
novation process, both confirm findings from Sony Mobile as well as literature
[82, 87, 126, 147, 193]. So does the control-related benefit of creating or replacing
a new standard solution within a community or industry, again considering the ex-
ample of the Gerrit-Trigger-plugin, as well as the control focus highlighted in the
CAP model (see also [207,210]). Objectives not found at Sony Mobile specifically
but in literature, for example, connect to improved reputation [38, 82, 175, 193]
within a community and the organization itself, as well as towards partners, cus-
tomers and potential employees. The objectives of gathering and enabling the use
of data, as well as putting price pressure on third-party vendors were neither found
in Sony Mobile or reviewed literature.

Different perspectives could also be applied to the same objective. CaseOrg1-
2, as well as Sony Mobile, all saw the objective about creating or replacing existing
industry or community standard with the key benefits of forcing competitors to

5 Synthesis and Main Contributions 33

adapt and steering the market and community development according to their own
agendas. CaseOrg3 on the other hand, which is a public sector agency, saw the
key benefit as improving competition and helping private actors to focus on more
value-adding activities.

In regards to complexities of the CoMn framework, some alignment was found
with the CAP model and literature [82, 83, 92, 200, 210, 219] combined, e.g., re-
garding the level of product differentiation and competitive edge, commoditization
of software artifacts or the risk of giving away sensitive IPRs. Some complexities,
such as the cost of the contribution and the external interest for the contribution
were only implicitly considered in the CAP model, while e.g., the health of a com-
munity [202] was not considered.

Regarding the different types of organizations, CaseOrg3 did not experience
the commoditization of software artifacts or the risk of giving away sensitive IPRs
as complexities, while a potential ethically miss-use of the software was a concern
not recognized by CaseOrg1-2. As with the objectives, different perspectives may
apply to the complexities as well. CaseOrg1-2, as well as Sony Mobile, all view
the level of differentiation and competitive edge of a software artifact as a risk that
could hurt their own business, while CaseOrg3 views it as a risk of hurting other
organizations’ businesses.

Hence, one solution may not fit all. Different objectives and complexities apply
for different organizations and related contextual factors. Considering the way
they use and leverage OSS, all four organizations use OSS for their internal tool
and infrastructure setups. In CaseOrg2, the department developing these tools
are explicitly studied. Both Sony Mobile and CaseOrg1 uses OSS to enable and
add value to their hardware devices. In CaseOrg1’s case, OSS is also used as a
basis for certain services sold to business-oriented customers. As a public agency,
CaseOrg3 differs to Sony Mobile, CaseOrg1 and CaseOrg2 in that they are not
driven by commercial business incentives.

5.2 Research Goal 2

With the Community Strategy Framework (CSF), Paper III also introduces the
concept of community strategy that describes if an organization is in need of such
influence in a certain community, and how they should adapt their community
engagement to gain it. The importance of having an influence on an OSS commu-
nity’s RE process was first exemplified in Paper I. By building and maintaining a
symbiotic relationship with communities of the Jenkins and Gerrit OSS projects,
Sony Mobile was able to influence the development of the two communities. The
importance of influence was further highlighted in Paper II as a necessity in order
to execute on contribution strategies and to maintain control of important software
artifacts once they are contributed.

A community strategy may hence both provide input to and help to execute a
contribution strategy. This relationship is further visualized when comparing the

34 INTRODUCTION

CSF presented in Paper III and the CoMn framework in Paper V. The CSF presents
a number of aspects that may be used to determine the need for influence, while the
CoMn framework presents a number of contribution complexities where influence
may be needed to manage related risks. For example, one of the complexities in
the CoMn framework describes the risks of losing control of the development or
that misalignment between the internal and external agendas may arise. Another
complexity describes the risk of having too low influence from the start which
could complicate a contribution.

By identifying OSS projects and related communities that are important, an
organization may work proactively to enable future contributions, but also influ-
ence the direction of the development in general. This may be a decisive factor for
whether the organization will be able to gain the benefits it expects from the com-
munity. As pointed out both in literature [123, 129, 149, 183], as well as in Papers
I-V, an organization engaged in an OSS community is a stakeholder among many
which may introduce conflicting agendas, result in a lack of control over what
requirements that are implemented, and miss-alignment with the organization’s
internal RE process [38, 219].

The engagement practices proposed in the CSF describe ways in how an orga-
nization may achieve the aforementioned influence on the RE process within OSS
communities with meritocratic coordination processes [186] present. Paper I’s re-
port on how Sony Mobile’s Tools department gained there influence in the Jenkins
and Gerrit OSS communities align with the engagement practices proposed by the
CSF. In Paper III, this is further exemplified in a fictitious example of how the CSF
could be applied based on the case study presented in Paper I.

5.3 Research Goal 3

In regards to RG3, the Stakeholder Influence Analysis (SIA) method (Paper IV)
can help an organization to both identify and analyze the influence of stakeholders
in an OSS community.

Stakeholder populations in OSS communities can be characterized as con-
stantly evolving with new and unknown stakeholders [123]. There are no roosters
of members present due to the informal and decentralized characteristics of OSS
communities. The case study of the Apache Hadoop OSS community [124], which
Paper IV extends, shows how the Apache Hadoop community has an evolving
population where organizations’ influence and collaboration fluctuates with time.

This highlights the need to stay aware of a community’s evolving and dynamic
stakeholder population as the fluctuating population may otherwise unknowingly
introduce conflicting agendas. Depending on the focal organization’s position and
role in the community’s governance [10] and network structure [178], it may be
that the focal organization is no longer the vantage point in the OSS community.
Hence, organizations may need to analyze the influence of other stakeholders in

6 Threats to Validity and Ethical Aspects 35

order to respond to potential threats towards their own agenda and competitive
edge [60].

Papers III and V further point out that such analysis may provide input to
both contribution and community strategies. Regarding contribution strategies,
the presence of (potential) competitors may, e.g., affect the risk of giving away
competitive edge, while the presence of organizations with certain expertise may
provide an opportunity to extract valuable knowledge. For community strategies,
the presence of a (potential) competitor or partner does not have to imply that a
certain level of influence on the RE process is warranted. Further information is
needed about the agendas of these other stakeholders.

The importance of stakeholder analysis was further exemplified in Paper I
which describes how Sony Mobile sought out those with similar needs to build
traction for the common agendas within the Jenkins and Gerrit communities. Feature-
by-feature collaborations were also observed why it may be important to also know
who was a common interest even on a specific requirements level. Paper II also
emphasizes the need to identify those with a similar agenda as they could provide
a suitable partner for creating new and smaller communities if e.g., the general
interest in a community is limited in regards to a certain feature, or if it is deemed
that extra control of the feature is needed.

6 Threats to Validity and Ethical Aspects

In this section, threats to validity and ethical aspects in regards to Paper I-V
are discussed, as well as how these were managed.

The iterative approach implied by the design science research approach has
helped to both validate and refine the artifacts presented in papers included in this
thesis. In Paper III for example, an iterative interview survey was used to design
and refine the CSF until a point of saturation was reached. Papers II and V presents
three design cycles resulting in the CAP model after the first cycle, and the CoMn
framework after the second and third cycle. By continuously refining the artifacts
through new iterations, a deeper understanding is gained about the problem context
while also understanding and improving the internal and external validity [180] of
the artifact. However, the artifacts have only been validated in a modeled version
of the problem context and have yet to be implemented and evaluated in a real-
world problem context [76, 216]. This form of validation may further be viewed
as pilot testing which is a recommended practice before solutions are introduced
for use in industry [67].

Descriptive validation through the use of scenarios [86] has been used in Pa-
pers II, III and IV to demonstrate the different artifacts’ utility and applicability.
These scenarios provide proof-of-concept of the artifacts and helped to surface
and identify potential issues early on, helping to refine the artifacts further. The
scenarios further help to communicate how the artifacts may be applied as well as

36 INTRODUCTION

information about the problem contexts they are intended for. To further help com-
municate such information, quotes from interviewees have been used extensively
to describe the artifacts in Paper III and V. This can potentially help to provide
further contextual factors that may otherwise risk being lost in the reporting of the
research if abstracted by the researcher.

Qualitative data from interviews with practitioners have provided an important
foundation for the research results presented in Papers I, II, III and V. This has
been a deliberate design decision made in order to gain in-depth knowledge about
the problem context and maintain the relevance of the research. By consulting
experts, research can exploit their experience and knowledge about contextual fac-
tors to both design and validate the artifacts adapted to the modeled version of the
problem context [216]. Semi-structured interviews have predominately been used
with questionnaires that have been reviewed between co-authors. Interviews have
been audio-recorded and transcribed. Member-checking and continuous feedback-
loops were used in all four studies to improve the construct validity [180].

A collaborative research effort was used to maintain the reliability of the re-
search and reducing the risk of researcher bias [180]. In Papers I-II all research de-
sign, data collection and analysis was performed iteratively among the co-authors.
In Paper III-V the author of this thesis was responsible for the design, execution,
analysis, and reporting. Peer-debriefing through design-inputs and reviews were
however provided iteratively during the research process from the co-authors.

In regards to the data collection and analysis in Papers III and V, the risk for re-
searcher bias is however still present as these steps were performed the first author
only. In Paper III, this was mitigated through the iterative interview process in the
validation phase where interviewees from the problem investigation phase were
revisited, along with new experts who had not been interviewed earlier. Member-
checking was also used in Paper V where interview summaries were presented to
key interviewees after the interviews had been transcribed. The same key intervie-
wees were also presented with the framework and asked questions about whether
something was redundant, missing, or could potentially be modified.

Compared to Papers II, III and V, Paper IV is limited to presenting the solution
artifact together with a proof-of-concept demonstration through the case study of
Apache Hadoop OSS community. Further validation is needed to make further
claims in regards to SIA’s validity.

Regarding the external validity of the papers included in this thesis, one has to
consider the problem context which they report. For example in Papers I, II and
V, the way in how the case organizations use OSS may be an important contextual
factor to consider. As reported, all organizations use OSS as part of their tools and
infrastructure setups, while other use cases do apply for the different organizations.
Another perspective is given by CaseOrg3 in Paper V which is a public sector or-
ganization in contrast to the other case organizations studied. Hence, the cases do
provide extremes [57] to each other while still having resembling characteristics.

The limitations of case studies are acknowledged and this thesis does not claim

7 Future Work 37

any statistical generalization [180] in this regard. However, case studies do provide
a mean to gather deep knowledge of industry practice and rationale in the problem
context [216]. By considering the case organizations’ characteristics, the reader
can put the CAP model and the CoMn framework as well as the organizations’
rationale and concerns for sharing software as OSS into context. Through analyti-
cal generalization (cf. analogical inference [216]), results from this study can then
be extended to cases with similar characteristics within a similar context [180].
Both similarities and dissimilarities between the source and target cases should be
thoroughly analyzed [73].

In regards to ethical aspects, careful precautions were taken not to reveal sen-
sitive data from the case organizations studied by the papers in this thesis. Due to
the empirical nature of the research, it is difficult for researchers to avoid coming
in contact with this kind of data. It is, therefore, necessary to abstract the data to
a level where the case organization may not feel threatened. However, abstracting
too much may render in too vague conclusions and value risk being lost in terms
of research contribution. Hence, this is a process of balance. In Papers I, II and V,
non-disclosure agreements were used, as well as continuous feedback-loops with
case organization representatives in order to review the level of sensitivity of what
is reported, while maintaining the researchers’ integrity and independence. Pa-
per IV is not tied to any specific case organizations and all data used is available
publicly due to the nature of OSS.

7 Future Work

The design science research approach used in this thesis has been limited to
the design cycle and focused on designing and validating the different artifacts in
a modeled version of the problem context [216]. Future research should, therefore,
look to both continuing with further design cycles and when deemed appropriate
initiate a technology transfer to a real-world context where the artifact may be
implemented and evaluated [216].

For RG1, future design cycles should focus on using empirical research meth-
ods gathering quantitative data. Papers I, II and V has focused on case studies
which is a good method for gathering deep knowledge of industry practice and
investigating the problem context [216]. A survey should aim to generalize the
identified contribution objectives and complexities both within and beyond the
current problem context which is defined by the case organizations already stud-
ied. The population should be limited to organizations that are mature in the way
they leverage OSS [147], where the presence of an Open Source Program Office
may be one potential indicator [142]. The questionnaire needs to be carefully de-
signed to capture demographics and contextual factors so that the problem context
can be defined as clearly as possible.

38 INTRODUCTION

For RG2, future design cycles should investigate the CSF in a real-world con-
text to provide further evidence to its validity, preferably through a multiple-case
study [3]. The example presented in Paper III which is based on the case study
from Paper I does provide some guidance for practitioners but further qualitative
insights are needed.

For RG3, future design cycles could either have a qualitative or quantitative
focus. By applying SIA within a case organization, further problem understanding
may be gained from the perspective of the practitioners and intended users of the
method, specifically in regards to the more qualitative step of applying the influ-
ence/agenda alignment matrix. Another potential study could focus on validating
the centrality measures and how influence is interpreted by applying the SIA on a
number of OSS communities. Samples of the respective communities could then
be asked to verify the results and interpretations either through a survey or a series
of interviews.

Beyond the continued research in regards to RG1-3, this thesis also proposes
two new research goals. The first of these concerns the importance of health and
sustainability of OSS communities [202], which is emphasized both in Papers III
and V. If an organization is to gain any benefits as defined by the contribution
objectives, concerned communities need to have an active stakeholder population
that engages and contributes in the many ways as proposed by the CSF. Future
research should hence identify challenges for maintainers to OSS projects and
specific guidelines for an organization that indicates how and when they can con-
tribute, if “ . . . not for influence, but for health” as stated by I1 in Paper III. Health
in this regard should be specifically investigated and defined considering both the
opinions of OSS maintainers, as well as research21 and industry practice22. A
fourth research goal for future research is therefore:

RG4: To design a solution that supports software-intensive organizations identify
when and how they may contribute to improving an Open Source Software
community’s health.

The second and last new research goal proposed follows from Paper V which
shows that software-intensive organizations using OSS can also be found within
the public sector. As reported, CaseOrg3 differs from Sony Mobile, CaseOrg1 and
CaseOrg2 in that they are not driven by commercial incentives. Instead, they wish
to help private actors focus on more value-adding activities and thereby improve
job-matching capabilities for employers and job-seekers. This difference in incen-
tives and its potential impact on best practices should be further investigated, as
well as the interplay OSS and open data which was also identified as a topic of
relevance for CaseOrg3. A fifth research goal for future research is therefore:

21See, e.g., https://soheal.github.io/
22See, e.g., https://chaoss.community/

8 Conclusions and Main Contributions 39

RG5: To identify best practices for public sector software-intensive organizations
in how they can make use of OSS and open data to improve the services they
provide.

8 Conclusions and Main Contributions

The objective of this thesis is two-fold. The first objective is to create guidance
for organizations in making decisions of what to share as OSS that are in line with
the organization’s business goals. The second objective is to create guidance for
how an organization can identify OSS communities where they need to have an
influence on the RE process, and how they can gain it, in order to achieve its
internal agenda.

To address these two objectives, the two concepts of contribution and com-
munity strategies are introduced. Contribution strategies answer the questions if
a software artifact (e.g., a feature or project) or parts of it should be released as
OSS, when in time, and if it should be contributed to an existing OSS community,
or if a new community should be established. Community strategies answer the
questions what OSS communities an organization views as important and need to
have an influence on in terms of their RE process, and also how this influence may
be gained.

A design science research approach is used to investigate and understand the
underlying problems in their contexts and develop knowledge that can be used to
design artifacts that may provide an improvement, or solve the problems in ques-
tion in the real world. Three research goals are therefore defined, representing
design problems which “calls for a change in the world” [216]. The research
goals are addressed through Papers I-V by answering a number of research ques-
tions, representing knowledge questions which call for knowledge about the world
as is [215]. Using this distinction, the main contributions of this thesis can be con-
sidered as two-fold. In part by the artifacts that may provide an improvement, or
solve the problems in question in the real world, and in part by the design know-
ledge captured in these artifacts that may help to better understand the problem
contexts and how the artifacts may be adapted to their contextual factors.

Following the recommendations by Storey et al. [192], the main contributions
of this thesis are summarized in the following Technological Rules (TR), related
to the three research goals:

TR1: To achieve alignment between business goals and what is shared as OSS,
software-intensive organizations should develop contribution strategies as
well as contribution strategy guidelines and related contribution processes
for internally developed software artifacts using the CAP model and the
CoMn framework presented in Papers II and V respectively.

40 INTRODUCTION

TR2: To identify OSS communities that align with business goals and achieve its
internal agenda within these communities, software-intensive organizations
should develop community strategies using the CSF presented in Paper III.

TR3: To create a contextual awareness of an OSS community’s stakeholder popu-
lation and input its contribution and community strategies, software-intensive
organizations should analyze stakeholders’ influence on the community’s
RE process using the SIA method presented in Paper IV.

INCLUDED PAPERS

CHAPTER I

OPEN INNOVATION THROUGH
THE LENS OF OPEN SOURCE

TOOLS: AN EXPLORATORY
CASE STUDY AT SONY

MOBILE

Hussan Munir, Johan Linåker, Krzysztof Wnuk, Per Runeson and Björn Regnell.

Abstract

Background. Despite growing interest of Open Innovation (OI) in Software En-
gineering (SE), little is known about what triggers software organizations to adopt
it and how this affects SE practices. OI can be realized in numerous of ways,
including Open Source Software (OSS) involvement. Outcomes from OI are not
restricted to product innovation but also include process innovation, e.g. improved
SE practices and methods. Aim. This study explores the involvement of a software
organization (Sony Mobile) in OSS communities from an OI perspective and what
SE practices (requirements engineering and testing) have been adapted in relation
to OI. It also highlights the innovative outcomes resulting from OI. Method. An
exploratory embedded case study investigates how Sony Mobile use and contribute
to Jenkins and Gerrit; the two central OSS tools in their continuous integration tool
chain. Quantitative analysis was performed on change log data from source code
repositories in order to identify the top contributors and triangulated with the re-
sults from five semi-structured interviews to explore the nature of the commits.
Results. The findings of the case study include five major themes: i) The pro-
cess of opening up towards the tool communities correlates in time with a general
adoption of OSS in the organization. ii) Assets not seen as competitive advantage

44 Open Innovation through the Lens of Open Source Tools: An . . .

nor a source of revenue are made open to OSS communities, and gradually, the
organization turns more open. iii) The requirements engineering process towards
the community is informal and based on engagement. iv) The need for systematic
and automated testing is still in its infancy, but the needs are identified. v) The
innovation outcomes included free features and maintenance, and were believed to
increase speed and quality in development. Conclusion. Adopting OI was a result
of a paradigm shift of moving from Windows to Linux. This shift enabled Sony
Mobile to utilize the Jenkins and Gerrit communities to make their internal devel-
opment process better for its software developers and testers.OI was a result of a
paradigm shift of moving from Windows to Linux. This shift enabled Sony Mobile
to utilize the Jenkins and Gerrit communities to make their internal development
process better for its software developers and testers.

1 Introduction

Software organizations have recently been exposed to new facets of openness that
go beyond their experience and provide opportunities outside their organizational
walls. Chesbrough [29] explains the term Open Innovation (OI) as “a paradigm
that assumes that organizations can and should use external ideas as well as inter-
nal ideas, and internal and external paths to market, as they look to advance their
technology”. OI is based on outside-in and inside-out knowledge flows that help to
advance technology and spark innovation. Some classical examples of inside-out
are selling intellectual property while outside-in correspond to start-up acquisition
and integration. There are also coupled processes [51] where companies give and
take during co-creation by making alliances and joint-ventures. OI is fuelled by
increased mobility of workers and knowledge, more capable universities, greater
knowledge access and sharing capabilities that World Wide Web offers [33] and
easier access to venture capital for start-ups.

Open Source Software (OSS) was widely used by software organizations be-
fore the OI model became popular [116] and nowadays provides a common ex-
ample of OI [149]. OSS leverages external resources and knowledge to increase
innovation, product quality and to shorter time-to-market. OSS offers not only po-
tential product innovation (e.g. by using an OSS platform of commodity parts to
build differentiation parts), but potential process innovations in terms of an imple-
mentation of new or significantly improved production or delivery methods [120].

IBM’s engagement in the Linux community in terms of patent and monetary
contributions exemplifies how a firm can leverage OSS from an OI perspective.
Risks and costs of development were in this case shared among other stakeholders
such as Intel, Nokia, and Hitachi, which also have made significant investments in
the Linux community [115]. Thanks to Linux involvement, IBM can strengthen
its own business model in selling proprietary solutions for its clients running on

1 Introduction 45

Figure 1: Study Objectives in the intersection between proprietary organizations
and open source software.

top of Linux. Additionally, the openness of Linux also gave IBM more freedom to
co-develop products with its customers [33].

Software organizations that want to benefit from OI via OSS engagement need
to adapt and innovate their internal software development strategies and processes.
For example, influence on feature selection and road-mapping may be gained
through a more active participation, as many OSS communities are based on mer-
itocracy principles [97]. Also, some benefits may first be fully utilized after con-
tributing back certain parts to the OSS community [201]. For example, by cor-
recting bugs, actively participating in discussions and contributing new features,
a software organization might reduce maintenance cost compared to proprietary
software development [193]. Hence, in order for a firm to gain the expected ben-
efits of products, OI process innovations may be a required step on the way for-
ward [112, 177, 219]. Existing literature does not particularly focus on how these
internal SE process adaptions should be structured or executed [149]. Further,
little is known about how OSS involvement may be utilized as an enabler and sup-
port for further innovation spread inside an organization, e.g. process, tools, or
organizational innovations.

In this study, we focus on identifying when, why and how a software organi-
zation adopts OI through the use of OSS, and what innovative outcomes can be
gained (see Fig. 1). We investigate these aspects through a case study at Sony

46 Open Innovation through the Lens of Open Source Tools: An . . .

Mobile and how it actively participate and contribute to the communities of the
two OSS tools Jenkins and Gerrit. These two tools are the basis of Sony Mobile’s
internal continuous integration tool chain. The study further investigates how ex-
ternal knowledge and innovation captured through the active development of these
OSS tools may be transferred into the product development teams of Sony Mobile.
More explicitly, this study contributes by studying how OSS may be used, not only
for leveraging product innovation [120] in the tools themselves, but also how these
tools can be used as enablers for process innovation in the form of improved SE
practices and product quality.

This paper is structured as follows. Section 2 highlights the related work and
Section 3 outlines the research methodology. In Sections 4 and 5 results from the
quantitative and qualitative analysis are presented, respectively. Finally, Section 6
discussed the results, followed by conclusions in Section 7.

2 Related work
In this section, we summarize related work in OI strategies, OI challenges in SE
and open source development practices inside software organizations. This section
is partly based on the systematic mapping study by Munir et al. [149].

The increased openness that OI implies poses significant challenges to soft-
ware organizations in terms of securing their competitive advantage [149] and un-
derstanding what to contribute, when and how to maintain differentiation towards
competitors that may also be involved in the OSS community [82, 94, 200]. Re-
lated to that is the challenge of what requirements should be selected, when these
should be released and how an internal roadmap should be synchronized with the
OSS project’s roadmap [124,219]. These challenges highlight the need for a clear
contribution strategy that software organizations should create to focus their in-
ternal resources on value-creating activities, rather than contributing unnecessary
patches or differentiating features [219].

Extensive involvement in OSS communities may also bring significant chal-
langes. Among these challenges, Daniel et al. [43] suggested that the conflict be-
tween organizational and OSS standards reduces developers’ organizational com-
mitment and it is strongly dependent on the degree to which developers associate
themselves with organizations or OSS communities. Investing in OSS may also
be costly and create differentiation and property right protection challenges, as in-
dicated by Stuermer et al. [193] who studied the Nokia Internet Tablet, which was
based on a hybrid of OSS and proprietary software development.

West et al. [213] examined the complex ecosystem surrounding Symbian Ltd.
and identified three inherent difficulties for organizations leading an OI ecosystem:
1) prioritizing the conflicting needs of heterogeneous ecosystem participants, 2)
knowing the ecosystem requirements for a product that has yet to be created, and 3)
balancing the interests of those participants against those of the ecosystem leader.

2 Related work 47

Looking at OI strategies, Dahlander & Magnusson [38] show how organiza-
tions may access OSS communities in order to extend the firm’s resource base,
align the organization’s strategy with that of the OSS community, and/or assim-
ilate the community in order to integrate and share results with them. The same
authors explained that depending on how open a firm chooses to be in regards to
their business model, different strategies may be enforced, e.g. symbiotically giv-
ing back result to the community, or as a free-rider keeping modifications and new
functionality to oneself [37]. Some strategies include:

• selectively revealing - differentiating parts are kept internal while commod-
ity parts are made open [82, 207]. This requires continuous assessment of
what parts are to be considered commodity as opposed to differentiating
value.

• licensing schemas (cf. Dual-licensing [31]), technology may be fully dis-
closed, but under a restrictive license [207]. Alternatively, everything may
be disclosed under open and transparent conditions [31].

Henkel [82] reports how small organizations reveal more, as they are likely
to benefit from the external development support. Component manufacturers also
reported to contribute a lot as they have a good protection of the hardware they
sell; software is seen as a complementary asset. In a follow-up study, Henkel [84]
further reported how openness had become a competitive edge, as customers had
started to request even more revealing.

Dahlander & Wallin [39] show how having an employee in the community
can be an enabler for the organizations to not only gain a good reputation but
also to influence the direction of the development towards the organizations’ own
interests. However, to gain the roles needed to commit or review code written by
community developers, individuals need to contribute and become an active part
of the communities as these are often based on the principles of meritocracy [97].

Inner Source [191] has gained interest among researchers and practitioners as a
way to adapt OSS practices at software organizations. Such hybrids of commercial
and OSS practices [139] could include using the OSS style project structure, where
a core team of recognized experts has the power to commit code to an official
release, and a much larger group contributes voluntarily in many ways.

Summary
Research has shown a lot of interest for OI and its different applications [209],
including leveraging OSS for OI [149]. However, the focus is mostly limited
to management and strategic aspects, e.g., [38, 193, 214], with some exception
of inner sourcing [143, 191]. Little is still known about what triggers software
organizations to adopt OSS from an OI perspective and how this affects SE prac-
tices [149].

48 Open Innovation through the Lens of Open Source Tools: An . . .

Table 1: Research questions with description
Research Questions Objective
RQ1: How and to what extent is
Sony Mobile involved in the com-
munities of Jenkins and Gerrit?

To characterize Sony Mobile’s in-
volvement and identify potential in-
terviewees.

RQ2: What is the motivation for
Sony Mobile to adopt OI?

To explore the transition from a
closed innovation process to an OI
process.

RQ3: How does Sony Mobile take
a decision to make a project or fea-
ture open source?

To investigate what factors affect
the decision process when deter-
mining whether or not Sony Mobile
should contribute functionality.

RQ4: What are the innovation out-
comes as a result of OI participa-
tion?

To explore the vested interest of
Sony Mobile as they moved from
a closed innovation model to an OI
model.

RQ5: How do the requirements en-
gineering and testing processes in-
terplay with the OI adoption?

To investigate the requirements en-
gineering and testing processes and
how they deal with the special com-
plexities and challenges involved
due to OI.

This paper adds to existing knowledge by focusing on the use of OSS from an
OI perspective in an organization that seek to complement its internal product de-
velopment and process innovation [120] with the use of external knowledge from
OSS communities. Furthermore, this study aims to improve our understanding
of what and how a software organization can open up and how SE practices are
adapted to deal with the openness to OSS communities.

3 Case study design

Below we describe the research design of this study. We explain the research
questions, the structure of the case study design, and the methodologies used for
data collection as well as for the quantitative and qualitative analysis.

3 Case study design 49

3.1 Research questions

The focus of this study is on how software organizations use OSS projects from an
OI perspective, what triggers them to open up and how this impacts the organiza-
tions’ innovative performance and their SE practices (see Fig. 2). We investigate
these aspects through a case study at Sony Mobile, and how they actively partic-
ipate and contribute to the communities of the two OSS tools Jenkins [159] and
Gerrit [90]. Both tools constitute pivotal parts in Sony Mobile’s internal continu-
ous integration tool chain.

The study further investigates how external knowledge and innovation cap-
tured through the development of these OSS tools, may be transferred into the
product development teams of Sony Mobile. More explicitly, this study con-
tributes by studying how OSS may be used, not only for leveraging product in-
novation [120] in the tools themselves, but also how these tools can be used as
enablers for process innovation in the form of improved SE practices and tools
within the organization.

1. Jenkins is an open source build server that runs on a standard servlet con-
tainer e.g. Apache Tomcat. It can handle Maven and Ant instructions, as
well as execute custom batch and bash scripts. It was forked from the Hud-
son build server in 2010 due to a dispute between Oracle and the rest of the
community.

2. Gerrit code review is an OSS code review tool created by Google in con-
nection with the Android project in 2007. It is tightly integrated with the
software configuration management tool GIT, working as a gatekeeper, i.e.
a commit needs to be reviewed and verified before it is allowed to be merged
into the main branch.

Based on this background, and the research gap identified in earlier work [149],
we formulate our research questions to study the OI in Sony Mobile in an ex-
ploratory manner (see Table 1). RQ1 addresses the extent to which Sony Mobile is
involved in the Jenkins and Gerrit communities and its key contribution areas (i.e.
bug fixes, new features, documentation etc.). RQ2 and RQ3 explore the rationale
behind Sony Mobile’s transition from closed innovation to OI. RQ4 highlights the
key innovation outcomes realized as a result of openness. Finally, RQ5 aims at
understanding whether or not the existing requirements engineering and testing
processes have the capacity to deal with the OI challenges in SE. RQ1 is answered
with the help of quantitative analysis of repository data, while the remaining four
research questions (RQ2, RQ3, RQ4, RQ5) are investigated using qualitative anal-
ysis of interview data.

50 Open Innovation through the Lens of Open Source Tools: An . . .

Figure 2: The Jenkins and Gerrit OSS communities surrounded by Sony Mobile
and other members. Arrows represent knowledge transfer in and out of the com-
munity members such as other software organizations, non profit organizations
(NPO) and individuals, which in turn are illustrated by funnels, commonly used in
OI literature [29].

3.2 Case Selection and Units of Analysis
Sony Mobile is a multinational corporation with roughly 5,000 employees, de-
veloping embedded devices. The studied branch focuses on developing Android-
based phones and tablets and has 1600 employees, of which 900 are directly in-
volved in software development. Sony Mobile develops software in an agile fash-
ion and applies software product line management with a database of more than
20,000 features suggested or implemented across all product lines [170].

However, in order to work with OSS communities, namely Jenkins and Gerrit
Sony Mobile created a designated tools department to acquire and integrate the
external knowledge to improve the internal continuous integration process. The
continuous integration tool chain used by Sony Mobile is developed, maintained
and supported by an internal tools department. The teams working on phones and
tablets are thereby relieved of this technical overhead. During the recent years,
Sony Mobile has transitioned from passive usage of the Android codebase into
active involvement and community contribution with many code commits to Jenk-
ins and Gerrit. This maturity resulted in a transition from closed innovation to OI
[29], assuming that business values are created or captured as an effect.

3 Case study design 51

From an OI perspective, there are interactions between the Tools department
and the Jenkins and Gerrit communities (see Fig. 2). The in- and outgoing transac-
tions, visualized by the arrows in Fig. 2, are data and information flows, e.g. ideas,
support and commits, can be termed as a coupled innovation process [51]. The
exchange is continuous and bi-directional, and brings product innovation into the
Tools department in the form of new features and bug fixes to Jenkins and Gerrit.

The Tools department can, in turn, be seen as a gate between external know-
ledge and the other parts of Sony Mobile (see Fig. 2). The Tools department
accesses, adapts and integrates the externally obtained knowledge from the Jenk-
ins and Gerrit communities into the product development teams of Sony Mobile.
This creates additional transactions inside Sony Mobile which can be labeled as
process innovation [1] in the sense that new tools and ways of working improve de-
velopment efficiency and quality. This relates to the internal complementary assets
need that is mentioned as an area for future research by Chesbrough et al. [32].

We conducted a case study design with Jenkins and Gerrit as units of analy-
sis [180] as these are the products in which the exchange of data and information
enable further innovation inside Sony Mobile.

3.3 Case study procedure

We performed the following steps.

1. Preliminary investigation of Jenkins and Gerrit repositories.

2. Mine the identified project repositories.

3. Extract the change log data from the source code repositories.

4. Analyze the change log data (i.e. stakeholders, commits etc).

5. Summarize the findings from the change log data to answer RQ1.

6. Prepare and conduct semi-structured interviews to answer RQ2–RQ5.

7. Synthesize data.

8. Answer the research questions RQ1–RQ5.

3.4 Methods for quantitative analysis

To understand Sony Mobile’s involvement in the OSS tools (RQ1), we conducted
quantitative analysis of commit data in the source code repositories of Jenkins and
Gerrit.

52 Open Innovation through the Lens of Open Source Tools: An . . .

Preliminary Investigation of Jenkins and Gerrit Commits

A commit is a snapshot of a developer’s files after reaching a code base state. The
number of lines of code in a commit may vary depending upon the nature of the
commit (e.g. new implementation, update etc.) [79]. The comment of a commit
refers to a textual message related to the activity that generates the updated new
piece of code. It ranges from a simple note to a detailed description, depending on
the project’s conventions. In this study, we used the keywords provided by Hattori
and Lanza [79] in his study as a reference point to classify the commit messages
(see Table 2).

We mined the source code repositories of Jenkins and Gerrit to extract the
commit id, date, committer name, committer email and commit description mes-
sage for each commit, with the help of the tool CVSAnlY [136]. The extracted
data was stored locally in a relational database with a standard data scheme, in-
dependent of the analyzed code repository. The structure of the database allows a
quantitative analysis to be done by writing SQL queries. The number of commits
per committer were added together with the name and email of the committer as
keys.

We extracted the affiliations of the committers from their email addresses by
filtering them on the domain, e.g., john.doe@sonymobile.com was classified with
a Sony Mobile affiliation. It is recognized that committers may not use their cor-
porate email addresses when contributing their work, since parts of their work
could be contributed privately or under the umbrella of other organizations than
their employer. To triangulate and complement this approach, a number of ad-
ditional sources were used, as suggested by earlier research [19, 75]. First, so-
cial media sites as LinkedIn, Twitter and Facebook were queried with keywords
from the committer, such as the name, variations of the username and e-mail do-
main. Second, unstructured sources such as blogs, community communication
(e.g., comment-history, mailing-lists, IRC logs), web articles and firm websites
were consulted.

Sony Mobile turned out to be one of the main organizational affiliations among
the committers to Gerrit while no evidence of commits to the Jenkins core com-
munity was identified. The reason for this was that Jenkins is a plug-in-based
community, i.e. there is a core component surrounded by approximately 1,000
plug-ins of which each has a separate source code repository and community. Our
initial screening had only covered the core Jenkins component. After analyzing fo-
rum postings, blog posts and reviewing previously identified committers, a set of
Jenkins plug-ins, as well as two Gerrit plug-ins, were identified, which then were
also included in our analysis. The following Open Source projects were included
for further analysis:

3 Case study design 53

• Gerrit1

• PyGerrit (Gerrit plug-in)2

• Gerrit-events (Gerrit plug-in)3

• Gerrit-trigger (Jenkins plug-in)4

• Build-failure-analyzer (Jenkins plug-in)5

• External-resource-viewer (Jenkins plug-in)6

• Team-views (Jenkins plug-in)7

Classification of commit messages

Further analysis included creating the list of top committers combined with their
yearly activity (number of commits) in order to see how Sony Mobile’s involve-
ment evolved over time. Next, we characterized and classified the commits made
by Sony Mobile to the corresponding communities by following the criteria de-
fined by Hattori and Lanza [79]. This was done manually by analyzing the de-
scription messages of the commits and searching for keywords (see Table 2), and
then classifying the commits in one of the following categories:

Forward engineering activities refer to the incorporation of new features and
implementation of new requirements including the writing new test cases to verify
the requirements. Re-engineering activities deal with re-factoring, redesign and
other actions to enhance the quality of the code without adding new features. Cor-
rective engineering activities refer to fixing defects in the software. Management
activities are related to code formatting, configuration management, cleaning up
code and updating the documentation of the project.

Multiple researchers were involved in the commit message classification pro-
cess. After defining the classification categories, Kappa analysis was performed to
calculate the inter-rater agreement level. First, a random sample of 34% of the to-
tal commit messages were taken to classify the commit messages and Kappa was
calculated to be 0.29. Consequently, disagreement was discussed and resolved
since the inter-rater agreement level was below substantial agreement range. Af-
terwards, Kappa was calculated again and found to be 0.94.

1https://www.openhub.net/p/gerrit
2https://www.openhub.net/p/pygerrit
3https://www.openhub.net/p/gerrit-events
4https://github.com/jenkinsci/gerrit-trigger-plugin
5https://www.openhub.net/p/build-failure-analyzer-plugin
6https://github.com/jenkinsci/external-resource-dispatcher-plugin
7https://github.com/jenkinsci/team-views-plugin

54 Open Innovation through the Lens of Open Source Tools: An . . .

Table 2: Keywords used to classify commits taken from Hattori and Lanza [79].

Forward
Engineering

Re-
engineering

Corrective
Engineering

Management

IMPLEMENT OPTIMIZ BUG CLEAN
ADD ADJUST ISSUE LICENSE
REQUEST UPDATE ERROR MERGE
NEW DELET CORRECT RELEASE
TEST REMOV PROPER STRUCTURE
START CHANG DEPRAC INTEGRAT
INCLUD REFACTOR BROKE COPYRIGHT
INITIAL REPLAC DOCUMENTATION
INTRODUC MODIF MANUAL
CREAT ENHANCE JAVADOC
INCREAS IMPROV COMMENT

DESIGN
CHANGE

MIGRAT

RENAM REPOSITORY
ELIMINAT CODE RE-

VIEW
DEUPLICAT POLISH
RESTRUCTUR UPGRADE
SIMPLIF STYLE
OBSOLETE FORMATTING
REARRANG ORGANIZ
MISS TODO
ENHANCE
IMPROV

3.5 Methods for qualitative analysis

The quantitative analysis had laid a foundation to understand the relation between
Sony Mobile, and the Jenkins and Gerrit communities. Therefore, in the next step
we added a qualitative view by interviewing relevant people inside Sony Mobile
in order to address RQ2–RQ5. Interview questions are listed in the Appendix.

Interviewee selection

The selection of interviewees was based on the committers identified in the ini-
tial screening of the projects. Three candidates were identified and contacted by
e-mail (Interviewees 1, 2 and 3, see Table 3). Interviewees 4 and 5 were proposed
during the initial three interviews. The first three are top committers to the Jenkins

3 Case study design 55

Table 3: Interviewee demographics.

Anonymous
name

ID Tools involve-
ment

Years of ex-
perience

Role

Interviewee 1 I1 Jenkins 8 Tools manager
for Jenkins

Interviewee 2 I2 Jenkins and Ger-
rit

6 Team lead, Tools
manager for Ger-
rit

Interviewee 3 I3 Jenkins 7 Former tools
manager Jenkins

Interviewee 4 I4 Second line after
Jenkins and Ger-
rit Build artifacts
and channel dis-
tribution

8 Software Archi-
tect

Interviewee 5 I5 Open Source pol-
icy in general

20+ Upper-level man-
ager responsible
for overall Open
Source strategy

and Gerrit communities, giving the view of Sony Mobile’s active participation and
involvement with the communities. It should be noted that interviewee I3, when
he was contacted, had just left Sony Mobile for a smaller organization dedicated to
Jenkins development. His responsibilities as the tools manager for Jenkins at Sony
Mobile were taken over by interviewee I4. Interviewee I4 is a Software Architect
in the Tools department involved further down in Sony Mobile’s continuous in-
tegration tool chain and gives an alternative perspective on the OSS involvement
of the Tools department as well as a higher, more architectural view on the tools.
Interviewee I5 is an upper-level manager responsible for Sony Mobile’s overall
OSS strategy, which could contribute with a top-down perspective to the qualita-
tive analysis.

The interviews were semi-structured, meaning that interview questions were
developed in advance and used as a frame for the interviews, but still allowing
the interviewers to explore other relevant findings during the interview wherever
needed. The two first authors were present during all five interviews, with the
addition of the third author during the first and fifth ones. Each interviewer took
turns asking questions, whilst the others observed and took notes.

56 Open Innovation through the Lens of Open Source Tools: An . . .

Each interview was recorded and transcribed. A summary was also compiled
and sent back to the interviewees for a review. Any misunderstandings or correc-
tions could then be sorted out. The duration of the interviews varied from 45 to 50
minutes.

3.6 Validity threats
This section highlights the validity threats related to the case study. Four types of
validity threats [180] are addressed with their mitigation strategies.

Internal validity

This concerns causal relationships and the introduction of potential confounding
factors.

Confounding factors. To mitigate the risk of introducing confounding factors,
the study was performed on the tools level instead of an organizational level to
ensure that the innovation outcomes are merely the result of adopting OI. Per-
forming the study on an organization level introduces the risk of confounding the
innovation outcomes as a result of a product promotion or financial investment
etc. instead of the use of external knowledge from OSS communities. Therefore,
a more fine-grained analysis on the OSS tools level was chosen to minimize the
threat of introducing confounding factors.

Subjectivity. It was found in the study that Sony Mobile does not use any
general innovation metrics to measure the impact of OI. Therefore, researchers had
to rely on qualitative data. This leads to the risk of introducing subjectivity while
inferring innovation outcomes as a result of OI adoption. In order to minimize this
risk, the first two authors independently performed the analysis and the remaining
authors reviewed it to make the synthesis more objective. Moreover, findings were
sent back to interviewees for validation. Furthermore, subjectivity was minimized
by applying the commit messages classification criteria proposed by Hattori and
Lanza. [79]. During the analysis, the disagreements were identified using Kappa
analysis and resolved to achieve a substantial agreement.

Triangulation. In order to mitigate the risk of identifying the wrong innovation
outcomes, we used multiple data sources by mining the Jenkins and Gerrit source
code repositories prior to conducting interviews. Furthermore, we also performed
observer triangulation during the whole course of the study to mitigate the risk of
introducing researcher bias.

External validity

This refers to the extent it is possible to generalize the study findings to other
contexts. The scope of this study is limited to a software organization utilizing
the notion of OI to accelerate its innovation process. The selected case organiza-
tion is a large-scale organization with an intense focus on software development

3 Case study design 57

for embedded devices. Moreover, Sony Mobile is a direct competitor of all the
main stream organizations making Android phones. The involvements by other
stakeholders in the units of analysis (Jenkins and Gerrit) indicate their adoption
of Google’s tool chain to improve their continuous integration process. Therefore,
the findings of this study may be generalized to major stakeholders identified for
their commits to Jenkins and Gerrit, and other OSS tools used in the tool chain
development. Our findings may also be relevant to software organizations with
similar context, domain and size as Sony Mobile.

Construct validity

This refers to what extent the operational measures that are studied really represent
what researcher has in mind, and what is investigated according to the research
questions [180]. We took the following actions to minimize construct validity
threats.

Selection of interviewees. We conducted a preliminary quantitative analysis
of the Jenkins and Gerrit repositories to identify the top committers and to select
the relevant interviewees. The selection was performed based on the individu-
als’ commits to Jenkins or Gerrit. Moreover, recommendations were taken from
interviewees for suitable further candidates to attain the required information on
OI. Process knowledge, role, and visible presence in the community were the key
selection factors.

Reactive bias. Researchers presence might limit or influence the interviewees
and causing them to hide facts or respond after assumed expectations. This threat
was limited by the presence of a researcher that has a long research collaboration
record with Sony Mobile and explained confidentiality rules. Furthermore, inter-
viewees were ensured anonymity both within the organization and externally in
the OSS community.

Design of the interviews. All authors validated the interview questionnaire
followed by a pilot interview with an OSS Jenkins community member in order to
avoid misinterpretation of the interview questions.

Reliability

The reliability deals with to what extent the data and the analysis are dependent on
the specific researcher, and the ability to replicate the study.

Member checking. To mitigate this risk, multiple researchers individually tran-
scribed and analyzed the interviews to make the findings more reliable. In addition,
multiple data sources (qualitative and quantitative) were considered to ensure the
correctness of the findings and cross-validate them. All interviews were recorded,
transcribed and sent back to interviewees for validation. The commit database
analysis was performed and validated by multiple researchers.

58 Open Innovation through the Lens of Open Source Tools: An . . .

Commits classification 2010 2011 2012 2013 2014 Total
Forward Engineering 65 44 264 373 207 953

Re-engineering 38 65 240 336 190 869

Corrective engineering 10 12 59 62 26 169

Management 12 15 96 171 73 367
Total 125 136 659 942 496 2358

Table 4: Sony Mobile’s commits to Gerrit analyzed per year.

Audit trail. Researchers kept track of all the mined data from OSS code reposi-
tories as well as interview transcripts in a systematic way to go back for validation
if required. Finally, this study was not ordered by Sony Mobile to bring supporting
evidence for OI adoption. Instead the idea was to keep the study design and find-
ings as transparent as possible without making any adjustments in the data except
for the anonymizing the interviewees. The results were shared with Sony Mobile
prior to submitting the study for publication.

4 Quantitative analysis

This section presents a quantitative analysis of commits made to eight OSS projects,
namely: Gerrit, pyGerrit, Gerrit-events, Gerrit-trigger, Build-failure-analyzer, Ex-
ternal resource-viewer and Team-views as depicted in section 3.4. It should be
noted that the seven latter projects are plugins to Gerrit and Jenkins, i.e., not part
of the core projects. In the analysis we investigated the types of commits made
(see Section 3.4), and in what proportion these were made by Sony Mobile over
time, as well as compared to other major organizations.

4.1 Gerrit

The two largest categories of commits for Gerrit are forward engineering (953
commits) and re-engineering (869 commits), followed by management commits
(367 commits) and corrective engineering commits (169 commits), see Table 5.

This dominance of forward and re-engineering commits remained stable be-
tween 2010 and 2014, see Table 4. Sony Mobile presented the first Android-based
mobile phone in March 2010 and as can be seen from the analysis also became
active in contributions to Gerrit with a total of 125 contributions in 2010. From
2012 the number of forward and re-engineering commits became more equal each
year suggesting that Sony Mobile was not only contributing new features but also
actively helping in increasing the quality of the current features and re-factoring.

4 Quantitative analysis 59

Table 5: Classification of Sony Mobile’s commits to OSS tools based on the
criteria by Hattori and Lanza [79]

Tools Forward
Engineering

Re-
Engineering

Corrective
Engineering

Management

Gerrit 953 869 169 367

pyGerrit 27 18 19 36

Gerrit-events 27 18 19 36

Gerrit-trigger 60 40 76 135

Build-
failure-
analyzer

60 19 17 36

External-
resource-
viewer

28 8 8 6

Team-views 7 0 0 5

The number of forward engineering and re-engineering commits remained
high and we notice a substantial decrease of corrective engineering and manage-
ment commits. The decrease of management commits may suggest that Sony
Mobile reached a high level of compatibility of its code review processes and
therefore requires fewer commits in this area. This data shows an interesting pat-
tern in joining an OSS community. Since Sony Mobile is a large organization
with several complex processes, their joining of the Gerrit community had to be
associated with a substantial number of forward engineering and re-engineering
commits. This entry to the community lowered the transition time and enabled
faster synchronization of the code review processes between the Android commu-
nity players and Sony Mobile. At the same time, Sony Mobile contributed several
substantial features from the first year of participation which is positive for the
community. Figure 3 shows the progression of commits made by Sony Mobile to
all OSS tools between year 2009 and 2014.

PyGerrit

PyGerrit is a Python library that provides a way for clients to interact with Gerrit.
As can be seen in Table 6, Sony Mobile initiated this plug-in and is the biggest
committer to it, representing 97.5% of the commits. Management commits are the
most frequent category, followed by forward engineering commits. This suggests
that some code formatting changes, cleaning up code and documentation commits
were delivered by Sony Mobile after opening up this plug-in to the community.

60 Open Innovation through the Lens of Open Source Tools: An . . .

Figure 3: Sony Mobile’s commits for all OSS tools per year

Table 6: Percentage of Sony Mobile’s contribution compared to other Software
organizations

Tools Sony Google EricssonHP SAP Intel Others

Gerrit 8.2 38.5 0 0 10.7 0 42.5

PyGerrit 97.5 0 0 0 0 0 2.4

Gerrit-event 66.1 0 3.3 4.1 0.2 2 24.2

Gerrit-trigger 65.2 0 9.1 2.4 0.7 1.3 21.2

Team-views 100 0 0 0 0 0 0

External-resource-
reviewer

89.6 1.5 4.8 0 0 0 4.1

Build-failure-
analyzer

85.5 0 0 0 0 0 14.4

4 Quantitative analysis 61

Sony Mobile’s yearly contribution analysis shows a steady growth since its intro-
duction in 2011 (see Fig. 3).

Conclusion:
This indicates that companies that want the communities to accept their plug-ins
should be prepared to dedicate effort on management type of commits to increase
the code’s quality and documentation and therefore enable other players to con-
tribute.

Gerrit-event

Gerrit-event is a Java library used primarily to listen to stream-events from Gerrit
Code Review and to send reviews via the SSH CLI or the REST API. It was orig-
inally a module in the Jenkins Gerrit-trigger plug-in and is now broken out to be
used in other tools without the dependency to Jenkins. Table 6 shows that apart
from Sony Mobile(66.1%), HP(4.1%), SAP(0.2%), Ericsson(3.3%) and Intel(2%)
commits reveal that they are also using Gerrit-event in their continuous integra-
tion process. Sony Mobile started contributing to Gerrit-event in 2009 and since
then seem to be the largest committer along with its competitors (see Table 6).
Similarly, to the PyGerrit plug-in, management and forward engineering commits
dominate and Sony Mobile is the main driver of features to this community.

Conclusion:
Sony Mobile turns out to be the biggest contributor in Gerrit-event where the fo-
cus is mostly on adding new features (forward engineering) based on the internal
organizational needs.

4.2 Jenkins

Commits from Sony Mobile to Jenkins could not be identified in the core product
but to a various set of plug-ins (see Table 6). The ones identified are:

• Gerrit-trigger

• Build-failure-analyzer

• External resource-reviewer

• Team-views

Gerrit-trigger

This plug-in triggers builds on events from the Gerrit code review system by re-
trieving events from the Gerrit command stream-events, so the trigger is pushed
from Gerrit instead of pulled as scm-triggers usually are. Multiple builds can be
triggered by one change-event, and one consolidated report is sent back to Gerrit.

62 Open Innovation through the Lens of Open Source Tools: An . . .

This plug-in (see Table 6) seems to attract the most number of commits with the
percentage of 65.2% from Sony Mobile. 135 commits were classified as manage-
ment and 76 as corrective engineering. In this case, the majority of the commits
were not forward or re-engineering, which may suggest that Sony Mobile was
more interested in increasing the code quality and fixing the bugs rather than ex-
tending it. It seems logical as for the Jenkins community new functionality can be
realized in the form of a new plug-in rather than extending the current plug-ins.

Conclusion:
Adding plug-ins allows greater flexibility but increases the total number of parallel
projects to manage and maintain by the community.

Build-failure-analyzer

This plug-in scans build logs and other files in the workspace for recognized pat-
terns of known causes to build failures and displays them on the build page for
quicker recognition of why the build failed. As can be seen in see Table 6, Sony
Mobile came out as the largest committer (85.5%) to the Build-failure-analyzer.
One possible explanation for the lack of contribution from the other software or-
ganizations is that this plug-in might be very specific to the needs of Sony Mobile,
but they made it open to see if the community shows interest in contributing to
further development efforts.

Forward engineering and management commits are the two most common cat-
egories. Moreover, the number of commits have declined after 2012 and Table 5
shows a relatively low numbers of corrective engineering (17) and re-engineering
(19) commits, which seem to indicate the maturity of this plug-in in terms of qual-
ity and functionality.

Conclusion:
We hypothesize that after creating and contributing the core functionality for a
given plug-in, the number of forward commits declines and further advances are
realized in a form of a new plug-in.

External-resource-viewer

This plug-in adds support for external resources in Jenkins. An external resource is
something attached to a Jenkins slave and can be locked by a build, to get exclusive
access to it, then released after the build is done. Examples of external resources
are phones, printers and USB devices. Like Build-failure-analyzer, Sony Mobile’s
is the top commiter with the largest contribution percentage of 89.6% compared to
Google (1.48%) and Ericsson (4.8%). Moreover, the majority of the commits are
classified as forward engineering, suggesting that Sony Mobile has come up with
the majority of the functionality to this plug-in. As the number of corrective engi-
neering and re-engineering commits remained low (8 commits in each category),
we can assume that the contributed code was high quality.

5 Qualitative analysis 63

Conclusion:
This data suggest a hypothesis that companies that frequently interact with OSS
communities learn to contribute high quality code and possibly keep the same
quality standards for other development initiatives.

Team-views

This plug-in provides teams, sharing one Jenkins master, to have their own area
with team-specific views. Sony Mobile turned out to be the only committer for
this tool (see Table 6), which implies that Team-views is tailored for the needs of
Sony Mobile. Only forward engineering and management commits were identified
in the data, suggesting that high quality code was contributed and no major re-
factoring was required for this plug-in. This result also supports our previous
hypothesis that modular plug-in based OSS communities provide an efficient way
for proprietary companies to participate and contribute with new functionality as
new plug-ins.

Conclusion:
Decoupling of plug-ins helps in targeting contributions and quality improvement
suggestions and simplifies the collaboration networks for discussions on bugs and
future improvements.

5 Qualitative analysis
We conducted thematic analysis [34, 35] to find recurring patterns in the collected
qualitative data. The following steps were performed in the process.

1. Transcribe the interviewed data from the five interviewee (see Table 3).

2. Identify and define five distinct themes in the data (see Table 7).

3. Classify the interview statements based on the defined themes.

4. Summarize the findings and answers to the RQs.

5.1 Opening up

The process of opening up for external collaboration and maturing as an open
source organization, can be compared to moving from a closed innovation model
to an OI model [29]. The data suggest that the trigger for this process was a
paradigm shift around 2010 when Sony Mobile moved from the Symbian plat-
form (developed in a joint venture), to Google’s open source Android platform
in their products [214]. Switching to Android correlates to a general shift in the
development environment, moving from Windows to Linux. This concerned the

64 Open Innovation through the Lens of Open Source Tools: An . . .

Table 7: Themes emerging from the thematic analysis.
Theme name Definition
Opening up Sony Mobile’s transition process from closed

innovation model to OI model.

Determinants of openness Factors that Sony Mobile considers before in-
dulging themselves into OI.

Requirements engineering How Sony Mobile manages their requirements
while working in OI context.

Testing How Sony Mobile manages their testing pro-
cess while working in OI context.

Innovation outcome The outcomes for Sony Mobile as a conse-
quence of adopting OI.

tools used in the product development as well. A transition was made from ex-
isting proprietary solutions, e.g. the build-server Electric commander, to the tools
used by Google in their Android development, e.g. GIT and Gerrit. As stated
by I2, “. . . suddenly we were almost running pretty much everything, at least any-
thing that touches our phone development, we were running on Linux and open
source”. This was not a conscious decision from management but rather some-
thing that grew bottom-up from the engineers. The engineers further felt the need
for easing off the old and complex chain of integration and building process.

At the same time, a conscious decision was made regarding to what extent
Sony Mobile should invest in the open source tool chain. As stated by I5, “. . . not
only should [the tool chain] be based on OSS, but we should behave like an ac-
tive committer in the ways we can control, understand and even steer it up to
the way we want to have it”. The biggest hurdle concerned the notion of giv-
ing away internally developed intellectual property rights, which could represent
competitive advantage. The legal department needed some time to understanding
the benefits and license aspects, which caused the initial contribution process to
be extra troublesome. In this case, Sony Mobile benefited from having an inter-
nal champion and OSS evangelist (I5). He helped to drive the initiative from the
management side, explained the issues and clarified concerns from different func-
tions and levels inside Sony Mobile. Another success factor was the creation of an
OSS review board, which included different stakeholders such as legal department
representatives, User Experience (UX) design, product development and product
owners. This allowed for management, legal, and technology representatives to
meet and discuss OSS related issues. The OSS contribution process now includes
submitting a form for review, which promotes it further after successful initial
screening. Next, the OSS review board gives it a go or no-go decision. As this

5 Qualitative analysis 65

would prove bureaucratic if it would be needed for each and every contribution to
an OSS community, frame-agreements are created for open source projects with a
high-intensity involvement, e.g. Jenkins and Gerrit. This creates a simplified and
more sustainable process allowing for a day to day interaction between develop-
ers in the Tools department and the communities surrounding Jenkins and Gerrit.
Sony Mobile’s involvement in OSS communities is in-line with the findings of
governance in OSS communities by Jensen [98].

Conclusion:
Adopting OI was a result of a paradigm shift moving from Windows to Linux
environment to stay as close as possible to Google’s tool chain. Furthermore,
Sony Mobile saw a great potential in contributing to OSS communities (Jenkins
and Gerrit) and steering them towards its own organizational interests, as opposed
to buying costly proprietary tools.

5.2 Determinants of openness

Several factors interplay in the decision process of whether or not a feature or a
new project should be made open. Jenkins and Gerrit are neither seen as a part of
Sony Mobile’s competitive advantage nor as a source of revenue. This is the main
reason why developers in the Tools department can meet with competitors, go to
conferences, give away free work etc. This, in turn, builds a general attitude that
when something is about to be created, the question asked beforehand is if it can be
made open source. There is also a follow-up question, whether Sony Mobile would
benefit anything from it, for example maintenance, support and development from
an active community. If a feature or a project is too specific and it is deemed
that it will not gain any traction, the cost of generalizing the project for open use
is not motivated. Another factor is whether there is an existing community for
a feature or a project. By contributing a plug-in to the Jenkins community or a
feature to Gerrit there is a chance that an active workforce is ready to adopt the
contribution, whilst for new projects this has to be created from scratch which may
be cumbersome.

Another strategic factor concerns having a first-mover advantage. Contributing
a new feature or a project first means that Sony Mobile as the maintainer gets a
higher influence and a greater possibility to steer it in their own strategic interest.
If a competitor or the community publishes the project, Sony Mobile may have
less influence and will have to adapt to the governance and requirements from
the others. A good example here is the Gerrit-trigger. The functionality was re-
quested internally at Sony Mobile and therefore undergone development by the
Tools department during the same period it became known that there was a similar
development ongoing in the community. As stated by I3, “. . . we saw a big risk
of the community going one way and us going a very different route”. This led
to the release of the internal Gerrit-trigger as an open source plug-in to Jenkins,
which ended up being the version with gained acceptance in the Jenkins and Gerrit

66 Open Innovation through the Lens of Open Source Tools: An . . .

communities. The initial thought was however to keep it closed according to I3,
“. . . We saw the Gerrit-trigger plug-in as a differentiating feature meaning that it
was something that we shouldn’t contribute because it gave us a competitive edge
towards our competitors [in regards to our continuous integration process]”. It
should be noted that this was in the beginning of the process of opening up in
Sony Mobile and a positive attitude was rising. A quote from I3 explains the posi-
tive attitude of the organization which might hint about future directions, “. . . in 5
years’ time probably everything that Sony Mobile does would become open”.

Conclusion:
One of the key determinants of making a project open is that it is not seen as a
main source of revenue. In other words, there is no competitive advantage gained
by Sony Mobile by retaining the project in-house. By maintaining an internal
fork, the project incurs more maintenance cost compared to making it open source.
Therefore, all the all projects with no competitive advantage are seen as good
candidates to become open source.

5.3 Requirements engineering

This theme provides insights about requirements engineering practices in an ex-
ample OI context. The requirements process in the Tools department towards the
Jenkins and Gerrit communities does not seem very rigid, which is a common
characteristic for OSS [181]. The product development teams in Sony Mobile
are the main customers of the Tools department. The teams are, however, quite
silent with the exception of one or two power users. There is an open backlog
for internal use inside Sony Mobile where anyone from the product development
may post feature requests. However, a majority of the feature requests are submit-
ted via e-mail. The developers in the Tools department started arranging monthly
workshops where they invited the power users and the personnel from different
functional roles in the product development organization. An open discussion is
encouraged allowing for people to express their wishes and issues. An example
of an idea sprung out from this forum is the Build-failure-analyzer8 plug-in. Most
of the requirements are, however, elicited internally within the Tools department
in a dialogue between managers, architects and developers. They are seen to have
the subject matter expertise in regards to the tool functionality. According to I2,
there are “. . . architect groups which investigate and collaborate with managers
about how we could take the tool environment further”. This is formulated as
focus areas, and “. . . typical examples of these requirements are sync times, push
times, build times and apart from that everything needs to be faster and faster”.
These requirements are high level and later delegated to the development team for
refinement.

8https://wiki.jenkins-ci.org/display/JENKINS/BuildFailureAnalyzer

5 Qualitative analysis 67

The Tools team works in an agile Scrum-like manner with influences from
Kanban for simpler planning. The planning board contains a speed lane which
is dedicated for severe issues that need immediate attention. The importance of
being agile is highlighted by I2, “. . . We need to be agile because issues can come
from anywhere and we need to be able to react”.

The internal prioritization is managed by the development team itself, on del-
egation from the upper manager, and lead by two developers which have the as-
signed role of tool managers for Jenkins and Gerrit respectively. The focus areas
frame the areas which need extra attention. Every new feature is prioritized against
existing issues and feature requests in the backlog. External feature requests to
OSS projects managed by the Tools department (e.g. the Gerrit-trigger plug-in)
are viewed in a similar manner as when deciding whether to make an internal fea-
ture or project open or not. If it is deemed to benefit Sony Mobile enough, it will
be put in the backlog and it will be prioritized in regards to everything else. As
stated by I3, “. . . We almost never implemented any feature requests from outside
unless we think that it is a good idea [for Sony Mobile]”. If it is not interesting
enough but still a good idea, they are open for commits from the community.

An example regards the Gerrit-trigger plug-in and the implementation of dif-
ferent trigger styles. Pressing issues in the Tools department’s backlog kept them
from working on the new features. At the same time, another software intense
organization with interest in the plug-in contacted the Tools department about fea-
tures they wanted to implement. These features and the trigger style functionality
required a larger architectural reconstruction. It was agreed that the external or-
ganization would perform the architectural changes with a continuous discussion
with the Tools department. This allowed for a smaller workload and the possibility
to implement this feature earlier. This feature-by-feature collaboration is a com-
monly occurring practice as highlighted by I1, “It’s mostly feature per feature. It
could be an organization that wants this feature and then they work on it and we
work on it". But we don’t have any long standing collaborations”. I3 elaborates
on this further and states that “. . . it is quite common for these types of collabora-
tion to happen just between plug-in maintainer and someone else. They emailed
us and we emailed back” as was the case in the previous example.

In the projects where the Tools department is not a maintainer, community
governance needs more care. In the Gerrit community, new features are usually
discussed via mailing lists. However, large features are managed at hackathons by
the Tools department where they can communicate directly with the community
to avoid getting stuck in tiny details [143]. As brought up by I2, “. . . with the
community you need to get people to look at it the same way as you do and get an
agreement, otherwise it will be just discussions forever”. This is extra problematic
in the Gerrit community as the inner core team with the merge rights consists
of only six people, of which one is from Sony Mobile. One of the key features
received from the community was the tagging support for patch sets. I2 stated,
“. . . When developers upload a change which can have several revisions, it enabled

68 Open Innovation through the Lens of Open Source Tools: An . . .

us to tag meta-data like what is the issue in our issues handling system and changes
in priorities as a result of that change. This tagging feature allows the developers
to handle their work flow in a better way". This whole feature was proposed and
integrated during a hackathon, and contained more than 40 shared patch sets. Prior
to implementing this feature together with the community (I3 quoted) “. . . we tried
to do it with the help of external consultants but we could not get it in, but meeting
core developer in the community did the job for us".

As hackathons may not always be available, an alternative way to communi-
cate feature suggestions more efficiently is by mock-ups and prototypes. I3 de-
scribed how important it is to sell your features and get people excited about it.
Screenshots is one way to visualize it and show how it can help end-users. In the
Jenkins community, this has been taken further by hosting official webcasts where
everyone is invited to present and show new development ideas. Apart from us-
ing mailing lists and existing communication channels, Sony Mobile creates their
own channels, e.g. with public blogs aimed at developers and the open source
communities.

This close collaboration with the community is important as Sony Mobile does
not want to end up with an internal fork of any tool. An I2 quoted, “If we start
diverging from the original software we can’t really put an issue in their issue
tracker because we can’t know for sure if it’s our fault or their system and we
would loose the whole way of getting help from community to fix stuff and col-
laborate on issues”. Another risk would be that “. . . all of a sudden everybody is
dependent on stuff that is taken away from the major version of Gerrit. We cannot
afford to re-work everything”. Due to these reasons, the Tools department is keen
on not keeping stuff for themselves, but contributing everything [201, 219]. An
issue in Jenkins is that there exist numerous combinations and settings of plug-ins.
Therefore, it is very important to have backward compatibility when updating a
plug-in and planning new features.
Conclusion:
The requirements engineering process does not seem to be very rigid, and a ma-
jority of the features requests are submitted through e-mails, and monthly work-
shops with the power users (e.g. internal developers and testers). However, large
features are discussed directly with the community at hackathons by the Sony Mo-
bile’s Tools department to avoid communication bottlenecks. Furthermore, the
prioritization of features is based on the internal needs of Sony Mobile.

5.4 Testing

Similar to the requirements process, the testing process does not seem very rigid
either. I3 quoted, “. . . When we fix something we try to write tests for that so we
know it doesn’t happen again in another way. But that’s mostly our testing process
I think. I mean, we write JUnit and Hudson test cases for bugs that we fix”.

5 Qualitative analysis 69

Bugs and issues are, similarly to feature requests, reported internally either via
e-mail or an open backlog. Externally, bugs or issues are reported via the issue
trackers available in the community platforms. The content of the issue trackers
is based on the most current pressing needs in the Tools department. Critical is-
sues are prioritized via the Kanban speed lane which refers to a prioritized list of
requirements/bugs based on the urgent needs of Sony Mobile. If a bug or an issue
has low priority, it is reported to the community. This self-focused view correlates
with the mentality of how the organization would benefit from making a certain
contribution, which is described to apply externally as well, “. . . Organizations
take the issues that affect them the most”. However, it is important to show to the
community that the organization wants to contribute to the project as a whole and
not just to its parts, as mentioned by Dahlander [39]. In order to do so, the Tools
department continuously stays updated about the current bugs and their status. It
is a collaborative work with giving and taking. “Sometimes, if we have a big issue,
someone else may have it too and we can focus on fixing other bugs so we try to
forward as many issues as possible”.

In Gerrit, the Tools department is struggling with an old manual testing frame-
work. Openness has lead them to think about switching from the manual to an
automated testing process. I2 stated, “. . . It is one of my personal goals this year
to figure out how we can structure our Gerrit testing in collaboration with the com-
munity. Acceptance tests are introduced greatly in Gerrit too but we need to look
into and see how we can integrate our tests with the community so that the whole
testing becomes automated”. In Jenkins, one of the biggest challenges in regards
to test is to have a complete coverage as there are many different configurations
and setups available due to the open plug-in architecture. However, Gerrit still has
some to catch up as stated by I2, “it is complex to write stable acceptance tests
in Gerrit as we are not mature enough compared to Jenkins”. A further issue is
that the test suites are getting bigger and therefore urges the need for automated
testing.

Jenkins is considered more mature since the community has an automated test
suite which is run every week when a new version of the core is released. This
test automation uses Selenium9, which is an external OSS test framework used
to facilitate the automated acceptance tests. It did not get any traction until re-
cently because it was written in Ruby, while the Jenkins community is mainly
Java-oriented. This came up after a discussion at a hackathon where the core
members in the community gathered, including representatives from the Tools de-
partment. It was decided to rework the framework to a Java-based version, which
has helped the testing to take off although there still remains a lot to be done.

I3 highlighted that Sony Mobile played an important role in the Selenium Java
transition process, “The idea of an acceptance test harness came from the com-
munity but [Sony Mobile] was the biggest committer to actually getting traction
on it”. From Sony Mobile’s perspective, it can contribute its internal acceptance

9http://www.seleniumhq.org/

70 Open Innovation through the Lens of Open Source Tools: An . . .

tests to the community and have the community execute what Sony Mobile tests
when setting up the next stable version. Consequently, it requires less work of
Sony Mobile when it is time to test a new stable version. From the community
perspective I3 stated, “an Acceptance Test Harness also helps the community and
other Organizations to understand what problems that big or small organizations
have in terms of features or in terms other requirements on the system. So it’s a
tool where everyone helps each other”.

Conclusion:
Like the requirements engineering process, the testing process is also very infor-
mal, and Sony Mobile prioritizes the issues that affect them the most. One of
the biggest challenges faced by the community and organizations is to have com-
plete test coverage due to the open plug-in architecture. The introduction of an
acceptance test harness was an important step to make the whole testing process
automated for organizations, and the Jenkins and Gerrit communities.

5.5 Innovation outcomes
The word innovation has a connotation of newness [7] and can be classified as
either things (products and services), or changes in the way we create and deliver
products, services and processes. Assink [7] classified innovation into disruptive
and incremental. Disruptive innovations change the game by attacking an existing
business and offering great opportunities for new profits and growth. Incremental
innovations remain within the boundaries of the existing technology, market and
technology of an organization. The innovation outcomes found in this study are
related to incremental innovations.

Sony Mobile does not have any metrics for measuring process and product
innovation outcomes. However, valuable insights were found during the interviews
regarding what Sony Mobile has gained from the Jenkins and Gerrit community
involvement. During the analysis, the following outcomes were identified:

1. Free features.

2. Free maintenance.

3. Freed-up time.

4. Knowledge retention.

5. Flexibility in implementing new features and fixing bugs.

6. Increased turnaround speed.

7. Increased quality assurance.

8. Improved new product releases and upgrades.

9. Inner source initiative.

5 Qualitative analysis 71

The most distinct innovation outcome is the notion of obtaining free features
from the community, which have different facets [38,193]. For projects maintained
by Sony Mobile, such as the Gerrit-trigger plug-in, a noticeable amount of external
commits can be accounted for. Similarly, in communities where Sony Mobile
is not a maintainer, they can still account for free work, but it requires a higher
effort in lobbying and actively steering the community in order to maximize the
benefits for the organization. Along also comes, the free maintenance and quality
assurance work, which renders better quality in the tools. Furthermore, the use of
tools (Jenkins and Gerrit) helped software developers and testers to better manage
their work-flow. Consequently, it freed-up time for the developers and testers
that could be used to spent on other innovation activities. The observed innovation
example in this case was the developers working with OSS communities, acquiring
and integrating the external knowledge into internal product development.

Correlated to the free work is the acknowledgement that the development team
of six people in the Tools department will have a hard time keeping up with the ex-
ternal workforce, if they were to work in a closed environment. “. . . I mean Gerrit
has like let us say we have 50 active developers, it’s hard for the tech organization
to compete with that kind of workforce and these developers at Gerrit are really
smart guys. It is hard to compete for commercial Organizations”. Further on,
“. . . We are mature enough to know that we lose the competitive edge if we do not
open up because we cannot keep up with hundreds of developers in the community
that develops the same thing”.

An organizational innovation outcome of opening up is the knowledge reten-
tion which comes from having a movable workforce. People in the community
may move around geographically, socially and professionally but can still be part
of the community and continue to contribute. I3, who took part in the initiation
of many projects, recently left Sony Mobile but is still involved in development
and reviewing code for his former colleagues which is in line with the findings of
previous studies [143,193]. Otherwise, the knowledge tied to I3 would have risked
being lost for Sony Mobile.

Sony Mobile had many proprietary tools before opening up. Adapting these
tools, such as the build server Electric commander, was cumbersome and it took
long time before even a small fix would be implemented and delivered by the sup-
plier. This created a stiffness whereas open source brought flexibility. I2 quoted,
“. . . Say you just want a small fix, and you can fix that yourself very easily but
putting a requirement on another organization, I mean it can take years. Nothing
says that they have to do it”. This increase in the turnaround speed was besides
the absence of license fees, a main argument in the discussions when looking at
Jenkins as an alternative to Electric commander. This was despite the required ex-
tra involvement and cost of more internal man-hours. As a result, the continuous
integration tool chain could be tailored specifically to the needs of the product de-
velopment team. I1 stated that “. . . Jenkins and Gerrit have been set up for testers
and developers in a way that they can have their own projects that build code and

72 Open Innovation through the Lens of Open Source Tools: An . . .

make changes. Developers can handle all those parts by themselves and get to
know in less than 3 minutes whether or not their change had introduced any bugs
or errors to the system". Ultimately, it provides quality assurance and perfor-
mance gains by making the work flow easier for software developers and testers.
Prior to the introduction of these tools there was one engineer who was managing
the builds for all developers. In the current practice everybody is free to extend
on what is given to them from tools department. It offers more scalability and
flexibility [144].

I1 stated that besides the flexibility, the Tools department is currently able to
make a “. . . more stable tools environment [at Sony Mobile] and that sort of makes
our customers of the tools department, the testers and the engineers, to have an
environment that actually works and does not collapse while trying to use it”. I2
mentioned that “. . . I think it is due to the part of open source and we are trying
to embrace all these changes to our advantage. I think we can make high quality
products in less time and in the end it lets us make better products. I think we
never made an as good product as we are doing today”. Further exploration of
this statement revealed the background context where Sony Mobile has improved
in terms of handling all the new releases and upgrades in their phones compared
to their competitors and part of its credit is given to the flexibility offered by the
open source tools Jenkins and Gerrit.

The obtained external knowledge about the different parts of the continuous
integration tool chain enabled better product development. However, the Tools
department has to take the responsibility for the whole tool chain and not just its
different parts, e.g. Jenkins and Gerrit, described by I5 as the next step in the ma-
turity process. The tool chain has the potential to function as an enabler in other
contexts as well, seeing Sony Mobile as a diversified organization with multiple
product branches. By opening up in the way that the Tools department has done,
effects from the coupled OI processes with Jenkins and Gerrit may spread even
further into other product branches, possibly rendering in further innovations on
different abstraction levels [120]. A way of facilitating this spread is the creation
of an inner source initiative which will allow for knowledge sharing across the
different borders inside Sony Mobile, comparable to an internal OSS community,
or as a bazaar inside a cathedral [206]. The tool chain is even seen as the foun-
dation for a platform which is supposed to facilitate this sharing [119]. The Tools
department is considered more mature in terms of contributing and controlling the
OSS communities. Hence, the Tools department can be used as an example of how
other parts of the organization could open up and work with OSS communities. I5
uses this when evangelizing and working on further opening up the organization
at large, and describes how “. . . they’ve been spearheading the culture of being
active or in engaging something with communities”.

6 Results and discussion 73

Conclusion:
Some of the innovation outcomes attached to Sony Mobile’s openness entail more
freed-up time for developers, better quality assurance, improved product releases
and upgrades, inner source initiatives and faster time to market.

6 Results and discussion
Results from the quantitative and qualitative analysis are discussed below, of which
the latter is addressed per theme, and connected to the research questions defined
in Table 1. Table 8 presents the mapping of research questions to answers with
section numbers. Furthermore, a brief summary of answers to research questions
is highlighted in section 7.

Table 8: Mapping of answers to RQs with section numbers
Research questions Answers to RQs
RQ1 Section 6.1

RQ2 Section 6.2, 6.7

RQ3 Section 6.3

RQ4 Section 6.6

RQ5 Section 6.4, 6.5

6.1 Involvement of Sony Mobile in OSS Communities
Addressing RQ1 in Table 1, the quantitative analysis showed that Sony Mobile has
an active role in numerous OSS projects. In most of the analysed projects, Sony
Mobile is the initiator and maintainer. An exception is Gerrit where they entered
an already established project. However, with 8.2 % (see Table 6) of the commits
during the investigated time-span, they have established themselves in the com-
munity and been able to contribute the necessary adaptions for Gerrit to function
as a part of the continuous integration tool-chain used inside Sony Mobile. This
shows that Sony Mobile has an open mindset to creating their own OSS projects,
as well as getting involved and contributing back in existing ones. In the projects
which Sony Mobile has released themselves, they further show that they are open
for contributions by others. In the Gerrit-trigger plug-in for example, they only
represent 65% of the total commits. This also gives a clear picture of the help
gained by the external workforce as highlighted by OI. By opening up the Gerrit-
trigger plugin and making it a part of the Jenkins community, they earn benefits
such as shared feature development, maintenance and quality assurance. A rea-
son why some of the other projects have fewer external commits (e.g., PyGerrit,

74 Open Innovation through the Lens of Open Source Tools: An . . .

Build-failure-analyzer and Team-views) may be that they are not as established
and attractive for others outside Sony Mobile. A further explanation could be that
Sony Mobile has not invested the time and attention needed in order to build suc-
cessful communities around these projects.

6.2 Opening Up
In relation to RQ2, the move to Android took Sony Mobile from a closed context
to an external arena for OI, recalls the description provided by Grotnes [77]. With
this, the R&D was moved from a structured joint venture and an internal vertical
hierarchy to an OI community. This novel way of using pooled R&D [210] can
be further found on the operational level of the Tools department, which freely
cooperates with both known and unknown partners in the Jenkins and Gerrit com-
munities. From the OI perspective, these activities can be seen as a number of
outside-in and inside-out transactions.

The Tools department’s involvement in Jenkins and Gerrit and the associated
contribution process are repetitive and bidirectional. Thus, this interaction can be
classified as a coupled innovation process [68]. This also complies with Grotnes’
description of how an open membership renders in a coupled process, as Jenkins
and Gerrit communities both are free for anyone to join, in contrast to the Android
platform and its Open Handset Alliance, which is invite-only [77].

The quantitative results provide further support for the hypothesis that both es-
tablished, larger corporations and small scale software organizations are involved
in the development of Jenkins and Gerrit (see Table 6). Some of the small organiza-
tions are Garmin, Ostrovsky, Luksza, Codeaurora, Quelltextlich etc. This confirms
findings from the existing OI literature, e.g. [83, 190] that other community play-
ers also can use these communities as external R&D resources and complimentary
assets to internal R&D processes. One possible motivation for start-ups or small
scale organizations to utilize external R&D is their lack of in-house R&D capabil-
ities. Large scale software organizations exploit communities to influence not only
the development direction, but also to gain a good reputation in the community as
underlined by prior studies [39, 83].

Gaining a good reputation requires more than just being an active committer.
Stam [190] separates between technical (e.g. commits) and social activities (e.g.
organizing conferences and actively promoting the community), where the latter
is needed as complementary in order to maximize the benefits gained from the
former. Sony Mobile and the Tools department have evolved in this vein as they
are continuously present at conferences, hackathons and in online discussions. Fo-
cused on technical activities, the Tools department have progressively moved from
making small to more substantial commits. Along with the growth of commits,
they have also matured in their commit strategy. As described in Section 5.2, the
intent was originally to keep the Gerrit-trigger plug-in enclosed.

6 Results and discussion 75

This form of selective revealing [82] has however been minimized due to a
more open mindset. As a consequence of the openness more plug-ins were initi-
ated and the development time was reduced.

Although the adoption of Jenkins and Gerrit came along with an adaption to
the Android development, it was also driven bottom-up by the engineers since they
felt the need for easing off the complex integration tool chain and building process
as mentioned by Wnuk et al. [219]. As described in Section 5.1, this process was
not free of hurdles, one being the cultural and managerial aspect of giving away
internally developed intellectual property [91]. The fear to reveal intellectual prop-
erty was resolved thanks to the introduction of an OSS review board that involved
both legal and technical aspects. Having an internal champion to give leverage to
the needed organizational and process changes, convince skeptical managers [83],
and evangelism of open source was a great success factor, also identified in the
inner source literature [127].

6.3 Determinants of openness
When discussing if something should be made open or closed (RQ3) in Table 1,
an initial distinction within the Tools department regarding the possible four cases
is made:

1. New projects created internally (e.g. Gerrit-trigger).

2. New features to non-maintained projects (e.g. Gerrit).

3. External feature requirement requests to maintained projects (e.g. Gerrit-
trigger).

4. External bug reports to already maintained projects (e.g. Gerrit-trigger).

The first two may be seen as an inside-out transaction, whilst the two latter
are of an outside-in character. All have their distinct considerations, but one they
have in common, as described in Section 5.2, is whether Sony Mobile will benefit
from it or not. Even though the transaction cost is relative low, it still needs to be
prioritized against the current needs. In the case of the two former, if a feature is
too specific for Sony Mobile’s case it will not gain any traction, and it will be a
lost opportunity cost [117].

The fact that Sony Mobile considers their supportive tools, e.g. Jenkins and
Gerrit, as a non-competitive advantage is interesting as they constitute an essential
part of their continuous integration process, and hence the development process.
As stated in regards to the initial intent to keep Gerrit-trigger internally, they saw
a greater benefit in releasing it to the OSS community and having others adopt
it than keeping it closed. The fear that the community was moving in another
direction, rendering in a costly need of patch-sets and possible risk of an internal
fork, was one reason for giving the plug-in to the community [201]. Wnuk et

76 Open Innovation through the Lens of Open Source Tools: An . . .

al. [219] reason in a similar manner in their study where they differentiate between
contributing early or late to the community in regards to specific features. By going
with the former strategy, one may risk losing the competitive edge, however the
latter creates potentially high maintenance costs.

Sony Mobile is aware that increased mobility [32] poses a threat to the Tools
department as it is not possible for them to work in the OSS communities’ pace due
to the limited amount of resources [32]. Consequently, it may end up damaging
the originally perceived competitive advantage by lagging behind. On the other
hand, openness gives Sony Mobile an opportunity to have an access to pragmatic
software development workforce and also, Sony Mobile does not have to compete
against the community. Additionally, by adopting a first mover strategy [118]
Sony Mobile can use their contributions to steer and influence the direction of the
community.

6.4 Requirements engineering

Tracing back to RQ5 in Table 1, the Tools department may be viewed as both a de-
veloper and an end-user, making up a source of requirements as can often be seen
in Open Source Software Development (OSSD) [181]. This applies both internally
(as a supplier and an administrator of the tools), and externally (as a member of the
communities). From an RE perspective, they are their own stakeholder, competing
with other stakeholders (members) in the Jenkins and Gerrit communities. These
are important characteristics as stakeholders who are not developers are often nei-
ther identified nor considered [4]. A consequence otherwise could be that certain
areas are forgotten or neglected which stands in contrast to Wnuk et al. [219] who
state that adoption of OI makes identifying stakeholders’ needs more manageable.
Further, this brings an interesting contrast to traditional RE where non-technical
stakeholders often need considerable help in expressing themselves. The RE in
OI applied through OSS can be seen as quicker, light-weight and more technically
oriented than traditional RE [181].

In OSSD, one often needs to have a high authority level or have a group of
stakeholders backing up the intent. Sony Mobile has been very successful in this
respect due to the Tools department involvement inside these communities [39].
Due to their high commitment and good track record, Sony Mobile employees
have reached a high level in the governance organization. The Tools department
combines these positions in the communities together with openness in terms of
helping competitors and interacting in social activities [190] (e.g. developer con-
ferences [106]). One reason for this is to attract quiet stakeholders, both in terms
of influencing the community [38], but also to get access to others’ knowledge
which could be relevant for Sony Mobile. An example of this is the introduced
focus on scalability in both the Jenkins and Gerrit communities, where the Tools
department needed to find stakeholders with similar issues to raise awareness and
create traction to the topic. Communication in this requirements value chain [61]

6 Results and discussion 77

between the different stakeholders, as well as with grouping can be deemed very
ad-hoc, similar to OSS RE in general [181]. This correlates to the power structure
and how influence may move between different stakeholders.

Social interaction between the stakeholders is stressed by Panjer et al. [168]
as an important aspect to resolve conflicts and to coordinate dependencies in dis-
tributed software development projects. The Tools department’s preference for live
meetings over the otherwise available electronic options such as mailing lists, is-
sue trackers and discussion boards, is due to time differences and lag in discussions
that complicate implementation of larger features. Open source hackathons [182]
is the preferable choice as it brings the core stakeholders together which allows
for informal negotiations [61] and a live just-in-time requirements process [52],
meaning that requirements are captured in a less formal matter and first fully elab-
orated during implementation. As highlighted in Section 5.3, feature-by-feature
collaborations is also a common practice. This is also due to the ease of com-
munication as it may be performed between two single parties. Hence, it may be
concluded that communication in this type of distributed development is a critical
challenge, and in this case overcome by live meetings and keeping the number of
collaborators per feature low.

This use of live-meetings and social events for requirements communication
and discussion, highlights the importance of being socially present in a community
other than just online if a stakeholder wants to stay aware of important decisions
and implementations. Another reason for the individual stakeholder is to maintain
or grow its influence and position in the governance ladder. Hence, organizations
might need to revise their community involvement strategy and value what their
intents are in contrast to if an online presence is enough.

Another interesting reflection on the feature-by-feature collaborations is that
these may be performed with different stakeholders, i.e. relations between stake-
holders fluctuate depending on their respective interests. This objective and short-
term way of looking at collaborations imply a need of standardized practices in a
community for it to be effective.

6.5 Testing

Addressing the RQ5 in Table 1, we noticed during interviews that both Jenkins
and Gerrit focus on manual test cases. At the same time, the communities started
the transformation journey towards automated testing, with the Jenkins community
leading. The openness of the Tools department led them to participate in the testing
part of Jenkins community and to use its influence to rally the traction towards it
amongst the other stakeholders in the community. This is especially important for
the Jenkins community due to the rich number of settings offered by the plug-ins.

The Gerrit community is currently following the Jenkins’ community patch,
as stressed by interviewee I2. With this move towards automated testing, quality
assurance will hopefully become better and enable more stable releases. These

78 Open Innovation through the Lens of Open Source Tools: An . . .

are important aspects and business drivers for the Tools department as Jenkins and
Gerrit constitute the critical parts in Sony Mobile’s continuous integration tool
chain. From this perspective, a trend may be seen in how the different communities
are becoming more professionalized in the sense that the tools make up business
critical assets for many of the stakeholders in the communities, which motivates a
continuous effort in risk-reduction [82, 146].

The move towards automated testing also allowed for the Tools department to
contribute their internal test cases. This may be viewed as profitable from two
angles. First, it reduces the internal workload and second, it secures that settings
and cases specific for Sony Mobile are addressed and cared for. The test cases
may to some extent be viewed as a set of informal requirements, which secure
quality aspects in regards to scalability for example which is important for Sony
Mobile [20]. Similar practices, but much more formal, are commonly used in
more traditional (closed) software development environments. From a community
perspective, other stakeholders benefit from this as they get the view and settings
from a large environment which enable them to grow as well.

As can be noted in Table 5, the focus is on forward and re-engineering. An
interesting concern is when and how much one should contribute to bug fixes and
what should be left for the community, because some bug fixes are very specific
to Sony Mobile and the community will not gain anything from them. As dis-
cussed earlier, Sony Mobile has the strategy of focusing on issues which are self-
beneficiary. Therefore, to be able to keep the influence and strategic position in
the communities, the work still has to be done in this area as well.

6.6 Innovation outcomes

In relation to RQ4 in Table 1, the focal point of the OI theory is value creation and
capture [29]. In the studied case, the value is created and captured through their in-
volvement in the Jenkins and Gerrit communities. However, measuring that value
using key performance indicators is a daunting challenge. Edison et al. [50] con-
firmed a limited number of measurement models, and that the existing ones neither
model all innovation aspects, nor say what metric can be used to measure a certain
aspect. Furthermore, existing literature is scarce in regards to how data should be
gathered and used for the metrics proposed in the literature. As expected, we found
that Sony Mobile does not have established mechanisms in place to measure their
performance before and after the Jenkins and Gerrit introduction. However, from
the qualitative data collected from the interviews we specifically looked for two
types of innovations: product innovations in the tools Jenkins and Gerrit, and pro-
cess innovation in Sony Mobile’s product development. Other types, specifically
market and organizational innovation were considered but not identified.

By taking an active part in the knowledge sharing and exchange process with
communities [38, 193], the Tools department enjoys the benefits of contributions
extending the functionality of their continuous integration tools. Another benefit

6 Results and discussion 79

is the free maintenance and bug corrections and the test cases extension for further
quality assurance. By extension, these software improvements may be labeled as
product innovations depending on what definition to be used [50]. This may also
be viewed from the process innovation perspective [1] as Sony Mobile gets ac-
cess to extra work force and a broad variety of competencies, which are internally
unavailable [38]. The interviewees admit to that even a large scale software organi-
zation cannot keep up the technical work force beyond the organization’s borders
and there is a huge risk of losing the competitive edge by not being open. This
is an acknowledgement to Joy’s law [111] “No matter who you are, not all smart
people work for you”. Hence, it is vital to reach work force beyond organizational
boundaries when innovating [29], and knowledge is still retained even if people
move around inside the community.

Furthermore, these software improvements and product innovations affect the
performance and quality of the continuous integration process used by Sony Mo-
bile’s product development. Continuous integration as an agile practice [14] en-
ables early identification of integration issues as well as increases the developers’
productivity and release frequency [189]. With this reasoning, as reported else-
where [120], we deem that the product innovations captured in Jenkins and Gerrit
transfer on as process innovation to Sony Mobile’s product development. The
main reason behind this connection is the possibility to tailor and be flexible that
OSS development permits. By adapting the tool chain to the specific needs of
the product development the mentioned benefits (e.g. increased build quality and
performance) are achieved and waste is reduced in the form of freed up hours,
which product developers and testers may spend on alternative tasks, as confirmed
by Moller [140]. Reduced time to market and increased quality of products are
among the visible business outcomes. However, these outcomes cannot be con-
firmed due to a lack of objective metrics and came up as a result of interviews.

Another process innovation, which could also be classified as an organiza-
tional innovation outcome [1] is the inner source initiative. This initiative not only
helps Sony Mobile to spread the tool chain, but also to build a platform (i.e. soft-
ware forge [119]) for sharing built on the tool within the other business units of
Sony Mobile. This may be seen as an intra-organizational level OI as described
by Morgan et al. [143]. By integrating the knowledge from other domains, as
well as opening up for development and commits, this allows a broader adoption
and a higher innovation outcome for Sony Mobile and neighboring business units,
as well as for communities. Organizational change in regards to processes and
structures and related governance issues, would however be one of many chal-
lenges [143]. Since Sony Mobile is a multinational corporation with a wide spread
of internal culture, organizational changes are context and challenging.

80 Open Innovation through the Lens of Open Source Tools: An . . .

6.7 Openness of tools software vs. Proprietary software

A specific aspect of RQ2 in Table 1 is that Sony Mobile only opens up its non-
competitive tools that are not the part of the revenue stream. I3 stated that “. . . Sony
Mobile has learnt that even collaborating with its worst competitors does not take
away their competitive advantage, rather they bring help for Sony Mobile and
becomes better and better”. This raises a discussion point of why Sony Mobile
limits its openness to noncompetitive tools, despite knowing that opening up cre-
ates a win-win situation for all stakeholders involved. Furthermore, it remains an
open question why the research activity related to OI in SE is low, as confirmed by
the results of a mapping study performed on the area [149].

In the light of the mapping study, it would be fair to state that the SE literature
lacks studies on OI [149]. Organizations have a tendency to open proprietary
products when they lose their value, and spinning off is a one way of re-capturing
the value by creating a community around it [200]. This implication paves the
way for future studies using proprietary solutions as units of analysis. Moreover,
it will lead to contextualization of OI practices, which may or may not work under
different circumstances. Therefore, the findings could also be used to address the
lack of contextualization weakness of OI mentioned by Mowery [145]. It is also
important to note that this study focuses on OI via OSS participation, which is
significantly different from the situation where OI is based on open source code
for the product itself (like Android or Linux). In future work we plan to explore
that situation to see if there are other patterns in these OI processes.

7 Conclusions

This study focuses on OI in SE at two levels: 1) innovation incorporated into Jenk-
ins and Gerrit as software products, and 2) how these software improvements affect
process and product innovation of Sony Mobile. By keeping the development of
the tools open, the in- and out-flows of knowledge between the Tools department
and the OSS communities bring improvement to Sony Mobile and innovate the
way how products are developed. This type of openness should be separated from
the cases where OSS is used as a basis for the organization’s product or service
offering, e.g. as a platform, component or full product [201]. To the best of our
knowledge, no study has yet focused on the former version, which highlights the
contribution of this study and the need for future research of the area.

Our findings suggest that both incumbents and many small scale organizations
are involved in the development of Jenkins and Gerrit (RQ1). Sony Mobile may
be considered as one of the top committers in the development of the two tools.
The main trigger behind adopting OI turned out to be a paradigm shift, moving
to an open source product platform (RQ2). Sony Mobile’s opening up process
is limited to the tools that are non-competitive and non-pecuniary. Furthermore,

7 Conclusions 81

Sony Mobile makes projects or features open source, which are neither seen as a
main source of revenue nor as a competitive advantage (RQ3).

In relation to the main innovation outcomes from OI participation (RQ4), we
discovered that Sony Mobile lacks quantitative indicators to measure its innovative
capacity before and after the introduction of OSS at the Tools department. How-
ever, the qualitative findings suggest that it has made the development environment
more stable and flexible. One key reason, other than commits from communities,
regards the possibility of tailoring the tools to internal needs. Still, it is left for
future research efforts to further investigate in how OI adoption affects product
quality and time to market.

When looking at the impact of OI adoption on requirements and testing pro-
cesses (RQ5), Sony Mobile uses dedicated internal resources to gain influence,
which together with an openness toward direct competitors and communities is
used to draw attention to issues relevant for Sony Mobile, e.g. scalability of tools
to large production environments. Social presence outside of online channels is
highly valued in order to manage communication challenges related to distributed
development. Another way of tackling such challenges regards co-creation on a
feature-by-feature basis between two single parties. Choice of partner fluctuates
and depends on the feature in question and individual needs of the respective par-
ties. Further, prioritization is made in regards to how an issue or feature may be
seen as beneficial, in contrast to the pressing needs of the moment. Regarding
testing, much focus is directed towards automating test activities in order to raise
quality standards and professionalize communities to organizational standards.

The scope of the study findings is limited to software organizations with similar
context, domain and size as Sony Mobile. It is also worth mentioning that the
involvement of stakeholders in the Jenkins and Gerrit OSS communities suggests
that the continuous integration processes of these OSS projects are comparable to
the corresponding process at Sony Mobile. Thus, we believe that findings of this
study may also be applicable to incumbents as well as small software organizations
identified in this study.

Future work includes investigation of other contexts and cases where comp-
anies use OSS aiming to leverage OI, and to cross-analyze the presented findings
in this paper with findings from future case studies.

APPENDIX A

SUPPLEMENTARY INTERVIEW
QUESTIONNAIRE

Demographics

• Where do you work?

• What is your job title?

• Which department do you work for in the organization?

• How many years of experience do you have?

• Could you, in short, describe your daily work and responsibilities?

General involvement

• Are you, or have been, in any way actively involved in any open source
community in your daily work? (Gerrit, Jenkins, any other?)

• Could you describe your involvement?

• What is/was the reasons for your involvement in these open source commu-
nities? (Volunteered or tasked by management?)

• How much time are you allowed to spend on community interaction?

• How is your involvement with these community in your spare time, outside
of your daily work?

• What development process/methodology do you use and how does it interact
with the community? (process of working)

Requirements

• What are the sources (internal and external) behind the requirements/fea-
tures? (by tool developers, tool users, pm’s, others...)

84 Supplementary interview questionnaire

• How do you manage and implement the requirements/features?

• How are the requirements approved and prioritized? (By developers alone,
pm’s, community...)

• How is your involvement perceived from the community? Positive or nega-
tive? How come? (competitors)

• Are there any internal (organizational) obstacles in contributing to the com-
munity? (Time, IP, management...)

• Are there any external obstacles related to the involvement in the community
related to the addition of new requirements/features?

• How did you overcome these?

Testing

• How does your internal process of reporting bugs differ from the commu-
nity’s? (tools for reporting bugs in community)

• How do you manage traceability between tests and requirements?

• Who is responsible for fixing those bugs? (Process behind, consequence on
quality and resolution time)

• How does your internal process for correcting bugs or issues, differ from the
community’s?

• Are there any obstacles related to the involvement in the community related
to the testing process? How did you overcome these? (Communication,
synchronized level of quality/tests between contributors)

Business/strategy

• What motivates your organization to contribute to open source project(s)?
(Beyond lower cost, improved quality?)

• What is the strategy behind these commits?

• Did you consider alternate strategies such as buying proprietary tools (COTS)
or hiring people/outsourcing for the development these tools? Why?

• How are these strategies supported by your internal procedures (IP depart-
ment)?

• Is it a local strategy or global strategy? Who are the sponsors?

85

• How has the commits effected the relation with other (corporate) stake-
holders in the communities? (Free-riding, governance structure, constraints,
Sony Authority, collaboration, balance between community and Sony’s needs,
community buildup)

• How has the commits effected the relation with other competitors? (Free-
riding, governance structure, collaboration)

Perception on innovation and outcome

• How has the usage/development of these tools effected the Sony Mobile’s
product development? (Developers, testers)

• How has the usage of these tools effected the products?

• Is innovativeness of a requirement/issue/bug considered, and if so, what ef-
fect does it have on the requirements and contribution process?

• How has the involvement in the communities implicated on innovation in
your: 1) Processes? 2) Products 3) Organization 4) Business strategies

• How do you measure the impact from the development/usage of these tools
on Sony Mobile’s product development? Metrics etc.

• Is the knowledge gained from the OSS tool development transferred and
exploited outside of the tools development? (Absorptive capacity - Firm
level, individual level)

Ending remarks

CHAPTER II

MOTIVATING THE
CONTRIBUTIONS: AN OPEN
INNOVATION PERSPECTIVE

ON WHAT TO SHARE AS
OPEN SOURCE SOFTWARE

Johan Linåker, Hussan Munir, Krzysztof Wnuk and Carl Eric Mols.

Abstract

Open Source Software (OSS) ecosystems have reshaped the ways how software-
intensive firms develop products and deliver value to customers. However, firms
still need support for strategic product planning in terms of what to develop inter-
nally and what to share as OSS. Existing models accurately capture commoditiza-
tion in software business, but lack operational support to decide what contribution
strategy to employ in terms of what and when to contribute. This study proposes a
Contribution Acceptance Process (CAP) model from which firms can adopt con-
tribution strategies that align with product strategies and planning. In a design
science influenced case study executed at Sony Mobile, the CAP model was it-
eratively developed in close collaboration with the firm’s practitioners. The CAP
model helps classify artifacts according to business impact and control complexity
so firms may estimate and plan whether an artifact should be contributed or not.
Further, an information meta-model is proposed that helps operationalize the CAP
model at the organization. The CAP model provides an operational OI perspective
on what firms involved in OSS ecosystems should share, by helping them motivate
contributions through the creation of contribution strategies. The goal is to help
maximize return on investment and sustain needed influence in OSS ecosystems.

88 Motivating the Contributions: An Open Innovation Perspective on . . .

1 Introduction

Open Innovation (OI) has attracted scholarly interest from a wide range of disci-
plines since its introduction [209], but remains generally unexplored in software
engineering [149]. A notable exception is that of Open Source Software (OSS)
ecosystems [93, 207, 210]. Directly or indirectly adopting OSS as part of a firm’s
business model [31] may help the firm to accelerate its internal innovation pro-
cess [29]. One reason for this lies in the access to an external workforce, which
may imply that costs can be reduced due to lower internal maintenance and higher
product quality, as well as a faster time-to-market [193, 201]. A further potential
benefit is the inflow of features from the OSS ecosystem. This phenomenon is
explained by Joy’s law as “no matter who you are, not all smart people work for
you”.

From an industry perspective, these benefits are highlighted in a recent study
of 489 projects from European organizations that showed projects of organizations
involving OI achieved a better financial return on investment compared to organi-
zations that did not involve OI [47]. Further, two other studies [114, 147] have
shown that organizations with more sources of external knowledge achieved better
product and process innovation for organization’s proprietary products. Moreover,
a recent survey study [33] in 125 large firms of EU and US showed that 78% of
organizations in the survey are practicing OI and neither of them has abandoned it
since the introduction of OI in the organization. This intense practicing of OI also
leads 82% of the organizations to increase management support for it and 53% of
the organizations to designate more than 5 employees working full-time with OI.
Moreover, the evidence suggests that 61% of the organizations have increased the
financial investment and 22% have increased the financial investment by 50% in
OI.

To better realize the potential benefits of OI resulting from participation in OSS
ecosystems, firms need to establish synchronization mechanisms between their
product strategy and product planning [62], and how they participate in the ecosys-
tems and position themselves in the ecosystem governance structures [10,149,190,
219]. This primarily concerns firms that either base their products on OSS or em-
ploy OSS as part of their sourcing strategy. To achieve this synchronization, these
firms need to enrich their product planning and definition activities with a strategic
perspective that involves what to keep closed and what to contribute as OSS. We
label this type of synchronization as strategic product planning in OI. Contribu-
tion strategies [219], i.e., guidelines that explain what should be contributed, and
when play a vital role here. A common strategy is to contribute parts considered
as a commodity while keeping differentiating parts closed [82, 207]. The timing
aspect is critical as functionality sooner or later will pass over from being differen-
tiating to commodity due to a constantly progressing technology life-cycle [200].
This strategy is further emphasized by existing commoditization models [22,200].
However, these models are not designed with active OSS ecosystem participation

2 Related work 89

in mind and lack support for strategic product planning and contribution strategies.
In this paper, we occupy this research gap by presenting a Contribution Ac-

ceptance Process (CAP) model. The model was developed in close collaboration
with Sony Mobile. Sony Mobile is actively involved in a number of OSS ecosys-
tem, both in regard to their products features and their internal development in-
frastructure1. With the consideration of OSS as an external asset, the CAP model
is based on the Kraljic’s portfolio purchasing model which helps firms analyze
risk and maximize profit when sourcing material for their product manufactur-
ing [109]. The original model is adapted through an extensive investigation of
Sony Mobile’s contribution processes and policies, and designed to support firms’
strategic product planning. More specifically, the model helps firms to create con-
tribution strategies for their products and software artifacts such as features and
components. Hence, the CAP model is an important step for firms that use OSS
ecosystems in their product development and want to gain or increase the OI bene-
fits, such as increased innovation and reduced time-to-market. Moreover, we help
firms to operationalize the CAP model by proposing an information meta-model.
The meta-model is an information support that should be integrated into the re-
quirements management infrastructure and enables contribution strategies to be
communicated and followed up on a software artifact-level throughout a firm’s de-
velopment organization. As a first validation outside of Sony Mobile, the CAP
model was presented to and applied in three case firms. This provided understand-
ing of the model’s generalizability, and also input to future design cycles.

The rest of the paper is structured as follows: In section 2, we position our
study with related work and further motivate the underlying research gap. This is
followed by section 3 in which we describe the research design of our study, its
threats to validity and strategies used to minimize these threats. In section 4 we
present our CAP model and in section 5 we present an information meta-model
for how contribution decisions may be traced. In section 6, we present an example
of how the CAP model and meta-model may be used together inside Sony Mobile.
In section 7 we present findings from three exploratory case studies outside Sony
Mobile where we focused on early validation the CAP model’s applicability and
usability. Finally, in section 8 we discuss the CAP model in relation to related
work, and specific considerations, while we summarize our study in section 9.

2 Related work

Below we describe the context of our research with respect to how software engi-
neering and OSS fits into the context of OI. Further, we give a background on con-
tribution strategies and commoditization models. Moreover, we provide a back-
ground of the sourcing model on which the CAP model is based. We than provide

1http://developer.sonymobile.com/knowledge-base/open-source/

90 Motivating the Contributions: An Open Innovation Perspective on . . .

an overview on what we label as strategic product planning, as well as on software
artifacts, and conclude by describing the research gap, that this study aims to fill.

2.1 Open Innovation in Software Engineering

OI is commonly explained by a funnel model [29] representing a firm’s R&D
process, see Fig. 1. The funnel (1) is permeable, meaning that the firm can interact
with the open environment surrounding it. This conceptualization fits onto many
contexts, e.g., a firm that takes part in a joint-venture or start-up acquisition. In
our case, we focus on ecosystems (2) and specifically those based on OSS [66,
93]. An OSS ecosystem consists of the focal firm along with other actors who
jointly see to the development and maintenance of an OSS project, which may
be seen as the technological platform underpinning the relationships between the
actors [96, 132]. In the context of this study, the focal firm represented by the OI
funnel is Sony Mobile and their internal software development process. The OSS
ecosystem could, for example, be represented by that surrounding the Android
Open Source Project2 (AOSP). The interactions between the focal firm and the
ecosystem (see Fig. 1) are represented by the arrows going in and out and can
be further characterized as knowledge exchange between the firm and the OSS
ecosystem (e.g., Sony Mobile and AOSP). Examples of transactions can include
software artifacts (e.g., bug fixes, features, plug-ins, or complete projects), but
also opinions, knowledge, and support that could affect any step of the internal or
external development.

The interactions (3) may be bi-directional in the sense that they can go into the
development process from the open environment (outside-in), or from the develop-
ment process out to the open environment (inside-out). Coupled innovation [51]
happens when outside-in and inside-out transactions occurs together (i.e., con-
sumption of and contribution to OSS). This may be expected in co-development
between a firm and other ecosystem participants in regard to specific functionality
(e.g., Sony Mobile’s developer toolkits3).

How firms choose to work with and leverage these interactions with OSS
ecosystems impact how they will realize the potential benefits of OI, such as in-
creased innovation, shorter time-to-market, and better resource allocation [193,
201]. The CAP model presented in this paper provides operational and decision-
making guidelines for these firms in terms what they should contribute to and
source of from the OSS ecosystems. I.e., how they should interact with the open
environment in an inside-out, outside-in, or coupled direction. Hence, what the
CAP model brings in terms of novelty is an operational OI perspective on what
firms involved in OSS ecosystems should share, by helping firms motivate the
contributions through the creation of tailored contribution strategies.

2https://source.android.com/
3https://github.com/sonyxperiadev

2 Related work 91

Figure 1: The OI model illustrated with interactions between the firm (1) and its
external collaborations (2,4). Adopted from Chesbrough [29].

92 Motivating the Contributions: An Open Innovation Perspective on . . .

2.2 Contribution Strategies in Open Source Software Ecosys-
tem

Wnuk et al. [219] define a contribution strategy as a managerial practice that helps
to decide what to contribute as OSS, and when. To know what to contribute, it is
important for firms to understand how they participate in various OSS ecosystems
in regards to their business model and product strategy from an OI perspective.
Dahlander & Magnusson [38] describe how a firm may access the OSS ecosystems
in order to extend its resource base and align its product strategy with ecosystems’
strategies. In another study, Dahlander & Magnusson [37] describe how a firm
can adapt its relationships with the OSS ecosystems based on how much influence
the firm needs, e.g., by openly contributing back to the OSS ecosystem, or by
keeping new features internal. To build and regulate these relationships, a firm
can apply different revealing strategies in this regard: differentiating parts are kept
internal while commodity parts are contributed [82, 207]. Further, licenses may
be used so that the technology can be disclosed under conditions where control is
still maintained [207]. Depending on the revealing strategy the level of openness
may vary from completely open, partly transparent conditions [31], to completely
closed. As highlighted by Jansen et al. [94], the openness of a firm should be
considered as a continuum rather than a binary choice.

2.3 Commoditization Models

With commoditization models, we refer to models that describe a software ar-
tifact’s value depreciation [103] and how it moves between a differential to a
commodity state, i.e., to what extent the artifact is considered to help distinguish
the focal firm’s product offering relative to its competitors. Such models can help
firms better understand what they should contribute to OSS ecosystems, and when,
i.e., provide a base to design contribution strategies [219]. Van der Linden et
al. [200] stressed that efficient software development should focus “. . . on pro-
ducing only the differentiating parts” and that “. . . preferably, firms acquire the
commodity software elsewhere, through a distributed development and external
software such as [commercial software] or OSS”. Firms should hence set the dif-
ferentiating value of a software artifact in relation to how it should be developed,
or even if it should be acquired. Commoditization is also related to the product’s
life-cycle and, is more often experienced towards the end of the life cycle [105].

Van der Linden et al. [200] present a commoditization model that highlights
how commoditization is a continuous and inevitable process for all software arti-
facts. Therefore, firms should consider whether the software or technology should
be developed, acquired, or kept internally, shared with other firms, or made com-
pletely open (e.g., as OSS) [11]. Ideally, differentiating software or technology
should be kept internal, but as their life-cycle progresses their value depreciates
and they should be made open. This is particularly relevant for software artifacts

2 Related work 93

that have an enabling role for cross-value creation, data collection or support value
creation when combined with other parts of the offering, e.g., an artifact that col-
lects and analyzes anonymous customer data that could be offered as business
intelligence to customers [103]. Bosch [22] presents a similar commoditization
model, which classifies the software into three layers and describes how a soft-
ware’s functionality moves from an early development stage as experimental and
innovative, to a more mature stage where it provides special value to customers
and advantage towards competition, then finally transitioning to stage where it is
considered as commodity, hence it “. . . no longer adds any real value” [22].

A challenge identified by both van der Linden et al. [200] and Bosch [22] is
the risk of losing Intellectual property rights (IPR) to competitors, a challenge that
has also been highlighted in numerous other studies [82, 83, 210, 219]. By not
contributing software and technology that are considered differentiating, firms can
avoid the risk of giving away its added value to competitors. However, both van der
Linden et al. [200] and Bosch [22] highlight how the acquisition of the commodity
functionality may help firms to reduce the development and maintenance cost,
and potentially shorten time-to-market. Instead, they can shift internal focus to
differential features and better-justified R&D activities [200].

2.4 The Kraljic Portfolio Purchasing Model

From the software product planning perspective, sourcing refers to decisions of
what parts of the software that should be developed internally or acquired exter-
nally, from where and how [105], and is an important part of a firm’s product
strategy [62]. A recent literature review of software component decision-making
making lists four sourcing strategies: in-house, outsourcing, COTS and OSS and
brings supporting evidence that two sourcing strategies are often considered [11].
From an OSS perspective, sourcing, therefore, regards decisions on if, and what,
parts of the internal software that should be based on and/or co-developed as OSS
(also referred to as Open-Sourcing [2]). This is further highlighted in existing com-
moditization models (see section 2.3), which argues how commodity parts should
be acquired, contributed and sourced in different ways, while internal development
should be focused on differenting parts [22, 200]. With this background, we have
chosen to base the CAP-model presented in this study on the portfolio purchasing
model by Peter Kraljic [109].

Kraljic’s model describes how to develop a sourcing strategy for the supply-
items (e.g., material and components) required for a product. First, the supply-
items are classified according to the Profit impact and Supply risk dimensions on
a scale from low to high. The profit impact concerns the strategic importance of
the item, as well as the added value and costs which that it generates for the firm.
The supply risk refers to the availability of the item, ease to substitute its suppliers,
and how it is controlled. The supply items are then positioned onto a matrix with
four quadrants, based on the two dimensions, see Fig. 2. Each quadrant represents

94 Motivating the Contributions: An Open Innovation Perspective on . . .

Figure 2: The matrix used in Kraljic’s portfolio purchasing model [109], which
allows supply-items needed for a product to classified into four item categories
based on the two dimensions Business impact and Supply risk.

a specific item category with its own distinctive purchasing strategy towards the
suppliers [109].

• Strategic items: These are items with high-profit impact and high supply
risk. They can usually only be acquired from a single supplier. A com-
mon strategy is to form and maintain a strategic partnership with the sup-
plier [25].

• Leverage items: These are items with high-profit impact and low supply
risk. Can generally be obtained from multiple suppliers at a low switching
cost. A common strategy is to exploit buying power within the supplier
market [25].

• Bottleneck items: These are items with low-profit impact and high supply
risk. Suppliers are usually in a dominant position. A common strategy is to
accept dependence and strive to reduce negative effects, e.g., through risk
analysis and stock-piling [25].

• Non-critical items: These are items with low-profit impact and low supply
risk. They generally have a low added-value per item. A general strategy is
to reduce related costs, such as logistic and administrative [25].

2 Related work 95

Determining how a material or component should be classified may be done in
several ways. Gelderman et al. [70] report how a consensus-seeking method is fre-
quently used by inviting cross-functional competencies and internal stakeholders
to discuss how items should be rated in regard to the two dimensions [70]. Other
measurement approaches involve representing each dimension with a specific vari-
able (e.g., supply risk as a number of available suppliers), or using a set of variable
and weighting them together. After a set of items have been analyzed and put on
the matrix, discussions, and reflections are performed and can potentially lead to
a revision of the item categorization [70]. This discussion may concern how the
firm should maintain the items’ current positions or strive to move certain items
between the quadrants.

The model inspired several industries and academics. Among some examples,
Caniëls and Gelderman [25] studied the choice of various purchasing strategies
and empirically quantified the "relative power" and "total interdependence" as-
pects among Dutch purchasing professionals. Ulkuniemi et al. [198] looked at
purchasing as a market shaping mechanism and identified five types of market
shaping actions. Shaya discussed the usage of the Kraljic’s portfolio model for
optimizing the process of sourcing IT and managing software licenses at Skanska
ITN [187]. Gangadharan et al. proposed using Kraljic’s portfolio model for map-
ping SaaS services and sourcing structure [65]. To the best of our knowledge, no
study has suggested using Kraljic’s model in the context of OSS ecosystems and
creation of contribution strategies for software artifacts.

2.5 Strategic Product Planning in OI
A software product strategy defines the product and describes how it will evolve
for a longer period of time [62]. It should consider aspects such as the prod-
uct definition in terms of functional and quality scope, target market, delivery
model, positioning and sourcing 4. Product planning executes product strategy
with the help of roadmapping, release planning, and requirements management
processes [62]. Hence, decisions regarding if, and what parts of the product should
be based on OSS concerns executive management and the software product man-
agement (SPM) as they usually oversee the product strategy [130], but also the
development organization as they, together with SPM, oversee the product plan-
ning and development.

To the best of our knowledge, the current literature offers limited operational
support for creating contribution strategies that help synchronize product strategies
and product planning with OSS ecosystems. Therefore, we present the CAP model
to support software firms in building strategic product planning that looks beyond
realizing a set of features in a series of software releases that reflects the overall
product strategy and adds the strategic OI aspect with the help of contribution
strategies.

4http://community.ispma.org/body-of-knowledge/

96 Motivating the Contributions: An Open Innovation Perspective on . . .

2.6 Artifacts in Software Engineering

The CAP model presented in this paper offers a tool for firms to decide whether
or not a software artifact should be contributed to an OSS ecosystem or not. In
this context, a software artifact may refer to a functionality of different abstrac-
tions, e.g., bug-fixes, requirements, features, architectural assets or components.
These artifacts may be represented and linked together in software artifact reposi-
tories [55], often used for gathering, specification and communication of require-
ments inside a software development organization’s requirements management in-
frastructure [15].

Artifacts may be structured and stored in different ways depending on the con-
text and process used [55]. The resulting artifact structure (also called infrastruc-
ture) supports communication between different roles and departments inside an
organization, e.g., to which product platform a certain feature belongs, what re-
quirements a certain feature consists of, what test cases that belong to a certain re-
quirement, which release a certain requirement should be implemented in, or what
artifacts patches that represent the implementation of a certain requirement. The
communication schema should be altered dependent on the firms’ needs and pro-
cesses [54], e.g. to follow-up what requirements are contributed. In this study, we
introduce an information meta-model that proposes how a set of repositories may
be set up to support the above-mentioned communication and decision-making.

Firms often store software artifacts in a central database and require certain
quality criteria in terms of completeness and traceability etc [4]. In contrast, OSS
ecosystems constitute an opposite extreme with their usually very informal prac-
tices [52]. Here, a requirement may be represented by several artifacts, often
complementing each other to give a more complete picture, e.g., as an issue, in
a mail thread, and/or as a prototype or a finished implementation. These artifacts
are examples of what Scacchi refers to as informalisms [181] and are stored in
decentralized repositories (such as issue trackers, mailing lists, and source code
repositories respectively).

2.7 Summary

Software engineering has received limited attention in the context of OI, specifi-
cally in relation to OSS, which is widespread in practice [149]. Hence, the limited
attention that contribution strategies have gotten is not surprising with some ex-
ceptions [190,219]. There is literature explaining general incentives and strategies
for how firms should act [38, 84, 210], but neither of the aforementioned or ex-
isting models [22, 200] consider aspects specific to OSS, and how firms should
synchronize internal product strategy and planning with OSS ecosystem participa-
tion [149]. This study aims to address this research gap through a close academia
and industry collaboration.

3 Research methodology 97

3 Research methodology
In this section, we describe the research design, the process of our study, and our
research questions. Further, we motivate the choices of research methods and how
these were performed to answer the research questions. Finally, we discuss related
validity threats and how these were managed.

3.1 Case Firm
Sony Mobile is a multinational firm with roughly 5,000 employees, developing
mobile phones and tablets. The studied branch is focused on developing An-
droid based phones and tablets and has 1600 employees, of which 900 are directly
involved in software development. Sony Mobile develops software using agile
methodologies and uses software product line management with a database of
more than 20,000 features suggested or implemented across all product lines [170].

As reported in earlier work [147], Sony Mobile is a mature OSS player with
involvement in several OSS projects. Their existing processes for managing contri-
bution strategies and compliance issues is centrally managed by an internal group
referred to as their OSS governance board [147] (cf. OSS Working group [102]).
The board has a cross-functional composition as previously suggested with engi-
neers, business managers, and legal experts, and applies the reactive approach as
described in section 4.3.

3.2 Research Questions
This study aims to support software-intensive firms involved in OSS ecosystems
with integrating their internal product strategy and planning [62] with the decision-
process of what software artifacts that they should contribute to the OSS ecosys-
tems, and when, formalized as contribution strategies [219]. Strategic product
planning in OI primarily concerns what parts should be revealed (contributed) in
an inside-out direction [29] from the firm to the ecosystem. This contribution af-
fects the OSS which in turn is sourced in an outside-in direction [29] from the
ecosystem to the firm and is a key enabler in achieving the potential benefits of
OI [149]. Earlier research in this area of OI [209], and OSS [149], is sparse and
often limited to a management level (e.g., [37, 38, 82, 200]). To occupy this re-
search gap, we aim to design a solution that supports firms in strategic product
planning. We pose our first research question (RQ1) as:

RQ1: How can contribution strategies be created and structured to support strate-
gic product planning from an OI perspective?

Product planning is a broad practice and usually involves a cross-functional
set of internal stakeholders (e.g., legal, marketing, product management, and de-
velopers) [108]. This is also the case for strategic product planning and associated

98 Motivating the Contributions: An Open Innovation Perspective on . . .

contribution strategies. For a firm with a small development organization, these
internal stakeholders may be co-located and efficiently communicate and discuss
decisions on a daily basis, but for larger (geographically-distributed) development
organizations this may not be possible and cumbersome [40]. A contribution strat-
egy for a certain feature needs to be communicated from the product planning
team to the development teams who should implement and contribute accordingly.
Conversely, product planning is responsible for monitoring the realization of the
approved contribution strategies and what impact they have.

One of the main challenges for market-driven firms is to know what requirements-
associated information to obtain, store, manage, and how to enable efficient com-
munication across all stakeholders involved in the crucial decisions that lead to
product success [101, 172]. Handling information overload [220] and efficiently
connecting the necessary bits and pieces of information is important for strategy
realization and follow up analysis. This is particularly important when introduc-
ing new concepts that require close collaboration and efficient communication be-
tween product management and product development organizations. Thus, RQ2
focuses on the information meta-model that should be integrated into the software
artifact repositories used for requirements management and product planning. Our
goal is to develop an information meta-model that describes how contributions to
OSS ecosystems can be traced to internal product requirements and platforms, and
vice versa, and allow for an organizational adoption of contribution strategies for
concerned firms. This leads us to pose our second research question (RQ2):

RQ2: What software and product planning artifact types and repositories are re-
quired and how should they be represented in a meta-model to enable com-
munication and follow-up of contribution strategies in strategic product plan-
ning?

By answering these two research questions our goal is to create a practical
solution for uncovering further benefits that OI brings [149].

3.3 Research Design and Operation

This study is a design science [86] inspired case study [180]. The work was ini-
tiated by problem identification and analysis of its relevance. This was followed
by an artifact design process where the artifacts (the CAP model and information
meta-model) addressing the research problems (RQ1 & RQ2) was created. Fi-
nally, the artifacts were validated in the context of the research problem. These
steps were performed in close academia-industry collaboration between the re-
searchers and Sony Mobile. We performed data collection and analysis throughout
the steps and concluded with reporting of the results (see Fig. 3).

3 Research methodology 99

Problem Identification

The objectives of the problem investigation phase in the design process [86] are
to further understand the problem context and current practices. To gain greater
understanding, we conducted informal consultations with four experts (I1-I4) at
Sony Mobile who is involved in the decision-making process of OSS contribu-
tions (see Table 1). This allowed us to further refine both RQ1 and RQ2 and
confirmed their importance and relevance for the industry. Simultaneously, in-
ternal processes and policy documentation at Sony Mobile were studied. Next,
we received permission to access additional data sources and were able to inves-
tigate requirements and contribution repositories. The consultations and investi-
gations confirmed that a suitable solution requires a combination of a technology-
based artifact and an organization-based artifact (see guidelines one and two by
Hevner [86]). The technology-based artifact (RQ1) should allow firms to create
contribution strategies for software artifacts and the organizational-based artifact
(RQ2) should support the organizational adoption and operationalization of the
technology-based artifact.

Table 1: Consultation with experts

Expert Id Years of experience Role

I1 6 Years Team Lead
I2 8 Years Director OSS SW Operations
I3 15 Years Senior Manager
I4 5 Years Software Developer

Artifact Design

RQ1 is addressed by designing an artifact that would allow the practitioners to
decide whether a software artifact should be contributed to an OSS ecosystem
or not. As this is a sourcing issue at the product strategy-level [11, 62, 105], we
decided to base the artifact on Kraljic’s portfolio purchasing model [109] following
the advice and experience of I2 in sourcing. The model consists of a matrix that
allows firms to analyze how they source and purchase material and components
for their production (see section 2.4).

With this foundation, we iteratively formalized our findings from the consulta-
tions with I1-I4 and studies of internal processes and policy documentation. The
results of this formalization are the CAP model and the associated meta-model of
information required to instantiate the CAP model, supporting strategic product
planning in OI. Each item category from the original model [109] has a corre-
sponding type of contribution strategy [219], and instead of supply items, we refer
to software artifacts, e.g., features or components. The two dimensions are re-

100 Motivating the Contributions: An Open Innovation Perspective on . . .

Figure 3: Overview of the research methodology used in this study. The de-
sign process was performed iteratively through the three steps involved: problem
investigation, artifact design, and artifact valuation [86].

3 Research methodology 101

fined to represent Business impact and Control complexity, inspired by existing
commoditization models [22, 200] and literature on OSS ecosystem governance
(e.g., [10,37,151]). The measurement process is proposed to employ a consensus-
seeking approach [70] with the involvement of cross-functional competencies and
internal stakeholders [108]. To help frame the measurement discussion process,
questions are defined inspired by literature related to the Kraljic portfolio purchas-
ing model (e.g., [25, 70]), commoditization models [22, 200], software value map
(e.g., [9, 103], and OSS ecosystem governance (e.g., [10, 37, 151]). An overlay is
created on top of the CAP model to highlight which contribution objective should
be the primary driver for the chosen contribution strategy. The objectives repre-
sent important value incentives inspired by OI literature [29, 193, 201, 207]. The
intention is to help users of the model to fine-tune the contribution strategy for the
classified artifact. The CAP model is presented in more detail in section 4.

To address RQ2 and enable an organizational adoption and operationalization
of the CAP-model, we created an information meta-model that facilitates com-
munication and follow-up on software artifacts and their contribution strategies.
In the problem investigation phase, it became apparent that the information sup-
port should be integrated into the software artifact repositories used for require-
ments management. The information support would then be able to reach every-
one who is involved in the product planning and development. This required us to
expand our investigation of Sony Mobile’s requirements and contribution reposi-
tories, which included a broad set of software artifact repositories that are used in
the product planning of mobile phones. We focused the repository investigation
on understanding how contributions could be traced to product requirements and
platforms, and vice versa. Through consultation with I1-I4, we selected six rele-
vant repositories: the internal product portfolio, feature repository, feature-based
architectural asset repository, patch repository, contribution repository and commit
repository (see section 5).

These repositories and their unique artifact IDs (e.g., requirement id, patch id,
and contribution id) allowed us to trace the contributions and commits to the archi-
tectural assets, product requirements and platforms, via the patches that developers
create and commit to internal source code branches. This analysis resulted in the
information meta-model presented in Fig. 5. The meta-model creation process was
driven by the principles of finding a balance between research rigor and relevance,
moving away from extensive mathematical formalizations of the CAP model and
focusing on the applicability and generalizability of the model, see guideline five
by Hevner [86].

Artifacts Validation

Validation helps confirm that candidate solutions actually address the identified
research problems. As we are in an early stage of the research and design process,
this study uses static validation [76]. This type of validation uses presentation of

102 Motivating the Contributions: An Open Innovation Perspective on . . .

candidate solutions to industry practitioners and gathering of feedback that can
help to further understand the problem context and refine candidate solutions, in
line with the design science process [86]. Dynamic validation [76], which con-
cerns piloting of the candidate solutions in a real-work setting, is a later step in the
technology transfer process and is currently under planning at the case firm and is
left for future work.

Both the CAP-model and its related information meta-model were validated
statically through continuous consultations with experts at Sony Mobile (I1-I4).
In these consultations, the models were explained and discussed. Feedback and
improvement ideas were collected and used for iterative refinement and improve-
ment. Experts were asked to run the CAP model against examples of features in
relation to the four software artifact categories and related contribution strategies
that CAP model describes. The examples are presented together with the CAP
model and provide further detail and validation of its potential use, see section 4.4.
A complete example of how the CAP model and meta-model are used is further
presented in section 6. These examples help to evaluate functionality, complete-
ness, and consistency of the CAP model and associated information meta-model.
The usability of the information meta-model was further validated by perform-
ing traces between the different types of artifacts and their repositories. These
traces were presented and used in the static validation of the meta-model. From
a design science perspective [86], we employed observational validation through
a case study at Sony Mobile where we studied the artifacts (models) in a busi-
ness environment. We also employed descriptive evaluation where we obtained
detailed scenarios to demonstrate the utility of the CAP model, see guideline three
by Hevner [86].

To improve the external validity of the CAP model, we conducted exploratory
case studies at three different case firms (see Section 7). In these case studies, we
used static validation [76] where we presented the CAP model to participants from
the respective firms and applied it in a simulated setting as part of the interviews.
In two of the cases, semi-structured interviews were used with one representative
from each firm. In the third case, a workshop setting was used with eight par-
ticipants from the firm. When collecting feedback from the three case firms, we
focused on applicability and usability of the CAP model.

3.4 Ethics and Confidentiality

This study involved analysis of sensitive data from Sony Mobile. The researchers
in the study had to maintain the data’s integrity and adhere to agreed procedures
that data will not be made public. Researchers arranged meetings with experts
from Sony Mobile to inform them about the study reporting policies. Data ac-
quired from Sony Mobile is confidential and will not be publicly shared to ensure
that the study does not hurt the reputation or business of Sony Mobile. Finally,
before submitting the paper for publication, the study was shared with an expert at

3 Research methodology 103

Sony Mobile who reviewed the manuscript to ensure the validity and transparency
of results for the scientific community.

3.5 Validity Threats

This section highlights the validity threats associated with the study. Four types of
validity threats [180] are mentioned along with their mitigation strategies.

Internal Validity

Internal validity refers to factors affecting the outcome of the study without the
knowledge of the researchers [180].

Researcher bias refers to when the researcher may risk influencing the results
in a wanted direction [179]. The proposed CAP model was created with an iter-
ative cooperation between researchers and industry practitioners. Thus, there was
a risk of introducing the researcher’s bias while working towards the creation of
the model. In order to minimize this risk, regular meetings were arranged between
researchers and industry experts to ensure the objective understanding and pro-
posed outcomes of the study. Furthermore, researchers and industry practitioners
reviewed the paper independently to avoid introducing researcher’s bias.

A central part of the CAP model involves estimating the business impact and
control complexity. These estimations involve several factors and can have mul-
tiple confounding factors that influence them. In this work, we assume that this
threat to internal validity is taken into consideration during the estimation process
and therefore is not in the direct focus of the CAP model. Moreover, the CAP
model does not prevent additions of new factors that support these estimates.

Triangulation refers to the use of data from multiple sources and also ensur-
ing observer triangulation [179]. In this study, our data analysis involved inter-
pretation of qualitative and quantitative data obtained from Sony Mobile. We
applied data triangulation by using Sony Mobile’s internal artifacts repositories,
documents related to contribution strategies and consultation with relevant experts
before proposing the CAP model. There were risks of identifying the wrong data
flows and subjective interpretation of interviews. In order to mitigate these risks,
concerned multiple experts with different roles and experiences (see Table 1) were
consulted at Sony Mobile. We ensured observer triangulation by involving all
researchers who authored this manuscript into the data collection and analysis
phases.

External Validity

External validity deals with the ability to generalize the study findings to other
contexts.

104 Motivating the Contributions: An Open Innovation Perspective on . . .

We have focused on analytic generalization rather than statistical generaliza-
tion [57] by comparing the characteristics of the case to a possible target and pre-
senting case firm characteristics as much as confidentiality concerns allowed. The
scope of this study is limited to firms realizing OI with OSS ecosystems. Sony
Mobile represents an organization with a focus on software development for em-
bedded devices. However, the practices that are reported and proposed in the study
has the potential to be generalized to all firms involved in OSS ecosystems. It
should be noted that the case firm can be considered a mature firm in relation to
OSS usage for creating product value and realizing product strategies. Also, they
recognize the need to invest resources in the ecosystems by contributing back in
order to be able to influence and control in accordance with internal needs and
incentives. Thus, the application of the proposed CAP model in an other context
or in other firms remains part of future work.

The CAP model assumes that firms realize their products based, in part, on
OSS code and OSS ecosystem participation. This limits its external generalizabil-
ity to these firms. At the same time, we believe that the innovation assessment
part of the CAP model may be applied to artifacts without OSS elements. In this
case, the CAP model provides only partial support as it only helps to estimate the
innovativeness of the features (as an innovation benchmark) without setting con-
tribution strategies. Still, this part of the CAP model should work in the same way
for both OSS and non-OSS based products. Finally, the classification of software
artifacts has a marked business view and a clear business connotation. A threat
remains here that important technical aspects (e.g. technical debt, architectural
complexity) are overlooked. However, throughout the static validation examples,
we saw limited negative impact on this aspect, especially in a firm experienced in
building its product on an OSS platform.

The meta-model was derived from Sony Mobile’s software artifact reposito-
ries. We believe that the meta-model will fit organizations in similar characteris-
tics. For other cases, we believe that the meta-model can provide inspiration and
guidance for how development organizations should implementing the necessary
adaptations to existing requirements management infrastructure, or create such, so
that contribution strategies for artifacts can be communicated and monitored. We
do acknowledge this as a limitation in regards to external validity that we aim to
address in future design cycles.

Construct Validity

Construct validity deals with choosing the suitable measures for the concepts under
study [180]. Four threats to the construct validity of the study are highlighted
below.

First, there was a risk that academic researchers and industry practitioners may
use different terms and have different theoretical frames of reference when ad-
dressing contribution strategies. Furthermore, the presence of researchers may

3 Research methodology 105

have biased the experts from Sony Mobile to give information according to re-
searchers’ expectations. The selection of a smaller number of experts from Sony
Mobile might also contribute to the unbalanced view of the construct.

Second, there was a potential threat to construct validity due to the used inno-
vation assessment criteria based on business impact and control complexity. Both
dimensions can be expanded by additional questions (e.g. internal business per-
spective or innovation and learning perspective [103]) and the CAP model provides
this flexibility. One could argue that also technical and architectural aspects should
be taken into consideration here. At the same time, the static validation results at
Sony Mobile confirm that these aspects have limited importance at least for the
studied cases. Still, they should not be overlooked when executing the CAP model
in other contexts.

Third, a common theoretical frame of reference is important to avoid misinter-
pretations between researchers and practitioners [179]. In this study, the Kraljic’s
portfolio model is used as a reference framework to the CAP model. However,
the horizontal and vertical dimensions of Kraljic’s portfolio model were changed
to control complexity and business impact respectively. Both industry practition-
ers and academic researchers had a common understanding of Kraljic’s portfolio
model [109] before discussions in the study. Furthermore, theoretical constructs
were validated by involving one of the experts in the writing process from Sony
Mobile to ensure consistent understanding.

Fourth, prolonged involvement refers to a long-term relationship or involve-
ment between the researchers and organization [179]. Since there was an involve-
ment of confidential information in the study, it was important to have a mutual
trust between academic researchers and practitioners to be able to constructively
present the findings. The adequate level of trust was gained as a result of long
past history of collaboration between academic researchers and experts from Sony
Mobile.

Reliability

The reliability deals with to what extent the data and the analysis are dependent on
the specific researcher and the ability to replicate the study.

Member checking may involve having multiple individuals go through the data,
or letting interviewees review a transcript [179]. In this study, the first two authors
proposed the meta-model after independent discussions and reviewed by the third
author. Furthermore, the model was validated by a team lead, software devel-
oper, and senior manager at Sony Mobile, involved in making contributions to
OSS communities, were consulted to ensure the correctness of the meta-model
and associated data.

Audit trail regards maintaining traceability between collected data during the
study [179]. For this study, the first two researchers kept track of all the mined data
from the software artifact repositories as well as the email and informal communi-

106 Motivating the Contributions: An Open Innovation Perspective on . . .

cation between researchers and Sony Mobile representative. Results were shared
with Sony Mobile for any possible misinterpretation or correction of data.

4 The Contribution Acceptance Process (CAP)
Model (RQ1)

The CAP model is an adapted version of the portfolio model introduced by Pe-
ter Kraljic [109]. Kraljic’s model was originally constructed to help firms with
creating purchasing strategies towards their suppliers of items needed for their
product manufacturing. The CAP model is focused on software artifacts and how
these should be sourced and contributed as OSS. The artifacts may be of differ-
ent abstraction levels, e.g., ranging from specific requirements or issues to sets of
requirements as features, frameworks, tools or higher level components.

The model may be used proactively or reactively. In the former, the model is
systematically used on a portfolio or set of artifacts to decide on specific contribu-
tion strategies for each artifact, but also to get a general overview and analyze the
artifacts relative each other. In the reactive case, the model is used to follow-up on
previously classified artifacts, and for individual contribution requests of artifacts
from the development organization. We start by describing how the model may be
used to classify artifacts and elicit contribution strategies. We then move on and
put the model into the context of the two approaches. Lastly, we give examples of
artifacts and related contribution strategies.

4.1 Model Description
The focal point of the CAP model is the matrix presented in Fig. 4. Artifacts
are mapped on to the matrix based on how they are valued in regard to the two
dimensions Business impact and Control complexity, located on the vertical and
horizontal axis respectively. Business impact refers to how much you profit from
the artifact, and control complexity refers to how hard the technology and know-
ledge behind the artifact is to acquire and control. Both dimensions range from
low to high.

Artifact Types and Contribution Strategies

An artifact is categorized into one of the four quadrants, where each quadrant rep-
resents a specific artifact type with certain characteristics and contribution strategy.
The four types are as follows:

• Strategic artifacts: high business impact and high control complexity.

• Platform/leverage artifacts: high business impact and low control complex-
ity.

4 The Contribution Acceptance Process (CAP) Model (RQ1) 107

Figure 4: The Contribution Acceptance Process (CAP) model and its different
quadrants that help to determine what contribution strategy to use depending on
how a software artifacts are classified in terms of business impact and control
complexity. The overlaying arches marks up four contribution objectives which
help to further tailor the contribution strategy (see section 4.1).

108 Motivating the Contributions: An Open Innovation Perspective on . . .

• Products/bottlenecks artifacts: low business impact and high control com-
plexity.

• Standard artifacts: low business impact and low control complexity.

Strategic Artifacts: This category includes artifacts that can be internally or
externally developed, have a differential value and makes up a competitive edge
for the firm. Due to their value and uniqueness, there is a need to maintain a
high degree of control over these artifacts. OSS contributions within this category
should generally be restricted and made in a controlled manner, ensuring that the
differentiation is kept. However, this does not account for possible enablers and/or
frameworks, i.e., parts of the artifact that are required for the artifact to work in
a given environment. Those have to be actively maintained and contributed. This
may require that the artifacts undergo special screening to identify the parts that
enable the differentiating parts. In case the artifact is already connected to an
existing OSS ecosystem, the firm should strive towards gaining and maintaining
a high influence in the ecosystem in regard to the specific artifact and attached
functionality. If this is not achievable, e.g., when the contribution terms of an
existing ecosystem require contributions to include the differential IP, the option
of creating a new and firm-orchestrated OSS ecosystems should be considered.
For examples of Strategic artifacts, see section 4.4.

Platform/Leverage Artifacts: These artifacts have a high degree of innova-
tion and positive business impact, but their development does not necessarily need
to be controlled by the firm. Examples include technology and market opportunity
enablers that have competing alternatives available, ideally with a low switching
cost. Generally, everything could be contributed, but with priority given to con-
tributions with the highest potential to reduce time-to-market, i.e., contributions
with substance should be prioritized over minor ones, such as error-corrections
and maintenance contributions that are purely motivated due to cost reduction.
Due to the lower need for control, firms should strive to contribute to existing
projects rather than creating new ones, which would require a substantial degree
of effort and resources and represent an unnecessary investment. For examples of
Platform/Leverage artifacts, see section 4.4.

Products/Bottleneck Artifacts: This category includes artifacts that do not
have a high positive business impact by itself but would have a negative effect
if not present or provided. For example, functionality firmly required in certain
customer-specific solutions but are not made available for the general market.
These artifacts are hard to acquire and requires a high degree of control due to the
specific requirements. The strategy calls for securing the delivery for the specific
customers, while and if possible, sharing the burden of development and mainte-
nance. Generally, everything could be contributed, but with priority given to con-
tributions with the highest potential to reduce time-to-market, or in this case rather
the time-to-customer. But, due to the unique nature of these artifacts, the number
of other stakeholders may be limited in existing OSS ecosystems. This may im-

4 The Contribution Acceptance Process (CAP) Model (RQ1) 109

ply that the artifact will be problematic to contribute in a general OSS ecosystem.
An option would then be to identify and target specific stakeholders of interest,
i.e. of customers and their suppliers, and create a limited project and related OSS
ecosystem. For examples of Products/Bottlenecks artifacts, see section 4.4.

Standard Artifacts: This category includes artifacts that may be considered as
a commodity to the firm. They do not have a competitive edge if kept internal and
has reached a stage in the technology life-cycle where they can create more value
externally. They may be externally acquired as easily as internally developed and
may, therefore, be considered to have a low level of control complexity. Generally,
everything should be contributed, but with priority given to contributions with the
highest cost reduction potential. Creating a competing solution to existing ones
could lead to unnecessary internal maintenance costs, which has no potential of
triggering a positive business impact for a firm. For examples of Standard artifacts,
see section 4.4.

Contribution Objectives

Mapping an artifact relative to the four quadrants brings an indication and guide-
line about its contribution strategy. There are also intrinsic objectives for making
contributions that are not fully captured by just accessing the business impact and
control complexity in the artifact classification process. These objectives include:

• Cost focus

• Time-to-market (TTM) focus

• Control focus

• Strategic Alliances and Investments

These objectives are closely coupled to the different strategies and are pre-
sented as an overlay of the matrix, thus emphasizing the main contribution objec-
tive per strategy.

Cost focus: Artifacts with a limited competitive advantage, i.e., they are con-
sidered as commodity or enablers for other artifacts, will have a contribution ob-
jective mainly focused on reducing the cost of development and maintenance. The
contribution strategy should focus on minimizing the number of internal patches
that need to be applied to each new OSS project release and reusing common solu-
tions available in OSS to fulfill internal requirements, i.e., overall reduce variants
and strive for the standardization that comes with OSS. As a consequence, internal
resources may be shifted towards tasks that have more differentiation value for a
firm.

Time-To-Market (TTM) focus: Artifacts that have higher levels of competi-
tive advantage, and/or require a higher amount of control and understanding than
commodity artifacts should likely to have the general objective to be advanced to

110 Motivating the Contributions: An Open Innovation Perspective on . . .

the marketplace as soon as possible, superseding the objective of reducing mainte-
nance costs. These artifacts may also be referred to as qualifiers, i.e., artifacts that
are essential but still non-differential, and should be contributed as soon and often
as possible in order to allow for the own solution to be established as the leading
open solution. This will potentially give the advantage of control and barring com-
peting solutions which would otherwise require additional patching or even costly
redesigns to one’s own product.

Control focus: Artifacts with a high level of competitive advantage and requir-
ing a high level of control are likely to provide differentiation in the marketplace,
and should thus not be contributed. Yet, in securing that these artifacts are enabled
to operate in an open environment, it is as important to contribute the enabling
parts to the OSS ecosystems. If an alternative open solution would become widely
adapted out of the firm’s control, the firm’s competitive edge will likely be dimin-
ished and make a costly redesign imperative. Hence, the contribution objective
for these artifacts is to take control of the OSS ecosystem with the general strat-
egy to gain and maintain necessary influence in order to better manage conflicting
agendas and levy one’s own strategy in supporting the artifact.

Strategic Alliances and Investments: These artifacts carry a very large part
of product innovation and competitive advantage, and require strict control. Thus,
these artifacts should be internally developed, or, if this is not feasible, co-developed
using strategic alliances and investments that secure IPR ownership, hence there is
generally no objective for making open source contributions.

Adapting Contribution Strategies with Contribution Objectives

Having just a single contribution objective for an artifact is rare except for the ex-
treme cases, e.g., when an artifact is mapped in the far corners of the matrix, such
as the bottom left as strictly standard and commodity. More common is to have
two or more contribution objectives in play, though one of the objectives would be
the leading one. The overlay of contribution objectives on the matrix’s different
contribution strategies is intended as a guidance for fine-tuning the contribution
strategy for individual artifacts when more than one contribution objective is in
play. E.g., although two artifacts who are found to have the same overall Plat-
form/Leverage contribution strategy, there might be a degree of difference in the
emphasis to be made in the time-to-market objective for an artifact closer to the
Strategic area, compared with an artifact closer to the Standard area where consid-
erations on cost of maintenance might overtake as the leading objective.

4 The Contribution Acceptance Process (CAP) Model (RQ1) 111

4.2 Proactive Approach
When proactively using the model, the following step-by-step approach is recom-
mended:

S1 Decision on scope and abstraction level.

S2 Classification and mapping artifacts to the matrix.

(a) Begin with an initial set of artifacts to the matrix.

(b) Synchronize and reiterate mapping.

(c) Map the rest of the artifacts to the matrix.

S3 Reiteration of the artifact mapping.

S4 Documentation and communication of the decisions.

S5 Monitoring and follow-up on the decisions.

Before the model is used, the scope and abstraction level of the analysis needs
to be decided (S1). The scope may, for example, entails a product, a platform or
functional area. Abstraction level concerns the artifacts relative to the scope, e.g.,
components, features, or requirements. Based on these limitations, the artifacts
should be listed, and necessary background information collected, e.g., market
intelligence, architectural notes and impact analysis, OSS ecosystem intelligence,
and license compliance analysis.

The collected information should then be used as input to an open consensus-
seeking discussion forum (S2), where relevant internal stakeholders help to clas-
sify the artifacts. As in the roadmapping process [108], these stakeholders should
bring cross-functional perspective to the decision-making to further explain and
argue based on the collected background information, e.g., representatives from
marketing, product management, development, and legal.

To facilitate the discussions and help assess the business impact of the artifacts,
a set of questions may be used. The joint answers to these questions are given on
a Likert scale with values between 1 and 4. The reason for this scale is to force
discussion participants to take a clear stand on which side of two quadrants they
think an artifact belongs. The questions are as follows (it equals an artifact):

1. How does it impact on the firm’s profit and revenue?

2. How does it impact on the customer and end user value?

3. How does it impact on the product differentiation?

4. How does it impact on the access to leading technology/trends?

5. How does it impact if there are difficulties or shortages?

112 Motivating the Contributions: An Open Innovation Perspective on . . .

As with the business impact, a set of questions are proposed to help asses the
control complexity of the artifact on a scale between 1-4:

1. Do we have knowledge and capacity to absorb the technology?

2. Are there technology availability barriers and IPR constraints?

3. What is the level of innovativeness and novelty?

4. Is there a lack of alternatives?

5. Are there limitations or constraints by the firm?

For an example of how these questions can be used, see section 6. When
all questions are answered, the mean values for both dimensions should be cal-
culated. Based on these values, the artifact is then mapped onto the matrix (see
Fig. 4), which will put it into one of the four quadrants. The group should then ask
themselves if the calculated position agrees with their general belief of where it
should be. They should also ask themselves where they want it to be. Further, they
should consider what contribution objective(s) that apply, and how this affects the
contribution strategy. This process should be allowed to take time and reiteration
of the first set of artifacts, as this is necessary for everyone to get accustomed with
the process and the classification criteria.

This classification process is not intended to be quantitative and rigorous, but
rather qualitative and informal. The process was facilitated through consensus-
seeking discussions within a cross-functional group. This approach helps to create
guidelines without introducing complexity which may risk introducing negative
effects on the usability and applicability of the CAP model. The questions should
further be seen as a mean to frame and drive the discussion, during which further
questions might come up.

When all artifacts have been classified and mapped onto the matrix, an overall
discussion and reflection should be performed (S3). When consensus is reached,
the decisions should be documented and handed over to product management for
communication out to the development organization (S4) through required chan-
nels supported by the information meta-model, e.g., the requirements management
infrastructure (see section 5). The contribution strategies for each artifact should
then be monitored and followed-up in a given suitable time frame (e.g., in relation
to internal release cycles) (S5). This task may be suitable for product or project
management with accountability towards the firm’s OSS executive.

4.3 Reactive Approach

The CAP model may also be used in a reactive mode which is based on Sony Mo-
bile’s current practices. This approach is critical in order to continuously follow-up
on previously classified artifacts as the classification may change with the artifacts’

4 The Contribution Acceptance Process (CAP) Model (RQ1) 113

technology life-cycle. The approach is also useful for managing individual con-
tribution requests of artifacts from the development organization, e.g. in response
when a manager or developer request to contribute a certain artifact, or be allowed
to work actively with a specific OSS ecosystem. The CAP model is used in this
case by a group of internal stakeholders, similarly to that of the proactive approach.
Sony Mobile applies this reactive approach through their OSS governance board
(see section 3.1).

When an individual wants to make a contribution, they have to pass through
the board. However, to avoid too much bureaucracy and a bottleneck effect, the
contribution process varies depending on the size and complexity of the contribu-
tion. In the CAP model, the contributions may be characterized in one of three
different levels:

• Trivial contributions are rather small changes to already existing OSS ecosys-
tems, which enhances the non-significant code quality without adding any
new functionality to the system e.g., bug fixes, re-factoring etc.

• Medium contributions entails both substantially changed functionality, and
completely new functionality e.g., new features, architectural changes etc.

• Major contributions are comprised of substantial amounts of code, with
significant value in regard to IPR. These contributions are a result of a signif-
icant amount of internal development efforts. At Sony Mobile, one example
of such a contribution is the Jenkins-Gerrit-trigger plug-in [147].

For trivial contributions, the approval of concerned business manager is suffi-
cient. For medium and major contributions, the business manager has to prepare a
case for the Open Source Governance board to verify the legal and IPR aspects of
the OSS adoption or contribution. The Open Source Governance board decides af-
ter case investigation that include IPR review. Consequently, the board accepts or
rejects the original request from the engineers. To further lessen the bureaucracy,
Sony Mobile uses frame agreements that can be created for OSS ecosystems that
are generally considered as having a non-competitive advantage for Sony Mobile
(e.g., development and deployment infrastructure). In these cases, developers are
given free hands to contribute what they consider as minor or medium contribu-
tions, while major contributions must still go through the board.

4.4 Contribution Strategies with Artifact Examples
In this section, we provide examples in regard to the four artifact types of the CAP
model, which we elicited from consultations with experts from Sony Mobile.

Strategic Artifacts:

Example 1 - Gaming, Audio, Video, and Camera: A typical example of a con-
tributable enabler is multimedia frameworks which are needed for services such

114 Motivating the Contributions: An Open Innovation Perspective on . . .

as music, gaming, and videos. The frameworks themselves are not of a strategic
value, but they are essential for driving the Sony brand proposition since they are
needed in order to provide the full experience of strategic media and content ser-
vices provided by Sony. Such artifacts may also be referred to as Qualifiers, as
they are essential, yet not strategic by themselves.

An example of such a multimedia framework that Sony Mobile uses is An-
droidâĂŹs Stagefright5. It is for example used for managing movies captured by
the camera. The framework itself could be contributed into, but not specific cam-
era features such as smile recognition as these are considered as differentiating to-
wards the competition, hence have a high business impact and control complexity
for Sony Mobile. In short, camera effects can not be contributed, but all enablers
of such effects should be, thus Sony Mobile contributes to the frameworks to steer
and open up a platform for strategic assets, e.g., an extended camera experience on
their mobile phones. A further example of a framework that has been made open
by Sony, but in the context of gaming, is the Authoring Tools Framework6 for the
PlayStation 4.

Platform/Leverage Artifacts

Example 1 - Digital Living Network Alliance: Digital Living Network Alliance
(DLNA) (originally named Digital Home Working Group) was founded by a group
of consumer electronics firms, with Sony and Intel in leading roles, in June 2003.
DLNA promotes a set of interoperability guidelines for sharing and streaming dig-
ital media among multimedia devices.

As support for DNLA was eventually included in Android, creating a pro-
prietary in-house solution would not have been wise given that the OSS solution
already was offered. Instead, Sony Mobile chose to support the Android DNLA
solution with targeted but limited contributions. This is a typical example of lever-
aging functionality that a firm does not create, own, or control, but that is good to
have. Hence, Sony Mobile did not need to commit extra resources to secure the in-
teroperability of an own solution. Instead, those extra resources could be used for
making the overall offering better, e.g., the seamless streaming of media between
Android devices and other DNLA compliant device, for instance, a PlayStation
console, and in that way promote DNLA across SonyâĂŹs all device offerings.

Example 2 - Mozilla Firefox: The most significant web browsers during the
1990s were proprietary products. For instance, Netscape was only free for indi-
viduals, business users had to pay for the license. In 1995, Microsoft stepped into
browser market due to the competitive threat from Netscape browser. Microsoft
decided to drive the price of web browsers market by bundling its competitive
browsers for free with the Windows operating system. In order to save the market
share, Netscape open sourced the code to its web browsers in 1998 which resulted

5https://source.android.com/devices/media/
6https://github.com/SonyWWS/ATF

4 The Contribution Acceptance Process (CAP) Model (RQ1) 115

in the creation of the Mozilla organization. The current browser known as Fire-
fox is the main offspring from that time. By making their browsers open source,
Netscape was able to compete against Microsoft’s web browsers by commoditiz-
ing the platform and enabling for other services and products.

Products/Bottleneck Artifacts

Example 1 - Symbian network operators requirements: In the ecosystem sur-
rounding the Symbian operating system, network operators were considered one
of the key stakeholders. Network operators ran the telephone networks to which
Symbian smart-phones would be connected. Handset manufactures are dependent
on the operators for distribution of more than 90% of the mobile phone handsets,
and they were highly fragmented, with over 500 networks in 200 countries. Con-
sequently, operators can impose requirements upon handset manufactures in key
areas such as pre-loaded software and security. These requirements can carry the
potential to one of those components that do not contribute in terms of a business
value but would make a negative impact on firm’s business if missing, e.g., by a
product not being ranged.

Example 2 - DoCoMo mobile phone operator: DoCoMo, an operator on
the Japanese market, had the requirement that the DRM protection in their pro-
vided handsets uses Microsoft’s PlayReady DRM mechanism. This requirement
applied to all handset manufacturers, including Sony Mobile’s competitors. Sony
Mobile, who had an internally developed PlayReady plug-in, proposed that they
could contribute it as OSS and create an ecosystem around it and also because
it already contributed the DRM framework. DoCoMo accepted, which allowed
Sony Mobile and its competitors to share maintenance and development of up-
coming requirements from DoCoMo. In summary, Sony Mobile solved a potential
bottleneck requirement which has no business value for them by making it OSS
and shared the development cost with all its competitors while still satisfying the
operator.

Standard Artifacts

Example 1 - WiFi-connect7: This OSS checks whether a device is connected to
a Wi-Fi. If not, it tries to join the favorite network, and if this fails, it opens an
Access Point to which you can connect using a laptop or mobile phone and input
new Wi-Fi credentials.

Example 2 - Universal Image Loader8: Universal Image Loader is built to
provide a flexible, powerful and highly customizable instrument for image loading,
caching and displaying. It provides a lot of configuration options and good control
over the image loading and caching process.

7https://github.com/resin-io/resin-wifi-connect
8https://github.com/nostra13/Android-Universal-Image-Loader

116 Motivating the Contributions: An Open Innovation Perspective on . . .

Figure 5: Software artifact repositories necessary to communicate and follow-up
on contribution strategies decided with the CAP model.

Both examples are considered standard artifacts because they can be consid-
ered as a commodity, accessible for competition and do not add any value to cus-
tomers in the sense that they would not be willing to pay extra for them.

5 Operationalization of the CAP model (RQ2)

Putting contribution strategies into practice requires appropriate processes and in-
formation support to know which artifacts, or what parts of them that should be
contributed. Furthermore, to follow up the contribution strategy execution and
make necessary adaptations as the market changes, there needs to be a possibility
to see what has been contributed, where, and when. In this section, we address re-
search question RQ2 and propose an information meta-model which can be used
to record and communicate the operationalization of the CAP model, e.g., by inte-
grating it into the requirements management and product management information
infrastructure.

The meta-model was created through an investigation of Sony Mobile’s soft-
ware and product management artifact repositories used in product planning and
product development. During this investigation, we focused on how the contri-
butions could be traced to product requirements and platforms, and vice versa.
Through consultation with I1-4, the investigation resulted in the selection of six
repositories, see Fig. 5:

5 Operationalization of the CAP model (RQ2) 117

• Product Portfolio repository

• Features repository

• Feature-Based Architecture Assets repository

• Patch repository

• Contribution repository

• Commit repository

These repositories and their unique artifact ids (e.g., requirement id, patch id,
and contribution id) allowed us to trace the contributions and commits to their
architectural assets, product features, and platforms, via the patches that develop-
ers create and commits to internal source code branches. Table 2 presents the
repositories including their attributes.

The product portfolio repository is used to support Sony Mobile’s software
platform strategy, where one platform is reused across multiple phones. The repos-
itory stores the different configurations between platforms, hardware and other
major components along with market and customer related information. The fea-
ture repository stores information about each feature, which can be assigned to
and updated by different roles as the feature passes through the firm’s product
development process. Information saved includes documentation of the feature
description and justification, decision process, architectural notes, impact analy-
sis, involved parties, and current implementation state. The contribution strategy
attribute is used to communicate the decisions from the CAP model usage, on
whether the feature should be contributed or not.

Feature-Based Architectural Asset (FBAA) repository (FBAAs) groups fea-
tures together that make up common functionality that can be found in multiple
products, e.g. features connected to power functionality may be grouped together
in its own FBAA and revised with new versions as the underlying features evolve
along with new products. Products are defined by composing different FBAAs
which can be considered as a form of configuration management.

Even though Sony Mobile uses Android as an underlying platform, customiza-
tion and new development are needed in order to meet customers’ expectations.
These adaptations are stored as patch artifacts in the patch repository. The patch
artifacts contain information about the technical implementation and serve as an
abstraction layer for the code commits which are stored in a separate commit
repository. Each patch artifact can be traced to both FBAAs and features.

The patches that are contributed back to the OSS ecosystems have associated
contribution artifacts stored in the contribution repository. These artifacts store
information such as the type of contribution and complexity, responsible manager
and contributor, and concerned OSS ecosystem. Each contribution artifact can be
traced to its related patch artifact.

118 Motivating the Contributions: An Open Innovation Perspective on . . .

Table 2: Description of selected attributes from the software artifact repositories
mentioned in Fig. 5

Repository
Name

Attributes Description

Products

Platform ID A unique ID for platform name
Product name Product name with the platform.
Software Related software description, e.g., Android, OSE, Epice, Kept etc.
Status Current standing of the platform, e.g., expired, announced etc.

Features

Feature ID A unique Id for a feature, which refers to features.
Platform ID ID associated with the specific platform e.g. android, core etc.
Description Details of the feature.
Development state Refers to the current status a feature’s implementation, e.g., started, ex-

ecuted.
Feature category Refers to the type of feature, e.g., new functionality, bug fix, extension

etc.
Contribution
Strategy

Refers to whether the requirement is contributable or not.

FBAA

FBAA ID A unique Id for each Feature Based Architecture Asset (FBAA).
FP IDs A combination of FP IDs associated with the FBAA.
Description Details of a FBAA.

Patches

Patch ID A unique id for each patch.
FP ID A unique ID from the FP repository.
FBAA ID A unique ID from the FBAA repository.
Title A description of a patch.
Category Importance of a patch, e.g., market critical, development critical, stabil-

ity, ecosystem critical etc.
Assets Refers to the type of a patch, e.g., bug fix, extension, operator require-

ment, platform related, generic etc.

Contributions

Contribution ID A unique ID for each contribution.
Patch ID A unique ID from the patches repositories.
Title A description of a contribution.
State Refers the current state of the patch, e.g., ecosystem merged, already

fixed, CEO rejected, legal reject, ecosystem review etc.
Type Refers to criticality of a contribution, e.g., trivial, non-trivial, bug fix

etc.
ecosystem Refers to the ecosystem in which the contribution will be made, e.g.,

Google, Firefox etc.
Contributors Refers the contributor information.

Commits
Patch ID A unique Id from the patch repository.
Title A detailed description of a commit.
FBAA name Commits associated with the FBAA.

6 Combining the CAP Model and the Information Meta-model 119

With this set-up of repositories and their respective artifacts, Sony Mobile can
gather information necessary to follow up on what functionality is given back to
OSS ecosystems. Moreover, Sony Mobile can also measure how much resources
that are invested in the work surrounding the implementation and contribution.
Hence, this set-up makes up a critical part in both the structuring and execution of
the CAP model.

This meta-model was created in the context of Sony Mobile’s development or-
ganization. Hence, it is adapted to fit Sony Mobile’ software product line strategy
with platforms from which they draw their different products from. The archi-
tectural assets (FBAAs) play a key part in this configuration management. As
highlighted in section 3.5, we believe that the meta-model will fit organizations in
similar characteristics, and for other cases provide inspiration and guidance. This
is something that we aim to explore and validate beyond Sony Mobile in future
design cycles.

6 Combining the CAP Model and the Informa-
tion Meta-model

In this section, we provide an example of how the CAP model may be used to
classify an artifact, and combine this with the information meta-model to support
communication and follow-up of the artifact and its decided contribution strategy.
The example is fictive9 and was derived together with one of the experts (I2) from
Sony Mobile with the intention to demonstrate the reasoning behind the artifact
classification. Following the proactive process defined in section 4.2, we begin by
discussing scope and abstraction level.

For Sony Mobile, FBAAs offer a suitable abstraction level to determine whether
certain functionality (e.g., a media player or power saving functionality) can be
contributed or not. If the artifact is too fine-grained it may be hard to quantify
its business impact and control complexity. In these cases, features included in a
certain FBAA would inherit the decision of whether it can be contributed or not.
Regarding the scope, we look at FBAAs related to the telephony part of a certain
platform-range. The FBAA that we classify regards the support for Voice over
Long-Term Evolution (VoLTE), which is a standard for voice service in the LTE
mobile radio system [171]. Note that this classification is performed when VoLTE
was relatively new to the market in 2015.

VoLTE is classified in regard to its business impact and control complexity.
The questions defined in section 4.2 were used. Under each question, we provide
a quote from I2 about how (s)he reasons, and the score which can be in the range
of 1-4. We start by addressing the business impact:

9Due to confidentiality reasons, we have to select this example.

120 Motivating the Contributions: An Open Innovation Perspective on . . .

1. How does it impact on the firm’s profit and revenue?
“VoLTE is hot and an enabler for services and the European operators are
very eager to get this included. This directly affects the firm’s ability to range
its products at the operators. So very important. Is it super important? The
consumers will not understand the difference of it, they will get it either
way.” - Score: 3.

2. How does it impact on the customer and end user value?
“The consumers themselves may not know about VoLTE, but they will ap-
preciate that the sound is better and clearer because other coding standards
may be used.” - Score: 3.

3. How does it impact on the product differentiation?
“VoLTE has a positive effect. Some product vendors will have VoLTE en-
abled and some not. So there is a differentiation which is positive. Does this
have a decisive effect concerning differentiation? Is it something that the
consumers will interpret as something that is very important? No.” - Score:
3.

4. How does it impact on the access to leading technology/trends?
“VoLTE is very hot and is definitely a leading technology.” - Score: 3.

5. How does it impact if there are difficulties or shortages?
“If we cannot deliver VoLTE to our customers, how will that affect them? It
will not be interpreted as positive, and will not pass us by. But they will not
be fanatic about it.” - Score: 2.

This gives us a mean score of 2,8. We repeat the same process for control
complexity:

1. Do we have knowledge and capacity to absorb the technology?
“Yes, we have. We are not world experts but we do have good knowledge
about it.” - Score: 3.

2. Are there technology availability barriers and IPR constraints?
“Yes, there were some, but not devastating. There are patents so it is not
straight forward.” - Score: 2.

3. What is the level of innovativeness and novelty?
“It is not something fantastic but good.” - Score: 3.

4. Is there a lack of alternatives?
“Yes, there are not that many who have development on it so there are quite
a few options. So we implemented a stack ourselves.” - Score: 3.

5. Are there limitations or constraints by the firm?
“No, there are none. There is not a demand that we should have or need to
have control over.” - Score: 1.

6 Combining the CAP Model and the Information Meta-model 121

Figure 6: The CAP model and the example of VoLTE which is classified in regard
to its business impact and control complexity.

122 Motivating the Contributions: An Open Innovation Perspective on . . .

This gives us a mean score of 2,4. This places VoLTE in the bottom between
of the upper two quadrants; the strategic and platform/leverage artifact quadrants.
I2 elaborates on the strategy chosen:

“VoLTE is an opportunity for us. We should invest in this technology, but we
do not have to develop our own solution. Rather, we should take what is available
externally. We should do active contributions, not just to get rid of maintenance,
but also to push the technology forward with a time-to-market as our main contri-
bution objective. It does not matter if it is open source. This is not rocket science
that only we know about. We should have an open attitude towards VoLTE and
support it as OSS and invest in it.”

After reiterations and discussions, the decisions should be documented and
communicated to the development organization. In Sony Mobile’s case, the in-
formation meta-model is already integrated into requirements and product man-
agement infrastructure. Thus, these decisions would be added to the contribution
strategy attribute of the feature artifacts which belong to the VoLTE FBAA artifact.
To monitor and follow-up on the contribution strategy execution for VoLTE, prod-
uct management can trace patch artifacts connected to the VoLTE feature artifacts,
and see which of these that have contribution artifacts connected to them.

7 Case studies

To perform a first validation of the CAP model outside Sony Mobile, we have
conducted three exploratory case studies where we applied the CAP model and
investigated its applicability and usability. Further and more extensive application
and validation are planned for future design cycles. Below we present the results
from this validation per case firm, which due to confidentiality reasons are made
anonymous and referred to as firm A-C. For each firm, we present general char-
acteristics, and how we conducted the case study. We then give a brief overview
of their overall contribution strategy, followed a summary of the application of
the CAP model, and an evaluation of the model in terms of its usability. For an
overview, see table 3.

7.1 Case Firm A

Firm A operates in the agriculture business. The main product of the firm is soft-
ware designed to improve the efficiency of global grain marketing. The software
offers a communication platform between the growers and buyers combined with
real-time market intelligence. The main benefit is an enhanced ability to quickly
respond to domestic and global market demands. We interviewed the CTO of the
firm who has over 25 years of experience in the IT sector and was involved in
10 start-ups and many projects. The CAP model was used to analyze the current
product the firm is offering.

7 Case studies 123

Table 3: Overview of the three case firms in regard to their domain, use of OSS,
scope and abstraction analyzed with the CAP, and the setting in which the model
was applied.

Description Use of OSS Scope & Ab-
straction

Setting

Firm A Small-sized firm
building a plat-
form product for
the agricultural
domain.

OSS compo-
nents in plat-
form.

Features in
platform
product.

Interview
with CTO.

Firm B Small-sized firm
building mobile
games for mobile
platforms.

OSS com-
ponents
in game
products.

Features in a
specific game.

Interview
with Founder.

Firm C Large-sized firm
in the telecom-
munication
domain.

OSS in ser-
vice infras-
tructure.

Internal in-
frastructure
project

Workshop
with 8 cross-
functional
participants.

Overall Contribution Strategy

The firm makes extensive use of OSS code as long as it is not released under
the GPL version 3 license. The firm keeps its own copy of the source code and
often contributes bug fixes or other small changes, however without following up
if they are integrated into the common code base. Decisions if to adapt the OSS
ecosystem’s version of the code are made on regular basis upon analysis.

The firm has currently a static code policy that is based on the following rea-
soning. If the existing code works at the time, the firm does not care if it evolves
and does not check if never versions are available. If there are changes, the firm
checks first if the suggested improvements are beneficial before any new version
is considered and integrated.

Maintenance cost reduction is important for the firm, however not for the price
of loosing competitive advantage. Thus, any functionality that has a differentiating
potential is kept proprietary for about 6-9 months to check the market response and
profitability. After this time, the firm analyzes if cost reduction is substantial be-
fore deciding to contribute the code or not. Estimating the current or future value
of an asset is challenging, mainly because of rapid market changes and high mar-
ket uncertainty. An example here is inventory management module that the firm’s
product has. This module (feature) turned out to be a strategic asset 12 months
after developing it. So what may seem to be a rational decision from the develop-
ment/technology perspective can be overwhelmed by market forces or conditions.

124 Motivating the Contributions: An Open Innovation Perspective on . . .

Moreover, it may take a substantial amount of time before an intellectual prop-
erty asset reveals its true value in the market place due to delays in the technology
adoption curve. Therefore, cautious evaluation of the business and revenue values
are necessary. If the technology adoption is slow, it is much more challenging and
harder to see if and when to contribute.

Regarding the contribution strategy, the firm has the following rules:

• high profit and critical to maintain control features are never shared with the
OSS ecosystem as these build the firm’s value in the eyes of the shareholders

• high profit and not critical to maintain control features - some resources are
dedicated to investigate and see the potential of growing from low profit to
high profit before a decision to contribute is made

• low profit and critical to maintain control features - the firm can release these
features after commodity analysis.

• low profit and not critical to maintain control features - the firm contributes
these features as quickly as possible.

The firm is small and in a growing phase with limited resources that can be
dedicated to working with the OSS communities. The conclusion here is that OSS
ecosystem engagement can be very valuable for large enterprises, in a resource
constrained enterprise it is pretty risky policy.

Application of the CAP Model

Together with the firm’s CTO, we have analyzed the current product with the help
of the CAP model. The mapping of the product’s features on the CAP model
brings into focus the questions regarding: 1) where the differentiating value is, 2)
what is the nature of the market the firm is operating in and 3) how much value the
potential customers can absorb. This resulted in the following categorization:

• Standard artifacts - Covers about 20% of all features. The CTO adds that
not only OSS software is considered here but also binary modules.

• Product/Bottleneck artifacts - Covers about 20% of all features. These
are mostly purchased or obtained from OSS communities to a lower time-
to-market. An interesting aspect here is the usage of binaries that further
reduces time-to-market as the integration time is lower compared to OSS
modules that often require some scripting and integration efforts.

• Strategic artifacts - Covers only about 5% of all features. The main reason
is that the firm is afraid someone will standardize or control something in
that part (interfaces) and destroy the shareholders’ value.

7 Case studies 125

• Platform/Leverage artifacts - Covers about 55% of all features because
complexity is low and the firm has high control in case the firm becomes
dominant in the market (they are currently not dominant).

According to the CTO, a firm can be a "big winner" in immature markets that
usually lack standards. Having a high portion of features in the Strategic artifact
corner indicate operating in an established market where alliances need to be made
do deliver substantial value.

Usability of the CAP Model

The CTO indicated that the CAP model can be used by both executives and op-
erational management. The primary stakeholder remains everyone who is respon-
sible for product strategies. However, the executives will focus mostly on the
strategy and if it reflects the direction given by the Board of Directors and main
shareholders. In that regard, the percentage mapping of the features on the CAP
model is considered useful as it shows where in those four quadrants (see Fig. 4)
a firm’s product is, but also where it should be. When applied, there should be a
cross-functional group as earlier suggested (see section 4). The CTO agrees that
a consensus-seeking approach should be used where opinions are first expressed
independently, shared and then discussed until the group converges. This shows
potential risks and additional uncovered aspects.

When classifying artifacts in terms of business impact and control complexity,
the CTO indicated that high-medium-low is sufficient in terms of scale. When sev-
eral people perform the estimations, the results can show the density of each level
for each aspect. The levels should be augmented with comments regarding addi-
tional risks or other important aspects. A scale of -1, 0 and 1 was also considered
as suitable.

The used frequency of the CAP model is estimated to be every major revision
cycle when new features are added to the product. The complete analysis based on
the CAP model should be performed when, e.g., entering the new market place or
moving to more stable places in the market place.

Our respondent believes that the CAP model usage delivers greater confidence
that the firm is not deviating from the strategic direction and helps to identify the
opportunities in the area in other quadrants. The usefulness was estimated as high
and could be improved with more guidelines on how to interpret the mapping re-
sults. At the same time, it appears that larger organizations can benefit more from
the CAP model application. The main problem for smaller firms with reaching
high utility of the CAP model would be to have the resources to do regular anal-
ysis and the experience to provide valuable opinions. Experience in working with
OSS and knowledge of the main driving forces for commoditization is considered
essential.

126 Motivating the Contributions: An Open Innovation Perspective on . . .

7.2 Case Firm B

Firm B develops mobile games for the Android and iOS platforms. The market
place that the firm operates in is rather disordered and characterized by several
players who use the same game engine that has a very active ecosystem10 around
it. A substantial part of the product is available for free with little integration effort.
Reusing platforms and frameworks with large user base is an important survival
aspect, regardless if they are OSS or not since acquisition costs are marginal. Entry
barriers are negligible which implies that the commercial success is often a "hit and
miss". In many aspects, the environment resembles an inverted OSS ecosystem
where a given tool from a given provider or a given module is available with the
source. Where a given tool or module from a given provider is available, often with
source, at little or no charge. As a result, significant elements of the games are,
essentially, commodities and product differentiation principally occurs within the
media assets and the gameplay experience. The tool provider11 is open sourcing
back to the ecosystem and can gain those inverted benefits. The customers are
helping the provider to improve the quality of the offering. The studied firm only
report bugs to these ecosystems and never considers any active contributions or
extensions.

The mobile game users expect to play the game for free and perceive them as
commodities. This impacts profitability and ability to be commercially viable. If
the game is successful there are many opportunities to disturb the market place,
e.g. a competitor copies the first 5 levels of the game and offers a similar copy
to the market. About 80% of the revenue is generated in the first five days after
the game is released since the immediate customer behavior defines if the asset is
worth something or not.

Overall Contribution Strategy

Since profitability decreases rapidly after product launch, firm B wants to directly
minimize maintenance costs. This implies contributing the code base or using
commodity parts as much as possible. Contribution strategy associated decisions
need to be made rapidly based on the revenue trends and results. The odds of
having long term playability for games other than adventure are very low. So for
each release, the firm can receive a spike in the income and profitability and needs
to carefully plan how to utilize this income. Time to market remains the main
success factor in this market segment.

Analyzing this market segment with the help of the CAP model brings forward
how extreme the risk levels are in the mobile games business. CAP works well
here as a risk assessment tool that should be applied to investments. In this market
place, the quadrants of the CAP model can be merged and discussed together. The

10https://unity3d.com/
11https://unity3d.com/

7 Case studies 127

main analysis should be along the Y-axis and the discussion should be profit driven
since the firm does not have any control over the platform, but controls the player
experience.

Regarding the contribution strategy, the firm has the following rules:

• high profit and critical to maintain control features - these features are con-
sidered as key differentiators but in this context there are very low barriers
to copying by fast followers that clone the features. So keeping the features
proprietary does not eliminate the risk of "fast clones".

• low profit and not critical to maintain control features - firm B obtains these
features from 3rd party suppliers.

• low profit and not critical to maintain control features - firm B tried to ob-
tain the components from 3rd parties and if it is not possible the software
architecture is changed to eliminate criticality.

• high profit and not critical to maintain control features - there are no features
with this characteristics according to firm B.

Application of the CAP Model

We mapped the product features to the CAP model grid. The results are: 0% of the
features in the low left quadrant (Standard artifacts), 15% in low right quadrant
(Product/Bottleneck artifacts), 80% in upper left quadrant (Platform/Leverage
artifacts) and 5% in top right (Strategic artifacts). Because firm B works cross
platform they are dependent on the platform provider and obtain other modules
from the ecosystem, e.g. the 2d elements and the networking elements. Firm B
hopes that remaining focused on the upper left corner is sufficient to get some
customers. The firm is "at the mercy of" the other firms dominating the top right
corner. CAP helps to points out here that the vast bulk of the technology that
enables the experience is already a commodity and freely available so the only
differentiating side is the game experience, but this is substantial investment in
media, marketing, UI, graphics, and art-work.

Usability of the CAP Model

The CAP model helps to raise attention that the market is very competitive. The
commodity price is very low, differentiation is difficult and acquisition costs are
marginal. For firm B, it means that it is cheaper to pay someone else for develop-
ment than to participate in OSS migration and integration. The main benefit from
CAP application remains the conclusion that in mobile game development the fo-
cus needs to be on business impact. It is important to perform extensive analysis on
the Y-axis for checking if a future game is commercially viable before analyzing
the complexity dimension.

128 Motivating the Contributions: An Open Innovation Perspective on . . .

The CAP model, in this case, can be used once and the clear conclusion for the
firm is that it should change its market focus. The model clearly points out that if
a firm is relatively new to mobile game development there is little profitability in
this market unless you have 20-30 million dollars to invest in marketing and other
actions to sustain long terms revenues. Our respondent believes that every new
game concept can be and should be evaluated with the help of the CAP model.

Our respondent believes that the questions in the CAP model should be an-
swered with the high, medium and low scale during a consensus-driven discus-
sion. Since most of the discussion in on the Y-axis, the simple 3-point scale was
considered sufficient. Our respondent also pointed out that the CAP model could
potentially be extended to include hedonic qualities since a firm sells experience
rather than software applications. Investing in a high complex game is very risky
so firms in this domain tend to stay away from high complexity endeavors that are
risky.

7.3 Case Firm C
Firm C operates in the telecommunication domain and extensively uses OSS to
deliver software products and services. We applied the CAP model on one of the
internal software infrastructure projects with the objective to support the decision
process in regard to whether the project should be released as OSS. CAP was there-
fore used on a project level, instead of a set of features. We invited 8 participants
from various functions at the firm (open source strategy, community management,
legal, product management, and development) into a workshop session where the
CAP model was discussed and applied.

Overall Contribution Strategy

Decisions on what projects that are released as OSS and what may be contributed
to existing OSS projects are made by the OSS governance board, similar to that
of Sony Mobile (see section 4.3). The board is cross-functional and includes the
representatives from OSS strategy, legal, technology and software development.

Contribution requests are submitted to the OSS governance board from the
engineering teams and usually concern projects related to the development tool-
chain or the infrastructure technology stack. The requests are usually accepted
given that no security threats are visible or potential patents can be disclosed. In
addition, the board analyses the potential for creating an OSS ecosystem around
the project to be released.

Application of the CAP Model

The studied project was first discussed in terms of its background and functionality
in order to synchronize the knowledge level among the workshop participants.
This was followed by a discussion of the project’s business impact. The questions

7 Case studies 129

outlined in Section 4.2 were used for framing the discussion, but instead of using
the Likert scale of 1-4, the workshop participants opted for an open consensus-
seeking discussion from start.

The workshop participants agreed that the project has a high impact in terms
profit and revenue, as it increases operational efficiency, decreases the license-
costs, and increases security. As it is an internal infrastructure project used to
deliver software products and services, it has limited impact on the customers and
end-users. The technology is not seen as differentiating towards competitors but
does enable easier access to new technology-standards that may have a substan-
tial impact on the business. The firm’s engineering department has managed to
perform the daily operations and deliver the firm’s services without the use of the
project, why it would not devastate business if it was no longer available. How-
ever, it does offer clear advantages which would cause a negative impact if it the
availability was reduced or removed.

In regard to control complexity, it was concluded that the firm has the com-
petence needed to continue developing the project. Further, the project did not
include any IP and patents from the firm’s defensive patent portfolio. The under-
lying knowledge and technology can be considered as commodity. However, there
is a lack of alternates as only two could be identified, both with shortcomings.
Internally of the firm, there is a defined need for the project, and that influence
on its development is needed. There is, however, no demand that the firm should
maintain absolute control, or act as an orchestrator for the project.

The workshop participants classified the project as a strategic artifact due to the
high business impact, as well as a relative need for control and lack of alternatives.
Due to the latter reasons, the project should be released as a new OSS ecosystem as
soon as possible in order to maintain the first-mover-advantage and avoid having
to adapt to competing solutions. Hence, the main contribution objective should
be to reduce time-to-market. The participants stated that the goal would be to
push the project towards commodity, where the main objective would be to share
the maintenance efforts with the ecosystem and refocus resources on more value-
creating activities.

Usability of the CAP Model

The workshop participants found that the CAP model provided a useful lens through
which their OSS governance board could look at contribution requests and strate-
gically plan decisions. One participant expressed that the CAP model offers a
blue-print to identify what projects that are more important to the firm, and align
contribution decisions with internal business and product strategies by explicitly
considering the dimensions of business impact and control complexity.

The workshop-participants preferred the open consensus-seeking discussions
as a mean to determine the business impact and control complexity, and based on
this classify the artifact to the most relevant artifact type and contribution strategy.

130 Motivating the Contributions: An Open Innovation Perspective on . . .

The chosen strategy and aligning contribution objective could then be used to add
further depth and understanding to the discussion, which helped the group to arrive
at a common decision and final contribution strategy for the reviewed project.

The questions defined in section 4.2 were found useful to frame the discus-
sions. Participants expressed that these could be further customized to a firm, but
that this should be an iterative process as the OSS governance board applies the
CAP model when reviewing new projects. The participants further expressed that
some questions are more relevant to discuss for certain projects than others, but
they provide a checklist to walk through when reviewing a project.

8 Discussion

In this section, we discuss the applicability and usability of the CAP model. We
discuss the findings from the case studies how the CAP model should be improved
or adapted to fit other contexts.

8.1 Applicability and Usability of the CAP Model

The three cases presented in section 7 bring supporting evidence that the CAP
model can be applied on: a set of features, a product or on a complete project. The
model has proven to bring useful insights in analyzing a set of features in a prod-
uct with the indication that larger organizations can benefit more from the CAP
application than small organizations. In case B, the application of CAP provided
valuable insights regarding the nature of the market and the risks associated with
making substantial investment in this market. In case C, the application of the
CAP model provide a lens though which the OSS governance board can screen
current projects and decide upon their contribution or OSS release strategies.

CAP was found useful as decision-support for individuals, executives and man-
agers. However, as highlighted by respondents from firms A, B and C, CAP is
best suited for a cross-functional group where consensus-seeking discussions can
be used to bring further facets to the discussions and better answer the many ques-
tions that needs to be addressed. As for Sony Mobile and case firm C, a suitable
forum for large-sized firms would be the OSS governance boards or OSS program
offices.

The questions suggested in section 4.2 were found useful, but it was high-
lighted that these may need to be tailored and extended as CAP is applied to new
projects and features. When answering the questions and determining the dimen-
sions of business impact and control complexity, the cases further showed that on
scale does not fit all. Case firm A and B suggested a high-medium-low scale,
while case firm C preferred to use the consensus-seeking discussion with out the
help of a scale. These facts highlight that certain adaptations are needed for the
CAP model to maintain its usability and applicability in different settings. It also

8 Discussion 131

highlights that the decision process should not be "over-engineered". Our results
suggest that complexity needs to be balanced in order to maintain usability for the
practitioners while still keeping the applicability on different types of artifacts and
settings. How to adapt this balancing act and tailor the CAP model to different
settings is a topic for future design cycles and case evaluations.

8.2 Influence Needed to Control

The Kraljic’s portfolio model was originally used to help firms to procure or source
supply-items for their product manufacturing [109]. One of the model’s two deci-
sion factors is supply risk. To secure access to critical resources, a certain level of
control is needed, e.g., having an influence on the suppliers to control the quality
and future development of the supply-items. For OSS ecosystems, this translates
into software engineering process control, for example in terms of how require-
ments and features are specified, prioritized and implemented, with the goal to
have them aligned with the firm’s internal product strategy.

Software artifacts with a high control complexity (e.g., the media frameworks
for Sony Mobile, see section 4.4) may require special ownership control and a high
level of influence in the concerned OSS ecosystems may be warranted to be able
to contribute them. In cases where a firm does not posses the necessary influence,
nor wish to invest the contributions and increased OSS activity [37] which may
be required, an alternative strategy is to share the artifact with a smaller set of
actors with similar agendas, which could include direct competitors [210]. This
strategy is still in-line with the meritocracy principle as it increases the potential
ecosystem influence via contributions [37]. Sharing artifacts with a limited number
of ecosystem actors leaves some degree of control and lowers the maintenance
cost via shared ownership [193, 201]. Further, time-to-market for all actors that
received the new artifacts is substantially shortened.

For artifacts with less complexity control, e.g., those concerning requirements
shared between a majority of the actors in the OSS ecosystem, the need for con-
trol may not be as high, e.g., the DLNA project or Linux commodity parts, see
sections 4.4 and 4.4. In these cases, it is therefore not motivated to limit control
to a smaller set of actors which may require extra effort compared to contributing
it to all ecosystem actors. An alternative implementation may already be present
or suggested which conflicts with the focal firm’s solution. Hence, these types of
contributions require careful and long term planning where the influence in the
ecosystem needs to be leveraged. In case of firm B, complexity is controlled by
the framework provider.

For both critical or less critical artifacts in regard to control complexity, a firm
needs to determine the level of influence in the involved ecosystems. This factor is
not explicitly covered by the CAP model and could be considered as an additional
discussion point or as a separate decision factor in the contribution strategies which
are elicited from the CAP model.

132 Motivating the Contributions: An Open Innovation Perspective on . . .

8.3 Direct and Indirect Use of OSS ecosystems

The second decision factor originating from the Kraljic’s model [109] is the profit
impact. Profit generally refers to the margin between what the customer is will-
ing to pay for the final product and what the product costs to produce. For OSS
ecosystems, this translates into how much value a firm can offer based on the OSS,
e.g. services, and how much resources the firm needs to invest into integration and
differentiation activities. I.e., much of the original definitions are preserved in the
CAP model and the re-labeled decision factor business impact.

Artifacts with high profit, or high business impact are differential towards
competitors and add significant value to the product and service offerings of the
firm [200], e.g., the gaming services for Sony Mobile, see section 4.4. Analogous,
artifacts with low profit are those related to commodity artifacts shared among the
competitors, e.g., Linux commodity parts, see section 4.4. This reasoning works
in cases where the OSS and its ecosystem is directly involved in the product or ser-
vice which focal firm offers to its customers. The customers are those who decide
which product to purchase, and therefore mainly contribute in the value creation
process [9]. This requires good customer-understanding to judge which artifacts
are the potential differentiators that will influence the purchase decision.

In cases where an OSS has an indirect relation to the product or service of the
firm, the artifact’s value becomes harder to judge. This is because the artifact may
no longer have a clear connection to a requirement which has been elicited from a
customer who is willing to pay for it. In these cases, firms need to decide them-
selves if a particular artifact gives them an advantage relative to its competitors.

OSS ecosystems often facilitates software engineering process innovations that
later spark product innovations that increase the business impact of an artifact, e.g.,
if an artifact makes the development or delivery of the product to a higher quality
or shorter time-to-market respectively [120]. These factors cannot be judged by
marketing, but rather by the developers, architects and product managers who are
involved on the technical aspects of software development and delivery. In regard
to the CAP model, this indirect view of business impact may be managed by having
a cross-functional mix of internal stakeholders and subject-matter experts that can
help to give a complete picture of an artifact’s business impact.

8.4 Comparing to Other Commoditization Models

Both commoditization models suggested by van der Linden et al. [200] and Bosch [22]
consider how an artifact moves from a differential to a commoditized state. This is
natural as technology and functionality matures and becomes standardized among
actors on the same market or within the same OSS ecosystem. The impact of
whether an artifact is to be considered differential or commodity is covered by
the business impact factor of the CAP model. However, how quickly an artifact
moves from one state to another is not explicitly captured by the CAP model. This

9 Conclusion 133

dimension requires firms to continuously use the CAP model and track the evolu-
tion of features and their business impact. We recommend that the evaluation is
performed every time a new product is planned and use the reactive approach in
combination with the proactive (see section 4.3 and 4.2 respectively).

Relative to the level of commoditization of an artifact, the two previous mod-
els consider how the artifact should be developed and shared. Van der Linden et
al. [200] suggested to internally keep the differential artifacts and gradually share
them as they become commoditized through intra-organizational collaborations
and finally as OSS. In the CAP model, this aligns with the control complexity
factor, i.e., how much control and influence is needed in regard to the artifact.

The main novelty of the CAP model in relation to the other commoditization
models [22, 200] considers OSS ecosystem participation and enables improved
synchronization towards firms’ product strategy and product planning, via feature
selection, prioritization and finally release planning [105]. The strategic aspect
covered by the CAP model uses the commoditization principle together with busi-
ness impact estimates and control complexity help may firms to better benefit from
potential OI benefits. Assuming the commoditization is inevitable, the CAP model
helps firms to fully benefit the business potential of differential features and timely
share them with OSS ecosystems for achieving lower maintenance costs. More-
over, the CAP model helps to visualize the long term consequences of keeping
or contributing an internally developed software artifact (more patches and longer
time-to-market as consequence). Finally, the CAP model provides guidelines for
how to position in an OSS ecosystem’s governance structure [10] and how to in-
fluence it [37].

There may be various reasons why a firm would wish to contribute an artifact.
Thus, the drivers used by Sony Mobile in the CAP model may not be the same
for other firms wishing to adopt the model. The identified contribution drivers and
cost structures should be aligned with the firm’s understanding for how the value is
drawn from the OSS ecosystems. This may help to improve the understanding of
what should be contributed and how the resources should be planned in relation to
these contributions. How the contribution objectives and drivers for contributions
needs to be adapted is a topic for future research.

9 Conclusion

The recent changes in software business have forced software-intensive firms to
rethink and re-plan the ways of creating and sustaining competitive advantage.
The advent of OSS ecosystems has accelerated value creation, shortened time-
to-market and reshaped commoditization processes. Harvesting these potential
benefits requires improved support for strategic product planning in terms of clear
guidelines of what to develop internally and what to open up. Currently avail-
able commoditization models [22,200] accurately capture the inevitability of com-

134 Motivating the Contributions: An Open Innovation Perspective on . . .

moditization in software business, but lack operational support that can be used
to decide what and when to contribute to OSS ecosystems. Moreover, the exist-
ing software engineering literature lacks operational guidelines, for how software-
intensive firms can formulate contribution strategies for improved strategic prod-
uct planning at an artifact’s level (e.g., features, requirements, test cases, frame-
works or other enablers).

This paper introduces the Contribution Acceptance Process (CAP) which is
developed to bridge product strategy with operational product planning and fea-
ture definition (RQ1). Moreover, the model is designed with commoditization in
mind as it helps in setting contribution strategies in relation to the business value
and control complexity aspects. Setting contribution strategies allow for strate-
gic product planning that goes beyond feature definition, realization and release
planning. The CAP model was developed in close collaboration with Sony Mobile
that is actively involved in numerous OSS ecosystems. The model is an impor-
tant step for firms that use these ecosystems in their product development and
want to increase their OI benefits, such as increased innovation and shorter time-
to-market. This paper also delivers an information meta-model that instantiates
the CAP model and improves the communication and follow-up of current contri-
bution strategies between the different parts of a firm, such as management, and
development (RQ2).

There are several important avenues for future work around the CAP model.
Firstly, we aim to validate the CAP model and related information meta-model in
other firms, both statically and dynamically. We plan to focus on understanding the
firm specific and independent parts of the CAP model. Secondly, we plan to con-
tinue to capture operational data from Sony Mobile and the three case firms related
to the usage of the CAP model that will help in future improvements and adjust-
ments. Thirdly, we plan to investigate how a contribution strategy can consider
the influence a firm needs in an OSS ecosystems to be able to exercise control and
introduce new features as needed. We believe that gaining and maintaining such
influence in the right ecosystems is pivotal in order to execute successfully on con-
tribution strategies. Fourthly, we want to investigate to what degree the CAP model
supports innovation assessment for firms not working with OSS ecosystems. Our
assumption is that these firms could use the CAP model to estimate the degree of
innovativeness of the features (could be considered as an innovation benchmark)
without setting contribution strategies. Lastly, we plan to explore which technical
aspects should be considered and combined with the current strong business view
of the CAP model (e.g. technical debt and architecture impact seems to be good
candidates to be included).

CHAPTER III

A COMMUNITY STRATEGY
FRAMEWORK –

HOW TO OBTAIN INFLUENCE
ON REQUIREMENTS IN
MERITOCRATIC OPEN
SOURCE SOFTWARE

COMMUNITIES?

Johan Linåker, Björn Regnell and Daniela Damian.

Abstract

Context: In the Requirements Engineering (RE) process of an Open Source Soft-
ware (OSS) community, an involved firm is a stakeholder among many. Con-
flicting agendas may create miss-alignment with the firm’s internal requirements
strategy. In communities with meritocratic governance or with aspects thereof, a
firm has the opportunity to affect the RE process in line with their own agenda
by gaining influence through active and symbiotic engagements. Objective: The
focus of this study has been to identify what aspects that firms should consider
when they assess their need of influencing the RE process in an OSS community,
as well as what engagement practices that should be considered in order to gain
this influence. Method: Using a design science approach, 21 interviews with 18
industry professionals from 12 different software-intensive firms were conducted
to explore, design and validate an artifact for the problem context. Results: A

136 A Community Strategy Framework – . . .

Community Strategy Framework (CSF) is presented to help firms create commu-
nity strategies that describe if and why they need influence on the RE process in a
specific (meritocratic) OSS community, and how the firm could gain it. The frame-
work consists of aspects and engagement practices. The aspects help determine
how important an OSS project and its community is from business and technical
perspectives. A community perspective is used when considering the feasibility
and potential in gaining influence. The engagement practices are intended as a
tool-box for how a firm can engage with a community in order to build influence
needed. Conclusion: It is concluded from interview-based validation that the pro-
posed CSF may provide support for firms in creating and tailoring community
strategies and help them to focus resources on communities that matter and gain
the influence needed on their respective RE processes.

1 Introduction

Open Source Software (OSS) is for many firms today a fundamental building block
for creating, delivering and supporting their product and service offerings, or in-
ternal operations [24, 38]. The development and maintenance of an OSS project
are performed within a software ecosystem [95], often referred to as a commu-
nity. The members of a community consist of stakeholders of the OSS project,
i.e., “. . . person[s] or organization[s] who influences a system’s requirements or
who [are] impacted by that system” [74]. In this case, ”a system” refers to the
OSS project. To a firm involved in an OSS community, the Requirements Engi-
neering (RE) process in the community is an external process where the firm is
no longer the central authority, in contrast to traditional market-driven RE [172].
Instead, the firm is a stakeholder among many which may introduce conflicting
agendas from other stakeholders [129, 149, 183], and a new type of power and
politics than the firm might be used to [137]. Consequences may include a lack
of control over what requirements that are implemented, and miss-alignment with
the firm’s internal RE process [38,219]. A firm who wish to affect the RE process
according to their agenda may, therefore, have to build up an influence within the
community [183].

With influence, we refer to the Merriam-Webster dictionary 1 which defines
it as “the power to change or affect someone or something”. In our context,
this relates to the power of a firm to change or affect a requirement of inter-
est in an OSS community, for example, how a requirement is specified, prior-
itized, and realized, both short-term in release-planning, and long-term on the
road-map [71, 113, 157]. In OSS communities with a meritocratic governance
structure [45, 134], either in part or in full [186], influence is gained by proving
merit and earning trust and status within the community [56]. What merit consti-
tutes depends on the context [49,164], but is generally gained by building an active

1http://www.merriam-webster.com/dictionary/influence

1 Introduction 137

and symbiotic relationship with the community where a firm dedicates resources,
contributes internal requirements and actively participates in the development of
the OSS [24, 37, 39, 156, 183, 194]. A meritocratic OSS community, therefore,
offers an opportunity for the focal firm to influence the community’s RE process
according to the firm’s own agenda while competing and collaborating with the
other stakeholders in the community [156].

For a firm engaged in many communities, such investments may be costly if
it is distributed over all communities. It may be that only a few communities are
of such strategic importance to the firm, and are in a state where the firm needs
to have an influence on their RE processes [38]. For a strategic community that
is healthy, predictable and aligned with a firm’s internal agenda, it may be that a
high level of influence is not motivated [24]. Therefore, to optimize its resource
utilization and investments where best needed, firms may have to assess how they
could benefit from a specific OSS project and its community, and then if and how
much influence that is required to reap these benefits [24]. To the best of our
knowledge, there is no systematic approach to perform this kind of assessment,
why we pose our first research question as:

RQ1 What aspects should a firm consider when assessing its need to influence the
RE process in a meritocratic OSS community?

If a firm assesses that they need influence on the RE process in a meritocratic
OSS community, the follow-up question is: what should their community engage-
ment look like and how should they invest their resources to gain the influence
needed? To the best of our knowledge, an overview on a software engineering
level of what engagement practices that may be used to build influence in merito-
cratic OSS communities is absent (e.g., [5,58,123,149]). This gap leads us to pose
our second research question:

RQ2 What practices should a firm consider to gain influence on the RE process
in a meritocratic OSS community?

To address these two research questions, this paper presents a Community
Strategy Framework (CSF). A community strategy should describe if and why
a firm needs influence on the RE process in a specific OSS community, and how
the firm could gain it. Thus, the objective of CSF is to help firms create and tai-
lor community strategies that enable them to focus resources on communities that
matter and gain the influence needed on their respective RE processes.

Using a design science approach [86, 216], we leverage a series of ten semi-
structured interviews with industry professionals to explore the problem context.
Interview transcripts were then inductively coded [180] which resulted in a first
design of the CSF. To validate and refine the design, seven interviews were con-
ducted where the interviewees were presented with the CSF and asked questions
regarding its completeness and correctness. To evaluate the applicability and util-
ity of CSF [86], in one of these interviews, the framework was also applied to a

138 A Community Strategy Framework – . . .

fictitious example based on an earlier reported case study [147]. As the last step, a
case validation was conducted by interviewing four industry professionals from a
software-intensive firm engaged in multiple OSS communities. Questions focused
on the validity of CSF in the context of the firm’s community engagements. In
total, we conducted 21 interviews with 18 industry professionals from 12 different
software-intensive firms.

The rest of the paper is structured as follows: in Section 2, we present related
work, which this study builds upon. In Section 3, we present the research design
of this study and how it was executed. In Section 4, we present the CSF, and
in Section 5 the framework is applied to a fictitious example. In Section 6 we
discuss our findings, followed by a discussion on threats to validity in Section 7.
In Section 8, we conclude the paper.

2 Related Work

In this section, we present the related work that provides a theoretical underpinning
for the design of the artifact called the Community Strategy Framework (CSF).
This theoretical basis is also used in the discussions on the validity of the proposed
framework (see Section 6).

2.1 Requirements Engineering in OSS communities

Compared to classic RE [4], OSS RE can be described as a collaborative, trans-
parent and open process involving the stakeholders (both developers and users) in
the community with interest in specific requirements [2, 4]. Formal methods and
processes, as well as documents or central repositories, are often absent [27, 110].
Instead, a requirement may often be represented by multiple artifacts which are
stored and managed in a series of interconnected and overlapping repositories, e.g.,
as an issue in an issue tracker and mail threads in a mailing list [182]. These repos-
itories also function as communication channels for the stakeholders where the re-
quirements are asserted (i.e., elicited from the OSS community perspective), ana-
lyzed, and specified informally, and often realized simultaneously [16,27,52,110].
This is an iterative process characterized as just-in-time RE [16, 52] and where
the social interactions between the stakeholders are often decentralized and dy-
namic [17]. However, these can on occasion also occur centralized in ”off-line”
events such as conferences, meet-ups, and hackathons [37, 147, 190].

Prioritization and selection of requirements are commonly performed by indi-
viduals in leadership positions of the OSS community, however, with considera-
tion taken to expressed wishes of the community [71, 113, 157]. This hierarchy
between the roles in OSS communities is often depicted with the help of an onion
model [151]. In its multi-layered construction, central and leadership roles can be
found among the core layers, while the passive users can be found in the outer

2 Related Work 139

ones (cf. Core-Periphery Model [99]). The structure implies that the further out
a community member is, the less direct influence and knowledge the person has
over the project’s state and direction [97]. Furthermore, what roles that exist in
a community, specifically regarding leadership, may differ between communities.
Some may, for example, have a project lead as with Linus Torvalds in the Linux
kernel community, while some may have a core team of entrusted members as in
the PostgreSQL community [151].

Migration between layers can be fluid and agile depending on the project, e.g.,
community members can move between multiple layers, or be recruited into one,
bypassing outer ones [97]. This migration further depends on the type of gover-
nance in the community.

2.2 Governance in OSS communities

de Laat [45] describes OSS governance as different configurations, primarily based
on the authority structure, i.e., the way that authority is established, distributed,
and exercised, either through autocratic or democratic principles. In the former,
leadership is centralized and top-down, while in the latter it is decentralized and
bottom-up. Building on this distinction, De Noni et al. [46] refines the two con-
figurations further as presented in Fig 1. Concerning communities with autocratic
tendencies, they differentiate between sponsor-based and tolerant dictator-based
communities. In the former, leadership is centered around the sponsoring firm(s),
while in the latter it is centered around a single project leader (tolerant dictator). In
regards to communities with democratic tendencies, De Noni et al. [46] separates
open-source-based and collective communities. In open-source based communi-
ties leadership is characterized as institutionalized, democratic, and distributed,
often inside the walls of a foundation. In collective communities, leadership is
seen as collective, meritocratic, and distributed.

Figure 1: Overview of governance and authority structure concepts in OSS
projects and their relations as presented in Section 2.

Capra and Wasserman [26] makes a distinction between commercial and com-
munity OSS. In the former, the OSS project is owned and managed by a single

140 A Community Strategy Framework – . . .

firm [176], i.e., a special case of sponsor-based communities [46]. In the latter,
the community is owned and managed by the community, which may include one
or more firms, also aligning with the community-managed governance model as
described by O’Mahony [162]. Schaarschmidt et al. [183] further label these types
of projects as single-vendor projects and multivendor projects respectively.

Even with the categorizations of OSS governance models and their author-
ity structures shown in Fig 1, other research shows that the picture can be more
blurry. According to the literature review by Shaikh and Henfridsson [186], re-
search has been consistent in describing how communities can only have one au-
thority structure (with one notable exception [72]). Even though a community can
evolve its authority structure in hybrid forms with time, a single authority struc-
ture will result in the end [164]. However, based on their view of a duality between
governance and coordination, Shaikh and Henfridsson [186] move to suggest that
multiple forms of authority structures can co-exist in parallel, each embedded in
and operationalized by a coordination process. These coordination processes can
integrate, and evolve together within a community, of which some may pass out
with time and be replaced by others. In their longitudinal analysis of the Linux
kernel community, they identified a varying mix of autocratic and oligarchic struc-
tures, but also semi-autonomous governing in terms of the different sub-modules.
Meritocracy was continuously present through the analysis. I.e., even tolerant
dictator-based communities can show traits of a community-managed [162] and
meritocratic [45] governance model.

Although literature lists a number of them, meritocracy may be considered
one of the more common authority structures, or type of governance in OSS com-
munities (e.g., [24, 56, 151, 156, 161, 182]). Based on merit and the earning of
trust and status in the community, individuals are granted further responsibility
and authority [56]. Merit correlates to the quality and quantity of the individual’s
contributions [71,194]. A common assumption is that these contributions are lim-
ited to technical code contributions, however, as is shown by Eckhardt et al [49],
this can be a simplification. Considering the onion model [151], several paths are
depending on the type of role an individual possesses. Proven coordination and
leadership skills are aspects that may be considered [97, 164], but not obviously
captured in code commits. As highlighted by O’Mahony and Ferraro [164] in their
study of the Debian community, “Any examination of meritocracy must develop a
context-specific understanding of how merit is conceptualized”.

2.3 Influencing the Requirements Engineering Process
in OSS communities

The members of the community all have their motives for participating, social or
economic [117, 173]. It may, therefore, be considered a challenge for firms to
align their internal agenda with that of the community [38, 163, 183]. A decision
to add functionality may require consensus in the community and approval by the

2 Related Work 141

community leadership depending on the type of governance. Being too aggressive
with one’s agenda may have an adverse effect and result in the functionality being
blocked [2].

Dahlander et al. [37] differentiate how firms can adapt their relationship with
an OSS community based on the level of influence needed. On a continuum scale,
a relationship can be characterized as parasitic, commensalistic or symbiotic. In
the parasitic approach, the firm takes without giving back, by some referred to as
a “free-rider”. In the commensalistic approach, the firm contributes back when
motivated, but focus on internal development. In the Symbiotic approach, the
firm also sees to the best of the community, working to align internal and external
development. The alignment is created through working as peers, and building
status and recognition inside the community [39].

To build a symbiotic relationship, firms should first understand and learn to
respect the needs, norms, and structure of the community [2, 24, 37, 39, 128, 155],
a form of “good citizenship” [163]. If there is a foundation encapsulating the
OSS community, firms may have the option to gain influence through member-
ship or sponsorship [161, 163], or in other ways supporting the foundation, e.g.,
by supporting development with infrastructure [37], or general subject matter ex-
pertise [24]. In return, they may receive seats at relevant boards and committees
through which they can make their voice heard [24,161]. Foundations, and similar
boundary organizations between firms and an OSS community, are often limited
to managing the technical direction of an OSS projects [163].

A more direct and general approach to the control of code contributions is
by having “a man on the inside”, letting employees engage with the commu-
nity [39,83,155,156,163,183]. An alternative is to contract members of the com-
munity directly to have them work on matters of importance to the firm [38, 71,
163, 175, 183]. Through their engagement, these sponsored community members
can take part in the RE processes by participating in discussions and providing
both technical and non-technical contributions and support [24, 147]. This work
may take place both online and offline, because being visible and active on both
ends is essential [147, 164, 183, 190].

2.4 Determining the need for Influence in OSS communi-
ties

As highlighted by Dahlander and Magnusson [38], it may be difficult to determine
which OSS communities are of strategic importance to their operations. Firms
should identify how they could benefit from an OSS project and its community,
and then what kind of engagement is required to reap these potential benefits [24].

From a business model perspective, it may be considered how the OSS project
helps to create, deliver, and capture value for a firm [195]. It may, for example,
serve as a basis on which the firm builds complementary products or services, such
as support and subscription offerings, or proprietary extensions [185]. The OSS

142 A Community Strategy Framework – . . .

project could also function as a product or service enabler, embedded in hardware
products [121], or as tooling and infrastructure for development and service deliv-
ery [147]. From a more strategic perspective, the OSS project may provide value
as a foundation for pooled R&D/product development, and as a mean for standard-
ization of technology [210]. Furthermore, just as the community may serve as an
external workforce, it may also serve as a marketing channel, both for customers
and future employees [38, 82, 175]. Hence, the value should be viewed both from
a monetary and a non-monetary perspective [185].

From a technical perspective, it is also essential to understand the strategic
connection of the OSS project to a firm’s business and how this is reflected in a
developer’s level [24]. There may be internal dependencies and integrations be-
tween the OSS project and internal software that are critical to maintain [147], as is
specific functionality that is requested and expected by the firm’s customers [121].
These two reasons both warrant a need for alignment between software develop-
ment inside the firm and the community respectively [38, 183]. If the direction of
the community is predictable, both regarding road-map and release planning, then
the need for an active community presence may be less urgent [24].

3 Research Design

To develop the CSF, we used a design science research approach [86, 216], in
which research is performed and structured in the form of design cycles. A design
cycle is comprised of three phases: problem investigation, artifact design, and
artifact validation [216]. These phases are performed iteratively, as exemplified
in Figure 2. For example, as artifact validation renders feedback, this feedback is
used for refinements in artifact design, resulting in a new artifact design that needs
validation. Below, we use this structure to describe how we planned and executed
the research behind this study.

3.1 Problem Investigation Phase

In the problem investigation phase, the problem context is analyzed. In our case,
we conducted exploratory interviews to understand industry practice beyond what
has been identified in the literature.

Ten individuals were interviewed (denoted I1-10, see Table 1) with a semi-
structured approach where the interview instrument consisted of open-ended ques-
tions (see Section 9, Appendix A). The interviewees all held positions with respon-
sibilities relevant to understanding how their respective firms work and engage
with OSS communities. They were selected based on convenience sampling. All
interviews lasted between 30 to 60 minutes and were conducted either in person or
over video link by the first author of this study. All interviews were audio recorded
and transcribed.

3 Research Design 143

Figure 2: Overview of the research process and context used in this study, using
design science research [86, 216]. Design steps includes problem investigation,
artifact design and artifact validation, which are performed iteratively.

3.2 Artifact Design Phase
Drawing on the knowledge and understanding that is obtained during the problem
investigation, an artifact is designed with the hypothesis that it will address the
design problem. In this study, the design problem is stipulated by RQ1 and RQ2,
and the artifact is the CSF.

The interview transcripts were coded with an inductive approach by the first
author with audit trails intact [180]. Sentences and paragraphs were first assigned
descriptive topics. These topics were later collected under common codes, which
could then be related and sorted under RQ1 and RQ2 respectively. Codes relating
to RQ1 are referred to as aspects and are divided into three categories; Business
Aspects (BA), Technical Aspects (TA) and Community Aspects (CA). Codes re-
lating to RQ2 are referred to as engagement practices and are collected in one
single category. The CSF is presented in full detail in Section 4

Below we provide an example with a subset of quotes rendering in engagement
practice 5 (EP5) of the CSF:

• Engagement Practice (RQ2)

– Offer the expertize and resources of the firm

* Quote by I1: “ . . . contributing DevOps-kind of information and
documentation and information, and it gives credebility”.

* Quote by I7: “We don’t have developers, but we send you these
machines to do testing”.

144 A Community Strategy Framework – . . .

3.3 Artifact Validation Phase

In the artifact validation phase, the artifact is tested as a candidate solution to the
defined design problem. In our study, this phase consisted of three steps. First,
we conducted seven validation-focused interviews with four new industry profes-
sionals (I11-14), but also three from the problem investigation phase (I1, I5, I6),
see Table 1. Second, to evaluate applicability and utility (i.e., descriptive valida-
tion [86]), the framework was applied through a fictitious example on a previously
performed case study on how Sony Mobile evolved in their engagement with the
communities of Jenkins and Gerrit [147]. Third, the CSF was validated in a sim-
ilar way as in the first step, but within the context of a software-intensive firm
(CaseOrg) and its Tools department.

Interview Validation

The CSF was presented and discussed one element (aspect or practice) at a time
to the interviewees. Discussions focused on whether something was redundant,
missing, or could potentially be modified. Interviews were audio recorded and
transcribed.

After verifying with transcripts, this step of the validation phase resulted in one
TA being removed, TA2 being reformulated to also focus on the ”fitness-of-use”,
and the explicit addition of TA4. A further consideration brought up in several
of the validation interviews was that, while the business and technical aspects are
relevant for determining the need for influence on the RE process, the community
aspects are on the other hand used for determining the feasibility and potential of
gaining influence in the community. I13, for example, describes it as, “So your first
two sets of criteria, the business and technical aspects, felt like you were deciding
yes or no, we should care about this community. The community aspects don’t feel
like yes/no’s, we should care, these feel much more like feasibility, can we do it
or not”. Furthermore, the validation interviews resulted in the validation of and
more nuances to existing aspects and practices. I12 for example added to BA2
the perspective that standardization can be part of a strategy to build a software
ecosystem. From a design science perspective, findings and feedback from the
validation phase were used to refine the artifact design.

Framework application example

The analysis was performed by the first author of this study, who was also one of
the authors behind the previous case study [147]. Using interview transcripts and
codings from the original study, the CSF was applied by considering each aspect
against the Jenkins and Gerrit communities. Traces and support for the different
engagement practices were then searched for. Findings were then summarized and
verified for correctness with the OSS Program manager at Sony Mobile. The pro-
gram manager was presented with the results from each of the applied practices,

3 Research Design 145

Table 1: Ten industry professionals (I1-I10) were interviewed in the problem
investigation phase. Seven industry professionals (I1, I5, I6, I11-I14) were inter-
viewed in the Interview Validation phase. Four industry professionals (I15-18)
were interviewed in the Case Validation. Small-sized firms (S): <50 employees,
Medium-sized firms (M): 50 <>250 employees, Large-sized firms (L): >251 em-
ployees)

ID Title Firm Business Size Use of OSS

I1 OSS Program Officer A Telecom L Infrastructure

I2 Community Manager A Telecom L Infrastructure

I3 OSS Program Officer B Software
products

L Infrastructure & Products

I4 OSS Strategist C Software
products

L Infrastructure & Products

I5 Community Manager D Software
products

S Products

I6 Community Manager E Software
products

S Products

I7 OSS Strategist F Software
products

L Products

I8 OSS Program Officer G Software
products

L Infrastructure & Products

I9 OSS Program Officer H Software
products

L Infrastructure & Products

I10 OSS Strategist I Consumer
electronics

L Products

I11 OSS Strategist J Consultancy S Strategy services

I12 Community Manager F Software
products

L OSS products

I13 Community Manager F Software
products

L Products

I14 OSS Program Officer K Consumer
electronics

L Products

I15 Team Manager L Embedded
systems

L Infrastructure

I16 Project Manager L Embedded
systems

L Infrastructure

I17 Senior Developer L Embedded
systems

L Infrastructure

I18 Junior Developer L Embedded
systems

L Infrastructure

146 A Community Strategy Framework – . . .

and the support gathered for each of the engagement practices. The program man-
ager was asked to verify the interpretation and clarify any misunderstandings of
the first author’s analysis. It should be noted that the program manager was also
one of the interviewees from the previous case study [147].

Case validation

The Tools department has a similar organization and purpose as that described in
earlier work of Sony Mobile, which is the foundation for the application example
as described in Section 3.3. CaseOrgs’s Tools department develops and maintains
multiple OSS tools and infrastructure projects, including Jenkins and Gerrit, to
support its product development organization. All OSS communities that were
discussed during interviews were characterized as community-managed and mer-
itocratic.

Four interviews were conducted with I15-I18 (see Table 1) who all held various
positions but were all engaged in different OSS communities, some with maintain-
ership positions. As in the previous step (see Section 3.3), the CSF was presented
and discussed one element (aspect or practice) at a time to the interviewees. Dis-
cussions focused on whether something was redundant, missing, or could poten-
tially be modified, specifically in the context of the communities that CaseOrg’s
Tools department is engaged in. Interviews were audio recorded and transcribed.
Findings and feedback were used to refine the artifact design of CSF. No aspects
or practices were removed or added. Existing ones were however given more nu-
ances as EP5 where the importance of attending and arranging hackathons was
added.

4 Community Strategy Framework

Here we describe the Community Strategy Framework (CSF) as presented in Ta-
ble 2, which consists of two parts. The first of these, contain aspects a firm should
consider when assessing its need to influence the RE process in an OSS community
(RQ1). The second part of the CSF consists of practices a firm should consider to
gain influence on the RE process in an OSS community with meritocratic gover-
nance or aspects thereof [186] (RQ2). Figure 3 shows an overview of the CSF. A
firm constructs a community strategy by firstly assessing the community of interest
based on four Business Aspects (BA1-4) and four Technical Aspects (TA1-4), and
secondly determine the actual need for and feasibility of gaining influence using
the four Community Aspects (CA1-4). It may be that not all aspects are applica-
ble or relevant. It may also be that one aspect may indicate a need for influence,
while another may not. With this in mind, it is up to the user to consider the differ-
ent aspects in relation to the community of interest, and weigh these against each
other. The CSF should, therefore, be viewed as a support for the user to arrive at a

4 Community Strategy Framework 147

decision on if and how much influence is needed by the firm on the RE process in
the OSS community.

Once such a decision has been made, the firm then formulates important en-
gagement goals and selects which Engagement Practices (EP1-8) to apply, and
finally determine how to apply them. Below we present the respective aspects and
engagement practices in detail.

For further guidance on how to apply the CSF, please see Section 5 where it is
applied in a case example based on earlier work [147].

4.1 Aspects

The aspects are divided into three categories: business, technical, and community
aspects. Aspects from the two former categories are used to reflect on the OSS
and its importance to the firm from a business and technical perspective. The
latter, community aspects, are used to reflect on the feasibility and potential to
gain influence, as well as the need for it.

Business Aspects (BAs)

BA1 - Connection between the OSS project and the value proposition and
revenue streams of the firm’s business model. As expressed by I10, “It comes
down to the bottom-line, and making sure where [the firm] is making money, we
want to have as much impact on those areas as possible”. I11 emphasizes “I
think the sticky point is understanding how the value of the open source matches

Figure 3: Overview of the Community Strategy Framework’s related process. A
firm first values the community of interest with the business and technical aspects
and then uses the community aspects to determine the feasibility of gaining in-
fluence and potential engagement goals. Engagement goals are then decided and
engagement practices chosen.

148 A Community Strategy Framework – . . .

Table 2: Overview of the Community Strategy Framework. Business, Technical
and Community Aspects relate to RQ1 and Engagement Practices to RQ2

Business Aspects (BA)

BA1 Connection between the OSS project and the value proposition and revenue streams of
the firm’s business model.

BA2 Connection between the OSS project and the business strategy of the firm.
BA3 Importance of the OSS community as a pool for recruitment
BA4 Need of the OSS community-related visibility and credibility towards the firm’s customers

Technical Aspects (TA)

TA1 Internal dependency of the OSS project inside the firm
TA2 Fitness-of-use and road-map alignment of the OSS project
TA3 Dependency on the OSS community’s release planning
TA4 Need for competence and resources of the OSS community

Community Aspects (CA)

CA1 Presence, influence and agenda of other stakeholders in the OSS community
CA2 Diversity and activity in the OSS community’s stakeholder population
CA3 Openness in Culture and Governance of the OSS community
CA4 Ownership and management of the OSS project

Engagement Practices (EP)

EP1 Understand the governance structure and have seats in right groups, committees and
boards

EP2 Become a member or sponsor of the foundation or governing community body
EP3 Sponsor, contract or hire developers and maintainers to engineer contributions and mentor

internal engineers
EP4 Contribute to the development of the OSS project through internal engineers
EP5 Offer the expertize and resources of the firm
EP6 Have an active on-line and off-line community presence
EP7 Be open and humble to the OSS community
EP8 Build an inner source culture and practice inside the firm

to the value of the business they’re trying to build”. A firm should, therefore,
recognize how the OSS project is leveraged in its business model. It can be a
complement of the core value proposition as for Red Hat and their distribution Red
Hat Enterprise Linux which is based on Fedora. It could also be an enabler for the
value proposition as for Sony Mobile and Android which is used in their mobile
handsets. Or it could play a more indirect role as part of an infrastructure or a tool-
chain that can be used to develop and deliver the main value proposition. In the
latter case, there may be a limited amount of competitive edge connected to how
the OSS project is used internally, as described by I16, “We’re so far out of core
business that we have our own contribution process”. In other cases, “if you’re
building a product offering around an open source project in the core, there’s not
even a question. If you’re committing to customers to support the project, then you
need to have an influence on that project” (I12).

4 Community Strategy Framework 149

BA2 - Connection between the OSS project and the business strategy of
the firm. The business strategy specifies how a firm should navigate a changing
environment and as a consequence construct and adapt its business model [44].
In this context, an OSS project and its community can play a pivotal part, e.g., to
commoditize a market, or change the default technology being used by industry.
I9 reflected on one of their experiences, “So we wanted to change the industry
conversation, and we wanted to have a substantial impact in that”. This type
of standardization can further be part of a strategy where the intent is to build a
software ecosystem, as explained by I12, “Driving standardization enables the
market to potentially develop and that is what gives business opportunity, if you’re
running an infrastructure project and all of a sudden you have a lot of third-party
vendors, whether monitoring and logging, or storage or network, you know there’s
an entire ecosystem that comes along, not to mention all of the developer toolings
that you need to develop container-native applications. So there’s a lot of opportu-
nities that come from having a de facto technology base in the platform. And that
creates that opportunity to create the commercial ecosystem around the platform”.

BA3 - Importance of the OSS community as a pool for recruitment. Being
active and influential in an OSS community can be important to attract and main-
tain a skilled workforce. This concerns both specific technologies where skilled
people are scarce and attracting developers in general. The latter is emphasized
by I7, “It’s also about reputation - [firm] created a big open source office, and a
huge open source initiative, because no one wanted to work with them”. I11 adds,
“This is something a lot more are starting to realize, particularly large companies
with aging populations, that people don’t want to sit in a stodgy old company in
cubicles”. I16 continues, “We need to show that we don’t just consume, but also
contribute to attracting good developers. The community becomes a channel for
new employees”.

BA4 - Need of the OSS community-related visibility and credibility to-
wards the firm’s customers. As for recruiting talent, being active and influential
in an OSS community can be essential to attract and maintain customers. It can
be to prove technical competence, but also the ability to push features upstream.
As put by I1, “[The OSS project] was the selling point of the product. We needed
to demonstrate to customers that we were one of the core contributors of [the OSS
project]”. I11 gives the example of IBM and how they, “ . . . back in the 2000s,
invested a billion dollars in Linux and they wanted to make a big deal of it because
they saw that as an emerging market that they wanted to get into”. I1 adds how
this aspect is particularly important for firms using OSS in their products, such
as “Red Hat, or any commercial open source project. Like Cloudera would need
to do that, that they have influence in the Hadoop community, and DataStack for
Cassandra”.

150 A Community Strategy Framework – . . .

Technical Aspects (TAs)

TA1 - Internal dependency of the OSS project inside the firm. Technical depen-
dencies between an OSS project and a firm’s internal software can be considered
an architectural reflection of how an OSS project connects to a firm’s value propo-
sition (BA1). Certain features in a product or parts in an infrastructure may be
dependent on the project. I3 phrases the question as “Do you depend on this or
do you not? And how much do you depend on it? How much functionality goes
into your product that’s based on upstream software? How heavily are these in-
tegrated into your product?”. I17 exemplifies, “We are extremely dependent on
[OSS project], we have based our whole infrastructure chain on it. This requires
us to be active so that we can affect in what directions the tools head”.

TA2 - Fitness-of-use and road-map alignment of the OSS project. De-
viance between a firm’s internal and a community’s requirements and road-maps
may be essential to address in order to avoid or minimize technical debt. I12 refers
to an OSS project’s fitness-of-use and explains it as “How many things that we
need it to do does this project do today? And if you feel like there is a delta be-
tween what it does today, and what you need it to do, and this is a strategically
important component of your plan, then it would be important to be involved. You
need to have influence so that you can affect the change that you need in that
project”. I1 adds that in “ . . . some cases, it may not be necessary for you to be
as actively involved because you are happy with the direction it is going, and it’s
a mature and stable project. And in some cases, you really need to be there and
watch it and make sure it goes in the right direction”.

TA3 - Dependency on the OSS community’s release planning. A firm can
be more or less dependent on the release planning of an OSS community, and have
various needs to synchronize it with that of any internal development. Getting
features upstream quickly and running the latest release may be an essential factor
for firms whose customers may expect quick access to the latest functionality, as
some buyers do of Android-based mobile handset manufacturers. For others, it
may be less of a concern, as for Red Hat who focuses on offering a stable and
secure version of Fedora. I4 explains it as “How much do we care if they are
changing it rapidly? Are we living on a fork and are willing to eat a little bit of fit
and finish? Or do we really want to be on the latest bits all the time?”. I12 sees it
from a risk analysis perspective, “Is there is a risk that a feature will not go into
a project, or is there a risk that a project that you depend on will miss its release
date?”.

TA4 - Need for competence and resources of the OSS community. Firms
can be limited, both in terms of “ . . . resources, time or people” as highlighted by
I16, or in terms of specific competencies that are internally available. By engag-
ing in an OSS community, firms may have an opportunity to gain these resources
through collaboration and “co-opetition”. By growing influence in such a com-
munity, a firm can better exploit and steer these resources to best match the firm’s

4 Community Strategy Framework 151

agenda. I1 explains it as, “Sometimes we may not have the competency inside the
company, but yet we want to draw on the competency of the community to help us
use something correctly. So, the link to the community may be important because
of that, to just improve our own competency in handling that project”.

Community Aspects (CAs)

CA1 - Presence, influence, and agenda of other stakeholders in the OSS com-
munity. Knowing whom the stakeholders are, where they focus their resources,
with whom they collaborate and how much influence they hold, can signal how a
firm should consider its relationship with the stakeholder, but also overall commu-
nity engagement. As expressed by I3, “If it’s a company that wields a big influ-
ence, and they are a competitor to you, there’s a much different way to approach
that than if they were a partner or one you’re not a competitor with”. I3 contin-
ues, “If you understand why those companies are contributing it potentially makes
your strategy why you should be contributing”. I1 explains that for projects which
are important to a firm, “You work on it, you contribute to it, and you make sure
your competitors are not influencing it differently than you would”. Hence, the
presence of competitors may indicate “how strongly [a firm] need to be present”,
as further highlighted by I1. However, as explained by I13, OSS communities pro-
vide a “ . . . forum for competitors to cooperate in a way that doesn’t upset their
shareholders, a form of co-opetition”. Presence of competitors may also be “a
signal that the OSS project we should be engaged in, maybe it is becoming an
industry standard”, as suggested by I2.

CA2 - Diversity and activity in the OSS community’s stakeholder popu-
lation. A community maintained by only a few individuals or companies could
be vulnerable if they were to leave for any reason. As asked by I3, “What would
be the case if there were shortages in supply, i.e., the project would no longer be
available?”. I12 compares a community to an external vendor and asks, “Is this
company going to be in business in five years? Is there someone who can take up
the mantle if they shut down?”. A low level of diversity and activity in a com-
munity can, therefore, be a warning sign if a firm is to engage in the first place.
However, if a firm is dependent on a community or sees potential, then it indicates
that the firm should invest, “ . . . not for influence, but for health” as emphasized by
I1. I9 further adds, “We want to make sure it is not just totally dependent on one
or two parties only because vibrant community to me means that it has a broad
spectrum of contributions and that it is not just totally dependent on one party”.
From a sourcing perspective, it may be relevant to also consider other alternatives
and weigh these against the cost of investing in the concerned community.

CA3 - Openness in Culture and Governance of the OSS community. To
be attractive, the culture and governance of an OSS community should have mer-
itocratic influences, i.e., be open to new members joining and gaining in rank, but
also for discussions regarding road-maps and ways of working to be open. This is

152 A Community Strategy Framework – . . .

further explained by I9, ‘If there are communities that are uninterested in chang-
ing and learning then that is a community in my opinion that will stagnate and
contract, they will have a hard time growing new leadership, they will have a hard
time evolving as the needs of users evolve, as the needs of community evolve”. I9
continues, ‘An openness to constant improvement and to input needs to be a core
value, or at least be demonstrated in a community in order to consider putting
any substantial investment”. If the project is important for the firm, a low level of
”openness” could motivate a high investment and active engagement to be able to
affect the culture and governance of the community if deemed possible.

CA4 - Ownership and management of the OSS project. A criterion before
engaging in an OSS community is to determine whether there is potential for the
firm to gain influence and extract the expected value. As highlighted by I10, “If
we see that it’s a project that is controlled by one company, and it doesn’t look
like we’ll be able to influence it in a way we want, we may not get involved in that
project”. I.e., if the OSS project is now owned and managed by the community, or
a legal entity representing it (e.g., a foundation), gaining influence through active
contributions and engagement may prove hard. If a firm’s strategy is to hire a
maintainer to get influence and there is no one available, “ . . . the project becomes
much less attractive”, as stated by I10.

4.2 Engagement Practices (EPs)

The engagement practices presented in this section should be seen as a tool-box
of ways in how a firm can engage with a meritocratic community to build the
influence needed.

EP1 - Understand the governance structure and have seats in right groups,
committees, and boards. Depending on the complexity of the community gov-
ernance structure, there can be many groups and committees where decisions
are made. As described by I13, “It’s very dependent on the community, some
have large foundations, while others may have less”. Hence, a firm should first
“. . . understand where decisions get made and what kinds of decisions [they] need
to influence. Is it a technical decision? Is it a positioning decision? Is it a commu-
nication decision? And hence, which body do you need to be on, or what level of
membership do you need?” as stated by I1. Once understanding the governance
structure of the community, a firm may need to build a certain level of influence
to be able to join the identified groups. This need can also concern groups and
committees that may not be a direct part of the community, but part of a greater
ecosystem affecting the OSS community. As expressed by I1, “It’s an influence
game making sure you have people in all the right places, joined all the right foun-
dations”. I2 provides an example, “I think with [OSS community] they did that,
ok, we need to sit at this group, this group, this group, we need to get a seat at
the table of the user committee, we need to be on this committee, and they actually
mapped it, and they put people there”.

4 Community Strategy Framework 153

EP2 - Become a member or sponsor of the foundation or governing com-
munity body. Once a firm understands the community and its governance struc-
ture, they can start to consider whether they should become a member or sponsor
if possible. If the community is run under a foundation, a membership can give a
firm visibility and marketing to show community, customers, and potential newly-
hires that they are both competent and committed in regards to an OSS community.
However, it does not have to imply a direct influence on the OSS community auto-
matically. As explained by I3, “You can potentially buy yourself into the business
side of the governance, but you don’t get any technical influence unless you do
any work”. I13 gives the example of GNOME, “You pay to be part of the advi-
sory board, but it has very little power. You have to be a contributing member to
be elected to the board of directors, and that’s where the power is”. A member-
ship or sponsorship should instead be seen as a long-term investment that can help
build a sustainable influence through growing and attracting influential commu-
nity members and maintainers. Sometimes membership may be unnecessary, as
explained by I1, “A lot of these bodies have end-user boards which do not require
any pay-to-play, it just requires you to be a big user of that technology. Because
a lot of projects are very eager to get feedback on how you are using it, what are
the challenges that you face at scale? So they see that as currency and value. So
we’ve kind of been reexamining our presence in some of these bodies and asking
why are we spending 40K when we can get the same influence through being on
the end-user committee?”.

EP3 - Sponsor, contract or hire developers and maintainers to engineer
contributions and mentor internal engineers. To build influence organically by
on-ramping new developers into a community can be time-consuming, why a firm
may consider hiring existing maintainers and developers in leadership positions.
As explained by I3, “If your willing to do a longer-term play, then you get people
already in your development team starting to make upstream contributions, then it
may take a year or two years depending on what kind of community it is, to have
the influence long term. But if you needed that influence yesterday, the only way
is to hire someone that is a very strong contributor or maintainer”. I10 adds, “We
like to hire people in leadership positions. And once we get to two or three people
that are in those sort of positions, then we can get started introducing some junior
developers”. This kind of mentoring is further endorsed by I12, “I would hire the
contractor to teach how to do the work. So it’s kind of on-the-job-training”

EP4 - Contribute to the development of the OSS project through internal
engineers. Long-term and sustainable influence is built by directly contributing to
the development of the OSS project. These contributions are not limited to code,
but may also include “ . . . writing documentation, testing, answering questions,
doing the mud work, doing a lot of the things that no one wants to do”, as ex-
plained by I3. Developers need to be enabled to actively engage in the community
development process without being hindered by internal contribution processes.
I17 adds, “Principally all open source communities are run as meritocracies so we

154 A Community Strategy Framework – . . .

need to be active. If we want to be able to change the direction in [OSS project],
we need to produce code and plugins to show that we are part of the community”.

EP5 - Offer the expertize and resources of the firm. If a firm holds specific
resources, these can also provide valuable contributions to the community. These
resources can, for example, be infrastructure-related, but also include soft factors.
I1 exemplifies how they provide large-scale testing capabilities, as well as credi-
bility to an OSS project that they run in production, “if you have big companies
like us using [OSS project], it says that it is a viable product”. I9 adds another
example where they provide server space for the community to run compute, test
and build processes, enabling the active development in the OSS community.

EP6 - Have an active on-line and off-line community presence. Community
discussions regarding the development of an OSS project take place in on-line
mediums such as issue-trackers, chats and social media, but also off-line at events
and social gatherings such as meetups, conferences, and hackathons. For a firm
to grow and leverage its influence, it needs to be present and take an active part
in these discussions, and also help to facilitate them, e.g., by arranging their own
events. I17 exemplifies, “Concerning [OSS project], we are extremely active at
hackathons... We travel a lot to get and know the people... Recently we hosted a
hackathon where we gathered basically all maintainers of the project”.

These activities should be coordinated internally as highlighted by I1, “[The
Community Manager] ran community activities internally and externally, created
awareness of what we were doing in [OSS community], making sure that peo-
ple contributed to the right projects, submitted abstracts to the right projects,
were elected to the right bodies, showed up at the right conferences”. Having
dedicated developer advocates and community managers was a generally recom-
mended practice. This person should be able to mediate and be a spokesperson
both of the community and the firm.

EP7 - Be open and humble to the OSS community. When joining a com-
munity, I9 explains, a firm should adapt to the culture and way of working in the
community. They should “ . . . come in humbly and offer to help in things where
they have expertize as opposed to ’We need to do a thing, it’s gotta be done this
way’, then you are going to get an immune reaction if you start that way”. I12
gives the comparison, “Joining a new open source community is like moving into
a new neighborhood. There is a way of doing things, some of these things are
going to be built up during time, and there is going to be inertia. So there are
things that are obviously better, that people are going to agree is obviously better,
but they are used to the way things are done. So you kind of have to figure out how
to bring change gradually. And at the same time is that you figure out how things
work. And so, first figure out how the community works before you come in and
propose a lot of changes, so don’t be excessively critical of the way things are done
in a specific neighborhood, then no one is going to listen to you when you propose
changes”. Furthermore, the firm should be “ . . . transparent and open about the
intentions and the agenda with the community and project, e.g., road-map, what

5 Framework application example: Jenkins and Gerrit 155

you are keeping closed and for what reason” as highlighted by I7. This is further
emphasized by I13, “You need to be open and completely honest about the why
even if it’s for profit because otherwise you just look suspicious”. The firm should
hence differentiate between the communication they use towards the community
and that which they use towards for example their employees and customers.

EP8 - Build an inner source culture and practice inside the firm. By in-
troducing inner source culture and development practices internally, a firm can
help its developers to learn better how to work with external OSS communities,
and simplify on-ramps. I13 explains the importance of teaching internal engineers
about OSS development practices, such as working distributed and decentralized,
“A lot of companies where everyone sits in the same office all talking among them-
selves and have meetings just them, and they need to learn how to do everything
online, and include the people who are not there”. In effect, this can create more
contributors for the firm and in a longer perspective help raise its influence in OSS
communities in general.

5 Framework application example: Jenkins and
Gerrit

In this section, we illustrate through a fictitious example of how the CSF could be
applied (cf. descriptive validation [86]), based on a previously studied case which
describes how Sony Mobile and its Tools department evolved in their engagement
with the communities of the two OSS projects, Jenkins, and Gerrit [147].

Initially, Sony Mobile had a restrictive view of what they shared with the two
communities and how they engaged. They focused mainly on doing bug-fixes,
general knowledge-sharing and had a community presence limited to online chan-
nels, such as mailing lists and issue trackers. The engineers in the Tools depart-
ment focused on internal work and tailoring of the two OSS projects to internal
needs. They further saw that they could create a competitive advantage by keeping
internally developed features closed. However, with time, the attitude towards the
two communities evolved into a more symbiotic relationship. Sony Mobile and
the engineers at the Tools department saw increased benefits with having an active
engagement and being more open. As then highlighted by Sony Mobile’s Director
of OSS operations (I5) - “. . . not only should [the tool-chain] be based on OSS, but
we should behave like an active committer in the ways we can control, understand
and even steer it up to the way we want to have it”. It is in this context that the
aspects of the CSF are analyzed and discussed for Jenkins and Gerrit.

156 A Community Strategy Framework – . . .

5.1 Defining the need for influence in the Jenkins and
Gerrit communities

Below we investigate the need for influence in the Jenkins and Gerrit communities
by considering the business, technical and community aspects of the CSF from
Sony Mobile’s point of view.

Business Aspects

The connection between the two OSS projects and the business model of Sony
Mobile (BA1) was indirect in the sense that the projects were used in the devel-
opment infrastructure that engineers leverage in the product development inside
Sony Mobile. Perceived benefits from the use of the two OSS projects include im-
proved quality of Sony Mobile’s end-products, as well as shorter time-to-release
and market. Both OSS projects were seen as a commodity and a non-competitive
advantage. There were alternative solutions available, but most were proprietary,
and the primary motivation for an OSS option was that Sony Mobile could cus-
tomize the OSS projects based on internal needs much more easily.

The adoption of Jenkins and Gerrit was part of a broader strategy (BA2) of
moving Sony Mobile more towards usage of OSS, as well as the adoption of the
same tool-chain used by Google in the Android development.

Both communities made up important pools for finding and attracting new
and talented employees that could help in adapting the two OSS projects to the
preference of Sony Mobile (B3). However, as neither Jenkins or Gerrit was a part
of the product or any marketing, there was no need to establish a certain level of
visibility or credibility towards the customers (B4).

Technical Aspects

Both Jenkins and Gerrit made up pivotal parts of the continuous integration tool-
chain inside Sony Mobile. Therefore, there were many interactions and dependen-
cies between the two OSS projects and as well as to other tools in the tool-chain
(TA1). They had been tailored to internal requirements and supported the devel-
opment process defined internally.

Sony Mobile was dependent on a stable and secure infrastructure, why they
did not need to use the latest or experimental releases (TA3). In general, however,
there was an expressed goal to avoid too many patches, and adaptations as the
Tools department was limited in resources and had to rely on the community for
much of the development (TA4). Further, there was a need to introduce a heavier
focus on scalability in the two OSS projects, as they at the time were not optimal
in large-scale setups as that used by Sony Mobile (TA2).

5 Framework application example: Jenkins and Gerrit 157

Community Aspects

Both the Jenkins and Gerrit communities had several firms involved, including
direct competitors to Sony Mobile. However, as both OSS projects were seen as
non-competitive by Sony Mobile, this presence was not considered as an issue.
Few of the existing stakeholder had the equivalent or larger size of installations,
which made Sony mobile somewhat unique in its need for improved scalability
(CA1).

In general, both communities were very active and diverse concerning con-
tributors and users (CA2). Also, the culture and governance structure was very
open for new contributors to join in discussions and rise in rank (CA2). Due to
the healthy activity, and meritocratic culture and governance of the communities,
it was also deemed easy to increase influence, both organically by introducing em-
ployees, but also through hiring new talent as both communities are community-
managed(CA4).

Summary and Goals for Engagement

Even though classified as non-competitive, there was a defined need to be able
to influence the road-maps of the OSS projects, and be able to contribute larger
features (e.g., related to improving scalability). Due to the limited size of the
Tools department, there was also an expressed goal to be able to find and create
collaborations when possible, even with competitors.

5.2 Defining the engagement activities in the Jenkins and
Gerrit communities

Based on the determined need for influence and goals that were defined, Sony
Mobile and its Tools department became more active and open in their engagement
with the two communities.

No foundations were surrounding the two projects, why there was no need to
attain a specific membership or sponsorship (EP1). However, there were com-
mitter groups (EP2), i.e., central parts in the communities’ governance [151], that
Sony Mobile wanted to join.

Sony Mobile did not see a need to rush and hire engineers from the communi-
ties directly (EP3). Instead, they grew their influence organically by introducing
their engineers to the communities to the point where they managed to get to posi-
tions in the Gerrit committer group. The engineers were given frame agreements
for the two communities where they were allowed to contribute freely, both in
regards to features and bug-fixes (EP4). With their large set-up and testing infras-
tructure, Sony Mobile could also contribute to improving the quality of the two
tools (EP5).

The engineers at the Tools department were active and visible in both online
and offline communication channels (EP6). Their online presence included ac-

158 A Community Strategy Framework – . . .

tive participation in discussion and knowledge sharing through mailing lists, issue
trackers, chat channels, and webinars. Offline presence included attending confer-
ences, meet-ups, and hackathons. The latter was seen as an essential forum to do
quick implementations (cf. just-in-time RE [52]) as often many of the more influ-
ential persons in the communities were gathered in the same room. Alongside this
active engagement, Sony Mobile had an open attitude towards the community and
was transparent with its agenda. Engineers presented how the two projects were
setup internally, as well as best practices and know problems when possible. They
even talked to and engaged in knowledge-sharing with direct competitors (EP7).

The engagement and internal development of Jenkins and Gerrit were further
seen as a seed to create an inner source initiative inside Sony Mobile, with the
ambition to spread into others corners of the Sony Corporation (EP8). The goal
was to grow more contributors and active users to Jenkins and Gerrit, but also in
other projects, and maybe even create new ones where motivated.

6 Discussion

Below we discuss the validity of the CSF and contrast it to related work.

6.1 Determining the need for Influence in OSS communi-
ties

From a business perspective, as highlighted by I11, the “ . . . sticky point is under-
standing how the value of the open source matches to the value of the business
[a firm is] trying to build”. In this sense, the business model concept provides a
useful lens to frame how the OSS helps to create, deliver, and capture value for
a firm [195], and more specifically, through the OSS project’s connection to the
value proposition and revenue streams as pointed out in BA1 of the CSF. As indi-
cated by the diversity of the firms that the interviewees represent, this connection
can be made in several ways, as is reported in literature [31,147,173,185]. This is
also true on the business strategy level where the firm chooses and configures its
business model to compete in its business environment [44]. Creating or support-
ing a competing standard, or commoditizing a technology or market are two ways
in how a firm can disrupt their competition and pave the way for their own business
model, both reported on in the CSF (BA2) and in literature [210]. This alignment
between the CSF and literature is further repeated in regards to the importance of
an OSS community as a pool for recruitment (BA3), as well as a marketing tool
towards customers (BA4) [38, 82].

On an implementation level, it is also important to understand the reflections
between how the OSS project is used in the internal development and it’s strategic
importance to a firm [24, 183]. In the example of Sony Mobile and the communi-
ties of Jenkins and Gerrit (see Section 5 and [147]), the two OSS projects played a

6 Discussion 159

less direct part in the firm’s value proposition, but a much more significant from a
technical perspective. They constituted core parts in the internal development in-
frastructure (TA1), and the communities were key partners to adapt and maintain
the software (TA4). As the fitness-of-use and road-map alignment were not satis-
factory, a high level of influence was required (TA2). If the case was otherwise,
and the direction being predictable, the need for an active community presence
may be less urgent [24].

Supportive evidence and alignment can hence be found between literature and
many of the aspects identified in the interviews and presented in the CSF. How-
ever, aspects that need consideration may be different depending on the firm and
community. For example, Sony Mobile had in regards to their customers, no need
to prove credibility or visibility in the Jenkins and Gerrit communities, as these
OSS projects were used internally and not part of any marketing or key selling
points [147]. Hence, the business aspect BA4 is not relevant in this case, while in
other cases it may.

Other aspects though can be considered more general such as business aspect
BA1. An OSS project can, depending on the case, have a more direct or indirect
connection with the value proposition and revenue streams of a firms business
model. For Red Hat, the connection may most often be direct as they base many of
their products on them [31]. Conversely, returning to the example of Sony Mobile,
Jenkins and Gerrit had a more indirect connection as they enabled a customized
development process. As reported, Sony Mobile experienced these community
engagements as having a positive impact on time-to-market and quality of their
products [147].

6.2 Influencing the Requirements Engineering Process
in OSS communities

As reported in the literature (see Section 2), the type of governance in OSS com-
munities can vary [26, 45, 46, 186]. There is also variation in the possibilities and
ways how firms can gain influence on the RE processes in a community.

Among the cases researched, meritocracy seems to be among the more com-
mon authority structures [24, 56, 151, 161, 182]. In a meritocratic community, in-
fluence on the RE process is gained by proving merit, and as highlighted in the
literature, this does not have to be limited to technical contributions [49, 164]. In
essence, it is about earning the trust and status among one’s peers in a commu-
nity [39, 155, 156]. Considering the differentiation by De Noni et al. [46] between
open-source based or collective communities, this characteristic can be assigned to
both, even though the former is described as institutionalized and democratic, and
the later as collective and meritocratic. In a purely democratic community, an indi-
vidual still needs to earn trust, respect, and recognition among its peers to gain re-
sponsibilities and authority. In Apache communities, for example, both democratic
and meritocratic traits can be found as individuals are voted into leadership posi-

160 A Community Strategy Framework – . . .

tions even though Apache communities are profiled mainly as meritocracies [56].
Further, as De Noni et al. classifies Apache communities as open-source based,
rather than collective, one can view the two categories of authority structures as
closely related, as is the way in how influence can be gained on their communities’
RE processes.

In communities with a centralized and autocratic authority structure [45], i.e.,
firm-sponsored or tolerant dictator-based [46], project leadership is often centered
to a single (or limited number of) firm(s) (e.g., Android Open Source Project)
or person(s) (e.g., the Linux kernel project). In firm-sponsored communities [26,
162], specifically those centered around a single firm [176,183], where the focus is
more on transparency than accessibility [212], communities may often be viewed
more as user communities and a less open type of software ecosystem [69, 94].
To gain influence in these types of communities, firms may focus more on direct
business relationships (cf. [10, 199]). However, this does not prevent meritocratic
governance aspects to be present why the community engagement practices as
proposed by the CSF may still be relevant. In tolerant dictator-based communities,
as shown by Shaikh and Henfridsson [186], there can still be mixes of meritocracy
and democracy implemented through different coordination processes. Even if
such coordination practices would not be present in an autocratic community, there
is still some possibility to influence by earning trust and respect in the community.
If a firm can create enough traction among their peers in the community, the project
leadership will commonly consider it [71, 113, 147, 157]. If not, and an opposing
will is strong, part of the community may in worst case move to create their own
fork of the project [158], as was the case with OpenOffice and LibreOffice [64].

Findings from the interviews regarding engagement practices align with Dahlander
and Magnusson [37], in that influence in a meritocratic OSS community is built
through creating a symbiotic relationship with the community. Trust and status
are gained through active involvement and respecting its norms and values [2, 37,
156, 194]. As pointed out by S9, gaining influence may be done through dif-
ferent types of engagements and with varying types of resources, “It’s bringing
code, bringing people into influence, in most projects, buying influence is not as
easy to do, but you can still spend sponsorship money and port money to make
sure that a project is happier or healthier for example”. I.e., influence may,
for example, be gained through providing code contributions as well as more
general resources, including financial, aligning with practices reported in litera-
ture [24, 39, 83, 147, 155, 156, 163, 164, 190]. When comparing the communities
inside the Linux Foundation and the Apache Software Foundation, S9 describes
it as, “ . . . you need to show contribution, activity, commitment, leadership, and
then you grow through contributions that you take in both foundations”. Hence,
the engagement practices in the CSF are primarily intended for OSS communities
where there is a presence of meritocratic coordination processes [186].

7 Threats to Validity 161

7 Threats to Validity
As presented in Section 4, the CSF covers a broad spectrum of aspects, some
more general and applicable than others. One reason for this may be that the 18
interviewees each have extensive personal experience in the field but with different
backgrounds, e.g., business or developer-oriented. Another reason may be that
they represent 12 different firms (see Table 1) which in turn may have different
use cases and needs. From an external validity perspective [180], this is positive
and indicates a potential of transferability to other firms who are engaged (or are
aspiring to) in meritocratic OSS communities. However, as the CSF is based on
qualitative data from a limited set of interviewees, quantitative conclusions on
generalization will require further validation using statistics based on a population
of real-world firms and OSS communities.

Another area regarding external validity is to what extent the practices pre-
sented by the CSF actually leads to a gain in influence, and in what contexts. As
discussed in Section 6.2, we believe that there has to be meritocratic coordination
processes present [186] as the engagement practices proposed in the CSF present
make up different ways in how a firm can contribute to and engage with a com-
munity to build a symbiotic relationship based on trust, respect, and recognition
among its peers. Interviews from the case validation (see Section 3.3) supports
these arguments as the communities that CaseOrg is engaged in, and in the context
which CSF was discussed, were all community-managed and meritocratic. How-
ever, external validity is still a limitation in regards to CSF why further empirical
validation is needed in future studies, e.g., through the use of case studies and
cross-case synthesis.

Regarding the completeness on the aspects and practices presented in the CSF,
we again acknowledge that CSF is based on qualitative data from a limited set of
interviewees. When performing the interviews in the Interview Validation step (see
Section 3.3) of the validation phase we did reach a point of saturation where we
observed a tendency of maturity in terms of declining number of emerged codes.
This observation was further supported in the Case Validation (see Section 3.3)
as no aspects or practices were added or removed, only further refined. This may
point to some level of completeness. However, as presented in Section 2, there are
numerous variations in the characteristics of OSS communities, e.g., in regards to
governance structure, demographics, and RE process. Hence, further research and
design cycles are needed to validate the CSF and to improve its level of complete-
ness.

162 A Community Strategy Framework – . . .

8 Conclusions

The focus of this study has been to identify what aspects that firms should consider
when they assess their need of influencing the RE process in a meritocratic OSS
community (RQ1), as well as what practices that should be considered in order to
gain this influence (RQ2). To address these questions we used a design science ap-
proach [86, 216]. We developed a questionnaire used in ten semi-structured inter-
views with industry professionals. Inductive coding of interview transcripts [180],
an initial version of a Contribution Strategy Framework was developed. The
framework was then validated and refined through seven new interviews and by
applying it on a fictitious example of an earlier reported study [147]. Finally, a
case validation was performed by interviewing four industry professionals from a
software-intensive firm engaged in multiple OSS communities. Questions focused
on the validity of CSF in the context of the firm’s community engagements. In to-
tal, 21 interviews were conducted with 18 industry professionals from 12 different
software-intensive firms.

The framework consists of aspects and engagement practices. The aspects ad-
dress RQ1 and are divided into business, technical, and community aspects. The
two former may be considered to help determine how important an OSS project
and its community is from the business and technical perspectives, while the com-
munity aspects add the perspective of feasibility and potential in gaining influence
in a community. The engagement practices address RQ2 and should be seen as a
tool-box of ways in how a firm can engage with a community to build influence
needed in the community.

As this study uses a qualitative survey approach with a limited sampling of
interviewees, further research is needed to validate the CSF through case studies
and additional empirical work, both qualitative and quantitative. Along with such
research, more theory-grounding work should be performed to further formalize
the concept of influence in OSS communities, and how it can be gained, as exem-
plified by the CSF. Inspiration may be gathered from Valença and Alves [199] in
how they generated a theory of power for emerging software ecosystems formed
by small-to-medium sized firms.

Acknowledgments

The authors would like to thank the anonymous interviewees for lending their time
and expertise, as well as the anonymous reviewers for their valuable feedback.
This work was funded by the Swedish National Science Foundation Framework
Grant for Strategic Research in Information and Communication Technology, project
Synergies (Synthesis of a Software Engineering Framework for Open Innovation
through Empirical Research), grant 621-2012-5354, and the industrial excellence
center EASE (Embedded Applications Software Engineering)2.

2http://ease.cs.lth.se

8 Conclusions 163

Appendix A - Interview questionnaire
• Do you, in any way, consider or plan how you engage with a community,

and where you spend your resource, and to what extent? If yes, how? Is it
formalized in any way? How could this be improved/otherwise done

• In what ways can you contribute to an OSS community (code, knowledge,
socializing, sponsorship)? What roles would you say are involved in these
contributions?

• How can you gain the power to change or affect (influence) a community
in terms of what features gets implemented, and how they are prioritized?
(Short- and long-term)

• Do you see any connection or consideration between how you engage and
invest in a community and the level of influence you need to have in it? How
would you describe it?

• How can you consider how an OSS and its community creates value for your
company? Is there any relation or consequence between this value and how
you engage and invest in the community, and the influence you need in it?

• Are you aware of the product planning and development in the OSS com-
munities you are involved in? Are your internal product planning and de-
velopment aligned with the OSS communities’? Do you consider possible
dependencies? Do you see a need for it? How would it affect how you
engage and invest in the community and the influence you need in it?

• Do you consider the motivation and underlying drivers for why you engage
and spend your resources in a community? If yes, how? Do these align
with how the community creates value for you and its role in your product
strategy? Do they align with what you contribute to the communities? What
do you see as the main drivers of your company?

CHAPTER IV

A METHOD FOR ANALYZING
STAKEHOLDERS’ INFLUENCE

ON AN OPEN SOURCE
SOFTWARE ECOSYSTEM’S

REQUIREMENTS
ENGINEERING PROCESS

Johan Linåker, Björn Regnell and Daniela Damian.

Abstract

Background: For a firm in an Open Source Software (OSS) ecosystem, the Re-
quirements Engineering (RE) process is rather multifaceted. Apart from its typical
RE process, there is a competing process, external to the firm and inherent to the
firm’s ecosystem. When trying to impose an agenda in competition with other
firms’, and aiming to align internal product planning with the ecosystem’s RE pro-
cess, firms need to consider who and how influential the other stakeholders are,
and what their agendas are. Aim: The aim of the presented research is to help
firms identify and analyze stakeholders in OSS ecosystems, in terms of their in-
fluence and interactions, to create awareness of their agendas, their collaborators,
and how they invest their resources. Method: To arrive at a solution artifact we
applied a design science research approach where we base artifact design on liter-
ature and earlier work. Results: A Stakeholder Influence Analysis (SIA) method
is proposed and demonstrated in terms of applicability and utility through a case
study on the Apache Hadoop OSS ecosystem. SIA uses social network constructs
to measure the stakeholders’ influence and interactions and considers the special

166 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

characteristics of OSS RE to help firms structure their stakeholder analysis pro-
cesses in relation to an OSS ecosystem. Conclusions: SIA adds a strategic aspect
to the stakeholder analysis process by addressing the concepts of influence and
interactions, which are important to consider while acting in collaborative and
meritocratic RE cultures of OSS ecosystems.

1 Introduction

Firms that use Open Source Software (OSS), e.g., as part of their supporting in-
frastructure, product strategy or business model, need to consider the Require-
ments Engineering process of the OSS itself [149]. This second, external to the
focal firm, RE process is facilitated by the software ecosystem (cf. OSS com-
munity [151]) that surrounds the OSS [93]. Firms that are users of the OSS may
also be involved in its development and maintenance and can be considered as
members of the ecosystem, as well as stakeholders to the OSS. We refer to Glinz
& Wieringa’s definition of a stakeholder as “. . . a person or organization who in-
fluences a system’s requirements or who is impacted by that system” [74]. In
our context, we consider a person or an organization as the members of an OSS
ecosystem, and the system being the OSS that underpins the ecosystem, using the
definition by Jansen et al [93].

RE practices in OSS ecosystem may be described as informal and decentral-
ized. There is often no central repository with requirements defined in the problem
space, describing the product of need, along with heavy processes and tools for ex-
amining the requirements for completeness and consistency [4]. Instead, RE may
be considered as a lightweight and evolutionary process of requirements refine-
ment [52]. Practices such as elicitation, specification, and prioritization overlap
and are done collaboratively through iterative and transparent discussions and ne-
gotiations including up-front implementations [52, 71, 181]. These discussions
and implementations of requirements are spread out over a number of require-
ments artifacts, each with its own repository. Examples of these artifacts (cf.
informalisms [181]) include reports in an issue tracker, messages in a mailing
list, or commits in a version control system. Prioritization is commonly con-
ducted by stakeholders with central positions in the ecosystem’s governance struc-
ture [10,113]. To gain such a position in OSS ecosystems with a meritocratic gov-
ernance structure, a stakeholder needs to prove merit by being active, contributing
back, and having a symbiotic relationship with the OSS ecosystem [37].

Hence, the focal firm is one stakeholder among many within an open and fluc-
tuating population in the OSS ecosystem [97]. This can result in conflicting agen-
das and lack of control, e.g., in regards to which requirements to be implemented
and prioritized, render misalignment with internal RE processes [219], and com-
plicate contribution strategies [149]. The focal firm may, therefore, have to gain

1 Introduction 167

the influence necessary to affect the RE process in an OSS ecosystem according to
its own agenda.

The Merriam-Webster dictionary 1 defines influence as “the power to change
or affect someone or something”. In our context, this relates to the power of a
stakeholder to change or affect the RE process in an OSS ecosystem. This notion
of influence aligns naturally with what defines a stakeholder [74], and as a char-
acteristic enables firms to, e.g., see the requirements in which stakeholders hold a
certain interest, and from there be able to create an overview of their agendas in the
ecosystem [63]. Further, this understanding enables the focal firm to analyze how
these stakeholders invest their resources in order to satisfy their agendas [63]. By
also considering other stakeholders’ interactions within the ecosystem, firms may
identify possible partners and competitors [178]. Moreover, this can help firms to
learn how to adapt their own strategies and processes with the OSS ecosystem’s
and how to build their own influence and position the ecosystem’s governance
structure [10]. The knowledge output can then be leveraged towards other stake-
holders through the politics and negotiations that take place in the ecosystem’s RE
process [137].

These aspects highlight the importance of stakeholder identification and anal-
ysis as input to the continuous and complex decision-making process which RE
constitutes [8] by helping to answer questions as which other stakeholders exist in
the ecosystem, what are their agendas, and how do they aim to achieve them [63].
However, current practices [167] are not adapted to consider these strategic as-
pects [60] in the context of OSS ecosystem [149] and its informal and collaborative
RE process [52, 181], specifically the importance of understanding stakeholders’
influence and interactions. Involved firms are no longer the vantage point, and in-
stead, form part of a larger set of interdependent stakeholders [178]. We address
this gap with a design science research approach [86,216] and define it as a design
problem [216]:

DP How to characterize the influence of stakeholders on the OSS ecosystem’s
RE process, so that a focal firm can understand other stakeholders’ agendas,
collaborations, and resource investments in pursuing these agendas?

The contribution of our work is the proposal of the Stakeholder Influence Anal-
ysis (SIA) method. Its aim is to help firms to analyze an OSS ecosystem to identify
its stakeholders’ influence by the impact they have with respect to the require-
ments that get implemented in the OSS. We base SIA on social network analy-
sis constructs [53, 154, 203] that have proven to be useful in characterizing the
influence of stakeholders [166, 178], but also effective when analyzing a firm’s
participation in OSS ecosystems [166, 196] and requirement-centric stakeholder
collaborations [17, 42, 133]. An analysis approach used in an earlier reported
case study of the Apache Hadoop OSS ecosystem [124] is formalized to consider

1http://www.merriam-webster.com/dictionary/influence

168 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

how requirements may be informally represented in multiple artifacts in decen-
tralized repositories present in OSS ecosystems [52, 181]. The influence analy-
sis is then operationalized with a stakeholder mapping approach based on earlier
work [100, 135, 152]. To demonstrate SIA’s applicability and utility, we present a
case study of the Apache Hadoop OSS ecosystem.

The rest of this paper is structured as follows: In section 2 we describe the
research approach used in the development of SIA. In section 3 we give a detailed
presentation of SIA, while in section 4 we demonstrate its applicability and utility
with a case study. In section 5 we discuss alternative approaches to characterizing
influence and threats to validity. Finally, we conclude the paper in section 6.

2 Research Approach
To develop SIA, we used a design science research approach [86, 216] where re-
search is conducted iteratively through design cycles. A design cycle consists of
three phases: problem investigation, artifact design, and artifact validation [216].
Below we describe these steps in detail.

Problem Investigation phase: Here, the research goal and the problem con-
text are (re-)analyzed before any artifact is designed, or any improvements imple-
mented [216]. In previous work [124], we explored how centrality measures could
be used to characterize the influence of stakeholders within an OSS ecosystem,
and how this evolved over time. Findings helped to create an understanding of
the problem context and helped define the design problem (DP) as stated in Sec-
tion 1. In order to further understand the problem context, a literature survey was
conducted to identify related work on:

• the informal and collaborative RE processes within OSS ecosystems (e.g., [52,
97, 113, 151, 181]),

• how awareness of the dynamics behind stakeholder interactions and interre-
lationships may be used to analyze their agendas (e.g., [10,63,138,147,149,
167, 178]), and

• how social network constructs may be used to characterize the stakehold-
ers’ interactions and influence on the RE process of the OSS ecosystem
(e.g., [12, 17, 41, 53, 133, 154, 166, 178, 196, 203]).

Surveyed literature provided conceptual foundations, which together with find-
ings from previous work [124], constituted a knowledge base for the artifact design
process.

Artifact Design phase: Here, knowledge gained from the previous phase is
used as input to the design of an artifact with the hypothesis that it may act as a
treatment for the design problem [216]. The Stakeholder Influence Analysis (SIA)
method was formalized and structured as seven steps, as presented in Section 3

3 The Stakeholder Influence Analysis (SIA)
method 169

(S1-S7) and in Fig 1. S1-S2 involves setting the purpose and scope of the analysis.
S3 concerns data gathering, while S4-S6 concerns data processing. Finally, S7
regards the analysis of the processed data.

Artifact Validation phase: Here, the previously designed artifact is tested in
the problem context in order to evaluate its treatment of the design problem [216].
To test SIA, we apply it in a proof of concept demonstration that it is functional and
practical, through a case study on the Apache Hadoop OSS ecosystem (see Sec-
tion 4). It can be seen as an early form of descriptive validation where information
from the knowledge base, and detailed scenarios can be used to demonstrate an
artifact’s applicability and utility [86]. The Apache Hadoop OSS ecosystem was
chosen due to the high concentration of firms in the ecosystem, and because it is
the Apache project with the highest number of committers 2. The case study fur-
ther helped to evolve and refine SIA and its seven steps as can be expected by an
iterative design process.

3 The Stakeholder Influence Analysis (SIA)
method

SIA aims to help firms involved in OSS ecosystems to structure their stakeholder
identification and analysis process systematically when bridging their internal RE
process with that of the ecosystem’s (see Fig. 1). The focus is specifically on
identifying and characterizing stakeholders’ interactions and influence on the RE
process in the OSS ecosystem. As proposed by Glinz and Wieringa [74], SIA
considers both individuals and organizations as stakeholders but primarily from an
organizational level, meaning that the individuals in an OSS ecosystem should be
aggregated to their organizational affiliation as far as possible. Below, we give a
detailed overview of SIA and its seven steps, as outlined in Fig. 1 and table 1.

Determine the purpose of the analysis process (S1): The first step is to de-
termine what questions are of interest to answer based on the stakeholder analysis.
E.g., to identify potential partnerships or competitors, to identify and learn from
stakeholders in a certain position, or to identify conflicting agendas in regards to
certain requirements.

Limit the analysis’ scope based on its purpose (S2): Based on the purpose
of the analysis process, limitations may be implied that can affect how the anal-
ysis should be narrowed down in terms of what requirements artifacts should be
included in the analysis. E.g., is the analysis limited to:

• a certain component or set of features of the OSS?

• a certain individual or set of stakeholders?

• a certain time-period or set of releases?
2https://projects.apache.org/projects.html?number

170 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

Figure 1: Overview of SIA’s seven steps (S1-S7) divided in Purpose and Scope,
Data gathering, processing and analysis.

Table 1: Overview of SIA and its seven sequential steps (S1-S7) along
with related descriptions and examples.

Step Description

S1 Determine
the pur-
pose of the
analysis
process.

Purpose could include:

• Understand how an ecosystem is set up in terms of
power-structure and general collaboration patterns.

• Identify potential partners or competitors as input
to contribution strategies or collaborations.

• Identify stakeholders with aligning or conflicting
agendas in regard RE-related activities and negoti-
ations.

• Identify influential stakeholders to learn from in or-
der to raise one’s own influence in the OSS ecosys-
tem.

S2 Limit the
analysis’
scope based
on its
purpose.

Regards boundaries for what data that should be collected
and is determined by the purpose of the analysis process.
E.g., is the interest limited to:

• a certain component or set of features of the OSS?

• a certain individual or set of stakeholders?

• a certain time-period or set of releases?

3 The Stakeholder Influence Analysis (SIA)
method 171

S3 Mine re-
quirements
artifact
reposito-
ries.

Refers to the main repositories through which stakehold-
ers interact in regards to the RE process. E.g.,

• IRC or other chat-based communication

• Issue trackers

• Code review

• Software code repository

• Discussion boards

S4 Classify
individuals
per their
affiliation.

Concerns identification of organizations to which individ-
ual developers are affiliated. E.g., by

• Interacting and studying the communication within
an OSS ecosystem.

• E-mail domain analysis.

• Heuristically through social media and public elec-
tronic sources.

• Identity pattern matching.

If no affiliation can be found or exists, the individuals can
either be considered either as individual stakeholders or
as an aggregated group.

S5 Create
stakeholder
interaction
networks.

For each requirement artifact repository, a directed and
weighted affiliation-network is created. Stakeholders are
represented as nodes, and are connected by edges if they
have interacted on a common requirements artifact, e.g.,
commented on the same issue or mail-thread. To reflect
investment and influence, edges are weighted based on
the size of each stakeholder’s participation.

172 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

S6 Create
influence
profiles.

To characterize stakeholders’ influence on the RE process
in the OSS ecosystem, a set of network centrality mea-
sures are calculated based on the interaction networks,
and used to create an overall influence score. Together,
they form an influence profile for each stakeholder. The
centrality measures include:

• Out-degree centrality

• Betweenness centrality

• Closeness centrality

• Eigenvector centrality

S7 Influence
analysis of
stakeholder
interaction
networks.

Based on influence profiles, stakeholders are ranked on
overall influence score, and cross-compared on the cen-
trality measures. Stakeholders of special interest are in-
vestigated further in regards to their relationships. With
qualitative analysis of stakeholders’ agenda alignment
with the focal firm’s, stakeholder mapping can be used
with the influence/alignment matrix. The analysis should
be directed by the purpose defined in S1.

Mine requirements artifact repositories (S3): In the third step, the goal is
to identify and mine the repositories that are mainly used by the OSS ecosystem.
Examples include issue trackers, mailing-lists, IRC logs, source code repositories,
and code-reviews [52, 181]. When these are identified, the repositories should be
mined to collect the necessary data. This can either be done either manually or
with the help of existing3 or custom-made tools.

Classify individuals per their affiliation (S4): In the fourth step, the individ-
uals that are involved in OSS ecosystem need to be classified in regards to their
affiliation. This is a necessary step as firm-affiliated individuals may be assumed
to represent the agenda of their sponsor or employer [39, 83]. However, not all
individuals involved in an OSS ecosystem have to be affiliated and may rather
represent their own personal agenda. These affiliations can be identified and tri-
angulated by qualitative and quantitative means. E.g., through involvement and
discussions, and by analyzing meta-data from the requirements artifact reposito-
ries and cross-checking against other information sources (e.g., social media and
electronic archives) [19, 75, 124].

3See e.g., https://metricsgrimoire.github.io/

3 The Stakeholder Influence Analysis (SIA)
method 173

If no affiliation can be found or exists, the individuals can either be considered
as individual stakeholders or as an aggregated group. For example, say, John,
Mark, Lucy, Kate, and Mary are involved in the Apache Hadoop OSS ecosystem as
developers. John and Kate work for a firm called Hortonworks and therefore have
a common agenda. They are therefore aggregated and viewed as one stakeholder
represented by the firm Hortonworks. Mark, Lucy, and Mary are all independent
with the difference that Lucy is a relatively active user in the ecosystem, while
Mark and Mary are more involved on a hobby basis. Lucy could, therefore, be
seen as an independent stakeholder, while Mark and Mary could be aggregated
to one group of hobbyists and be considered as one stakeholder. This type of
classification and separation is rather subjective and needs to be done on a case-
by-case basis for each ecosystem.

Create stakeholder interaction networks (S5): In the following step, an in-
teraction network for each requirements artifact repository needs to be created
in order to visualize the interactions between stakeholders. To create these net-
works, the interactions between the stakeholders to the requirement artifacts within
a requirements artifact repository must be identified. As an example, consider a
number of individuals (stakeholders) that discuss the need for as well as potential
implementations of a new feature in an OSS project. The feature request is rep-
resented by an issue (requirements artifact) on the OSS ecosystem’s issue tracker
(requirements artifact repository). The discussions (interactions) between the indi-
viduals concerning the feature’s evolution and refinement is recorded and persisted
in the issue. This continuous discussion may be referred to as an ”event” in social
network theory [203]. The individuals partaking in the discussions may be referred
to as ”participants” of the same event [203].

These events and their participants can furthermore be represented by networks
of actors. Two actors within a network are connected by an edge if they have par-
ticipated in the same event (as a network may include several events). If a network
was created based on the previous example, all individuals who partook in the dis-
cussion of the issue would be represented by an actor in a network with an edge
connecting each one of them. If there was a related discussion of the feature on
the OSS ecosystem’s mailing-list, a similar network may be created based on the
concerned mail-thread. The two networks could then be analyzed in conjunction
to get a more complete overview of the stakeholders to the requirement and their
interactions (cf. requirement-central networks [42]).

In a similar fashion, sets of requirements may be analyzed by aggregating re-
quirements artifacts in a repository to a network. Returning to the example, a
network could be created that included all of the issues in the issue tracker that are
related to a certain release, created in a certain time span, or belonging to the same
sub-module. A corresponding network could be created based on the mailing-
list given that the same conditions apply. By creating corresponding networks of
all the relevant requirements artifact repositories, the analyst may get a complete
overview of what stakeholders that are involved and how they interact.

174 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

It should be noted that one stakeholder’s participation in the event (e.g., RE-
related discussions of an issue) may be of a relatively different size than the other
stakeholders’. A stakeholder with a higher degree of participation may be consid-
ered to have a larger investment and interest in the event. These differences in the
investment of time and resources need to be considered in order to give a fair view
of a stakeholder’s stake in a requirement. The relative size of the investment also
helps to give a fairer data-set when doing an influence analysis of the interaction
networks. As suggested by Orucevic-Alagic et al. [166], weights can be calculated
to describe the relative size of the participation to an event.

Following Orucevic-Alagic et al. [166], for a set of stakeholders V = {v1, v2, ..., vk}
and a set of requirements artifacts (events) U = {u1, u2, ..., um}, we define a
weight W of an edge between one stakeholder vi and all other stakeholders that
collaborate on an artifact ut as:

W (vi, ut) =
X(vi, ut)∑k
c=1 X(vc, ut)

where X(vi, ut) denotes the number of times a stakeholder vi has participated
in the collaboration on the requirements artifact ut.

Continuing from Orucevic-Alagic et al. [166], this means that the weight of
the edge W (vi, vj) for all requirements artifacts that two stakeholders vi and vj
have collaborated on together equals:

W (vi, vj) =

m∑
t=1

W (vi, vj , ut)

As an example, when creating an interaction network based on an issue-tracker,
each issue represents a requirements artifact and number of posted comments may
represent the size of participation (X) of a stakeholder. Given that three stake-
holders vA, vB and vC comment on the issue, they are all considered as actors in a
network with edges connecting them. The weights would, therefore, consider the
relative number of comments of each stakeholder as the size of their participation.
Say vA commented 1, vB commented 2, and vC commented 3 times. This results
in the edge weights:

• W (vA, vB)&W (vA, vC) = 1/5

• W (vB , vA)&W (vB , vC) = 2/5

• W (vC , vA)&W (vC , vB) = 3/5

If two stakeholder participated in an equal number of times, the size of each
participation can be made further fine-grained. In another example, when con-
sidering an interaction network based on patches submitted to a software code
repository, the size of a stakeholder’s participation (X) can be quantified with the

3 The Stakeholder Influence Analysis (SIA)
method 175

Figure 2: Example of network with three stakeholders vA, vB and vC , and con-
necting weighted edges. Adopted from [124].

number of changed lines of code (LOC) of its patches. A simplified example
is shown in Fig. 2 where three stakeholders vA, vB and vC each created various
number of patches that were contributed to a certain issue. vA’s patches contain 50
LOC in total. vB’s patches contain 100 LOC in total, while vC’s patches contain
150 LOC in total. Aggregated, 300 LOC were contributed to the issue. Resulting
in the following edge weights:

• W (vA, vB)&W (vA, vC) = 50/300

• W (vB , vA)&W (vB , vC) = 100/300

• W (vC , vA)&W (vC , vB) = 150/300

By constructing this kind of networks (i.e., weighted and directed affiliation-
networks [53, 203]), stakeholders’ interaction in an OSS ecosystem’s RE process
may be visualized on different abstraction levels across the different requirements
artifact repositories identified in S3.

Create influence profiles (S6): In a network, a stakeholder is more prominent
if it has a central position with edges that make it extra visible and important to
others [12]. In social networks, centrality measures are commonly used to analyze
an actor’s position and prominence relative to others [203]. Faust [53] breaks
down the notion of centrality into how an actor is central given that they are active
in the network, can communicate with others in the network efficiently, are able to
mediate and control flows of information between others in the network, and have
relationships with others that are central. These four aspects respectively relate
to the centrality measures of out-degree, betweenness, closeness and eigenvector
centrality. SIA uses these measures as the foundation for analyzing the influence
of stakeholders.

These four centrality measures can be adapted in different ways to provide
further facets of influence in regards to the interaction networks. As the interac-
tion networks are described in S5, the edges that connect two stakeholders have

176 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

weights attached to them. These weights allow the measures to take account of
the relative size of each stakeholder’s participation of the requirements artifacts on
which the network is based on. E.g., out-degree centrality (see table 2) refers to the
sum of weights attached to outgoing edges from the focal stakeholder and its ad-
jacent stakeholders [13]. This gives an overall number in regards to the size of the
focal stakeholder’s participation in the set of requirements artifacts covered by the
network. A high out-degree centrality may indicate that the focal stakeholder has
a high influence on its adjacent neighbors and is good at communicating its views
relative others in the network [166]. However, this way of measuring out-degree
centrality does not provide information about the total number of connections of
a stakeholder, which may better show the number of collaborations and opportu-
nities to spread one’s opinions [165]. Hence, we recommend that the proposed
centrality measures are used both in the case where the edges have the relative
weights attached to them, and in the case where they are considered either present
or not [59].

In table 2, we describe the foundation for these measures and how they may
be interpreted in terms of a stakeholder’s influence in the RE process of an OSS
ecosystem.

As described by Faust [53], centrality may be broken down into multiple as-
pects. Centrality measures, in turn, use different definitions and sets of criteria in
regards to what classifies an actor’s position as central. Hence, one measure can
present a different social structure than another and different measures provide
different perspectives on who are the most active [166]. In smaller and simpler
network structures such measures may co-vary, while in larger and more complex
networks, they may characterize actors very differently [78].

Therefore, measures presented in table 2 could be seen as complementary to
each other and may be used together to give each stakeholder (vi) an influence
profile (IPvi

), a 4-tuple consisting of each centrality measure (i.e., out-degree
centrality (ODCvi), betweenness centrality (BCvi), closeness centrality (CCvi),
eigenvector centrality (ECvi)).

IPvi = (ODCvi , BCvi , CCvi , ECvi)

Such a profile can then be used when analyzing a stakeholder’s interaction
network in step S7. E.g., a stakeholder in a certain interaction network may have

• a high ODC indicating a high activity with many collaborations,

• a low BC indicating that the stakeholder does not have a broker’s position,
but

• a high CC indicating that the stakeholder can more easily reach out with its
communication, and

• a high EC indicating that the stakeholder knows other influential stakehold-
ers.

3 The Stakeholder Influence Analysis (SIA)
method 177

When comparing stakeholders and their influence profiles, it would be conve-
nient to define, for each stakeholder vi, an aggregated influence score ISvi . Such
a score could be used to divide stakeholders in to two groups, those with a high
and low level of influence (see upper and lower zones in Fig. 3). One way to do
this aggregation is to simply add the normalized weights of each element in the
profile, resulting in a ratio-scale number between 0 and 1, as given by the formula
below, and then group stakeholders based on a threshold, eg. less than or equal to
0.5 denotes low influence:

ISvi =
1

4

(
ODCvi

ODCmax
+

BCvi

BCmax
+

CCvi

CCmax
+

ECvi

ECmax

)
There are other ways of aggregating the different measures, using e.g. ordinal-

scale ranks, a vector space distance metric (e.g. cosine similarity), a normalized
exponential function (softmax), or applying some kind of weighting scheme to
reflect e.g. that centrality is considered more interesting. Another option is to
qualitatively compare the ISvi 4-tuple of measures in combination with some vi-
sualization technique, such as spider diagrams or similar. Future work should
investigate which aggregation method that would best help to partition the stake-
holders into high- and low-level category.

In addition to comparing the stakeholders’ influence profiles and overall in-
fluence scores within a specific stakeholder interaction network, it is equally im-
portant to compare between the networks. For example, if the analysis includes
multiple requirements artifact repositories (e.g., issue-trackers and mailing-lists)
or covers multiple releases, these could be cross-compared. A stakeholder may
have a high overall influence score in one requirements artifact repository, and less
in another. Further, the influence and interactions may shift with time why tem-
poral analysis may give important insights. Also, it may be that one repository
is more important than another (e.g., issue-tracker over mailing-list), as a result,
the former should be given more attention in a cross-comparative analysis of a
stakeholder.

Influence analysis of stakeholder interaction networks (S7): In the influ-
ence analysis, the interaction networks and influence profiles from S5 and S6 are
used to address the purpose defined in S1. First, stakeholders are ranked on their
overall influence score to get an overview of the stakeholder population. Stake-
holders of interest, e.g., a top-list of those most influential, can then be cross-
compared based on the centrality measures from their influence profiles, and ana-
lyzed in detail, e.g., in regards to their relationships. Table 2 provides descriptions
of how the centrality measures may be interpreted in terms of a stakeholder’s in-
fluence in the RE process of an OSS ecosystem.

As a support in the analysis, and to help address the purpose as defined in S1,
stakeholder mapping can be applied with the use of an influence/agenda alignment
matrix (see Fig. 3). The matrix, based on earlier work [100, 135, 152], is adapted
to consider the power and politics [63] that play a central part in the RE process of

178 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

Figure 3: Influence/Agenda alignment matrix to be used for stakeholder mapping.
Adapted from earlier work [100].

OSS ecosystems [147, 149]. The Y-axis represents the level of influence and the
X-axis how well their agenda in the OSS ecosystem aligns with that of the focal
firm. Both dimensions range from low to high. The four quadrants Zone A-D in
the figure are explained subsequently.

The level of influence of a stakeholder is based on the influence score from
S6. The threshold for when a stakeholder’s influence score ranks as high is set by
the analyst in relation to the total number of stakeholders in the network. Agenda
alignment, which is the second dimension, is determined by qualitatively investi-
gating the previously identified stakeholders’ engagement in the OSS ecosystem,
e.g., by reviewing comments made by the stakeholder in the set of issues which
the analysis considers (as defined in S1 and S2). The investigation should answer
if the stakeholder and the focal firm want the same thing, and to what extent.

The classification puts a stakeholder into one of four quadrants (A-D) of Fig. 3,
each indicating a different relationship and possible engagement that the focal firm
should establish and maintain with the stakeholder. Stakeholders with a high level
of influence and high level of agenda alignment (Zone D) may pose as (poten-
tial) partners, both in regards to general collaboration and RE related activities and
negotiations. Stakeholders with a high level of influence and low level of agenda
alignment (Zone C) may pose as the key opponents and may require active engage-
ment in negotiations in the RE process of the OSS ecosystem. Stakeholders with
a low level of influence (Zone B and A) may not pose as having high importance,
but may still require monitoring as they can move their position with time. Those
in Zone B may pose as future collaboration opportunities, while those in Zone A
as potential threats.

If competitors are identified among those with high influence, this may sig-
nal that they have a high interest in the ecosystem and scope of the investigation.
If they are found in Zone D, there might be an opportunity for co-opetition. In
either case, whether they have aligning agendas or not, consideration should still
be taken to the differential value of what is contributed and how resources are in-
vested. By studying stakeholders in Zone C and D, a focal firm can potentially
strengthen its own influence by learning from these stakeholders, in how they in-
vest their resources and with whom they collaborate. This may lead to further
collaboration and other potential partners, and how interest may overlap between
multiple stakeholders.

3 The Stakeholder Influence Analysis (SIA)
method 179

Ta
bl

e
2:

N
et

w
or

k
m

ea
su

re
s

de
sc

ri
be

d
fr

om
a

ge
ne

ra
lp

er
sp

ec
tiv

e
as

w
el

l
as

an
d

ho
w

th
ey

ca
n

be
in

te
rp

re
te

d
fr

om
a

R
E

pe
rs

pe
ct

iv
e

in
re

ga
rd

s
to

St
ak

eh
ol

de
ri

nfl
ue

nc
e.

M
ea

su
re

D
es

cr
ip

tio
n

St
ak

eh
ol

de
rI

nfl
ue

nc
e

In
te

rp
re

ta
tio

n
O

ut
-

de
gr

ee
C

en
tr

al
ity

R
ef

er
s

to
ho

w
w

el
l-

co
nn

ec
te

d
th

e
fo

-
ca

l
ac

to
r

is
an

d
co

ns
id

er
s

th
e

ou
t-

go
in

g
ed

ge
st

ow
ar

ds
its

ad
ja

ce
nt

ac
to

rs
,

w
he

re
th

e
fo

ca
la

ct
or

is
th

e
tr

an
sm

itt
er

(s
ou

rc
e)

fo
r

th
e

ed
ge

s.
W

ith
w

ei
gh

ts
co

ns
id

er
ed

,
th

is
m

ea
su

re
re

fe
rs

to
th

e
su

m
of

w
ei

gh
ts

at
ta

ch
ed

to
th

e
ou

tg
o-

in
g

ed
ge

s
of

th
e

fo
ca

la
ct

or
[1

3]
.

W
ith

bi
na

ry
ed

ge
s

co
ns

id
er

ed
,

th
is

m
ea

su
re

re
fe

rs
to

th
e

nu
m

be
r

of
ou

tg
oi

ng
ed

ge
s

be
tw

ee
n

th
e

fo
ca

la
ct

or
an

d
its

ad
ja

ce
nt

ac
to

rs
[5

9]
.

O
ut

-d
eg

re
e

ce
nt

ra
lit

y
is

ge
ne

ra
lly

co
ns

id
er

ed
as

a
m

ea
su

re
of

ac
tiv

ity
th

at
ca

n
id

en
tif

y
"w

he
re

th
e

ac
tio

n
is

"
an

d
hi

gh
lig

ht
th

e
m

os
t

vi
si

bl
e

ac
to

ri
n

th
e

ne
tw

or
k

[2
03

].
W

ith
w

ei
gh

ts
co

ns
id

er
ed

,a
hi

gh
ou

t-
de

gr
ee

ce
nt

ra
lit

y
is

an
in

di
ca

tio
n

of
in

flu
en

ce
on

ad
ja

ce
nt

st
ak

eh
ol

de
rs

as
th

e
fo

ca
ls

ta
ke

ho
ld

er
ha

s
pa

rt
ic

ip
at

ed
in

a
la

rg
e

pa
rt

in
th

e
re

qu
ir

em
en

ta
r-

tif
ac

ts
w

hi
ch

th
ey

ha
ve

in
te

ra
ct

ed
w

ith
[1

66
].

T
hi

s
pa

rt
ic

ip
at

io
n

ca
n

be
vi

ew
ed

as
th

e
fo

ca
ls

ta
ke

ho
ld

er
’s

op
in

io
ns

in
th

e
R

E
pr

oc
es

s
of

th
e

O
SS

ec
os

ys
te

m
.

In
bo

th
ca

se
s

of
w

ei
gh

te
d

an
d

bi
na

ry
ed

ge
s,

a
hi

gh
er

ou
t-

de
gr

ee
m

ay
al

so
in

di
ca

te
a

hi
gh

er
nu

m
be

r
of

op
tio

ns
or

op
po

rt
un

iti
es

fo
r

qu
al

ita
tiv

e
co

nt
ac

ts
,i

.e
.,

to
kn

ow
th

e
ke

y
st

ak
eh

ol
de

rs
to

in
flu

en
ce

an
d

cr
ea

te
tr

ac
tio

n
w

ith
on

a
ce

rt
ai

n
is

su
e.

Fo
r

bi
na

ry
ed

ge
s

sp
ec

ifi
-

ca
lly

,i
tm

ay
fu

rt
he

r
in

di
ca

te
a

hi
gh

le
ve

lo
f

ac
tiv

ity
th

ro
ug

h
a

nu
m

be
r

of
co

lla
bo

ra
tio

ns
,b

ut
al

so
to

w
hi

ch
th

e
fo

ca
ls

ta
ke

ho
ld

er
ha

s
ex

pr
es

se
d

its
op

in
io

ns
.

180 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

B
et

w
ee

nn
es

s
C

en
tr

al
ity

R
ef

er
s

to
th

e
ex

te
nt

to
w

hi
ch

th
e

fo
-

ca
l

ac
to

r
lie

s
on

th
e

sh
or

te
st

pa
th

be
-

tw
ee

n
pa

ir
s

of
ot

he
r

ac
to

rs
.

W
ith

w
ei

gh
te

d
ed

ge
s

co
ns

id
er

ed
,

it
re

fe
rs

to
th

e
sh

or
te

st
pa

th
w

ith
th

e
lo

w
es

t
su

m
of

w
ei

gh
ts

[2
3,

15
3]

.
W

ith
bi

na
ry

ed
ge

s
co

ns
id

er
ed

,i
tr

ef
er

s
to

th
e

sh
or

t-
es

tp
at

h
in

re
ga

rd
s

to
th

e
le

as
tn

um
be

r
of

ed
ge

s
[5

9]
.

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

is
a

m
ea

su
re

of
co

nt
ro

l
an

d
co

or
di

na
tio

n
as

it
hi

gh
lig

ht
s

ac
to

rs
w

ho
si

to
n

th
e

sh
or

te
st

,a
nd

so
m

et
im

es
on

ly
,c

om
m

u-
ni

ca
tio

n
pa

th
s

or
re

so
ur

ce
flo

w
be

tw
ee

n
m

an
y

ot
he

rs
[2

03
].

H
en

ce
,

st
ak

eh
ol

de
rs

w
ith

a
hi

gh
be

tw
ee

nn
es

s
ce

nt
ra

lit
y

m
ay

co
nt

ro
l

an
d

co
-

or
di

na
te

th
e

in
fo

rm
at

io
n

flo
w

ab
ou

tr
eq

ui
re

m
en

ts
,a

nd
in

te
ra

ct
io

ns
be

-
tw

ee
n

ot
he

rs
ta

ke
ho

ld
er

s.
T

he
fo

ca
ls

ta
ke

ho
ld

er
co

ul
d

be
ch

ar
ac

te
ri

ze
d

as
ha

vi
ng

a
ce

nt
ra

lp
os

iti
on

in
th

e
ec

os
ys

te
m

,e
.g

.,
in

re
ga

rd
s

to
pr

oj
ec

t
m

an
ag

em
en

t
an

d
go

ve
rn

an
ce

.
O

th
er

s
m

ay
be

de
pe

nd
en

t
on

th
e

fo
ca

l
st

ak
eh

ol
de

rs
to

re
la

y
th

e
in

fo
rm

at
io

n
an

d
to

se
t-

up
co

nn
ec

tio
ns

.
Fu

r-
th

er
,

th
e

ce
nt

ra
lit

y
al

so
in

di
ca

te
s

th
e

ab
ili

ty
to

ac
t

as
an

in
te

rm
ed

ia
ry

th
at

ca
n

in
flu

en
ce

th
e

co
nt

en
to

f
th

e
in

fo
rm

at
io

n,
an

d
w

ho
m

it
re

ac
he

s
an

d
w

he
n,

to
be

tte
rs

er
ve

pe
rs

on
al

pr
io

ri
tie

s.
W

he
n

a
st

ak
eh

ol
de

ri
s

th
e

on
ly

on
e,

or
on

e
of

ve
ry

fe
w

,l
in

ki
ng

tw
o

or
m

or
e

pa
rt

s
of

a
ne

tw
or

k,
th

ey
ar

e
co

m
m

on
ly

re
fe

rr
ed

to
as

br
ok

er
sa

st
he

ir
po

ss
ib

ili
ty

to
in

flu
en

ce
is

ve
ry

hi
gh

[1
33

,1
54

].

3 The Stakeholder Influence Analysis (SIA)
method 181

C
lo

se
ne

ss
C

en
tr

al
ity

R
ef

er
s

to
th

e
in

ve
rs

e
of

th
e

su
m

of
th

e
sh

or
te

st
pa

th
s

fr
om

th
e

fo
ca

l
ac

-
to

r
to

al
l

ot
he

rs
in

th
e

ne
tw

or
k.

W
ith

w
ei

gh
te

d
ed

ge
s

co
ns

id
er

ed
,

it
re

fe
rs

to
th

e
sh

or
te

st
pa

th
w

ith
th

e
lo

w
es

t
su

m
of

w
ei

gh
ts

[2
3,

15
3]

.
W

ith
bi

na
ry

ed
ge

s
co

ns
id

er
ed

,i
tr

ef
er

s
to

th
e

sh
or

t-
es

tp
at

h
in

re
ga

rd
s

to
th

e
le

as
tn

um
be

r
of

ed
ge

s
[5

9]
.

T
hi

s
m

ea
su

re
on

ly
co

n-
si

de
rs

th
os

e
ac

to
rs

th
at

ar
e

co
nn

ec
te

d
to

th
e

sa
m

e
ne

tw
or

k
as

th
e

fo
ca

l
ac

-
to

r
[1

54
].

Fo
r

di
sc

on
ne

ct
ed

ac
to

rs
,t

he
m

ea
su

re
in

un
de

fin
ed

as
th

e
di

st
an

ce
is

in
fin

ite
.

C
lo

se
ne

ss
ce

nt
ra

lit
y

is
a

m
ea

su
re

of
ef

fic
ie

nc
y

in
co

nt
ac

tin
g

ot
he

rs
an

d
sp

re
ad

in
g,

bu
ta

ls
o

re
ce

iv
in

g,
in

fo
rm

at
io

n
in

th
e

ne
tw

or
k

an
d

he
nc

e
an

ac
to

rs
’

ab
ili

ty
to

in
flu

en
ce

ot
he

rs
[1

54
].

H
en

ce
,a

hi
gh

cl
os

en
es

s
ce

n-
tr

al
ity

in
di

ca
te

s
th

at
a

st
ak

eh
ol

de
ri

s
ef

fic
ie

nt
in

sp
re

ad
in

g
an

d
re

ce
iv

in
g

in
fo

rm
at

io
n

ab
ou

ta
re

qu
ir

em
en

tt
o

an
d

fr
om

th
e

re
st

of
th

e
ne

tw
or

k
of

st
ak

eh
ol

de
rs

.
T

hi
s

ef
fic

ie
nc

y
al

lo
w

s
th

e
fo

ca
ls

ta
ke

ho
ld

er
to

m
or

e
ea

s-
ily

co
m

m
un

ic
at

e
its

ag
en

da
on

th
e

re
qu

ir
em

en
ta

nd
in

te
ra

ct
w

ith
ot

he
rs

,
e.

g.
,i

n
ne

go
tia

tio
ns

an
d

lo
bb

yi
ng

.
T

he
fo

ca
ls

ta
ke

ho
ld

er
co

ul
d,

th
er

e-
fo

re
,b

e
ch

ar
ac

te
ri

ze
d

as
be

in
g

cl
os

e
to

ot
he

rs
ta

ke
ho

ld
er

s
an

d
m

or
e

in
-

de
pe

nd
en

t.
T

hi
sf

ur
th

er
m

in
im

iz
es

th
e

ri
sk

of
in

te
rm

ed
ia

ri
es

in
flu

en
ci

ng
th

e
in

fo
rm

at
io

n
ab

ou
tt

he
re

qu
ir

em
en

ti
n

an
un

fa
vo

ra
bl

e
m

an
ne

r[
17

8]
.

E
ig

en
ve

ct
or

C
en

tr
al

ity
R

ef
er

s
to

ho
w

co
nn

ec
te

d
an

ac
to

r
is

,
si

m
ila

r
to

ou
t-

de
gr

ee
ce

nt
ra

lit
y,

bu
t

co
ns

id
er

s
ho

w
w

el
l-

co
nn

ec
te

d
th

e
ad

-
ja

ce
nt

ac
to

rs
ar

e
[2

1]
.

T
he

fo
ca

l
ac

to
r

re
ce

iv
es

a
sc

or
e

ba
se

d
on

a
su

m
of

its
ad

ja
ce

nt
ac

to
rs

’s
co

re
s

[1
54

].

E
ig

en
ve

ct
or

ce
nt

ra
lit

y
is

a
m

ea
su

re
of

ac
tiv

ity
an

d
vi

si
bi

lit
y

as
ou

t-
de

gr
ee

ce
nt

ra
lit

y,
bu

ta
dd

si
nf

or
m

at
io

n
to

w
ho

m
th

es
e

at
tr

ib
ut

es
co

nn
ec

t
to

.
A

hi
gh

va
lu

e
in

di
ca

te
s

th
at

th
e

ac
to

r
ha

s
im

po
rt

an
tf

ri
en

ds
w

ho
in

tu
rn

ar
e

vi
si

bl
e

an
d

ac
tiv

e
[1

54
].

H
en

ce
,a

hi
gh

ei
ge

nv
ec

to
r

ce
nt

ra
lit

y
in

di
ca

te
s

th
at

a
st

ak
eh

ol
de

r
kn

ow
s

an
d

co
lla

bo
ra

te
s

w
ith

ot
he

r
st

ak
e-

ho
ld

er
s

w
ho

ar
e

im
po

rt
an

ta
nd

ha
ve

ke
y

po
si

tio
ns

in
th

e
O

SS
ec

os
ys

-
te

m
[5

3]
.T

he
fo

ca
ls

ta
ke

ho
ld

er
is

in
a

po
si

tio
n

to
ha

ve
a

po
te

nt
ia

lly
hi

gh
im

pa
ct

on
th

e
R

E
pr

oc
es

s
in

th
e

ec
os

ys
te

m
by

be
in

g
ab

le
to

co
m

m
un

i-
ca

te
its

ag
en

da
to

,a
nd

in
flu

en
ce

ke
y

ac
to

rs
in

th
e

so
ci

al
ne

tw
or

k
[5

3]
.

182 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

Figure 4: Number of committers and members in the Apache Hadoop PMC
aggregated per firm.

4 Case Study of Apache Hadoop OSS Ecosys-
tem

In this section, we describe a first evaluation of SIA in our design methodology.
We demonstrate the applicability and utility of SIA in a case study [180] on the
Apache Hadoop OSS ecosystem. The case study takes the perspective of a (fictive)
focal firm that provides scalable and secure infrastructure on which Hadoop can
be deployed for customers. This is a new product offering, and the focal firm is
now interested in becoming active in the Apache Hadoop OSS ecosystem. As they
are new to the ecosystem, they want to do an initial stakeholder analysis to see if
there are any potential partners to collaborate with, and potentially learn from (S1).
First, they want to get a general overview of the stakeholder population to see who
is present and how the ecosystem functions in terms of the power structure and
collaboration patterns. Second, they will look for potential partners among those
most influential and investigate how they work, and what interests they have in the
ecosystem.

The Apache Hadoop project4 is a widely adopted OSS framework for distri-
bution and process parallelization of large data, originating from Yahoo in 2006.
The framework consists of four modules: Hadoop Common Modules, Hadoop
Distributed File System (HDFS), Hadoop YARN, and Hadoop MapReduce.

The Apache Hadoop project is part of the Apache Software Foundation which
is an umbrella organization for a large number of OSS projects and their ecosys-
tems. A common trait for these projects is the use of meritocracy in terms of
culture and governance5. This is reflected in the governance structure among the
Apache projects, as in Apache Hadoop which is governed by a Program Manage-

4http://hadoop.apache.org/
5https://www.apache.org/foundation/how-it-works.html#meritocracy

4 Case Study of Apache Hadoop OSS Ecosystem 183

ment Committee (PMC) that consists of representatives from the Apache Software
Foundation and of elected members from the project’s ecosystem. Further, the
PMC members are also classified as committers, i.e., they have been granted write
access to the project. A member may be elected as a new committer by the ex-
isting ones. Being elected as a committer does however not imply membership of
the PMC. To become a committer or member of the PMC, an individual need to
show merit, e.g., by contributing and actively participating in the development of
the project. Hence, power may be earned by showing a long-term commitment
and having the competence needed (i.e., meritocracy). In Fig. 4 the distribution
of members of the committers and the PMC are presented based on affiliation per
firm.

4.1 Overview of Stakeholder Interaction and Influence

To get a recent view on who the most influential stakeholders are, the scope of
the analysis is limited to requirements included from release 2.2.0 (15/Oct/13) to
2.7.1 (06/Jul/15) (S2). To get a view on both social and technical interaction, the
issue-tracker is analyzed in regards to requirements artifact repositories (S3). The
issues contain both comments (the social dimension) and patches (technical). The
patches are committed by authorized users, once they have been approved. To
identify the organizational affiliation of individuals that have interacted via the
requirements (S4), an analysis is done of e-mail subdomains, complemented with
cross-checking against other information sources (e.g., social media and electronic
archives) [19, 75, 124]. For a subset of individuals, an organizational affiliation
could not be determined. These individuals were aggregated into two separate
groups, either independent (if this could be determined) or unidentified.

Creation of Stakeholder Interaction Networks (S5): Based on the scope
specified in S2, and the repository identified in S3, two interaction networks are
generated: a comments-network to include stakeholders who commented on com-
mon issues, and a patch-network to include the stakeholders who contributed
patches to the same issues (S5). The patch-network was presented in earlier
work [124], and a similar data collection and cleaning approach were used in or-
der to create the comments-network, as is also proposed in SIA (see section 3).
The comments-network shows activity and collaboration of a stakeholder in re-
gards to the social interaction and discussion that revolves around a certain issue,
and the patch-network shows same characteristics for a stakeholder in regards to
suggesting technical implementations.

In each of the two networks, a stakeholder is represented by a node, and the
collaborations between them are represented by the edges connecting the nodes.
The comments-network consists of 122 stakeholders, compared to 86 stakehold-
ers in the patch-network (see table 3). In both cases, this includes two groups of
developers classified as independent or as unidentified. The comments-network
has a higher degree of collaboration with an average of 9 collaborations per stake-

184 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

holder, compared to the patch-network, which has an average of 3 collaborations
per stakeholder. Both networks are visualized on a high level in Fig. 5 and 6.
Labels are of firms and of relative size to their weighted out-degree, a reason for
which only those with the highest values may be readable.

Table 3: Characteristics of comments- and patch-networks.

Comments-network Patch-network

Stakeholders 122 86
Collaborations 1096 260
Per stakeholder 9 3

Creation of influence profiles. (S6): To measure the influence of, and collab-
oration among, the stakeholders (S6), two SNA measures were leveraged: weighted
out-degree and betweenness centrality. Other centrality measures presented in ta-
ble 2 were excluded due to space considerations in this paper. In Fig. 7 and 8, the
two measures are presented in two separate diagrams. The diagrams contrast the
respective measures for the comments- and patch-networks in regards to the 15 top
stakeholders (considering the overall influence score).

Influence Analysis of the Stakeholder Interaction Networks (S7): As pre-
sented in table 2, the measures measure different aspects of influence and collabo-
ration among the stakeholders. Below, the two measures are compared in regards
to the two networks and their stakeholders.

Out-degree centrality: Fig. 7 illustrates the normalized out-degree centrality
which may be considered as rather equal for most stakeholders with the excep-
tion of those most influential: NTT Data, Yahoo, Hortonworks, and Cloudera.
Both NTT Data and Yahoo have a notably higher influence in regards to techni-
cal implementation-suggestions, while Hortonworks and Cloudera have a higher
influence and activity through social interaction and discussion. Considering the
distribution of stakeholders from the different user categories, a heavier represen-
tation of product vendors (Hortonworks, Cloudera, and Huawei) can be seen in the
top five, in regards to both the comments- and patch-networks.

Betweeness centrality: In Fig. 8, it can be seen that the normalized between-
ness centrality varies notably between the comments- and patch-networks for the
top stakeholders. Hortonworks has the highest betweenness centrality in regards
to both the technical and social aspects and compared to Cloudera and Yahoo, it
has double the betweenness centrality in the comments- and patch-networks re-
spectively. Contrasting Cloudera and Yahoo, a clear difference in focus and im-
portance is shown. Cloudera values technical implementation suggestions over
social interaction and discussion, while Yahoo focuses on social interaction and
discussions.

Cross-comparison of centrality measures: To simplify the cross-comparison,
the influence score is used to get an overview of the top 10 most influential stake-

4 Case Study of Apache Hadoop OSS Ecosystem 185

Figure 5: Visualization of the comments-network. Labels are of firms and of
relative size of their weighted out-degree to other firms in each network.

186 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

Figure 6: Visualization of the patch-network. Labels are of firms and of relative
size of their weighted out-degree to other firms in each network.

Table 4: Top ten stakeholders based on influence score based on comment-
network, considering only the out-degree and betweenness centrality.

Stakeholder Outdegree
(norm)

Betweeness
(norm)

Influence
score

hortonworks 0.66 0.86 0.76
cloudera 0.44 0.4 0.42
ntt data 0.28 0.22 0.25
huawei 0.26 .10 0.18
yahoo 0.25 0.10 0.18
intel 0.19 0.11 0.15
undefined 0.11 0.09 0.10
twitter 0.14 0.06 0.10
altiscale 0.11 0.07 0.09
wandisco 0.13 0.02 0.8

4 Case Study of Apache Hadoop OSS Ecosystem 187

Figure 7: Visualizations of normalized out-degree centrality for the 15 top influ-
ential firms across the comments- and patch-networks. The diagram is sorted in a
descending order based on out-degree centrality from the comments-network.

Figure 8: Visualizations of normalized betweeness centrality for the 15 top influ-
ential firms across the comments- and patch-networks. The diagram is sorted in a
descending order based on betweeness centrality from the comments-network.

188 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

holders considering the two centrality measures (see table 4). Comparing the two
centrality measures for these ten, both similarities and differences may be found.
Although it has higher activity in the comments-network, Hortonworks has high
influence in regards to both technical and social interaction, if both centrality mea-
sures are taken into account. This indicates that Hortonworks has a high impact
in regards to what is implemented and how. This firm can be classified as well-
connected both directly and indirectly and has a good position to act as an au-
thority in regards to information spread and coordination. NTT Data and Yahoo
both clearly have a higher degree of activity and influence in the patch-network.
As with Hortonworks, they also have a similar distribution among both of the two
measures. This may indicate that they have a high impact in regards to what is
implemented and how, but focus their resources on contributing technical imple-
mentation suggestions and solutions. As with Hortonworks, they can be classified
as well connected both directly and indirectly, and have a good position to act
as an authority in regards to information spread and coordination. Regarding the
out-degree centrality, a group of stakeholders forms just below the top.

Considering the influence/agenda alignment matrix (see Fig. 3), these stake-
holders could be considered as key stakeholders and qualify for either Zone C or
D. They could pose either as potential partners or threats depending on how their
agenda aligns. Also, depending on if they are competitors or not, consideration
should also be taken when constructing contribution strategies [219]. The focal
firm should, therefore, monitor and form an understanding of how these stake-
holders’ agendas align with their own.

4.2 Investigating Collaborations and Agenda of a Poten-
tial Partner

From the previous analysis, the focal firm could identify WANdisco as a stake-
holder with a similar business model and a potential partner in terms of collabora-
tion and similar interests (Zone D in Fig. 3). The goal in this second step is to do
a more thorough analysis focusing on WANdisco’s collaborations and high-level
agenda (S7).

Looking at WANdisco’s influence profile, their overall influence score gives
them an ordinal rank of 10 (see table 4) when analyzing the comments network.
They have an equal level of social and technical activity, on similar levels as Twit-
ter, Altiscale, eBay and Microsoft (see Fig. 7). They have a relatively high level
of control and coordination considering the betweenness centrality. All things
considered, they have a relatively high influence and interest in Apache Hadoop,
but much lower than the key-stone players, Hortonworks, Cloudera, NTT Data,
Huawei, Yahoo, and Intel.

WANdisco entered the Apache Hadoop ecosystem in 2012 by acquiring Al-
toStar. Their product is a platform that allows for distribution of data over multi-
ple Apache Hadoop clusters, similar to that of the focal firm. WANdisco has 14

4 Case Study of Apache Hadoop OSS Ecosystem 189

active developers in the investigated set of releases in regards to comments and
patch-contributions. One developer is also a member of the PMC and Committers
group.

To learn more about WANdisco’s interests in Apache Hadoop and its collab-
orators, the focal firm investigates if WANdisco has shown a special focus in re-
gards to any of the four modules of Apache Hadoop: Common, HDFS, YARN, and
MapReduce (S2). The analysis is still focused on requirements included in releases
R2.2-R2.7. In regards S3-4, they are identical to the previous example. When cre-
ating the interaction networks (S5), one patch- and one comments-network are
created for each of the modules.

When creating the influence profiles (S6), the analysis is limited to examining
the out-degree to get a view of their activity and comprehension of their relative
influence in regards to the modules. Values for binary and weighted out-degree are
presented in table 5 and table 6 respectively. The former specifically indicates the
number of other stakeholders that WANdisco has interacted with, and the latter a
better relative measure of their influence. As can be noticed for values regarding
the patch-network, it can be concluded that WANdisco has a specific interest in the
HDFS module. The out-degree values for the comments network further confirm a
specific interest in the HDFS module with a relative ranking of 5 and 6 respectively
out of 48. Some interest can also be observed for the Common module.

Table 5: Binary out-degree of Wandisco for Apache Hadoops four modules. Val-
ues aggregated for releases R2.2-2.7 per network type. Relative ranking within
parenthesis.

Common HDFS YARN Mapreduce

Comments11
(11/64)

20
(5/48)

4
(32/59)

1
(33/39)

Patches 0 5 (7/24) 0 0

Table 6: Weighted out-degree of Wandisco for Apache Hadoops four modules.
Values aggregated for releases R2.2-2.7 per network type. Relative ranking within
parenthesis.

Common HDFS YARN Mapreduce

Comments1.87
(12/64)

2,82
(6/48)

0.73
(19/59)

0.24
(26/39)

Patches 0 2.97
(7/24)

0 0

Regarding collaboration, the analysis is limited to the HDFS module as this

190 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

is where their main interest of WANdisco lies. In regards to the patch-network,
there are only five collaborators, as indicated by the binary out-degree in table 5.
These consist of Hortonworks, Huawei, Intel, Yahoo, and Intel. In regards to
comments-network, WANdisco had interacted with 20 other stakeholders. Out
of these, Hortonworks, Cloudera, Intel, Pivotal and Yahoo were the top five in
regards to the number of comments made by WANdisco on common issues, see
table 7. The table further presents the weight of the outgoing edge from WANdisco
to each respective stakeholder. In the example of Pivotal, this may be interpreted
as WANdisco having made 53 percent of the total number of comments on issues
where both WANdisco and Pivotal have collaborated on.

An outcome of this analysis is that WANdisco holds their main interest and
invest their resources in the HDFS component, both from a technical and social
perspective. Considering the influence/agenda alignment matrix in S7 (see Fig. 3),
a qualitative investigation needs to be performed, e.g., of their comments and code
commits, in order to determine e.g., what features they value or prioritize. Such an
investigation will help to determine the agenda alignment further and if WANdisco
belongs to Zone C or D, i.e., if they make up a potential opponent or partner. Based
on their active collaborations, Pivotal should be investigated further in terms of
their interest and activity.

Table 7: Top collaborators with Wandisco in the comments network of the HDFS
module.

Stakeholder Number
of com-
ments

Total number
of comments

Weight

Hortonworks 227 1109 0.20
Cloudera 98 663 0.15
Intel 91 679 0.13
Pivotal 42 79 0.53
Yahoo 34 313 0.11

5 Discussion

Below we first discuss different alternatives to characterizing a stakeholder’s influ-
ence, followed by a discussion regarding limitations and threats to validity in our
demonstration of SIA’s utility in the analysis of the Apache Hadoop ecosystem
stakeholder influence.

5 Discussion 191

5.1 Alternatives to Characterizing a Stakeholder’s Influ-
ence

The three questions stipulated by Frooman [63] highlights the strategic importance
of stakeholder identification and analysis: firms need to identify and characterize
present stakeholders in terms of their influence, identify their agendas primarily in
terms of alignment with one’s own, and how they are planning to achieve it. The
latter of the three is important as it informs of a firm’s possible strategies for contri-
bution and interaction. SIA helps to address these questions by characterizing the
stakeholders’ collaboration and influence within the OSS ecosystem. The quanti-
tative outcome which is generated is best complemented with qualitative insights
which may be gained through observing or even taking part in the communication
of the ecosystem.

In the stakeholder mapping process, which is part of the influence analysis of
SIA (S7), both the quantitative and qualitative aspects are needed. In the proposed
influence/agenda alignment matrix, the influence profiles and influence scores may
be used to determine the level of influence. As mentioned i Section 3 and the de-
scription of (S6), the proposed influence score is one approach to get a simplified
overview of which stakeholders are the most influential. However, as the different
centrality measures provide different aspects, these measures should still be inves-
tigated qualitatively to get a more fair view over how influential the stakeholders
can be considered to be relative others.

On a general level, one can also look at which stakeholders hold a seat in the
different committees of the ecosystem governance structure. However, these do
not have to align as a firm can influence both by having representatives in and
outside leadership positions, of which the latter is the more common [183]. This
phenomenon can be noted when comparing firms with members on the PMC and
Committers group in the Apache Hadoop OSS ecosystem (see Fig. 4) with firms
that have the overall highest influence score (based on outdegree and betweenness
centrality, see table 4). NTT Data, with a relatively high activity both in regards to
the patch and comments networks (see Fig. 5 and 6), have a very limited number
of places on both the PMC and Committers group. Furthermore, when changing
the scope of the analysis (e.g., a certain set of releases or a component - see Sec-
tion 4.2), the governance structure may give an even less representative overview
as different stakeholders have different interests, why the network approach pro-
posed by SIA may prove more valuable.

Another approach to measuring influence with other than centrality measures
would be to use pure count-based measures of a developer’s activity, e.g., num-
ber of comments and code-commits. As highlighted by Joblin et al. [99], these,
however, give a simplified view of a developers position and do not consider the
inter-developer relationship. By considering the latter, an analysis can investigate,
for example, how active the developers are, how efficiently they can communicate
with others, how they are able to mediate and control the flow of information be-

192 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

tween others, and have relationships ”with others that are themselves” central [53].
As further shown [99], network-based measures are equally good, and in certain
cases better than count-based measures at describing how influential a developer
is. Certain count-based aspects are however included in SIA as it does recommend
the use of binary edges as a complement to the weighted edges. As is mentioned in
S6 (see Section 3), a high out-degree centrality based on weighted edges may in-
dicate that the focal stakeholder has a high influence on its adjacent neighbors and
is good at communicating its views relative others in the network [166]. However,
this way of measuring out-degree centrality does not provide information about the
total number of connections of a stakeholder, which may better show the number
of collaborations and opportunities to spread one’s opinions [165].

Furthermore, it may be noted that there are other centrality measures avail-
able [203] than those proposed in the CSF. We based our choice of out-degree,
betweenness, closeness and eigenvector centrality measures on the suggestion of
Faust [53] as explained in section 3. These are generally adopted in explaining
the centrality and importance of an actor when analyzing OSS ecosystems (e.g.,
[18, 88, 166]).

5.2 Limitations and Threats to Validity

As a proof of concept demonstration that SIA is functional and practical in stake-
holder analysis in a large ecosystem, we described a case study on the Apache
Hadoop OSS ecosystem. The ecosystem has a community-managed governance
model, meaning that the OSS project is owned and managed by the commu-
nity [162], and a meritocratic authority structure, meaning that influence is gained
by proving merit [151] and by establishing a symbiotic relationship with the ecosys-
tem [37]. Another important characteristic of the chosen ecosystem is the high
concentration of firms among its stakeholders, as we are interested in identifying
and analyzing stakeholder on the organizational level.

This application of SIA in our case study, however, is not without a number of
threats to validity. A threat to the internal validity concerns the way how weights
are calculated (see S5, Section 3). The consideration taken to the relative size in
regards to changed lines of code does account for the net amount (i.e., added and
removed lines), but commits containing larger amounts of non-meaningful content
may give a non-fair view. Thus it may be valuable to compare interaction networks
and influence profiles based on both weighted and binary edges. Also, comparing
networks based on different requirement artifact repositories (as exemplified in
Section 4) can help to give a more nuanced view.

A related threat is that we consider issues in general as "requirements", which
may be further extended in our reasoning of requirements artifacts in general. This
is based on the nature of RE in OSS as informal and decentralized [52]. Require-
ments consist of fragmented representations, such as issues, mail-thread discus-
sions and commits [181]. Further mitigation of this threat could include textual

6 Conclusions 193

and natural language processing of the content in each of the requirements arti-
facts. This is a vibrant topic in the research field of mining software repositories.
However, we consider this topic as out of the scope of SIA as we focus on the
identification and stakeholder analysis process in its form and structure. We do
acknowledge the topic as complementary quality aspects that should be further
researched and integrated with our proposed process in future research.

A further threat concerns the determination of organizational affiliation of in-
dividuals in the OSS ecosystem. We adopted a heuristic approach as suggested
by earlier research [19, 75], starting with an analysis of email sub-domains and
complementing with second and third level sources such as social network sites
as LinkedIn and Facebook, as well as blogs, community communication (e.g.,
comment-history, mailing-lists, IRC logs), web articles and firm websites. We ac-
knowledge this is a delicate and complex process that is best mitigated by "know-
ing" the ecosystem and actively interacting with its communication channels. In
SIA, we recommend using a mix-method triangulation with both qualitative and
quantitative approaches.

The case study we described exemplifies how the different steps of SIA can
be applied and the insights that can be gained. We acknowledge that a single case
study is not sufficient to prove validity in terms of repeatability and utility, and
that this is only a first step in the artifact validation phase of our design science
research [216]. The characteristics of the Apache Hadoop OSS ecosystem, i.e.
community-managed, meritocratic and multi-vendor, do however indicate what
types of OSS ecosystems might benefit from a stakeholder analysis using SIA.
Further investigation of SIA’s utility and repeatability is out of the scope of this
study and instead left for future work. Future research should consider applying
SIA from a focal firm’s perspective and study different types of OSS ecosystems
with a more nuanced authority structure, e.g., as both autocratic, democratic and
meritocratic coordination processes can act in parallel [186]. This falls naturally
in the design science research approach as it is an iterative search process for an
artifact that will solve the stated problem [86].

6 Conclusions

This study proposes the Stakeholder Influence Analysis (SIA) method which aims
to help firms involved in OSS ecosystems to characterize ecosystem’s stakehold-
ers according to their level of influence on the ecosystem’s RE process. This is an
important attribute due to the collaborative and informal nature of the OSS ecosys-
tem’s RE processes, and often meritocratic governance structure. SIA, therefore,
allows firms to see in which requirements a stakeholder holds a certain interest,
and thereby create an overview of a stakeholder’s agenda. This also allows firms
to understand how stakeholders invest their resources, and with whom they collab-
orate according to their agenda. Thus, SIA offers input to how firms involved in

194 A Method for Analyzing Stakeholders’ Influence on an Open Source . . .

OSS ecosystems should construct their contribution strategies and act in the poli-
tics and negotiations of the ecosystem’s RE process in order to align it with their
internal RE process and product planning. It can be concluded that SIA shows
potential through the case study on the Apache Hadoop OSS ecosystem, while
further work is needed in regards to external validity.

In future work, we therefore aim to refine and validate SIA quantitatively and
qualitatively through further design cycles involving additional OSS ecosystems,
and from existing focal firms’ perspectives. Further, we aim to investigate how the
stakeholder analysis processes resulting from SIA may be used as an input to the
construction and execution of contribution strategies [219].

Acknowledgements: We would like to thank Dr. Alma Orucevic-Alagic and
the anonymous reviewers for their valuable feedback and inputs.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] Oslo Manual – Guidelines for collecting and interpreting innovation data.
OECD and Eurostat, 3rd edition, 2005.

[2] Pär J. Ågerfalk and Brian Fitzgerald. Outsourcing to an Unknown Work-
force: Exploring Opensurcing as a Global Sourcing Strategy. MIS Quar-
terly, 32(2):385–409, 2008.

[3] Joan E. van Aken. Management Research Based on the Paradigm of the
Design Sciences: The Quest for Field-Tested and Grounded Technological
Rules. Journal of Management Studies, 41(2):219–246, 2004.

[4] Thomas A. Alspaugh and Walt Scacchi. Ongoing software development
without classical requirements. In 21st IEEE International Requirements
Engineering Conference, RE’13, pages 165–174, Rio de Janeiro, Brazil,
July 2013. IEEE.

[5] Carina Alves, Joyce Oliveira, and Slinger Jansen. Understanding Gover-
nance Mechanisms and Health in Software Ecosystems: A Systematic Lit-
erature Review. In Slimane Hammoudi, Michał Śmiałek, Olivier Camp,
and Joaquim Filipe, editors, Enterprise Information Systems, pages 517–
542, Cham, 2018. Springer International Publishing.

[6] Morten Andersen-Gott, Gheorghita Ghinea, and Bendik Bygstad. Why do
commercial companies contribute to open source software? International
Journal of Information Management, 32(2):106–117, 2012.

[7] Marnix Assink. Inhibitors of disruptive innovation capability: A conceptual
model. European Journal of Innovation Management, 9(2):215–233, 2006.

[8] Aybüke Aurum and Claes Wohlin. The fundamental nature of requirements
engineering activities as a decision-making process. Information and Soft-
ware Technology, 45(14):945–954, 2003.

[9] Aybüke Aurum and Claes Wohlin. A Value-Based Approach in Require-
ments Engineering: Explaining Some of the Fundamental Concepts. In

198 BIBLIOGRAPHY

Pete Sawyer, Barbara Paech, and Patrick Heymans, editors, Requirements
Engineering: Foundation for Software Quality, pages 109–115, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[10] Alfred Baars and Slinger Jansen. A Framework for Software Ecosystem
Governance. In Michael A. Cusumano, Bala Iyer, and N. Venkatraman, ed-
itors, Software Business, pages 168–180, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[11] Deepika Badampudi, Claes Wohlin, and Kai Petersen. Software compo-
nent decision-making: In-house, OSS, COTS or outsourcing - A systematic
literature review. Journal of Systems and Software, 121:105 – 124, 2016.

[12] George A. Barnett. Encyclopedia of social networks. Sage Publications,
2011.

[13] Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro
Vespignani. The architecture of complex weighted networks. Proceed-
ings of the National Academy of Sciences of the United States of America,
101(11):3747–3752, 2004.

[14] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, and Ron Jeffries. The agile manifesto, 2001.

[15] Willem Bekkers, Inge van de Weerd, Marco Spruit, and Sjaak Brinkkemper.
A Framework for Process Improvement in Software Product Management.
In Andreas Riel, Rory O’Connor, Serge Tichkiewitch, and Richard Mess-
narz, editors, Systems, Software and Services Process Improvement, pages
1–12, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[16] Tanmay Bhowmik and Anh Quoc Do. Refinement and resolution of just-
in-time requirements in open source software and a closer look into non-
functional requirements. Journal of Industrial Information Integration,
2018.

[17] Tanmay Bhowmik, Nan Niu, Prachi Singhania, and Wentao Wang. On the
Role of Structural Holes in Requirements Identification: An Exploratory
Study on Open-Source Software Development. ACM Transactions of Man-
agement Information Systems, 6(3):10:1–10:30, September 2015.

[18] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
Swaminathan. Mining Email Social Networks. In Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR’06, pages
137–143, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 199

[19] Christian Bird and Nachiappan Nagappan. Who? Where? What?: Examin-
ing Distributed Development in Two Large Open Source Projects. In Pro-
ceedings of the 9th IEEE Working Conference on Mining Software Reposi-
tories, MSR’12, pages 237–246, Piscataway, NJ, USA, 2012. IEEE Press.

[20] Elizabeth Bjarnason, Michael Unterkalmsteiner, Emelie Engström, and
Markus Borg. An Industrial Case Study on Test Cases as Requirements.
In Casper Lassenius, Torgeir Dingsøyr, and Maria Paasivaara, editors, Ag-
ile Processes in Software Engineering and Extreme Programming, pages
27–39, Cham, 2015. Springer International Publishing.

[21] Phillip Bonacich. Power and centrality: A family of measures. American
Journal of Sociology, 92(5):1170–1182, 1987.

[22] Jan Bosch. Achieving Simplicity with the Three-Layer Product Model.
Computer, 46(11):34–39, Nov 2013.

[23] Ulrik Brandes. A faster algorithm for betweenness centrality*. Journal of
Mathematical Sociology, 25(2):163–177, 2001.

[24] Simon Butler, Jonas Gamalielsson, Björn Lundell, Per Jonsson, Johan
Sjöberg, Anders Mattsson, Niklas Rickö, Tomas Gustavsson, Jonas Feist,
and Stefan Landemoo. An investigation of work practices used by comp-
anies making contributions to established OSS projects. In 40th Interna-
tional Conference on Software Engineering: Software Engineering in Prac-
tice, ICSE’18, pages 201–210, Gothenburg, Sweden, May 2018. IEEE.

[25] Marjolein C.J. Caniels and Cees J. Gelderman. Purchasing strategies in the
Kraljic matrix: A power and dependence perspective. Journal of Purchas-
ing and Supply Management, 11(2):141 – 155, 2005.

[26] Eugenio Capra and Anthony I. Wasserman. A Framework for Evaluating
Managerial Styles in Open Source Projects. In Barbara Russo, Ernesto
Damiani, Scott Hissam, Björn Lundell, and Giancarlo Succi, editors, Open
Source Development, Communities and Quality, pages 1–14, Boston, MA,
2008. Springer US.

[27] John Wilmar Castro Llanos and Silvia Teresita Acuña Castillo. Differences
between Traditional and Open Source Development Activities. In Oscar
Dieste, Andreas Jedlitschka, and Natalia Juristo, editors, Product-Focused
Software Process Improvement, pages 131–144, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[28] InduShobha Chengalur-Smith, Saggi Nevo, and Pindaro Demertzoglou. An
empirical analysis of the business value of open source infrastructure tech-
nologies. Journal of the Association for Information Systems, 11(11):708,
2010.

200 BIBLIOGRAPHY

[29] Henry Chesbrough. Open Innovation: The new imperative for creating and
profiting from technology. Harvard Business School Press, Boston, MA.,
2003.

[30] Henry Chesbrough. Business model innovation: It’s not just about tech-
nology anymore. Strategy & Leadership, 35(6):12–17, 2007.

[31] Henry Chesbrough and Melissa M. Appleyard. Open Innovation and Strat-
egy. California Management Review, 50(1):57–76, 2007.

[32] Henry Chesbrough, Wim Vanhaverbeke, and Joel West. Open Innovation:
Researching a new paradigm. Oxford University Press, 2006.

[33] Henry Chesbrough, Wim Vanhaverbeke, and Joel West, editors. New Fron-
tiers in Open Innovation. Oxford University Press, November 2014.

[34] Daniela S. Cruzes and Tore Dybå. Research synthesis in software engineer-
ing: A tertiary study. Information and Software Technology, 53(5):440 –
455, 2011.

[35] Daniela S. Cruzes, Tore Dybå, Per Runeson, and Martin Höst. Case studies
synthesis: A thematic, cross-case, and narrative synthesis worked example.
Empirical Software Engineering, 20(6):1634–1665, 2015.

[36] Linus Dahlander and David M. Gann. How open is innovation? Research
Policy, 39(6):699 – 709, 2010.

[37] Linus Dahlander and Mats G. Magnusson. Relationships between open
source software companies and communities: Observations from Nordic
firms. Research Policy, 34(4):481 – 493, 2005.

[38] Linus Dahlander and Mats G. Magnusson. How do firms make use of open
source communities? Long Range Planning, 41(6):629–649, 2008.

[39] Linus Dahlander and Martin W. Wallin. A man on the inside: Unlocking
communities as complementary assets. Research Policy, 35(8):1243 – 1259,
2006.

[40] Daniela Damian. Stakeholders in global requirements engineering: Lessons
learned from practice. IEEE Software, 24(2):21–27, 2007.

[41] Daniela Damian, Irwin Kwan, and Sabrina Marczak. Requirements-driven
collaboration: Leveraging the invisible relationships between requirements
and people. In Collaborative software engineering, pages 57–76. Springer,
2010.

BIBLIOGRAPHY 201

[42] Daniela Damian, Sabrina Marczak, and Irwin Kwan. Collaboration patterns
and the impact of distance on awareness in requirements-centred social net-
works. In 15th IEEE International Requirements Engineering Conference,
RE’07, pages 59–68, Dehli, India, October 2007. IEEE.

[43] Sherae Daniel, Likoebe Maruping, Marcelo Cataldo, and James Herbsleb.
When cultures clash: Participation in open source communities and its im-
plications for organizational commitment. In ICIS 2011 Proceedings, 2011.

[44] Carlos M. DaSilva and Peter Trkman. Business model: What it is and what
it is not. Long Range Planning, 47(6):379–389, 2014.

[45] Paul B. De Laat. Governance of open source software: State of the art.
Journal of Management & Governance, 11(2):165–177, 2007.

[46] Ivan De Noni, Andrea Ganzaroli, and Luigi Orsi. The evolution of OSS
governance: A dimensional comparative analysis. Scandinavian Journal of
Management, 29(3):247–263, 2013.

[47] Jingshu Du, Bart Leten, Wim Vanhaverbeke, and Henry Lopez-Vega.
When research meets development: antecedents and implications of trans-
fer speed. Journal of Product Innovation Management, 31(6):1181–1198,
2014.

[48] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research.
In Guide to advanced empirical software engineering, pages 285–311.
Springer, 2008.

[49] Evert Eckhardt, Erwin Kaats, Slinger Jansen, and Carina Alves. The Merits
of a Meritocracy in Open Source Software Ecosystems. In Proceedings of
the 2014 European Conference on Software Architecture Workshops, EC-
SAW ’14, pages 7:1–7:6, New York, NY, USA, 2014. ACM.

[50] Henry Edison, Nauman Bin Ali, and Richard Torkar. Towards innovation
measurement in the software industry. Journal of Systems and Software,
86(5):1390 – 1407, 2013.

[51] Ellen Enkel, Oliver Gassmann, and Henry Chesbrough. Open R&D
and Open Innovation: Exploring the phenomenon. R&D Management,
39(4):311–316, 2009.

[52] Neil Ernst and Gail C. Murphy. Case studies in just-in-time requirements
analysis. In 2nd International Workshop on Empirical Requirements Engi-
neering, EmpiRE’12, pages 25–32, Chicago, IL, USA, Sep. 2012. IEEE.

[53] Katherine Faust. Centrality in affiliation networks. Social Networks,
19(2):157 – 191, 1997.

202 BIBLIOGRAPHY

[54] Daniel Mendez Fernandez, Birgit Penzenstadler, Marco Kuhrmann, and
Manfred Broy. A meta model for artefact-orientation: Fundamentals and
lessons learned in requirements engineering. In Dorina C. Petriu, Nicolas
Rouquette, and Øystein Haugen, editors, Model Driven Engineering Lan-
guages and Systems, number 6395 in Lecture Notes in Computer Science,
pages 183–197. Springer Berlin Heidelberg.

[55] Daniel Mendez Fernandez, Stefan Wagner, Klaus Lochmann, Andrea Bau-
mann, and Holger de Carne. Field study on requirements engineering: In-
vestigation of artifacts, project parameters, and execution strategies. Infor-
mation and Software Technology, 54(2):162–178, 2012.

[56] Roy T. Fielding. Shared leadership in the Apache project. Communications
of the ACM, 42(4):42–43, 1999.

[57] Bent Flyvbjerg. Five Misunderstandings about Case-Study Research. In
Qualitative Research Practice, pages 390–404. SAGE, concise paperback
edition, 2007.

[58] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch.
Open source software ecosystems: A Systematic mapping. Information
and Software Technology, 91:160 – 185, 2017.

[59] Linton C. Freeman. Centrality in social networks conceptual clarification.
Social networks, 1(3):215–239, 1978.

[60] Robert E. Freeman. Strategic management: A stakeholder approach. Cam-
bridge University Press, 1984.

[61] Samuel A. Fricker. Requirements Value Chains: Stakeholder Management
and Requirements Engineering in Software Ecosystems. In Roel J. Wieringa
and Anne Persson, editors, Requirements Engineering: Foundation for Soft-
ware Quality, pages 60–66, Berlin, Heidelberg, 2010. Springer Berlin Hei-
delberg.

[62] Samuel A. Fricker. Software product management. In Software for People,
pages 53–81. Springer, 2012.

[63] Jeff Frooman. Stakeholder influence strategies. Academy of Management
Review, 24(2):191–205, 1999.

[64] Jonas Gamalielsson and Björn Lundell. Sustainability of open source soft-
ware communities beyond a fork: How and why has the libreoffice project
evolved? Journal of Systems and Software, 89:128–145, 2014.

[65] G.R. Gangadharan, Lorna Uden, and Paul Oude Luttighuis. Sourcing Re-
quirements and Designs for Software as a Service. International Journal of
Systems and Service-Oriented Engineering, 6(1):1–16, jan 2016.

BIBLIOGRAPHY 203

[66] Francisco José García-Peñalvo and Alicia García-Holgado. Open Source
Solutions for Knowledge Management and Technological Ecosystems. IGI
Global, 2017.

[67] Vahid Garousi, Dietmar Pfahl, João M. Fernandes, Michael Felderer, Mika
Mäntylä, David Shepherd, Andrea Arcuri, Ahmet Coşkunçay, and Bedir
Tekinerdogan. Characterizing industry-academia collaborations in software
engineering: evidence from 101 projects. Empirical Software Engineering,
Apr 2019.

[68] Oliver Gassmann and Ellen Enkel. Towards a Theory of Open Innova-
tion: Three Core Process Archetypes. In R&D Management Conference
(RADMA) 2004, July 2004.

[69] Annabelle Gawer. Bridging differing perspectives on technological plat-
forms: Toward an integrative framework. Research Policy, 43(7):1239–
1249, 2014.

[70] Cees Gelderman and Arjan Weele. Handling measurement issues and strate-
gic directions in Kraljic’s purchasing portfolio model. Journal of Purchas-
ing and Supply Management, 9(5 - 6):207 – 216, 2003.

[71] Daniel M. German. The GNOME project: a case study of open source,
global software development. Software Process: Improvement and Prac-
tice, 8(4):201–215, 2003.

[72] Matt Germonprez, Julie E. Kendall, Kenneth E. Kendall, and Brett Young.
Collectivism, creativity, competition, and control in open source software
development: Reflections on the emergent governance of the SPDX work-
ing group. International Journal of Information Systems and Management,
1(1-2):125–145, 2014.

[73] Smita Ghaisas, Preethu Rose, Maya Daneva, Klaas Sikkel, and Roel J.
Wieringa. Generalizing by similarity: Lessons learnt from industrial case
studies. In Proceedings of the 1st International Workshop on Conduct-
ing Empirical Studies in Industry, CESI ’14, pages 37–42, Piscataway, NJ,
USA, 2013. IEEE Press.

[74] Martin Glinz and Roel J. Wieringa. Guest editors’ introduction: Stakehold-
ers in requirements engineering. IEEE Software, 24(2):18–20, 2007.

[75] Jesús M. González-Barahona, Daniel Izquierdo-Cortazar, Stefano Maffulli,
and Gregorio Robles. Understanding How Companies Interact with Free
Software Communities. IEEE software, 30(5):38–45, 2013.

[76] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for
technology transfer in practice. IEEE software, 23(6):88–95, 2006.

204 BIBLIOGRAPHY

[77] Endre Grøtnes. Standardization as open innovation: two cases from the
mobile industry. Information Technology & People, 22(4):367–381, 2009.

[78] Robert A. Hanneman and Mark Riddle. Introduction to social network
methods. University of California Riverside, 2005.

[79] Lile P. Hattori and Michele Lanza. On the nature of commits. In Pro-
ceedings of the 23rd International Conference on Automated Software En-
gineering, ASE’08, pages III–63–III–71, Piscataway, NJ, USA, 2008. IEEE
Press.

[80] Øyvind Hauge, Claudia Ayala, and Reidar Conradi. Adoption of open
source software in software-intensive organizations - a systematic literature
review. Information and Software Technology, 52(11):1133 – 1154, 2010.

[81] Frank Hecker. Setting up shop: The business of open-source software. IEEE
software, 16(1):45, 1999.

[82] Joachim Henkel. Selective revealing in open innovation processes: The case
of embedded linux. Research Policy, 35(7):953–969, 2006.

[83] Joachim Henkel. Champions of revealing-the role of open source develop-
ers in commercial firms. Industrial and Corporate Change, 18(3):435–471,
December 2008.

[84] Joachim Henkel, Simone Schöberl, and Oliver Alexy. The emergence of
openness: How and why firms adopt selective revealing in open innovation.
Research Policy, 43(5):879–890, 2014.

[85] Alan R. Hevner. A three cycle view of design science research. Scandina-
vian Journal of Information Systems, 19(2):4, 2007.

[86] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. MIS quarterly, 28(1):75–105,
March 2004.

[87] Helena Holmström Olsson and Jan Bosch. From ad hoc to strategic ecosys-
tem management: The Three-Layer Ecosystem Strategy Model (TeLESM).
Journal of Software: Evolution and Process, 29(7):e1876, 2017.

[88] Liaquat Hossain, Andrè Wu, and Kenneth Chung. Actor centrality corre-
lates to project based coordination. In Proceedings of the 2006 20th anniver-
sary conference on Computer supported cooperative work, pages 363–372.
ACM, 2006.

[89] Martin Höst and Alma Orucevic-Alagic. A systematic review of research
on open source software in commercial software product development. In-
formation and Software Technology, 53(6):616 – 624, 2011.

BIBLIOGRAPHY 205

[90] Google Project Hosting. Gerrit code review source code reposi-
tory. https://code.google.com/p/gerrit/wiki/Source?
tm=4. Accessed: 2014-06-24.

[91] Stefan Husig and Stefan Kohn. Open CAI 2.0 - Computer Aided Innovation
in the era of open innovation and Web 2.0. Computers in Industry, 62(4):407
– 13, 2011.

[92] Netta Iivari, Henrik Hedberg, and Tanja Kirves. Usability in Company
Open Source Software Context - Initial Findings from an Empirical Case
Study. In Barbara Russo, Ernesto Damiani, Scott Hissam, Björn Lundell,
and Giancarlo Succi, editors, Open Source Development, Communities and
Quality, pages 359–365, Boston, MA, 2008. Springer US.

[93] Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein. Business net-
work management as a survival strategy: A tale of two software ecosystems.
In Proccedings of the 1st International Workshop on Software Ecosystems,
pages 34–48. Citeseer, 2009.

[94] Slinger Jansen, Sjaak Brinkkemper, Jurriaan Souer, and Lutzen Luinen-
burg. Shades of gray: Opening up a software producing organization with
the open software enterprise model. Journal of Systems and Software,
85(7):1495–1510, 2012.

[95] Slinger Jansen and Michael A. Cusumano. Software ecosystems: analyzing
and managing business networks in the software industry, chapter Defining
software ecosystems: a survey of software platforms and business network
governance, pages 13–28. Edward Elgar Publishing, 2013.

[96] Slinger Jansen, Anthony Finkelstein, and Sjaak Brinkkemper. A sense of
community: A research agenda for software ecosystems. In 31st Interna-
tional Conference on Software Engineering - Companion Volume, ICSE’09,
pages 187–190, Vancouver, BC, Canada, May 2009. IEEE.

[97] Chris Jensen and Walt Scacchi. Role Migration and Advancement Processes
in OSSD Projects: A Comparative Case Study. In 29th International Con-
ference on Software Engineering, ICSE’07, pages 364–374, Washington,
DC, USA, May 2007. IEEE.

[98] Chris Jensen and Walt Scacchi. Governance in open source software de-
velopment projects: A comparative multi-level analysis. In Pär Ågerfalk,
Cornelia Boldyreff, Jesús M. González-Barahona, Gregory R. Madey, and
John Noll, editors, Open Source Software: New Horizons, pages 130–142,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

206 BIBLIOGRAPHY

[99] Mitchell Joblin, Sven Apel, Claus Hunsen, and Wolfgang Mauerer. Clas-
sifying developers into core and peripheral: An empirical study on count
and network metrics. In 39th International Conference on Software En-
gineering, ICSE’17, pages 164–174, Buenos Aires, Argentina, May 2017.
IEEE.

[100] Gerry Johnson, Kevan Scholes, and Richard Whittington. Exploring corpo-
rate strategy: Text & cases. Pearson Education, 2008.

[101] Lena Karlsson, Åsa G. Dahlstedt, Björn Regnell, Johan Natt och Dag, and
Anne Persson. Requirements engineering challenges in market-driven soft-
ware development: An interview study with practitioners. Information and
Software Technology, 49(6):588 – 604, 2007.

[102] Richard Kemp. Open Source Software (OSS) governance in the organisa-
tion. Computer Law & Security Review, 26(3):309–316, 2010.

[103] Mahvish Khurum, Tony Gorschek, and Magnus Wilson. The software
value map: an exhaustive collection of value aspects for the development
of software intensive products. Journal of Software: Evolution and Pro-
cess, 25(7):711–741, 2013.

[104] Terhi Kilamo, Imed Hammouda, Tommi Mikkonen, and Timo Aaltonen.
From proprietary to open source - Growing an open source ecosystem. Jour-
nal of Systems and Software, 85(7):1467–1478, 2012.

[105] Hans-Bernd Kittlaus and Peter N. Clough. Software Product Management
and Pricing: Key Success Factors for Software Organizations. Springer
Berlin Heidelberg, 2008.

[106] Eric Knauss, Daniela Damian, Alessia Knauss, and Arber Borici. Openness
and requirements: Opportunities and tradeoffs in software ecosystems. In
22nd International Requirements Engineering Conference, RE’14, pages
213–222, Karlskrona, Sweden, Aug 2014. IEEE.

[107] John Koenig. Seven open source business strategies for competitive advan-
tage. IT Manager’s Journal, 14, 2004.

[108] Marko Komssi, Marjo Kauppinen, Harri Töhönen, Laura Lehtola, and
Alan M. Davis. Roadmapping problems in practice: value creation from
the perspective of the customers. Requirements Engineering, 20(1):45–69,
2015.

[109] Peter Kraljic. Purchasing must become supply management. Harvard Busi-
ness Review, 61(5):109–117, 1983.

BIBLIOGRAPHY 207

[110] Jaison Kuriakose and Jeffrey Parsons. How do Open Source Software (OSS)
developers practice and perceive requirements engineering? An empirical
study. In 5th International Workshop on Empirical Requirements Engineer-
ing, EmpiRE’15, pages 49–56, Ottawa, ON, Canada, Aug 2015. IEEE.

[111] Karim R. Lakhani and Jill A. Panetta. The principles of distributed innova-
tion. SSRN Scholarly Paper ID 1021034, Social Science Research Network,
Rochester, NY, October 2007.

[112] Karim R. Lakhani and Eric von Hippel. How open source software works:
free user-to-user assistance. Research Policy, 32(6):923 – 943, 2003.

[113] Paula Laurent and Jane Cleland-Huang. Lessons Learned from Open Source
Projects for Facilitating Online Requirements Processes. In Martin Glinz
and Patrick Heymans, editors, Requirements Engineering: Foundation for
Software Quality, pages 240–255, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[114] Keld Laursen and Ammon Salter. Open for innovation: the role of open-
ness in explaining innovation performance among UK manufacturing firms.
Strategic Management Journal, 27(2):131–150, 2006.

[115] Gwendolyn K. Lee and Robert E. Cole. From a Firm-Based to a
Community-Based Model of Knowledge Creation: The Case of the Linux
Kernel Development. Organization Science, 14(6):633–649, 2003.

[116] Sang-Yong Tom Lee, Hee-Woong Kim, and Sumeet Gupta. Measuring open
source software success. Omega, 37(2):426 – 438, 2009.

[117] Josh Lerner and Jean Tirole. Some simple economics of open source. The
Journal of Industrial Economics, 50(2):197–234, 2002.

[118] Marvin B. Lieberman and David Bruce Montgomery. First-mover (dis)
advantages: Retrospective and link with the resource-based view. Graduate
School of Business, Stanford University, 1998.

[119] Johan Linåker, Maria Krantz, and Martin Höst. On Infrastructure for Fa-
cilitation of Inner Source in Small Development Teams. In Andreas Jedl-
itschka, Pasi Kuvaja, Marco Kuhrmann, Tomi Männistö, Jürgen Münch, and
Mikko Raatikainen, editors, Product-Focused Software Process Improve-
ment, pages 149–163, Cham, 2014. Springer International Publishing.

[120] Johan Linåker, Hussan Munir, Per Runeson, Björn Regnell, and Claes
Schrewelius. A survey on the perception of innovation in a large product-
focused software organization. In João M. Fernandes, Ricardo J. Machado,
and Krzysztof Wnuk, editors, Software Business, pages 66–80, Cham, 2015.
Springer International Publishing.

208 BIBLIOGRAPHY

[121] Johan Linåker, Hussan Munir, Krzysztof Wnuk, and Carl-Eric Mols. Moti-
vating the contributions: An open innovation perspective on what to share as
open source software. Journal of Systems and Software, 135:17–36, 2018.

[122] Johan Linåker, Björn Regnell, and Daniela Damian. A community strategy
framework - how to obtain influence on requirements in meritocratic open
source software communities? Information and Software Technology, 2019.

[123] Johan Linåker, Björn Regnell, and Hussan Munir. Requirements engineer-
ing in open innovation: a research agenda. In Proceedings of the 2015 In-
ternational Conference on Software and System Process, ICSSP’15, pages
208–212. ACM, Aug. 2015.

[124] Johan Linåker, Patrick Rempel, Björn Regnell, and Patrick Mäder. How
firms adapt and interact in open source ecosystems: Analyzing stakeholder
influence and collaboration patterns. In Maya Daneva and Oscar Pastor,
editors, Requirements Engineering: Foundation for Software Quality, pages
63–81, Cham, 2016. Springer International Publishing.

[125] Juho Lindman and Imed Hammouda. Investigating Relationships Between
FLOSS Foundations and FLOSS Projects. In Federico Balaguer, Roberto
Di Cosmo, Alejandra Garrido, Fabio Kon, Gregorio Robles, and Stefano
Zacchiroli, editors, Open Source Systems: Towards Robust Practices, pages
14–22, Cham, 2017. Springer International Publishing.

[126] Juho Lindman, Juha-Pekka Juutilainen, and Matti Rossi. Beyond the busi-
ness model: Incentives for organizations to publish software source code.
In Cornelia Boldyreff, Kevin Crowston, Björn Lundell, and Anthony I.
Wasserman, editors, Open Source Ecosystems: Diverse Communities Inter-
acting, pages 47–56, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[127] Juho Lindman, Matti Rossi, and Pentti Marttiin. Applying open source
development practices inside a company. In Open Source Development,
Communities and Quality, pages 381–387. Springer, 2008.

[128] Björn Lundell, Brian Lings, and Edvin Lindqvist. Open source in Swedish
companies: where are we? Information Systems Journal, 20(6):519–535,
2010.

[129] Hanna Mäenpää, Simo Mäkinen, Terhi Kilamo, Tommi Mikkonen, Tomi
Männistö, and Paavo Ritala. Organizing for openness: six models for de-
veloper involvement in hybrid OSS projects. Journal of Internet Services
and Applications, 9(1):17, 2018.

[130] Andrey Maglyas and Samuel A. Fricker. The Preliminary Results from the
Software Product Management State-of-Practice Survey, pages 295–300.
Springer International Publishing, Cham, 2014.

BIBLIOGRAPHY 209

[131] Joan Magretta. Why business models matter. Harvard Business Review,
80(5):86–92, 2002.

[132] Konstantinos Manikas and Klaus Marius Hansen. Software ecosystems–a
systematic literature review. Journal of Systems and Software, 86(5):1294–
1306, 2013.

[133] Sabrina Marczak, Daniela Damian, Ulrike Stege, and Adrian Schröter. In-
formation Brokers in Requirement-Dependency Social Networks. In 16th
International Requirements Engineering Conference, RE’08, pages 53–62,
Catalunya, Spain, Sept 2008. IEEE.

[134] M. Lynne Markus. The governance of free/open source software projects:
monolithic, multidimensional, or configurational? Journal of Management
& Governance, 11(2):151–163, 2007.

[135] A. Mendelow. Stakeholder mapping. In Proceedings of the 2nd Interna-
tional Conference on Information Systems. MA Cambridge, 1991.

[136] MetricsGrimoire. CVSAnalY. http://metricsgrimoire.
github.io/CVSAnalY/. Accessed: 2014-07-17.

[137] Alastair Milne and Neil Maiden. Power and politics in requirements engi-
neering: embracing the dark side? Requirements Engineering, 17(2):83–98,
2012.

[138] Ronald K. Mitchell, Bradley R. Agle, and Donna J. Wood. Toward a theory
of stakeholder identification and salience: Defining the principle of who
and what really counts. Academy of Management Review, 22(4):853–886,
1997.

[139] Audris Mockus and James D. Herbsleb. Why not improve coordination in
distributed software development by stealing good ideas from open source.
In Meeting Challenges and Surviving Success: The 2nd Workshop on Open
Source Software Engineering, pages 19–25, 2002.

[140] Charlotte Möller and Madeleine Wahlqvist. Critical success factors for in-
novative performance of individuals: A case study of scania. Management,
39(5):1155–1161.

[141] Jefferson Seide Molléri, Kai Petersen, and Emilia Mendes. Survey guide-
lines in software engineering: An annotated review. In Proceedings of the
10th ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM’16, pages 58:1–58:6, New York, NY, USA,
2016. ACM.

210 BIBLIOGRAPHY

[142] Carl-Eric Mols, Krzysztof Wnuk, and Johan Linåker. The open source of-
ficer role – experiences. In Federico Balaguer, Roberto Di Cosmo, Ale-
jandra Garrido, Fabio Kon, Gregorio Robles, and Stefano Zacchiroli, edi-
tors, Open Source Systems: Towards Robust Practices, pages 55–59, Cham,
2017. Springer International Publishing.

[143] Lorraine Morgan, Joseph Feller, and Patrick Finnegan. Exploring Inner
Source as a Form of Intra-Organisational Open Innovation. In ECIS 2011
Proceedings, number 151, pages 1–12. AISeL, 2011.

[144] Lorraine Morgan and Patrick Finnegan. Open innovation in secondary soft-
ware firms: An exploration of managers perceptions of open source soft-
ware. Database for Advances in Information Systems, 41(1):76–95, 2010.

[145] David C. Mowery. Plus ca change: Industrial R&D in the third industrial
revolution. Industrial and Corporate Change, 18(1):1–50, 2009.

[146] Neeshal Munga, Thomas Fogwill, and Quentin Williams. The adoption of
open source software in business models: A Red Hat and IBM case study.
pages 112 – 121, Vanderbijlpark, Emfuleni, South Africa, 2009. ACM.

[147] Hussan Munir, Johan Linåker, Krzysztof Wnuk, Per Runeson, and Björn
Regnell. Open innovation using open source tools: a case study at sony
mobile. Empirical Software Engineering, 23(1):186–223, Feb 2018.

[148] Hussan Munir, Per Runeson, and Krzysztof Wnuk. A theory of openness
for software engineering tools in software organizations. Information and
Software Technology, 97:26 – 45, 2018.

[149] Hussan Munir, Krzysztof Wnuk, and Per Runeson. Open innovation in
software engineering: a systematic mapping study. Empirical Software En-
gineering, 21(2):684–723, 2016.

[150] Frank Nagle. Learning by contributing: gaining competitive advantage
through contribution to crowdsourced public goods. Organization Science,
29(4):569–587, 2018.

[151] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software
systems and communities. In Proceedings of the international workshop
on Principles of software evolution, IWPSE’02, pages 76–85, Orlando,
Florida, May 2002. ACM.

[152] Robert Newcombe. From client to project stakeholders: a stakeholder map-
ping approach. Construction Management and Economics, 21(8):841–848,
2003.

BIBLIOGRAPHY 211

[153] Mark Newman. Scientific collaboration networks. II. Shortest paths,
weighted networks, and centrality. Physical Review E, 64(1):016132, 2001.

[154] Mark Newman. Networks: An introduction. Oxford University Press, 2010.

[155] Anh Nguyen Duc, Daniela S. Cruzes, Geir K. Hanssen, Terje Snarby, and
Pekka Abrahamsson. Coopetition of Software Firms in Open Source Soft-
ware Ecosystems. In Arto Ojala, Helena Holmström Olsson, and Karl
Werder, editors, Software Business, pages 146–160, Cham, 2017. Springer
International Publishing.

[156] Anh Nguyen-Duc, Daniela S. Cruzes, Snarby Terje, and Pekka Abrahams-
son. Do Software Firms Collaborate or Compete? A Model of Coopetition
in Community-initiated OSS Projects. e-Informatica Software Engineering
Journal, 13(1):37–62, 2019.

[157] John Noll. Innovation in Open Source Software Development: A Tale of
Two Features. In Joseph Feller, Brian Fitzgerald, Walt Scacchi, and Alberto
Sillitti, editors, Open Source Development, Adoption and Innovation, pages
109–120, Boston, MA, 2007. Springer US.

[158] Linus Nyman and Juho Lindman. Code forking, governance, and sustain-
ability in open source software. Technology Innovation Management Re-
view, 3(1):7–12, 2013.

[159] Ohloh.net. The jenkins gerrit trigger plugin open source project.
https://www.ohloh.net/p/gerrit-trigger-plugin. Ac-
cessed: 2014-07-08.

[160] Michael Olsen. Open sources 2.0: The continuing evolution, chapter Dual
Licensing. O’Reilly Media, Inc., 2005.

[161] Siobhán O’Mahony. Nonprofit Foundations and Their Role in Community-
Firm Software Collaboration. In Perspectives on Free and Open Source
Software, pages 393–414. MIT Press, Cambridge, MA, 2005.

[162] Siobhán O’Mahony. The governance of open source initiatives: what does it
mean to be community managed? Journal of Management & Governance,
11(2):139–150, 2007.

[163] Siobhán O’Mahony and Beth A. Bechky. Boundary organizations: Enabling
collaboration among unexpected allies. Administrative Science Quarterly,
53(3):422–459, 2008.

[164] Siobhán O’Mahony and Fabrizio Ferraro. The emergence of governance in
an open source community. Academy of Management Journal, 50(5):1079–
1106, 2007.

212 BIBLIOGRAPHY

[165] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in
weighted networks: Generalizing degree and shortest paths. Social Net-
works, 32(3):245–251, 2010.

[166] Alma Orucevic-Alagic and Martin Höst. Network analysis of a large scale
open source project. In 40th EUROMICRO Conference on Software En-
gineering and Advanced Applications, pages 25–29, Verona, Italy, 2014.
IEEE.

[167] Carla Pacheco and Ivan Garcia. A systematic literature review of stake-
holder identification methods in requirements elicitation. Journal of Sys-
tems and Software, 85(9):2171–2181, 2012.

[168] Lucas D. Panjer, Daniela Damian, and Margaret-Anne Storey. Cooperation
and coordination concerns in a distributed software development project. In
Proceedings of the 2008 international workshop on Cooperative and human
aspects of software engineering, pages 77–80. ACM, 2008.

[169] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chat-
terjee. A design science research methodology for information systems
research. Journal of Management Information Systems, 24(3):45–77, 2007.

[170] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[171] Miikka Poikselkä, Harri Holma, Jukka Hongisto, Juha Kallio, and Antti
Toskala. Voice over LTE (VoLTE). John Wiley & Sons, 2012.

[172] Björn Regnell and Sjaak Brinkkemper. Market-driven requirements engi-
neering for software products. In Engineering and managing software re-
quirements, pages 287–308. Springer, 2005.

[173] Dirk Riehle. The Economic Motivation of Open Source Software: Stake-
holder Perspectives. Computer, 40(4):25–32, April 2007.

[174] Dirk Riehle. The Commercial Open Source Business Model. In Matthew L.
Nelson, Michael J. Shaw, and Troy J. Strader, editors, Value Creation in
E-Business Management, pages 18–30, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[175] Dirk Riehle. Controlling and steering open source projects. Computer,
44(7):93–96, 2011.

[176] Dirk Riehle. The single-vendor commercial open course business model.
Information Systems and e-Business Management, 10(1):5–17, 2012.

BIBLIOGRAPHY 213

[177] Bertil Rolandsson, Magnus Bergquist, and Jan Ljungberg. Open source
in the firm: Opening up professional practices of software development.
Research Policy, 40(4):576 – 587, 2011.

[178] Timothy J. Rowley. Moving beyond dyadic ties: A network theory of stake-
holder influences. Academy of Management Review, 22(4):887–910, 1997.

[179] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[180] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering - Guidelines and Examples. Wiley, 2012.

[181] Walt Scacchi. Understanding the requirements for developing open source
software systems. In Software, IEE Proceedings-, volume 149, pages 24–
39. IET, 2002.

[182] Walt Scacchi. Collaboration practices and affordances in free/open source
software development. In Collaborative Software Engineering, pages 307–
327. Springer, 2010.

[183] Mario Schaarschmidt, Gianfranco Walsh, and Harald FO. von Kortzfleisch.
How do firms influence open source software communities? A framework
and empirical analysis of different governance modes. Information and
Organization, 25(2):99–114, 2015.

[184] Stijn Schuermans, Andreas Constantinou, and Michael Vakulenko. Assy-
metric Business Models: The secret weapon of software-driven companies.
Vision Mobile, 2014.

[185] Shahrokh Shahrivar, Shaban Elahi, Alireza Hassanzadeh, and Gholamali
Montazer. A business model for commercial open source software: A sys-
tematic literature review. Information and Software Technology, 103:202 –
214, 2018.

[186] Maha Shaikh and Ola Henfridsson. Governing open source software
through coordination processes. Information and Organization, 27(2):116–
135, 2017.

[187] Bashar Shaya. Process handling: A study for optimizing the processes for
sourcing it and managing software licenses. Master Thesis Industrial Eco-
nomics and Management (Dept.), KTH, Sweden, 2012.

[188] Zeena Spijkerman and Slinger Jansen. The open source software business
model blueprint: A comparative analysis of 10 open source companies. In
Proceedings of the International Workshop on Software-intensive Business:
Start-ups, Ecosystems and Platforms, volume 2018, pages 128–145, 2018.

214 BIBLIOGRAPHY

[189] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice dif-
ferences in industry software development. Journal of Systems and Soft-
ware, 87:48–59, 2014.

[190] Wouter Stam. When does community participation enhance the perfor-
mance of open source software companies? Research Policy, 38(8):1288 –
1299, 2009.

[191] Klaas-Jan Stol, Paris Avgeriou, Muhammad Ali Babar, Yan Lucas, and
Brian Fitzgerald. Key factors for adopting inner source. ACM Transactions
on Software Engineering and Methodology (TOSEM), 23(2):18, 2014.

[192] Margaret-Anne Storey, Emelie Engström, Martin Höst, Per Runeson, and
Elizabeth Bjarnason. Using a Visual Abstract As a Lens for Communicat-
ing and Promoting Design Science Research in Software Engineering. In
Proceedings of the 11th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM’17, pages 181–186, Pis-
cataway, NJ, USA, 2017. IEEE Press.

[193] Matthias Stuermer, Sebastian Spaeth, and Georg Von Krogh. Extending
private-collective innovation: a case study. R&D Management, 39(2):170–
191, 2009.

[194] Mahbubul Syeed, Juho Lindman, and Imed Hammouda. Measuring Per-
ceived Trust in Open Source Software Communities. In Federico Balaguer,
Roberto Di Cosmo, Alejandra Garrido, Fabio Kon, Gregorio Robles, and
Stefano Zacchiroli, editors, Open Source Systems: Towards Robust Prac-
tices, pages 49–54, Cham, 2017. Springer International Publishing.

[195] David J. Teece. Business models, business strategy and innovation. Long
Range Planning, 43(2):172–194, 2010.

[196] Jose Teixeira, Gregorio Robles, and Jesús M. González-Barahona. Lessons
learned from applying social network analysis on an industrial Free/Li-
bre/Open Source Software ecosystem. Journal of Internet Services and
Applications, 6(1):1–27, 2015.

[197] Richard Torkar, Pau Minoves, and Janina Garrigós. Adopting free/li-
bre/open source software practices, techniques and methods for industrial
use. Journal of the Association for Information Systems, 12(1):88–122,
2011.

[198] Pauliina Ulkuniemi, Luis Araujo, and Jaana Tähtinen. Purchasing as
market-shaping: The case of component-based software engineering. In-
dustrial Marketing Management, 44:54 – 62, 2015.

BIBLIOGRAPHY 215

[199] George Valença and Carina Alves. A theory of power in emerging software
ecosystems formed by small-to-medium enterprises. Journal of Systems
and Software, 134:76–104, 2017.

[200] Frank Van der Linden, Björn Lundell, and Pentti Marttiin. Commodification
of industrial software: A case for open source. IEEE Software, 26(4):77–83,
2009.

[201] Kris Ven and Herwig Mannaert. Challenges and strategies in the use of
open source software by independent software vendors. Information and
Software Technology, 50(9):991–1002, 2008.

[202] Dindin Wahyudin, Khabib Mustofa, Alexander Schatten, Stefan Biffl,
and A. Min Tjoa. Monitoring the ”health” status of open source web-
engineering projects. International Journal of Web Information Systems,
3(1/2):116–139, 2007.

[203] Stanley Wasserman and Katherine Faust. Social network analysis: Methods
and applications, volume 8. Cambridge University Press, 1994.

[204] Richard T. Watson, Marie-Claude Boudreau, Paul T. York, Martina E.
Greiner, and Donald Wynn Jr. The business of open source. Communi-
cations of the ACM, 51(4):41–46, 2008.

[205] Florian Weikert and Dirk Riehle. A model of commercial open source soft-
ware product features. In Georg Herzwurm and Tiziana Margaria, editors,
Software Business. From Physical Products to Software Services and Solu-
tions, pages 90–101, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[206] Jacco Wesselius. The bazaar inside the cathedral: business models for in-
ternal markets. IEEE Software, 25(3):60–66, 2008.

[207] Joel West. How open is open enough?: Melding proprietary and open source
platform strategies. Research Policy, 32(7):1259–1285, 2003.

[208] Joel West. Value capture and value networks in open source vendor strate-
gies. In Proceedings of the 40th Annual Hawaii International Conference
on System Sciences, HICSS’07, pages 176–176, Waikoloa, HI, USA, Jan
2007. IEEE.

[209] Joel West and Marcel Bogers. Leveraging External Sources of Innovation:
A Review of Research on Open Innovation. Journal of Product Innovation
Management, 31(4):814–831, 2014.

[210] Joel West and Scott Gallagher. Challenges of open innovation: the paradox
of firm investment in open-source software. R&D Management, 36(3):319–
331, 2006.

216 BIBLIOGRAPHY

[211] Joel West and Siobhán O’Mahony. Contrasting Community Building in
Sponsored and Community Founded Open Source Projects. In Proceedings
of the 38th Annual Hawaii International Conference on System Sciences,
HICSS’05, pages 196–196, Big Island, HI, USA, Jan 2005. IEEE.

[212] Joel West and Siobhán O’Mahony. The role of participation architecture
in growing sponsored open source communities. Industry and Innovation,
15(2):145–168, 2008.

[213] Joel West and David Wood. Creating and Evolving an Open Innovation
Ecosystem: Lessons from Symbian Ltd. Available at SSRN 1532926, 2008.

[214] Joel West and David Wood. Evolving an open ecosystem: The rise and fall
of the symbian platform. Advances in Strategic Management, 30:27–67,
2013.

[215] Roel J. Wieringa. Design science as nested problem solving. In Proceedings
of the 4th international conference on design science research in informa-
tion systems and technology, page 8. ACM, 2009.

[216] Roel J. Wieringa. Design science methodology for information systems and
software engineering. Springer, 2014.

[217] Roel J. Wieringa and Ayşe Moralı. Technical Action Research as a Val-
idation Method in Information Systems Design Science. In Ken Peffers,
Marcus Rothenberger, and Bill Kuechler, editors, Design Science Research
in Information Systems. Advances in Theory and Practice, pages 220–238,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[218] Bernd W. Wirtz, Adriano Pistoia, Sebastian Ullrich, and Vincent Göttel.
Business models: Origin, development and future research perspectives.
Long Range Planning, 49(1):36–54, 2016.

[219] Krzysztof Wnuk, Dietmar Pfahl, David Callele, and Even-André Karlsson.
How can open source software development help requirements management
gain the potential of open innovation: An exploratory study. In Proceed-
ings of the ACM-IEEE International Symposium on Empirical Software En-
gineering and Measurement, ESEM’12, pages 271–280, New York, NY,
USA, 2012. ACM.

[220] Krzysztof Wnuk, Björn Regnell, and Brian Berenbach. Scaling Up Re-
quirements Engineering – Exploring the Challenges of Increasing Size and
Complexity in Market-Driven Software Development. In Daniel Berry and
Xavier Franch, editors, Requirements Engineering: Foundation for Soft-
ware Quality, pages 54–59, Berlin, Heidelberg, 2011. Springer Berlin Hei-
delberg.

BIBLIOGRAPHY 217

[221] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

[222] Nicole Ziegler, Oliver Gassmann, and Sascha Friesike. Why do firms give
away their patents for free? World Patent Information, 37:19 – 25, 2014.

