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Abstract Harmonic periods have wide applicability in industrial real-time
systems. Rate monotonic (RM) is able to schedule task sets with harmonic
periods up to 100% utilization. Also, if there is no release jitter and execution
time variation, RM and EDF generate the same schedule for each instance of
a task. As a result, all instances of a task are interfered by the same amount
of workload. This property decreases the jitters that happen during sampling
and actuation of the tasks, and hence, it increases the quality of service in
control systems. In this paper, we consider the problem of optimal period
assignment where the periods are constrained to be harmonic and the task
set is required to be feasible. We study two variants of this problem. In the
first one, the objective is to maximize the system utilization, while in the
second one, the goal is to minimize the total weighted sum of the periods.
First, we assume that an interval is determined a priori for each task from
which its period can be selected. We show that both variants of the problem
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are (at least) weakly NP-hard. This is shown by reducing the NP-complete
number partitioning problem to the mentioned harmonic period assignment
problems. Afterwards, we consider a variant of the second problem in which the
periods are not restricted to a special interval. We present two approximation
algorithms with polynomial-time complexity for this problem and show that
the maximum relative error of these algorithms is bounded by a factor of
1.125. Our evaluations show that, on the average, results of the approximation
algorithms are very close to an optimal solution.

Keywords Harmonic Tasks · Period Assignment · Real-Time Schedulability ·
Hard Real-Time

1 Introduction

Selecting appropriate timing parameters for the tasks such that performance
objectives and design constraints are met is an important step in the de-
sign of real-time systems. Specifically, in the real-time systems with periodic
tasks, selecting suitable periods influences a number of prominent properties
including the system schedulability [1, 2], jobs’ response times [3], and the
related jitters [4]. Harmonic periods, namely the periods that pairwise di-
vide each other [5], exhibit specific characteristics which help the designers
to achieve better solutions with respect to the mentioned properties. For in-
stance, schedulability analysis of the task sets with constrained-deadlines can
be done efficiently (i.e., in polynomial time) when the periods are harmonic [6].
This is particularly important because in the general case the problem is hard
for both fixed-priority [7] and dynamic-priority [8] scheduling policies. Fur-
thermore, while the uniprocessor schedulable utilization of the fixed-priority
scheduling policy can be lower than 70% [9] for some periodic task sets, the
respective value for the harmonic task sets is 100% [5].

Harmonic periods have been widely used in industrial applications ranging
from radar dwell tasks [14] and robotics [15, 17–19] to control systems with
nested feedback loops [20]. If periods are harmonic, it will be possible to ap-
ply optimal fault tolerant mechanisms as mentioned in [21]. In the integrated
modular avionics (IMA), harmonic periods facilitate the problem of assigning
tasks to the partition servers [31]. Consequently, they reduce the size of the hy-
perperiod which facilitates the construction and storage of the offline schedule
table used in IMA systems because then a smaller portion of RAM (or flash
memory) of the system is consumed by the offline table. It is an important
requirement for the systems with a limited memory such as Atmel UC3A0512
microcontroller that is used for mission critical space applications [16].

Because of the mentioned advantages, finding harmonic periods for a given
task set which satisfy performance requirements in the system is an important
problem for many real-time systems. In [5] two algorithms called Sr and DCT
have been introduced to find the largest harmonic periods which are pairwise
smaller than a given set of periods. These algorithms were later used in period
assignment for radar tasks [14]. However, they are not designed to tackle with
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period ranges or to find the smallest harmonic periods with a feasible utiliza-
tion. In [10] and [11] two pseudo-polynomial time algorithms are proposed to
verify the existence of a harmonic period assignment for a given set of pe-
riod ranges. However, the essential complexity of the problem of finding the
harmonic periods such that a design objective, such as the total utilization,
is optimized is not explored. In a recent work, Xu et al. [29] has proposed
an optimal solution to find a set of harmonic periods that have the minimum
total distance from a given set of periods. The proposed solution, however, has
exponential computational complexity.

In the domain of control systems, Eker et al., [25] have proposed a method
to assign the period of each task such that the task set utilization remains
under a certain value and a cost function that reflects the effect of task’s period
on the control cost is minimized. The proposed solution, however, is limited
to the cost functions that are convex. The problem of minimizing control
cost using an online or offline period assignment method has been considered
by Henriksson et al. [26] and Bini et al. [22], respectively. However, these
approaches neither try nor guarantee that the resulting periods are harmonic.

In this paper, we discuss the computational complexity of finding feasi-
ble harmonic periods for a given set of real-time tasks where the goal is to
maximize the total utilization while the periods must be selected from a given
set of intervals. We show that the problem is NP-hard by transforming the
well-known number partitioning problem to the harmonic period assignment
problem. We establish the same complexity result for a variant of the problem
in which the goal is to minimize the weighted sum of the periods. Additionally,
we present two polynomial-time approximation algorithms for a variant of the
second problem in which the periods are not bounded to any interval. We
derive a tight bound of 1.125 for the maximum error of our algorithms with
respect to an optimal algorithm. Simulation results show that, on average, this
error is smaller than 1.125, which means that the approximation algorithm be-
haves very close to the optimal one. It is worth noting that the complexity
of this variant of the problem, i.e., the one with unrestricted periods, is still
unknown.

Our results can be used in the design of control systems in which the control
performance is expressed (or can be approximated) by a linear function of the
periods. In these systems, jitters in the sampling and actuation can adversely
affect the quality of control (QoC) [22]. These jitters can be efficiently reduced
if the control tasks use harmonic periods because then each time the task is
released, the same set of high priority tasks are released in the system. In this
paper, we evaluate our period assignment solution for control systems and
compare the results with an optimal non-harmonic period assignment.

This paper is an extended version of “On the Problem of Finding Optimal
Harmonic Periods” by Mohaqeqi et al., [30] that was published in RTNS 2016.
The main additional contributions are as follows. In this paper, we establish
the computational complexity of the problem of finding feasible harmonic pe-
riods from a set of given period ranges, where the goal is to minimize the
weighted sum of the periods. In the RTNS paper, the hardness of finding fea-
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sible harmonic periods was studied only for the case of maximizing the total
system utilization. Moreover, in the previous paper, the approximation error
bound that we had for our approximation solutions was 2 while in this paper
we have derived the tight error bound of our algorithms and show that this
bound is 9

8 = 1.125. Finally, we have added more experiments and considered
the effect of more parameters on the relative error of our algorithms, e.g., the
effect of weight of the periods in the goal function of the optimization. Fur-
thermore, in order to assess the complexity and scalability of the proposed
methods in practice, we have reported the average number of operations re-
quired by each algorithm to find harmonic periods. We have also expanded
control evaluations, considering more realistic plants and real-time tasks with
variable execution times.

The reminder of the paper is organized as follows; Sect. 2 introduces the
notations and formally describes the considered harmonic period assignment
problems. The complexity proofs are presented in Sect. 3. Next, the approx-
imation algorithms for finding harmonic periods are presented in Sect. 4 and
are evaluated in Sect. 5. A summary of the paper and a discussion on the
related open problems are given in Sect. 6. Finally, the conclusion and future
work are presented in Sect. 7.

2 Notations and Definitions

We consider a set of n real-time tasks τ1, . . . , τn with the set of worst-case
execution times (WCETs) c = {C1, C2, . . . , Cn}. Further, for each task τi, an
interval Ii = [Isi , I

e
i ] is given as the period range. The period of each task τi,

which is denoted by Ti, must be selected from Ii. The utilization of τi is defined
as Ui = Ci/Ti. In addition, the total utilization of the system is defined as the
sum of all utilizations: U =

∑n
i=1 Ui. We use N to denote the set of positive

integers.

A set of periods is said to be harmonic if the pairwise periods divide each
other. More specifically, the set of periods {T1, T2, . . . , Tn} is harmonic if for
every Ti and Tj , either Ti/Tj ∈ N, or Tj/Ti ∈ N. A set of harmonic tasks is
feasible if and only if U ≤ 1. While the period ratios of harmonic tasks are
required to be integer, it is assumed that the values of individual periods are
not restricted to be integer.

The goal is to assign a set of harmonic periods to the task set such that
some design objective is optimized. For example, for control applications, the
objective could be to assign the smallest feasible periods [22]. In this paper,
we consider two harmonic period assignment problems as specified below.

Problem 1 Take a set of n real-time tasks with the given WCETs and period
ranges. The goal is to assign a period to each task such that the total utilization
is maximized, while the periods are harmonic and the task set is feasible.
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Formally, the problem is specified as

maximize U =
∑

1≤i≤n

Ui (1a)

subject to :

Ti ∈ Ii, for 1 ≤ i ≤ n (1b)

Ti
Tj
∈ N or

Tj
Ti
∈ N, for 1 ≤ i, j ≤ n (1c)

U ≤ 1. (1d)

In the subsequent sections, we refer to this problem as the utilization-
maximizing harmonic period assignment (UHPA) problem. This problem tar-
gets finding a feasible (and schedulable) set of harmonic periods which allows
highly utilizing the resource. Regarding existing solutions to this problem, two
pseudo-polynomial algorithms to verify the existence of a harmonic assignment
are already introduced in [10] and [11] though none of them guarantee that
the resulting assignment has U ≤ 1. In the current work, we try to shed some
light on the inherent complexity of the problem.

In the second problem, the goal is to minimize the weighted sum of the
selected periods, as defined below.

Problem 2 Consider a set of n tasks with given WCETs and period intervals.
Then, the problem is specified as follows.

minimize
∑

1≤i≤n

wiTi (2a)

subject to :

Ti ∈ Ii, for 1 ≤ i ≤ n (2b)

Ti
Tj
∈ N or

Tj
Ti
∈ N, for 1 ≤ i, j ≤ n (2c)

U ≤ 1, (2d)

where wi determines how much Ti contributes to the total sum. It is supposed
that wi is given for each task τi.

In the following, this problem is referred to as the cost-minimizing harmonic
period assignment (CHPA) problem. CHPA can be used in the design of control
systems in which the control performance is expressed as a linear function
of the periods. While more complex metrics could lead to better results, a
weighted sum of periods is a simple approximation, which is also used in the
literature. For instance, in [23], it is argued that linear cost functions are
reasonable approximations for plants that are sampled reasonably fast.

Moreover, if periods are not harmonic (even if there are harmonic groups),
the jobs’ response time may vary, and then, (i) calculating the response-time
jitter becomes an issue (see [7]), and, (ii) the cost function now also depends
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on the jitter, making the overall design problem harder. In contrast, for those
applications in which execution times are constant, in the described problems,
jitters are forced to be 0 by forcing the periods to be harmonic. Thus, it both
allows more accurate description of the controller cost function and less jitter.

In this paper, we provide a lower bound on the computation complexity
of CHPA. Also, we propose two approximation algorithms for this problem,
when Constraint (2b) is relaxed, that is, when Ii = [0,∞], for 1 ≤ i ≤ n. We
use CHPA∞ to denote this relaxed version of the problem.

3 Complexity Results

In this section, we study the computational complexity of UHPA and CHPA
problems. In order to show the hardness of these problems, we present a poly-
nomial time algorithm for reducing any given instance of the number parti-
tioning (PART) problem to an instance of these problems. We first review
the PART problem. Then, the transformation method for each problem is
described.

3.1 Number Partitioning Problem

This section reviews the number partitioning (PART) problem which is known
as a (weakly) NP-complete problem1.

Definition 1 (Number Partitioning (PART)) Let A = {a1, . . . , an} be
a set of n items with an associated size function s : A 7→ N which assigns a
positive integer to each item. The problem is to determine whether A can be
partitioned into two sets A1 and A2 such that the total size of items in A1

equals that of A2. More formally, let S, S1, and S2 denote the sum of items
size for A, A1, and A2, respectively. That is,

S =
∑
ai∈A

s(ai) (3)

S1 =
∑
ai∈A1

s(ai) (4)

S2 =
∑
ai∈A2

s(ai) (5)

Then, the problem is to decide whether A can be partitioned into A1 and A2

(i.e., A1 ∪ A2 = A and A1 ∩ A2 = ∅) such that S1 = S2. An instance of this
problem is said to be a positive one if such a partitioning exists.

Theorem 1 (Hardness of the PART Problem [13]) The PART problem
is NP-complete. However, it can be solved in pseudo-polynomial time.

1 A problem is weakly NP-complete if it is NP-complete and it has a pseudo-polynomial
time solution.
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3.2 Complexity of UHPA

For the complexity analysis, we present a polynomial time method for trans-
forming any given instance of the PART problem to an instance of UHPA.
We show that an instance of PART is a positive one (i.e., the set A can be
partitioned to the desired sets A1 and A2) if and only if the corresponding
UHPA problem has a solution with the total utilization of one. The method
is specified in the following.

Consider an instance of the PART problem as specified in Definition 1. The
corresponding UHPA problem is specified by a set of n + 2 real-time tasks.
The WCET of τi, for 1 ≤ i ≤ n, is determined as

Ci =
4s(ai)

3S + 3
. (6)

In addition, we set Ii = [1, 2] as the interval from which the task period can
be selected. Also, for τn+1 and τn+2 we choose

Cn+1 = Cn+2 =
2

3S + 3
, (7)

In+1 = [1, 1] and In+2 = [2, 2].

Lemma 1 A given instance of the PART problem is positive (i.e., the given
set can be partitioned) if and only if the UHPA problem instance obtained from
the above-mentioned transformation method has a solution with U = 1.

Proof Let Ti denote the period of task τi assigned by a solution to the UHPA
problem. According to the specified UHPA problem, the period of τn+1 and
τn+2, namely Tn+1 and Tn+2, are forced to be 1 and 2, respectively. Further,
for the period of tasks τi, for 1 ≤ i ≤ n, there are only two options, i.e. 1 and
2 (otherwise, Ti/Tn+1 /∈ N and Tn+1/Ti /∈ N, which violates constraint (1c)).
A schematic view of a sample period assignment is shown in Fig. 1. We define
J1 and J2 as

J1 = {i | Ti = 1, 1 ≤ i ≤ n}

J2 = {i | Ti = 2, 1 ≤ i ≤ n}

Let us calculate the total utilization achieved based on a possible period as-
signment. For this purpose, we can write

U =
∑

1≤i≤n+2

Ci
Ti

=
∑
i∈J1

Ci +
∑
i∈J2

Ci
2

+ Cn+1 +
Cn+2

2
. (8)
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Tn+1 Ti1 Ti2 Tik Tik+1
Tin−1 Tin Tn+2

. . . . . .

. . . . . .

1

2

period ranges

1

2

1 Tasks corresponding to A1

2 Tasks corresponding to A2

Period
Value

Fig. 1 Partitioning of the task set into two subsets; K1 = {τi1 , τi2 , . . . , τik} ∪ {τn+1}
and K2 = {τik+1

, . . . , τin} ∪ {τn+2}. Note that here (i1, i2, . . . , in) is a permutation of
{1, 2, . . . , n}.

Substituting the value of Cis from (6) and (7) yields

U =
∑
i∈J1

4s(ai)

3S + 3
+
∑
i∈J2

1

2

4s(ai)

3S + 3
+

2

3S + 3
+

1

3S + 3

=
4

3S + 3

(∑
i∈J1

s(ai) +
∑
i∈J2

s(ai)

2

)
+

3

3S + 3

=
4

3S + 3

(∑
i∈J1

s(ai)

2
+
∑
i∈J1

s(ai)

2
+
∑
i∈J2

s(ai)

2

)
+

3

3S + 3

=
4

3S + 3

(∑
i∈J1

s(ai)

2
+
S

2

)
+

3

3S + 3
. (9)

As a result, U = 1 if and only if

1 =
4

3S + 3

(∑
i∈J1

s(ai)

2
+
S

2

)
+

3

3S + 3
, (10)

or equivalently,
3S

4
=
∑
i∈J1

s(ai)

2
+
S

2
, (11)

which means
S

2
=
∑
i∈J1

s(ai). (12)
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Equation (12) holds if and only if in the PART problem there exists a
subset of A whose total size of items equals to S/2. This means that the set
A can be partitioned into two subsets A1 and A2 with S1 = S2. As a result,
the answer to the PART problem is positive if and only if U = 1 in the UHPA
problem.

Theorem 2 The UHPA problem is at least weakly NP-hard.

Proof The proposed transformation method can reduce any instance of the
PART problem to an UHPA problem in polynomial time. As a result, if there
exists a solution approach to the UHPA problem with a complexity better than
a pseudo-polynomial time algorithm, then there exists an algorithm for the
PART problem with the same computational complexity as shown in Lemma 1.
As a result, the UHPA problem is at least as hard as the PART problem.
According to this fact, and also using Theorem 1, it is implied that the UHPA
problem is at least weakly NP-hard.

3.3 Complexity of CHPA

In order to show the complexity class of the problem, we provide a polyno-
mial time reduction technique from the PART problem to CHPA. Toward this,
consider an arbitrary instance of the PART problem with a set of items A =
{a1, a2, . . . , an}. Let S denote the sum of A’s items size, i.e., S =

∑n
i=1 s(ai).

Corresponding to this problem, we construct an instance of CHPA which con-
sists of a set of n+2 real-time tasks, denoted as {τ1, τ2, . . . , τn+2}. The WCET
and weight of task τi, for 1 ≤ i ≤ n, are assigned as

Ci = wi =
4s(ai)

3S + 3
. (13)

Furthermore, we put Ii = [1, 2], for 1 ≤ i ≤ n, as the interval from which τi’s
period has to be selected. For τn+1 and τn+2, we choose

Cn+1 = wn+1 = Cn+2 = wn+2 =
2

3S + 3
, (14)

In+1 = [1, 1], and In+2 = [2, 2].
Let {T1, T2, . . . , Tn+2} denote a possible period assignment. We define J as

the weighted sum of these periods, namely J =
∑n+2
i=1 wiTi. Also, assume J∗

to denote the optimal (i.e., minimum) value of J while the problem constraints
are satisfied. We show, for the constructed instance of CHPA, that we have
J∗ = 2 if and only if the instance of the PART problem is a positive one. For
this purpose, we use the following lemma.

Lemma 2 For the instance of CHPA specified above, it holds that

J∗ ≥ 2. (15)
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Proof Let Ti denote the period of task τi assigned by a solution to CHPA. Ac-
cording to the specified task parameters, the period of τn+1 and τn+2, namely
Tn+1 and Tn+2, are forced to be 1 and 2, respectively. Further, for the period
of other tasks, i.e., Ti, for 1 ≤ i ≤ n, there are only two options, i.e., 1 and
2 (otherwise, Ti/Tn+1 /∈ N and Tn+1/Ti /∈ N, which violates constraint (2c)).
Based on this observation, we define

C1 =
∑

1≤i≤n+2
Ti=1

Ci,

C2 =
∑

1≤i≤n+2
Ti=2

Ci.

Further, we define C as the total sum of WCETs, i.e.,

C =

n+2∑
i=1

Ci =

n∑
i=1

4s(ai)

3S + 3
+

4

3S + 3

=
4

3S + 3

(
n∑
i=1

s(ai) + 1

)
=

4

3S + 3
(S + 1) =

4

3
. (16)

From these definitions, it is revealed that C = C1 + C2. Then, the total uti-
lization achieved based on the assumed period assignment can be written as

U =

n+2∑
i=1

Ci
Ti

=
∑
i:Ti=1

Ci +
∑
i:Ti=2

Ci
2

= C1 +
C2

2
=

2C1 + C2

2
=

C1 + C
2

.(17)

Also, the respective value of J can be computed as

J =

n+2∑
i=1

wiTi =
∑
i:Ti=1

wi +
∑
i:Ti=2

2wi.

Thus, according to (13) and (14), which indicate wi = Ci, for 1 ≤ i ≤ n + 2,
we have

J = C1 + 2C2 = 2C1 + 2C2 − C1 = 2C− C1. (18)

From (17) it follows that C1 = 2U − C. Replacing C1 from this relation
in (18) yields

J = 2C− (2U − C) = 3C− 2U. (19)

Finally, from (16), it follows that

J = 3(
4

3
)− 2U = 4− 2U. (20)

Consequently, since U ≤ 1 (according to (2d)), we have J ≥ 4− 2 = 2, which
implies J∗ ≥ 2. ut
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Now we establish a relation between the PART problem and the corre-
sponding instance of CHPA.

Lemma 3 A given instance of the PART problem is positive if and only if
J∗ = 2 in the constructed instance of CHPA.

Proof We first show that if the given PART problem is a positive instance,
then the optimal period assignment satisfies J∗ = 2. To observe this property,
let A1 and A2 denote the sets related to a solution of the PART problem.
We assign the period of the tasks such that Ti = 1 if ai ∈ A1 and Ti = 2 if
ai ∈ A2, for 1 ≤ i ≤ n. As the total size of the items in A1 is equal to that
of A2, we will have C1 = C2 = C/2 = 2/3. Subsequently, from (18), it follows
that J = 2. According to Lemma 2, this means J∗ = 2.

Next, we show that if J∗ = 2, then the given instance of the PART problem
is positive. We first notice that, due to (18) and as C = 4/3, the equality J∗ = 2
implies C1 = 2/3. Also, since C1 +C2 = C, we get C2 = 2/3, too. This means
that the set of WCETs can be divided into two sets with equal sum. Referring
to (13) and (14) for determining the value of WCETs, it is implied that the
set of numbers in the original PART problem is divisible into two sets of which
the sum of the numbers are equal. Consequently, the instance of the PART
problem is positive, which completes the proof. ut

Theorem 3 CHPA is at least weakly NP-hard.

Proof Any given instance of the PART problem can be transformed to an
instance of CHPA in polynomial time using the presented method. Suppose
CHPA to be subject to a solution approach with a complexity better than
pseudo-polynomial time. According to Lemma 3, this implies that the original
instance of the PART problem can be decided by an algorithm with a complex-
ity better than pseudo-polynomial time, which contradicts with Theorem 1.
As a consequence, CHPA is at least weakly NP-hard. ut

4 Approximate Solution

In this section, we deal with the problem of optimal harmonic period assign-
ment, in which the goal is to minimize a weighted sum of the periods while
we ensure that the periods are harmonic and the utilization is smaller than
or equal to 1, referred to as the CHPA∞ problem. As a reference case we use
the optimal solution for the relaxed problem, when the periods are not con-
strained to be harmonic. We then propose two approximation algorithms for
the problem—one with linear and one with quadratic complexity—and show
that the error factor of the approximations is bounded by 1.125.
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4.1 Optimal Solution for the Relaxed Problem

We start by relaxing the harmonic constraint (namely (2c)) and let the period
ratios to be any arbitrary value. As expressed in the following lemma, this
relaxed version of the problem can be solved in linear time.

Lemma 4 Let (T ∗1 , . . . , T
∗
n) be the solution of the relaxed problem. In other

words, ∑
1≤i≤n

wiT
∗
i ≤

∑
1≤i≤n

wiTi, (21)

for any period assignment (T1, . . . , Tn) which satisfies (2d). Then, T ∗i can be
obtained by

T ∗i =

√
Ci
wi

∑
1≤l≤n

√
wlCl. (22)

Proof The proof has been previously presented by Cervin et al. (Sect. 3.5
of [23]). It is worth noting that, although in [23] Cis are assumed as average
execution times, the problem we consider here is mathematiclly the same as
the one in [23]. As a result, the proof holds for our case as well.

Corollary 1 Let U∗ denote the total utilization of the task set when periods
are assigned according to (22). Then, it holds that U∗ = 1.

Proof By definition, we have U∗ =
∑n
i=1

Ci

T∗
i

. Replacing T ∗i from (22) in this

relation implies

U∗ =

n∑
i=1

√
wiCi∑n

l=1

√
wlCl

= 1,

which completes the proof.

4.2 A Linear-Complexity Approximate Solution

In this section, we present an approximation algorithm for the harmonic case,
based on the optimal solution obtained above.

Let (T ∗1 , . . . , T
∗
n) be the optimal solution of the relaxed problem indicated

in Lemma 4. Further, we define J∗ as

J∗ =

n∑
i=1

wiT
∗
i . (23)

Obviously J∗ provides a lower bound for the solution of the problem with
the harmonic constraint, i.e., (2c). In the following, we first present a fast but
non-optimal harmonic period assignment algorithm using periods T ∗i . Then, we
calculate a bound for the maximum error of the algorithm. In the subsequent
subsections, we assume that tasks have been indexed such that T ∗i−1 ≤ T ∗i ,
∀i; 2 ≤ i ≤ n.
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4.2.1 The Approximation Algorithm

In our algorithm, we first assign T1 = T ∗1 . Then, for each Ti, for i > 1, we
find the smallest harmonic period (with respect to the period of the previous
task) which is not smaller than T ∗i . For instance, the period of the second task,
denoted by T2, is determined as

T2 =

⌈
T ∗2
T1

⌉
T1. (24)

Similarly, for the i-th task, we will have

Ti =

⌈
T ∗i
Ti−1

⌉
Ti−1. (25)

From Eq. (25), it is seen that Ti ≥ T ∗i for all i; thus, when the periods,
i.e., Tis, for 1 ≤ i ≤ n, are assigned according to (24) and (25), the total
utilization of the system is equal to or less than 1. This is because the period
assignment with T ∗i implies a utilization of 1 (based on Corollary 1). As a
result, we can scale down each period value such as Ti by a factor of U until
the total utilization becomes 1.

The pseudo-code of the algorithm is presented in Algorithm 1. The calcu-
lated periods are harmonic because the ratio between every two consecutive
period is an integer value. Further, in Lines 11 to 13, the resulting periods
are scaled so that the total utilization becomes 1. Consequently, the obtained
periods satisfy (2d), and hence, comprise a valid solution to the problem.

Algorithm 1: Simple Period Assignment
input: A WCET Ci and a weight wi for each task τi.
// Indexing is done such that Ci/wi ≤ Ci+1/wi+1, for 1 ≤ i < n.
output: A set of harmonic periods Ti, 1 ≤ i ≤ n.

1 begin
33 σ ←

∑
1≤l≤n

√
wlCl;

4 for i← 1 to n do

5 T ∗i ←
√
Ci/wiσ;

6 end
7 T1 ← T ∗1 ;
8 for i← 2 to n do
9 Ti ← dT ∗i /Ti−1eTi−1;

10 end
// Scaling step

11 u =
∑

1≤i≤n Ci/Ti ;

12 for i← 1 to n do
13 Ti ← uTi ;
14 end

15 end
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4.2.2 A Trivial Error Bound

We first give a trivial error bound by showing that the periods can no more
than double when using the approximation algorithm:

Lemma 5 For any period Ti obtained from Algorithm 1, we have

Ti < 2T ∗i (26)

Proof The proof is by induction. For the base case (i = 1) we have T1 = T ∗1 <
2T ∗1 . Also, for i = 2, we have

T2 =

⌈
T ∗2
T1

⌉
T1

<

(
T ∗2
T1

+ 1

)
T1

= T ∗2 + T1 = T ∗2 + T ∗1

Since we assumed that the periods (i.e., T ∗i s) are sorted in a non-decreasing
order, we have T ∗1 ≤ T ∗2 . As a result,

T2 < T ∗2 + T ∗1

≤ T ∗2 + T ∗2 = 2T ∗2

Now, assuming that (26) holds for i, we show that it will hold for i+ 1 as
well, for any i < n. We consider two cases for T ∗i+1 with respect to Ti.

Case 1: T ∗i+1 ≤ Ti. In this case, we have
⌈
T∗
i+1

Ti

⌉
= 1; hence, Ti+1 = Ti

(due to (25)). According to the assumption Ti < 2T ∗i , and since T ∗i ≤ T ∗i+1, it
follows that

Ti+1 = Ti < 2T ∗i ≤ 2T ∗i+1. (27)

Case 2: T ∗i+1 > Ti. In this case, we have

Ti+1 =

⌈
T ∗i+1

Ti

⌉
Ti

<

(
T ∗i+1

Ti
+ 1

)
Ti

= T ∗i+1 + Ti

< T ∗i+1 + T ∗i+1

= 2T ∗i+1

which completes the induction.

Corollary 1 The approximation error with Algorithm 1 is smaller than 2,
i.e.,

J

J∗
< 2.

Proof Since the cost J depends linearly on the periods, it follows from Lemma 5
that the cost will less than double. Finally, the rescaling step can only make
the periods smaller and can hence only give a lower cost.
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4.3 A Tight Error Bound for Algorithm 1

Now, we derive a tight upper bound on the error of the approximation algo-
rithm.

Theorem 4 The worst-case relative error of Algorithm 1 is 9
8 .

Proof Without loss of generality, assume that the weights are scaled so that

J∗ =

n∑
i=1

wiT
∗
i = 1.

Using (22) we have

J∗ =

n∑
i=1

(
wi

√
Ci
wi

n∑
l=1

√
wlCl

)
=

( n∑
i=1

√
wiCi

)2
= 1,

which implies that
n∑
i=1

√
wiCi = 1

and

T ∗i =

√
Ci
wi
.

This further implies that

U∗i =
Ci
T ∗i

=
√
wiCi = wiT

∗
i .

From Lemma 5 we know that the periods can no more than double in the
harmonization step. We express this as

Ti = (1 + βi)T
∗
i , 0 ≤ βi < 1, i = 2, . . . , n.

The new cost after harmonization is given by

Ĵ = U∗1 +

n∑
i=2

wiTi = U∗1 +

n∑
i=2

(1 + βi)U
∗
i =

n∑
i=1

U∗i +

n∑
i=2

βiU
∗
i

= 1 +

n∑
i=2

βiU
∗
i .

Similarly, the utilization after harmonization is calculated as

Û = U∗1 +

n∑
i=2

Ci
(1 + βi)T ∗i

= U∗1 +

n∑
i=2

Ci
T ∗i

(
1− βi

1 + βi

)

= 1−
n∑
i=2

βi
(1 + βi)

U∗i .
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In the final rescaling step, all periods are multiplied by Û . Since the cost
depends linearly on the periods, this means that the final cost after rescaling
becomes

J = Ĵ Û =

(
1 +

n∑
i=2

βiU
∗
i

)(
1−

n∑
i=2

βiU
∗
i

1 + βi

)
.

Using the fact that βi

2 < βi

1+βi
≤ βi for 0 ≤ βi < 1, we find that

J <

(
1 +

n∑
i=2

βiU
∗
i

)(
1−

n∑
i=2

βiU
∗
i

2

)
.

The right-hand side of the inequality is maximized when
∑n
i=2 βiU

∗
i = 1

2 ,
yielding the upper bound

J <

(
1 +

1

2

)(
1− 1

4

)
=

9

8
.

The bound becomes arbitrarily tight when βi → 1 and
∑n
i=2 U

∗
i = 1

2 . ut

Example 1 Assume two tasks, with execution times C1 = C2 = 0.5 and weights
w1 = 0.501 and w2 = 0.499. The optimal periods are T ∗1 = 0.999 and T ∗2 =
1.001 with the optimal cost J∗ = 1.000. Applying Algorithm 1, we obtain the
harmonic periods T1 = 0.750 and T2 = 1.500 with the cost J = 1.124.

4.4 A More Effective Approximation Algorithm

The approximation algorithm introduced in Sect. 4.2.1 tries to find the closest
harmonic period assignment starting from T1 ← T ∗1 . It means that the solution
which is found through Lines 1 to 10 of Algorithm 1 includes the first optimal
period. The result of this assignment can be improved if we set the base of the
search on other T ∗i values as well. For example, if we have T ∗ = {42, 56, 98}, the
resulting periods from Lines 1 to 10 of Algorithm 1 will be T = {42, 84, 168}
with total sum of 294 while if we had used T = {56, 56, 112}, the total sum
would be 224. The latter solution can be obtained if we start to assign T2 ← T ∗2
and then try to find the smallest harmonic values which are larger than the
other T ∗i s. For the same reason, any value in T ∗ can be the base candidate and
may result in a solution with smaller error than Algorithm 1. This is the basic
idea of our second approximation algorithm which is shown in Algorithm 2.
This idea has been originally used by Han et al. in [5] for DCT algorithm.
However, their goal was to find the largest harmonic period which is smaller
than the original given periods of the tasks.

The approximation error of Algorithm 2 will not be larger than that of Al-
gorithm 1 because in the worst-case, Algorithm 2 returns an assignment which
starts from T1 ← T ∗1 . In all other cases, the final result of Algorithm 2 can only
be better than Algorithm 1 due to the condition in Line 17. Consequently, the
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Algorithm 2: DCT-Based Period Assignment
input: A WCET Ci and a weight wi for each task τi.
// Indexing is done such that Ci/wi ≤ Ci+1/wi+1, 1 ≤ i < n.
output: A set of harmonic periods Ti, 1 ≤ i ≤ n.

1 begin
2 Obtain T ∗ values from (22);

3 σmin ← null;
4 for i← 1 to n do
5 T ′i ← T ∗i ;
6 for j ← i+ 1 to n do
7 T ′j ← dT ∗j /T ′j−1eT ′j−1;

8 end
9 for j ← i− 1 down to 1 do

10 T ′j ← T ′j+1/bT ′j+1/T
∗
j c;

11 end
// Scaling step

12 u =
∑

1≤i≤n Ci/T
′
i ;

13 for i← 1 to n do
14 T ′i ← uT ′i ;
15 end
16 σ ←

∑
1≤j≤n wjT

′
j ;

17 if σ < σmin or σmin = null then
18 σmin ← σ;
19 for i← 1 to n do
20 Ti ← T ′i ;
21 end

22 end

23 end

24 end

relative error of Algorithm 2 with respect to the optimal period assignment is
upper-bounded by that of Algorithm 1.

According to our experimental results (shown in the next section), both al-
gorithms produce near-optimal results and the difference in their performance
is small. However, it is worth noting that their computational complexity is
different: Algorithm 2 is O(n2) while Algorithm 1 is linear-time, i.e., O(n).

5 Experimental Results

In this section, we evaluate the performance and effectiveness of our proposed
approximation algorithms presented in Sect. 4. In Sect. 5.1 we measure the
efficiency of our approximation algorithms in finding harmonic periods us-
ing synthetic task sets while in Sect. 5.2 we measure the effectiveness of our
algorithms for a set of benchmark control applications.
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5.1 Measuring Efficiency of the Algorithms

In this set of experiments we compare our two approximation algorithms with
an optimal solution based on an exhaustive search over all relevant harmonic
period assignments. This optimal algorithm returns a harmonic period assign-
ment with utilization 1 which minimizes (2a). This algorithm has been derived
from the Forward approach in [10], and it is based on an exhaustive search
which iterates over all possible integer multipliers between any two period
ranges, and hence, it searches the whole solution space to find an assignment
with the minimum error. We have added a pruning rule to limit the results to
the assignments with U ≤ 1. In the experiments we measure the relative error
of the proposed algorithms as

E =

∑n
i=1 wiTi∑n
i=1 wiT

∗
i

(28)

where T ∗i is obtained from (22). It is worth noting that T ∗i values are not
necessarily harmonic and hence, even the optimal algorithm based on the
Forward approach may have non-zero error. In the following experiments we
evaluate the effect of the WCET, number of tasks, and weights on the relative
error of our proposed algorithms.

5.1.1 The Effect of WCET

In the first experiment, we consider the effect of relative ratio of WCET values,
i.e., Ci/Ci−1. The parameter of experiment is the maximum ratio between
any two consecutive WCET values (sorted in an ascending order). For this
experiment we assume a task set with 10 tasks (later in Sec. 5.1.2 we will
evaluate the effect of different number of tasks). The WCET of each task is
selected randomly with uniform distribution so that Ci ∈ [Ci−1, kCi−1] where
C1 ∈ [1, 10] and k is the maximum WCET ratio. We assume all tasks have the
same weight, i.e., ∀i, wi = 1. For each value of k we generate 10,000 random
task sets and report the average, maximum, and minimum relative errors that
are seen in those task sets.

As it is shown in Fig. 2, when the relative ratio of two consecutive WCET
is small, Algorithm 1 has higher error because it only finds the harmonic
assignments starting from T ∗1 . Since valid assignments must be larger than T ∗i
values, if T ∗2 /T

∗
1 ≈ 1, Algorithm 1 assigns T2 ← 2T1 which will be much larger

than T ∗2 . However, since 2T ∗1 will be much larger than T ∗i (2 ≤ i ≤ n), it is
a safe assignment for other Ti values. Consequently, the resulting harmonic
periods will be T = {T ∗1 , 2T ∗1 , 2T ∗1 , . . . , 2T ∗1 } while the period assignment from
Algorithm 2 is T ′ = {T ∗n , T ∗n , . . . , T ∗n}. It happens because if we have small
ratio between consecutive Ci values, then T ∗n < 2T ∗1 .

In the next experiment, we evaluate the effect of selection range for Ci
values. In this experiment we assume n = 10, ∀i, wi = 1, and each Ci is
selected randomly with a uniform distribution from range [1, 10σ] where σ
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Fig. 2 The relative error of the algorithms. The WCET of each task has been randomly
selected so that Ci ∈ [Ci−1, kCi−1] where C1 ∈ [1, 10]. In diagram (a), the optimal method
and Algorithm 2 are overlapped.
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Fig. 3 The relative error of the algorithms. The WCET of each task has been selected from
[1, 10σ ]. In diagram (a), the optimal method and Algorithm 2 are overlapped.

is the parameter of the experiment and shows the wideness of the ranges.
Fig. 3-(a) to (d) shows the results of this experiment.

When σ is small, e.g., smaller than 1, WCETs are selected from a narrower
range which means that they are more similar to each other. As discussed in
Sect. 4, when WCETs are similar, Algorithm 1 has a large relative error as it
can be seen in Fig. 3-(a) and (c). In this situation, however, both Algorithm 2
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Fig. 4 The relative error of the algorithms. The WCET of each task has been selected from
[1, 500]. In this diagram, the optimal method and Algorithm 2 are overlapped.

and the optimal algorithm are able to find harmonic periods with small error
because since the WCETs are similar, T ∗i values are almost the same which
means that the optimal harmonic assignment will be the one that assigns one
period to all tasks. Since Algorithm 1 starts by assigning T ∗1 as T1, it may not
be able to assign the same period to all other tasks, and hence, it will suffer
from larger errors. We will study this particular case later in Sect. 5.1.4.

From σ = 0.1 to 1.6 we see a decreasing pattern in the relative error
of Algorithm 1. The reason is that since we select 10 values from the range
[10, 101.6], the chance that the resulting WCETs have larger relative ratio
increases with the increase in σ. Consequently, the relative error of Algorithm 1
decreases since the situation becomes better.

With the increase in σ after σ = 1.6, WCET values increase as they can
be selected from a larger range. This increase in the average values of WCETs
affect the result of

∑n
i=1

√
wiCi which in turn leads to have large T ∗i (since

they are obtained from (22)). In addition, if
∑n
i=1

√
wiCi is a large value, the

effect of
√
Ci/wi on T ∗i decreases, particularly because

√
x function does not

grow as fast as x. Consequently, T ∗i values become large and become relatively
close to each other. Due to this effect, the relative error of our algorithms
remains almost constant as it can be seen for large values of σ in Fig. 3-(a)
and large values of WCET ratio in Fig. 2-(a).

5.1.2 The Effect of the Number of Tasks

Next, we consider the effect of the number of tasks, i.e., n on the relative
error of the algorithms. The WCET of each task is selected randomly with a
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Fig. 5 The number of operations required by different algorithms to find harmonic periods.
Note that the vertical axis has a logarithmic scale.

uniform distribution from interval [1, 500] while n varies from 5 to 30. In this
experiment we assume that all weights are equal to 1.

Fig. 4-(a) demonstrates the average relative error as a function of the num-
ber of tasks. As it is shown, Algorithm 2 still performs as good as the optimal
algorithm and is able to find harmonic periods with the minimum error. Fig. 4-
(b) to (d) confirm the fact that the algorithms provide predictable assignments
where the maximum observed relative error is very close to the average and
the minimum observed relative error. It is worth noting that when n increases,
the number of values selected from the range increase which in turn increases∑n
i=1

√
wiCi. Thus the same effect that happened for the large σ values in

Fig. 3 happens here as well.

Since n directly affects the time consumption of our algorithms, for this ex-
periment we also report the number of algorithmic operations that are needed
to be performed until harmonic periods are found by the algorithms. Note
that we only count the algorithmic steps rather than single instructions be-
cause the number of instructions depend on the platform and the programming
language. Thus, we count the operations performed in Agorithm 1 and 2. For
example, Line 3 or 11 of Algorithm 1 consist of n operations while Line 5 con-
sists of 1 operation. For the case of the exhaustive search, we do it the same
way that is done by Nasri et al. in [10]. Fig. 5 shows the number of operations
required to find harmonic periods. As it can be seen, the exhaustive solution
has an exponential growth when n increases while both of our algorithms have
a polynomial growth w.r.t the number of tasks.
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Fig. 6 Relative error of different algorithms as a function of weights. WCETS are selected
from [1, 500] and weights are selected from [0.1,W ] where W is the horizontal axis of the
diagrams.

5.1.3 The Effect of Weights

In the next experiment, we evaluate the effect of weights on the relative error
of the algorithms. For this experiment we have 10 tasks and the WCETs are
selected with a uniform distribution from range [1, 500]. The weight of each
task is selected with uniform distribution from [0.1,W ] where W shows the
maximum weight and is the parameter of the experiment.

Fig. 6-(a) shows the average relative error of the algorithms. When the
maximum weight is 0.1, all weights are equal (because the weights will all be
0.1. In that case, Algorithm 2 performs the same as the optimal algorithm.
However, by the increase in the length of intervals from which the weights
are selected, Algorithm 2 is no longer able to find harmonic periods with
the minimum cost because it does not consider the effect of weights when it
finds harmonic assignments through Lines 5 to 15. In other words, Algorithm 2
focuses on finding the closest harmonic values and cannot consider the effect of
weights. As a result, its decisions will gradually become similar to Algorithm 1
which is ignorant towards the weights too.

Figs. 6-(b) to (d) show the maximum, average, and minimum relative er-
ror of the algorithms. As it can be seen, the optimal algorithm is the most
predictable since the difference between its maximum and minimum relative
errors is about 0.03. This is the case for Algorithm 2 only when all weights are
equal to 0.1.
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Fig. 7 Relative error of different algorithms as a function of weights for an odd case of
WCETs. WCETS are selected from [10000, 10001] and weights are selected from [0.1,W ]
where W is the horizontal axis of the diagrams.

5.1.4 The Effect of Similar WCET

As it was mentioned in Sect. 4, the maximum error of Algorithm 1 appears
when T ∗ values are almost similar. To study this extreme case we conduct
another experiment in which we select the execution times from [10000, 10001]
for n = 10 tasks. Fig. 7-(a) shows the average relative error of the algorithms
as a function of the weights. As it can be seen, for the case where the weights
are equal, Algorithm 1 has the largest error. This diagram also shows that the
increase in the weights reduces the relative error of Algorithm 1 because they
cancel the effect of a harmonic assignment. Moreover, As it can be seen in
Fig. 7-(c), the error bound that we have presented in Theorem 4 is tight since
there exists task sets whose relative error is 9

8 = 1.125.
Unlike Algorithm 1 that is not efficient when WCETs are similar, Algo-

rithm 2 becomes more efficient because as long as the weights are not different
from each other, e.g., for W = 0.1 to 0.3, the ratio between the optimal har-
monic periods will be 1 (almost in all cases). As a result, the assignment with
the smallest error will be the one that assigns the largest value of T ∗i to all
tasks. However, when the weights increase, this assignment will not be the best
one anymore, and hence, Algorithm 2’s decisions deviate from the optimal one.

5.2 Measuring the Effectiveness of the Algorithms for Control Systems

In this subsection, the two algorithms for period harmonization are evaluated
in control system examples. To allow for a large number of cases to be inves-
tigated, the Jitterbug MATLAB toolbox [27] is used throughout to design the
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controllers and to evaluate the resulting performance. We first study a simple
example in detail and then present results for 100 sets of randomly generated
plants.

5.2.1 A Simple Codesign Example

As a simple codesign example, we assume that three linear plants,

P1(s) =
2

s2 − 1
,

P2(s) =
2

s2
,

P3(s) =
1

s(s+ 1)
,

(29)

should be controlled by three control tasks. For each controller, the goal is to
minimize the quadratic cost function

Ji = lim
T→∞

1

T
E

∫ T

0

(
y2i (t) + u2i (t)

)
dt, (30)

when the plant is subject to white input noise with intensity 1 and white
measurement noise with intensity 0.1. Prior to implementation, a continuous-
time linear-quadratic-Gaussian (LQG) controller Ki(s) has been designed for
each plant to give satisfactory performance. The cost functions are normalized
so that Jct

i = 1 corresponds to continuous control. Running all continuous

controllers hence gives the ideal overall cost Jct =
∑3
i=1 J

ct
i = 3.

The execution times are given by C1 = 0.144, C2 = 0.175, C3 = 0.102.
These values also represent the minimum possible periods and control delays
for the control loops. The weights wi are found by evaluating the sensitivity
towards an increased period for each control loop:

wi =
∂Ji
∂Ti

(Ci). (31)

The analysis yields the weights w1 = 2.47, w2 = 1.45, w3 = 0.409. It is seen
that the two first plants, which are open-loop unstable, are more sensitive
towards a period extension than the last plant. Using Lemma 4, the initial
periods are then given by T ∗1 = 0.319, T ∗2 = 0.458, T ∗3 = 0.658. The respective
jitter margins for these periods, assuming a constant delay of Ci, are given by
Jm1 = 0.248, Jm2 = 0.358, Jm3 = 1.40.

As a baseline, we evaluate two different design methods for the set of sam-
pling periods given by T init = T ∗/0.99. (A target utilization of U = 0.99 is used
for the non-harmonic periods to avoid numerical problems in the evaluation.)

– Initial LQG design. Each controller is designed without regard for the
scheduling, assuming a constant control delay of Ci.
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Table 1 Results for the simple example.

Constant Random
T1 T2 T3 exec. times exec. times

Initial (J init) 0.322 0.463 0.665 5.57 4.43
Delay-aware (Jda) 0.322 0.463 0.665 5.13 4.55
Algorithm 1, no offset (Jh1) 0.260 0.520 1.04 5.63 5.38
Algorithm 2, no offset (Jh2) 0.286 0.571 0.571 5.27 4.69
Algorithm 1, with offset (Jh1o) 0.260 0.520 1.04 4.86 4.44
Algorithm 2, with offset (Jh2o) 0.286 0.571 0.571 4.58 4.09

– Delay-aware LQG design. The delay of each controller is assumed con-
stant and given by the approximate response-time formula from [22]. Based
on this, a standard LQG controller compensating for the fixed delay is de-
signed.

We then evaluate two different methods, where the controllers are redesigned
after harmonization:

– Harmonic LQG design. Using Algorithm 1 and 2, two sets of harmonic
periods are calculated. For each resulting task set, we assign task release
offsets to minimize the control delay and design a standard LQG controller
for the remaining constant delay. These two sets of controllers are evaluated
with or without offset.

We evaluate the cost with constant execution time C, or random execution
time in unif(0.5C, C). All the costs are normalized to the continuous-time
LQG cost. The resulting periods and the total LQG cost are shown in Table 1,
where all numbers have been rounded to three significant digits. It is seen
that, in the constant execution time case, the harmonic LQG costs without
offset are slightly worse than the initial and delay-aware LQG costs, because
the harmonization forces the periods to deviate from their optimal values. The
harmonic LQG costs with offset are however lower than the harmonic LQG
cost without offset. The reason is that, by using harmonic periods and task
offsets, the schedule will give rise to both constant and short delays. This
positive effect dominates over the negative effect of having to deviate quite far
from the optimal, real-valued periods.

The execution time is rarely constant in real-time systems. It is seen that
also for the random execution times, Algorithm 2 with release offsets produces
the smallest overall cost.

In the next section, a larger evaluation is performed using randomly gen-
erated plant dynamics, showing the variability and confidence of the results
obtained.

5.2.2 Randomly Generated Examples

To see whether the results for the simple example above hold in more general
cases, sets of three plants have been randomly generated for evaluation from
the following four plant families:
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– Family A: All plants have two real or complex stable poles. They are drawn
from

PA(s) =
K

τ2s2 + 2ζτs+ 1
, (32)

where τ = 10−2α, K = 2× 10β , ζ = 2γ, and α, β, γ ∈ unif(0, 1).
– Family B: All plants have two real or complex stable poles and one inte-

grator. They are drawn from

PB(s) =
K

τs (τ2s2 + 2ζτs+ 1)
, (33)

where τ = 10−2α, K = 0.3× 10β , ζ = 2γ, and α, β, γ ∈ unif(0, 1).
– Family C: All plants have two real or complex stable poles, one stable or

unstable zero and one integrator. They are drawn from

PC(s) =
K [1− sgn(λ− 0.5)τTzs]

τs (τ2s2 + 2ζτs+ 1)
, (34)

where τ = 10−2α, K = 1.3× 10β , ζ = 2γ, Tz = 10η−2, and α, β, γ, η, λ ∈
unif(0, 1).

– Family D: All plants have two real or complex stable poles, one stable or
unstable pole and one integrator. They are drawn from

PD(s) =
K

τs (τ2s2 + 2ζτs+ 1) [1− sgn(λ− 0.5)τTps]
, (35)

where τ = 10−2α, K = 10β , ζ = 2γ, Tp = 10η+1, and α, β, γ, η, λ ∈
unif(0, 1).

The plant parameters have been chosen to give reasonable robustness when
combined with the LQG design weights. Also a random time constant τ has
been included to generate plants with possibly very different time scales.

25 sets of three plants are randomly generated for each family, and the cost
functions are normalized so that 1 corresponds to continuous-time control. The
initial sampling periods are again calculated using evaluation of the sensitivity
towards an increase in period, Eq. (31). The jitter margin was calculated for
all 300 controllers, and in no case was it smaller than 67% of the initial period,
indicating that all controllers were reasonably robust.

Using this setup, we evaluate the following costs. In the initial and delay-
aware LQG evaluations, we use the utilization target U = 0.99, while the
harmonic cases use full utilization.

– Initial LQG cost J init. The LQG controllers are designed for T init
i as the

period and Ci as the constant delay. For each task, we calculate the first
100 response times to estimate the response time distribution. Using this
distribution as the delay distribution in Jitterbug, the LQG cost J init

i is
evaluated.
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Table 2 Average costs under constant execution times.

Family A Family B Family C Family D

J init 4.83 4.69 4.38 4.36
Jda 4.70 4.53 4.22 4.17
Jh1 4.89 4.67 4.36 4.37
Jh2 4.75 4.53 4.25 4.21
Jh1o 4.60 4.31 4.05 4.05
Jh2o 4.45 4.20 3.99 3.92

Table 3 Average costs under random execution times [0.5C, C].

Family A Family B Family C Family D

J init 4.29 4.07 3.82 3.79
Jda 4.33 4.12 3.87 3.84
Jh1 4.54 4.30 4.05 4.11
Jh2 4.42 4.23 3.97 3.93
Jh1o 4.23 3.96 3.74 3.75
Jh2o 4.13 3.91 3.71 3.66

– Delay-aware LQG cost Jda. We again design the LQG controller with T init
i

as the period but now with the approximate delay from [22]. The first 100
response times are used to calculate the response time distribution. Then
the distribution is used in the Jitterbug evaluation.

– Harmonic LQG cost Jh1, Jh2, Jh1o, and Jh2o. We use T init
i as the initial

period and Algorithm 1 and 2 to evaluate the two harmonic task period
sets with full utilization. For the no offset case, the LQG controller is
designed using a constant delay, equal to the the response time. For the
offset case, the LQG controller is designed using a constant delay, equal to
the difference between the response time and the start latency. The LQG
cost is evaluated with an offset which is equal to the start latency. Jh1

stands for the LQG cost using Algorithm 1 with no offset, and Jh1o stands
for the LQG cost using Algorithm 1 with offset. Jh2 and Jh2o are defined
similarly.

We consider two options for the execution time: a constant one equal to
C and a random one which is uniformly distributed in (0.5C, C). The costs,
averaged over 25 generated plant sets for each family, are shown in Tables 2 and
3. As seen from the results, the initial LQG costs are slightly better than the
costs of harmonic LQG without offset, and worse than the harmonic LQG with
offset. The costs for the harmonization of Algorithm 2 is smaller than those of
Algorithm 1, while the computation of Algorithm 2 is more time-consuming.

To see the variability of the results, the LQG costs over all four plant
families under constant execution times are shown in the box plot of Fig. 8. The
costs are all normalized relative to J init. All the values of Jda are smaller than
J init, because the delay-aware LQG takes the approximation of the response
time, instead of the execution time, as delay into the control design. The values
of Jh1 can be worse or better than J init, because the sampling periods from
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Fig. 8 Costs relative to J init for the 100 randomly generated examples under constant
execution times.

Table 4 The complexity of different harmonic period assignment problems.

maxU min
∑
wiTi

restricted

range

NP-hard in the

weak sense (at least)

NP-hard in the

weak sense (at least)

unrestricted

range

There exists poly.

time algorithm

?

(There exists poly.

time approximation)

Algorithm 1 are different from T ∗i s in Lemma 4, but harmonic. The costs of
Jh2 are smaller than Jh1, because the sampling periods calculated by using
Algorithm 2 give better overall control performance. Both Jh1o and Jh2o are
smaller than J init on average. The reason is that the offset is adopted in the
scheduling, which leads to shorter delay. Furthermore, in almost all cases, Jh2o

is smaller than J init. The conclusion is that harmonic periods from Algorithm
2 together with release offsets should be the recommended design method for
control tasks.

6 Discussions

Table 4 summarizes the known results for the complexity of the optimal har-
monic period assignment problem. The results are shown for two different
optimization objectives and constrains.



Title Suppressed Due to Excessive Length 29

As shown in Sect. 3, when the goal is to maximize U or to minimize the
weighted sum of the periods, and we have restricted period ranges (i.e., UHPA
and CHPA problems), the harmonic period assignment problem is weakly NP-
hard. If periods are not confined by a minimum and maximum value, i.e., they
can be any value, then one possible harmonic assignment is

T1 = T2 = . . . = Tn =

n∑
i=1

Ci (36)

In (36), period ratio between any two consecutive periods is 1 while the
utilization is 1. Hence it is a linear-time solution for UHPA when periods are
not restricted. Through Sect. 4 we have shown that there exist polynomial-time
approximation algorithms when the goal is to minimize the weighted sum of
Ti. However, to the best of the authors’ knowledge, there is no known result for
the class of hardness of the problem. The latter problem has wide applications
in control systems as it can increase their quality of control through minimizing
jitters of sampling and actuation.

An interesting observation in our experiments is that, when all tasks in-
corporate the same weight, Algorithm 2 is as good as the optimal solution
based on an exhaustive search. It remains as an open question whether the
DCT-based algorithm is really an optimal solution to assign harmonic peri-
ods in this situation or not. If it is the case, then CHPA∞ can be solved in
polynomial-time using Algorithm 2 for the special case of equal weights.

7 Conclusion

In this paper, we have discussed the hardness of the harmonic period assign-
ment problem in cases where periods must be selected from a given range and
the goal is to find a harmonic assignment which maximizes the utilization.
We have shown that this problem is weakly NP-hard. It was also shown that
the same result holds when the objective is to minimize the weighted sum
of periods. We have also considered the problem of minimizing the weighted
sum of harmonic periods where there is no lower and upper bound on the
valid periods. While the computational complexity of this version of the prob-
lem is unknown, we presented two polynomial-time approximation algorithms
for it. We have shown that the upper bound of the error of these algorithms
with respect to the results of an optimal period assignment algorithm is up-
per bounded by 1.125. Our algorithms can be used to increase the quality of
control in control systems. We have evaluated the proposed algorithms using
synthetic task sets as well as benchmark control applications. The results have
shown that even though the guaranteed bounded error is 1.125, the second al-
gorithm is as good as the optimal solution based on an exhaustive search when
all tasks are assigned the same weight.

As our future work, we intend to investigate the optimality of our second
algorithm in the mentioned special case. Moreover, we try to provide efficient
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solutions, either using approximation algorithms or heuristics to solve the first
problem where periods are bounded to a specified set of intervals. A solution
to this problem can be further used in the design space exploration in order to
simplify parameter assignment phase. Also we plan to provide a new method
to obtain the space of feasible periods for RM.
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