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Abstract. With the inclusion of external software components in their
software, vendors also need to identify and evaluate vulnerabilities in the
components they use. A growing number of external components makes
this process more time-consuming, as vendors need to evaluate the sever-
ity and applicability of published vulnerabilities. The CVSS score is used
to rank the severity of a vulnerability, but in its simplest form, it fails to
take user properties into account. The CVSS also defines an environmen-
tal metric, allowing organizations to manually define individual impact
requirements. However, it is limited to explicitly defined user informa-
tion and only a subset of vulnerability properties is used in the metric. In
this paper we address these shortcomings by presenting a recommender
system specifically targeting software vulnerabilities. The recommender
considers both user history, explicit user properties, and domain based
knowledge. It provides a utility metric for each vulnerability, targeting
the specific organization’s requirements and needs. An initial evaluation
with industry participants shows that the recommender can generate a
metric closer to the users’ reference rankings, based on predictive and
rank accuracy metrics, compared to using CVSS environmental score.

1 Introduction

The Common Vulnerability Scoring System (CVSS) [4,8] defines a severity rank-
ing for vulnerabilities. The base score does not take into account individual pref-
erences of users. Instead, CVSS has an environmental metric which can be used
to modify the base score such that it represents user dependent properties of vul-
nerabilities. It will rewrite the confidentiality, integrity, and availability metrics
both to adjust them according to measures already taken by the organization,
but also to capture the actual impact such loss would have on the organiza-
tion. As this will differ between organizations, such a modified metric will better
reflect the actual severity of a vulnerability to that organization.

The environmental metrics must be evaluated on a per vulnerability basis and
are handled manually. This is both time consuming, error prone, and can lead
to inconsistencies in case there are several vulnerabilities and they are handled
by different analysts. Moreover, the environmental metric, though unique for
the organization, only constitutes the sub-metrics available in the base score.
Additional information that might affect the organization is not covered.



Recommender systems work by analyzing information about user preferences,
and combine this with information about items, or with the history of other users.
Their goal is to output recommendations targeting the specific user.

In this paper, we explore ways to improve measuring how a vulnerability
affects an organization. Using machine learning techniques applied to recom-
mender systems, we combine different properties and metrics in order to capture
vulnerability data and map it to requirements of the specific organization. Com-
pared to CVSS environmental metrics, our method provides several advantages.

First, the requirements for the organization is derived by combining explicit
requirements with requirements learned from previous analysis of vulnerabili-
ties. This data driven approach will not only use personal preferences, but also
take into account how real vulnerabilities have been evaluated previously. Such
learned data is able to capture information that might be overseen by analysts,
or that are difficult to express. Second, our approach is general and is not re-
stricted to a certain group of properties. It can be amended with new metrics if
needed, focusing on metrics relevant for the given organization or device.

Our goal is to design a recommender that provides a personalized severity
assessment based on a user profile. The profile is both explicit, based on the users’
own choices, and implicit as the recommender learns from the users’ previous
actions. We also support inclusion of domain knowledge into the system, and
discuss how the different parts can be weighted. Suitable similarity functions are
used to form a utility function that outputs the personalized severity assessment.
The recommender is also evaluated using participants from the industry. Though
the evaluation is small scale, the results indicate that our recommender system is
able to provide severity information that is closer to the users’ actual preferences
than the CVSS environmental score.

Compared to previous work such as [3,5–7,14], our approach uses more fea-
tures, consider user preferences, learns from past user behavior, and/or provides
scores instead of suggested actions (cf. [5]).

2 Recommenders and Vulnerability Severity Ratings

Generally, the goal of a recommender is to present recommendations of items to
a set of users. An item can be for example a movie, a song, or a website. The
idea is that the recommender should present a subset of items to the user, such
that the user finds this subset relevant. The subset is found by matching user
preferences or activity using a learnt profile and sometimes other similar users’
activity. In a shopping scenario, the added value for the user also leads to higher
sales. In this paper, the goal of the recommender is to add value to an end-user
by tailoring the severity score for vulnerabilities.

There are three major categories of recommender systems [1]: knowledge-
based systems, content-based systems, and collaborative filtering. Other than
these, recommendations can be generated from domain-specific knowledge. This
generates recommendations for a specific field of knowledge, and is designed
specifically to handle data for that domain.
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Fig. 1. Flow chart of recommendation generation

Many vulnerabilities are reported and given a CVE identifier. For each vul-
nerability, NVD provides a severity score. This score, denoted the base score,
uses exploitability and impact submetrics in order to define a severity score
between 0–10. This score is made to be reproducible and organization indepen-
dent. Instead, the environmental score can be used to adapt the base score to
an organization’s requirements and needs.

3 System Model

We have identified the following requirements: 1) The recommender should give
reasonable recommendations for new users of the system, avoiding the cold-start
problem. 2) It should allow the user to select certain preferences that the system
will honor. 3) It should expose a meaningful subset of user preferences to the
user. 4) It should learn from user actions, so that future recommendations are as
relevant as possible to the user. To avoid privacy concerns, only the user’s own
actions are considered.

No single class of recommender system can fulfill all requirements. Instead, we
propose a hybrid recommender based on three parts. The first is a domain-based
subsystem which provides domain-specific knowledge unique to a recommender
for vulnerabilities. The second part is a knowledge-based subsystem which allows
the user to select certain user preferences that they are interested in. Lastly, the
third part is a content-based subsystem which learns from the user’s previous
actions to provide more meaningful recommendations for each user.

3.1 Overall Recommender System Design

An overview of the recommendation generation process can be seen in Fig. 1.
When a user requests recommendations for a set c of vulnerabilities, the feature
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data, domain-specific knowledge, user profiles, and weights are fetched from their
respective storage. Each of these parts will be described in details in the following
sections. These pieces will then be combined in the actual recommender, which
then outputs recommendations in the range [0, 1]. A higher value means that a
vulnerability is more relevant to the user.

Our hybrid recommender system learns user preferences based on the user’s
interaction with vulnerabilities. An overview of the rating procedure is shown in
Fig. 2. First, the user rates a vulnerability based on their own preferences. Next,
the current user profile is updated with the new information, so that a new user
profile estimated called û is stored in the user profile database.

3.2 Feature Representation

A key task in designing a recommender is constructing a good feature extrac-
tion stage. In our case, this means that we wish to extract features from each
vulnerability, to be used as input to the recommender, see block (e) in Fig. 1.
First, a selection of features must be made, and later on their respective feature
weight parameters must be decided. We will discuss actual features to use in
Section 4.1. We consider the features of a vulnerability as a vector v, where each
individual feature vi denotes a specific feature value. Such a value could be of
any type, such as a Boolean value, a real number, an integer in a specific range,
categorical data, or hierarchical data.

3.3 User Profile Representation

There are two distinct parts of the user profile. First, there is the explicit user
profile u, where the users explicitly select their own preferences. This is similar
to the requirements that can be defined in the CVSS environmental metric.
Second, there is the estimated user profile û, which is determined from the
user’s interactions with the system. The system learns this profile about the
user automatically. This allows the system to capture user preferences that are
hard to explicitly express for users, either because the feature is complex, or



because the user is unaware of them. The explicit user profile is the knowledge-
based part of our hybrid recommender, while the estimated user profile is the
content-based part.

Each of the two parts of the user profile is represented as a vector, where
each element of the vector describes the interest the user has for each feature.
The elements of the vectors are matched with the feature value from above, to
find vulnerabilities to recommend to the user.

3.4 Domain-specific Knowledge

The recommendations are not only based on the user profile, but also on a set of
domain-specific knowledge, unique to the field of vulnerability assessment, and
the same for all users. Such knowledge is required both to provide recommen-
dations suitable for such a highly specific area of interest, but also serves as a
component to solve the cold-start problem. The domain-specific knowledge w is
represented in the same way as the user profile above.

3.5 Subsystem Weights

As described earlier, the recommender system is a hybrid system with three
major parts. The three parts all contribute to the final result of the recommender,
but they should be able to do so to different extents depending on the features,
see Section 4.1. The subsystem weights are fetched at point (c) in Fig. 1.

The subsystems are given a weight between 0 and 1. Let the vectors α,β,γ
describe the weights for the domain-based, knowledge-based, and content-based
subsystems, respectively. For any given feature i, the sum αi +βi + γi = 1. Note
that relative weight of each subsystem can vary between different features.

3.6 Similarity Functions

A similarity function compares a value from the user profile, called the target
value ti, with the feature value extracted from the vulnerability vi. We denote
this function simi(ti, vi), where 0 ≤ simi(ti, vi) ≤ 1. Higher value means that
the feature value is more similar to the target value. Here, we use the similarity
functions given below. For examples of other variants, see e.g. [13].

First, we use simdist which returns the absolute distance between ti and vi,
scaled to be in the range [0, 1] by knowing the minimum and maximum value.
Second we use a scoring function simmult which sees ti as a multiplier to multiply
the feature value vi with. Third we use simdaydist which describes the distance
in days between two values, implemented similarly to simdist. Fourth, we use
simcosine to calculate the cosine similarity between vi and ti, note that vi and
ti are vectors in this case. Fifth, we use simboost for Boolean values, where ti is
simply a constant which is returned if vi is true.



3.7 Generating Recommendations

Combining the building blocks from the sections above, a complete recommender
can now be described. The goal here is to describe a utility function U , which
takes a given vulnerability v as input, and outputs the utility value, i.e. the
user-specific severity assessment. As can be seen at point (f) in Fig. 1, the utility
function U is the final step in a series of actions.

Utility U for a vulnerability can be described as:

U =
1

d

d∑
i=1

αi · simi(wi, vi) + βi · simi(ui, vi) + γi · simi(ûi, vi) , (1)

where αi, βi, γi are the subsystem coefficients, simi is the similarity function
for the ith feature, wi, ui, ûi are the target values for feature i for the different
subsystems (i.e. elements of w,u, û respectively), and vi is the feature value for
feature i.

Because the similarity functions are limited to the range [0, 1], and αi +βi +
γi = 1, the output of U will be a value between 0 and 1.

3.8 Updating User Profile

For estimating the user profile û, we wish to combine the previous estimation
with the new data about the user’s preferences. We consider only input of vul-
nerabilities that the user is interested in, that is, positive training examples.
Then, the update function update can be expressed as a function of the form
û′ = update(û,v), i.e., a function taking a new vulnerability v, the current û,
and returning a new estimation of the user preferences û′.

We propose an approach inspired by [9], with some adaptions to make the
update function applicable for any type of feature, not only text. The proposed
update function is given by

update(û,v) = (mer1(û1, v1), . . . ,meri(ûi, vi), . . . ,merd(ûd, vd)) , (2)

where d is the number of features, and therefore elements in û and v.
For each pair (ûi, vi), a merge function meri is applied. The merge function is

similar to the similarity functions simi, but instead of comparing two elements,
it merges them. The merging needs to be handled different for each feature type,
and this construction is thus a generalization of [2, 9].

In this paper we use two different merge functions, mermma which is a merge
function based on the Modified Moving Average, and meradd which simply per-
forms an element-wise addition over two vectors ûi and vi.

4 Implementation

Given the theoretical model described in the previous section, the actual recom-
mender can now be constructed. This section describes such decisions for our



implemented recommender. We stress that this is an example implementation
of the model described in the previous section. Another implementation may
choose different features, weights, or functions.

4.1 CVE Features

The implementation has used several sources for vulnerability information. A
majority of the data is collected from NVD [11], but also other sites such as
CVEdetails [10], and Google have been used. A list of features extracted is
available in Table 1, and below we discuss the features in more detail.

Table 1. Feature selection in the implementation, feature types, weights of domain-
based (α), knowledge-based (β), and content-based (γ) subsystems, and finally simi-
larity and merge functions

Subsystem weights Functions

Features Data type α β γ sim mer

Impact metrics Categorical 0.0 0.5 0.5 simmult mermma

Exploitability subscore Numerical 0.0 0.8 0.2 simmult mermma

Authentication Categorical 0.3 0.35 0.35 simmult mermma

Access vector Categorical 0.3 0.35 0.35 simdist mermma

CWE Hierarchical 0.0 0.0 1.0 simcosine meradd
Published date Date 1.0 0.0 0.0 simdaydist N/A
Metaspolit exploits Boolean 0.3 0.7 0.0 simboost N/A
Linked external resources Numerical 1.0 0.0 0.0 simmult N/A
Google hits Numerical 1.0 0.0 0.0 simmult N/A

Impact metrics includes the impact metrics in the CVSS score, namely con-
fidentiality, integrity, and availability impact. These are categorical values
where the impact can be NONE, PARTIAL, or COMPLETE. In our implementa-
tion, we map these values to numerical scores of 0.0, 0.5, and 1.0 respectively.

Exploitability subscore is the numerical exploitability subscore from the CVSS
ranking, which estimates the ease of exploiting the vulnerability.

Authentication (CVSS metric) describes how many times an attacker needs
to authenticate before performing an attack. It is a categorical feature with
values NONE, SINGLE, or MULTIPLE. In our implementation, we map these
values to numerical scores of 1.0, 0.5, and 0.0 respectively.

Access vector (CVSS metric) describes the attack vector for the vulnerability.
It is categorical with the value NETWORK, ADJACENT, LOCAL. In our implemen-
tation, we map these to numerical values of 1.0, 0.5, and 0.0, respectively.

CWE ID categorizes vulnerabilities according to the type of the vulnerability.
Metasploit exploits is a Boolean value which describes if there is a Metasploit

module [12] available for this vulnerability.
Linked external resources is a numerical value which counts the number of

linked resources for a specific CVE on NVD.
Google hits is the number of Google search hits a specific CVE-ID has.



4.2 User Requirements Selection

When users start using the system, they should select what makes certain vul-
nerabilities more relevant to them. This is used to create the explicit user profile
u for the recommender. The user profile is constructed by rating the importance
of certain information about a vulnerability. The rating should be in the interval
of [0,1], and will be used to construct the vector u. User requirements can be
selected in many ways, in our implementation the user can rate the following
properties: confidentiality, integrity, and availability impact; exploit accessibility;
access vector; and authentication.

4.3 Similarity and Merge Functions

The choice of similarity and merge functions are described in Table 1. In general,
simmult is the most common similarity function, since it maps a higher feature
value to a more important vulnerability, by multiplying with some factor. In some
cases, the simdist distance similarity function is used instead, since this instead
measures how close the feature value is to the user’s preference. The Metasploit
and publication date features have straightforward similarity functions based on
their data type, while the CWE feature requires the use of the simcosine similarity
to correctly handle the comparison between CWE vectors.

If we instead look at merge functions, a modified moving average mermma is
used for most features, since it provides a simple way to converge towards to
user’s preference. For CWE, the special meradd function needs to be used such
that the vector of previously seen CWEs are merged with the newly rated CWE.
Finally, features with γi = 0 do not need merge functions, and are marked as
N/A in Table 1.

5 Evaluation

In this section we present an initial evaluation of our recommender. For the
evaluation, 8 users have been asked to participate. The users are working in
the industry, for five different companies, and are people with high security
awareness. These people are potential users of such a recommender.

Each user started by selecting their own user profile, with preferences de-
scribed in Section 4.2. Then, 30 sample CVEs were selected, the CVEs were
from different products, years, described different vulnerabilities, and were pre-
sented in a random order. The users were asked to rank these CVEs on a scale
from 0 to 10, where a higher value indicated higher interest to the user. The
users were asked to only consider properties of the CVE itself, rather than the
product it affected. To avoid bias from the CVSS base score, this score, as well
as the impact and exploitability subscores, were hidden from the user during the
evaluation. The users could however see other information in the CVE to make
an informed decision.

Then, CVEs were divided into training and test sets using k-fold cross-
validation, using k = 5. We performed an evaluation where both the user profile



and the training set were used to train the recommender, before generating
recommendations. As a comparison, we also compared the results to using the
CVSS2 environmental score, with explicit user profiles mapped to impact sub-
score modifiers. For both cases, the reference ranking was the manual ranking
performed by the users.

The RMSE and NDPM [15] values were then calculated between the refer-
ence ranking and the recommender output, and between the reference ranking
and the CVSS2 environmental score. The metrics can be seen in Table 2. We
see that the RMSE values of the recommender system are lower compared to
the CVSS environmental score. This indicates that the recommender has higher
predictive rating accuracy for all users in comparison to just using the environ-
mental score. The results also indicate higher rank accuracy in comparison to
the environmental score based on the NDPM metric, for the majority of test
users.

Table 2. RMSE and NDPM of recommender system and CVSS environmental score,
relative the reference ranking, for different users. A lower value means higher accuracy.

RMSE NDPM

Recommender Environmental Recommender Environmental

User 1 0.179 0.222 0.303 0.287
User 2 0.247 0.340 0.195 0.271
User 3 0.200 0.256 0.207 0.333
User 4 0.153 0.296 0.179 0.276

User 5 0.168 0.286 0.294 0.283
User 6 0.138 0.234 0.175 0.228
User 7 0.115 0.224 0.147 0.251
User 8 0.198 0.267 0.349 0.340

6 Conclusions and Future Work

We have defined, implemented and evaluated a recommender system providing
severity assessments of vulnerabilities. The recommender system is specialized
for vulnerabilities, and is designed to be useful specifically for the context of
vulnerability assessment. Recommendations are generated by considering both
users’ explicit preferences, and by considering their previous interactions with
the recommender. The system can be used with a variety of different inputs, and
can easily be extended with new features if desired.

The evaluation shows that the system gives better recommendations com-
pared to just using the CVSS environmental score. To be able to tune the pa-
rameters for optimized performance, data from more users is needed. However,
the results from our evaluation with real users suggests that it is possible to
improve the assessment using a recommender system approach. Other possible



future work includes consider negative feedback in the learning phase, which
may further improve the results when learning is enabled.
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