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Populirvetenskaplig sammanfattning

Kvantitativ analys ir en teknik som syftar till att forstda komplexa system genom
att anvinda matematisk och statistisk modellering. Det 4r en viktig del av dagens
finansiella system och innebir bland annat att modellera den slumpmissiga ut-
vecklingen av finansiella tillgangar, och f6r att forutspé verkliga hindelser som till
exempel forindring av riksbankens styrrinta. En mycket vanlig metod som anvinds
for detta dr sd kallad Monte Carlo-simulering. Enkelt uttryckt innebir detta att ett
stort antal slumpmissiga utfall frin en matematisk modell simuleras for att sedan
anvindas for att berikna ett forvintad virde av de eftersokta kvantiteterna.

Det finns idag ett 6verflod av matematiska modeller som kan finga manga av
de egenskaper som observeras i verkligheten. Problemet ligger i att alla modeller
styrs av parametrar som mdste anpassas till historisk data for att modellerna ska vara
praktiskt anvindbara. Aven om en komplex modell i teorin ir mer kapabel in en
enkel modell, kan den i praktiken prestera simre pa grund av att den 4r svirare att
kalibrera.

Denna avhandling syftar till att utveckla och forbittra metoder for att kalibrera
diffusionsprocesser, som dr den vanligaste typen av modeller som anvinds inom
finansiell matematik. I den forsta artikeln studeras en metod som tilldter parametrar-
na att flukcuera med tiden. Artikel tva och tre studerar simuleringsbaserade metoder
for att skatta fordelningen av observationer fran diffusionsprocesser. Den fjirde arti-
keln beskriver ett mjukvarupaket for att definiera och simulera diffusionsprocesser
mycket snabbt i programmeringsspriket Julia.
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Abstract

Diffusion processes are the most commonly used models in mathematical finance,
and are used extensively not only by academics but also practitioners. Nowadays a
wide range of models, that can capture many of the effects observed in financial
markets, are available. A very important task is to calibrate the models to observed
market data and to achieve a good fit, since a slight misspecification can have large
monetary consequences. The focus of this thesis is to investigate both theoretical
and computational aspects of parameter estimation for diffusion processes.

In the first paper we consider adaptive calibration where the model parameters
are considered to be part of a hidden dynamic state. We then use filtering techniques
to estimate the parameter paths. An optimal method for tuning the hyperparameters
using the expectation maximization algorithm is presented. The method is evaluated
on both simulated and real data, where it is shown to be robust.

The second and third paper cover simulation-based methods for density esti-
mation of diffusion processes using multilevel Monte Carlo estimation. This is a
technique that uses simulation on a hierarchy of discretization levels in order to
reduce computational complexity. In the second paper we provide an improvement
to existing multilevel kernel density estimation by proposing a bandwidth choice
that takes model-specific information into account. The third paper extends a
simulated maximum likelihood algorithm to the multilevel Monte Carlo framework.
Both methods are evaluated on simulated data, where they are shown to provide
improvements to the compared methods.

The fourth paper introduces a software package for high-performance simulation
of diffusion processes in the Julia programming language. Specific features of Julia
are utilized in order to create a simulation library that performs significantly better in
terms of computational speed compared to other available libraries, while allowing
models to be defined using mathematical notation instead of code.
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Introduction

This doctorate thesis in mathematical statistics aims to investigate both theoretical
and computational aspects of parameter estimation for statistical models used in
finance. This introductory chapter will give a brief overview of the theory used in
the enclosed papers.

While diffusion processes play an important role in many fields, their biggest use
amongst academics as well as practitioners is likely within the study of mathematical
finance. Diffusion processes were introduced to the field of mathematical finance by
Merton (1969), and have played a very important role ever since Black and Scholes
(1973) published their famous formula for option pricing. In 1997 Robert C.
Merton and Myron S. Scholes were awarded the Sveriges Riksbank Prize in Economic

Sciences in Memory of Alfred Nobel for their work.

Nowadays there is an abundance of models based on diffusion processes available,
but to be useful in practice it is necessary to calibrate them to market data. The first
three papers of this thesis investigate how the parameter estimation of diffusion
processes can be improved, by using theory from e.g. time series analysis, non-
parametric estimation and Monte Carlo simulation. The fourth paper documents an
open source software package written in Julia, which provides a flexible and highly
efficient implementation of simulation of diffusion processes, that was developed
alongside the other projects.

The rest of the introductory chapter of this thesis is organized as follows:
Section 1 introduces the concept of diffusion processes and gives an overview of
some of the theory related to these processes. Section 2 gives an overview of the
different parameter techniques for diffusion processes that are used in the enclosed

papers.
1 Diffusion processes

This section will introduce the theory required for a basic understanding of diffusion
processes and stochastic differential equations. We will also cover some important
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properties of diffusions, as well as methods for approximating the solution of
stochastic differential equations.

1.1 Ordinary differential equations

Differential equations are used to describe the relation between a function and one
or more of its derivatives. This type of relation appears almost everywhere around
us in nature and society, and it is therefore easy to understand why differential
equations play such an important role in so many fields. They are used to model
dynamic systems in a deterministic way in physics, engineering and economics to
name a few.

When a differential equation only includes functions and derivatives of a single
independent variable it is called an ordinary differential equation, in contrast to
partial differential equation. A simplified example is the evolution of funds in a
bank account B(#) when a deterministic and continuous interest rate  is applied,

dB(r) =rB(¢). (1)
dr
In reality though, not many systems in finance evolve in a deterministic manner,
certainly not prices of financial instruments and assets. It is therefore necessary to
consider a stochastic generalization of ordinary differential equations. Before this
can be introduced however, some additional concepts are required.

1.2 Wiener processes

The Wiener process, also commonly called Brownian motion, is a stochastic process
which is typically the driving process of stochastic differential equations.

Definition 1.1 (Wiener process) A stochastic process W which satisfies the following
conditions is called a Wiener process.

1 W(0)=0as

2. W has independent increments, i.e. for all t, < t; < t, < t5 it holds that
W (1) — W (2,) and W (t5) — W (t,) are independent stochastic variables.

3. W has Gaussian increments with W (t;) — W (t,) ~ N (0,1, — ,) for all
t, < 1.
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| | | | | | | |
0 01 02 03 04 05 06 07 08 09 1
2

Figure 1: A simulated sample path from a Wiener process.

4. W has continuous paths a.s.

Difference equations can be used as discrete approximations of differential
equations, so before considering a stochastic differential equation, we look at the
stochastic difference equation given by

X(t+h)—X(t)= ,u(t,X(t))/a + a(t,X(t))(W(r +h)— W(t)) ()

The natural way to go from this difference equation to a differential equation would
be to divide both sides with the step size 4, and let 4 go to zero. However, this is
not a viable strategy since it can be showed that the Wiener process is nowhere
differentiable with probability 1 even though it is continuous, see e.g. Karatzas and
Shreve (1998). This is illustrated in Figure 1, where an example of a sample path
simulated from a Wiener process is shown. Even if one was to study an infinitely
small subpart of the path, similar fractal-like behaviour would be exhibited.
Another option is to let / go to zero without dividing by 4 first, as a measure
to circumvent the problem of non-differentiability. Consider the telescoping sum

X(1)=X(0) = XX (5,1) = X (1), 3)
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where 0 = 7y < #; <--- < t, = ¢ is a partition of the time interval such that the
mesh size tends to zero as 7 goes to infinity. Using the difference equation in (2)
we can write this as

n—1

X<r>—x<o>=Z_Oy(e,x<e>><a+1—t,~>

n—1

+Z”(ti’X(ti))(W(fi+1) —W ().

i=0

(4)

Sums and integrals are closely related, and with some intuition we can let 7z go to
infinity to obtain the integral equation

t

t
Xuyaﬂmzj‘ngbﬂ¢+J‘ng@»dW@) 5)
0 0
Here the first integral is interpreted as a normal Riemann—Stieltjes integral, while
the second is non-standard since the integrator is a stochastic process. In the next
section we will look more closely on how such integrals are defined.

1.3 Stochastic integrals

A stochastic integral is an integral where the integrator is a stochastic process. Like
with normal integrals, we will need to pose some conditions on the integrand for
integrals such as

fOtZ(s) dW (s) (6)

to be defined. First, assume that Z is adapted to the filtration {F}"'}, . generated
by the Wiener process W. Loosely speaking, it means that the process Z can be
completely determined given the observed information generated by the process
W . Additionally, the stochastic process Z needs to satisfy

LEymﬂm<w. @)

We start by only considering integrands that are simple processes, i.e. processes

which are constant over all intervals on the form [z, 7, ;) in the partition 0 = 7, <

t; <--- < t,=t. In this case the stochastic integral is simply defined as

1(s) = j 2 dW () =S Z()(W (1) - W (1)), ®)

i=0
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For a general integrand which is not a simple process, the process Z is approxi-
mated using a sequence Z, of simple processes which converges as

nli)rgoftE[(Zn(s)—Z(s»z] ds =0. )
0

The stochastic integral for general integrands is then defined as a limit,

t t

[(t):f Z(s) dW (s) = limf Z,(s) dW(s). (10)
0 = Jo

Given the initial conditions, it can be shown that this limit is a well defined

stochastic variable, see e.g Shreve (2004).

Note that the stochastic integral defined in this section has forward-increments
which are independent of the integrator. This type of integral is called the It6
integral and is only one of many types of stochastic integrals. However, it has many
nice properties particularly suited for financial applications and we will therefore
assume that every stochastic integral in this thesis is an It6 integral.

In general, stochastic integrals have no analytic solution, however a special case
is

ft dW () = W(0)— W (r) = W (z), (1)
0

which is easy to see from the definition for simple integrands. Although we cannot
solve general Itd integrals, we can still characterize them. An important property of
the It6 stochastic integral is E[7(#)] = 0, which is easy to verify in the case of simple
integrands. The variance is then given by the It6 isometry which is stated as follows.

Theorem 1.1 (Itd isometry) 7he It6 integral defined in this section satisfies the relation

E[<Lt2(s) dW(s))z] =f0tE[Z(s)2] ds. (12)

In addition, assuming the right hand side is finite, we have that /() is a 7V -
martingale. This means that /(#) is adapted to the filtration {F}'},. with
E[|Z(#)|] < o0, and forall s < # the relation

E[1(s)| F]=1(s) (13)

is satisfied.
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1.4 Stochastic differential equations

We are now ready to define the concept of stochastic differential equations. The
general form is given by the expression

dX () = (£, X (2)) de + o (2, X (2)) dW (2), (14)

where u is called the drift function, and ¢ is called the diffusion function. This
differential should however just be viewed as a short form representation of an
integral equation, and should be interpreted as such

t

X(t)—X(O):foty(s,X(s))ds+f() o(e.X(5)dW (). (5)

One of the most fundamental theorems in stochastic calculus is It&’s lemma,
which can be viewed as a stochastic calculus analogue to the ordinary chain rule.

Theorem 1.2 (Itd’s lemma) Let f(z,x) be a CY%-function, and assume the process
X has a stochastic differential given by

dX () = (£, X (2)) de + o (2, X (2)) dW (2). (16)

Then the process Z defined as Z (t) = f(t,X (¢)) has the stochastic differential

d d 29?2 d
dZ(t):<8—{+,u£+%a—xJ:> dt+0£ dW (z), (17)

where the function arguments for u, o and the partial derivatives of f (¢, x) are left
out for readability.

This result can be used to transform a stochastic differential equation into a simpler
representation. For example, consider the geometric Brownian motion given by

dX(¢)=aX(z) de + 6X () dW(2). (18)

This expression cannot be solved directly, but if we use the transformation Z(#) =
ln(X (t)) together with Theorem 1.2 we instead get an arithmetic Brownian motion

given by
2

dZ(r)=<a—%> dt+ 6 dW (z). (19)



1. Diffusion processes

The solution to this equation is easily found by writing the full integral representation.
Together with the inverse transform X (#) = exp(Z(#)), the solution to the original
equation is given by

X(t):X(O)exp((d—%z)t—f—bW(t)). (20)

Theorem 1.2 can also be used to transform expressions into representations with
better numerical properties.

1.5 Discrete-time approximations

General stochastic differential equations rarely have explicit solutions, instead we
have to rely on numerical approximations, cf. Fuchs (2013). This is analogous to
using various difference approximation schemes for solving deterministic differential
equations. The most commonly used approximations are based on discretization in
time, whilst state dimension in kept continuous.

These time-discrete approximations are commonly characterized by two con-
vergence properties, strong and weak order of convergence, which are defined as
follows.

Definition 1.2 (Strong convergence) A general discrete-time approximation X h i

said to converge strongly of order y to the continuous-time process X at time t, if there
exists a constant C that does not depend on the time step b, and a hy > 0 such that

E[|X(r)=X"(2)|] < CH @21)

forall h € (0, hy).

Definition 1.3 (Weak convergence) A general discrete-time approximation X h s
said to converge weakly of order [3 to the continuous-time process X at time ¢, if there
exists a constant C that does not depend on the time step b, and a hy > 0 such that

E[2(x () - g(x" ()] | < €7 (22)

forall h € (0, hy), and for all functions g € C2(B+Y) with polynomial growth.
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The strong order of convergence provides a measure of the pathwise approximation
error, while the weak order of convergence provides a measure of the expected
approximation error. Note that if g is globally Lipschitz continuous and a scheme
has strong order of convergence y, then weak order of convergence 5 > y is
guaranteed. This is easy to verify using Jensen’s inequality. For many applications in
finance, it is enough to only consider the weak order of convergence. We will see
later though, that the strong convergence property plays an important role when
using a technique called multilevel Monte Carlo.

We will now look at a few commonly used discrete-time approximations for
the stochastic differential equations on the form

dX, = u(r,X,) dt +o(,X,) dW,, (23)

where arguments of X and W are changed to subscripts for readability. We
partition the interval, over which we are interested in the solution, in 7 parts as
0=r1y<7; < <7, =t. The schemes are then defined as a recursive relation,

where we define
Pe=Thi1 = % (24)
and

& =W =W, (25)

for convenience. In addition to the the ones presented here, a plethora of other
numerical schemes can be found in Kloeden and Platen (1992).

Definition 1.4 (Euler-Maruyama scheme) 7he Euler-Maruyama scheme defined
recursively by

X —XL +/‘(7k! )}’k+0(7k’ %)é’k (26)

The+1
is the simplest possible scheme for stochastic differential equations. The scheme has strong
order of convergence y = 0.5 and weak order of convergence 3 = 1.

Definition 1.5 (Milstein scheme) 7he Milstein scheme in one dimension defined by
X,:_k —X +/U(Tk, )/7&,"‘0'(7,%, )é’k
1 (27)
+EU(Tk’X“ ) (T/e’ )(516 _hk)

adds one additional term to the Euler-Maruyama scheme. This results in a scheme with
strong order of convergence y = 1 while the weak order of convergence still is 5 = 1.

8
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When applying the Milstein scheme on equations with state-independent diffusion term,
the simple Euler-Maruyama scheme is obtained. This implies that the Euler-Maruyama
scheme also has strong order of convergence y =1 for those cases.

Definition 1.6 (Implicit Euler-Maruyama scheme) A fully implicit variant of the
Euler-Maruyama scheme which is weakly consistent can be constructed as

X =%, +ﬂ(fle+1)X%+l)/’k+‘7(T/e+1’ )5/e’ (28)

where the corrected drift function in the one-dimensional case is defined by

a(t,x)=pu(t,x)—o(t,x)o (¢, x). (29)

It can be shown that this scheme has a weak order of convergence 3 = 1. This scheme
has a strong order of convergence y = 0.5 when the diffusion term is constant, which is
the same as for the explicit Euler-Maruyama scheme.

Deriving numerical schemes with strong order of convergence y > 0.5 generally
requires simulation of additional random variables originating from iterated It6
integrals. It is not always possible to sample these exactly, however see Wiktorsson
(2001) for an algorithm in the case of two-times iterated Itd integrals.

An example on numerical solutions for the geometric Brownian motion in (18),
when using the Euler-Maruyama and Milstein schemes defined in Definition 1.4
and Definition 1.5, is shown in Figure 2.

1.6 Numerical integration

With many applications in finance we are interested in evaluating expected values
like
E[g(Xr) | Fol, (30)

where X is the solution of some stochastic differential equation at time 7" and g
is a function evaluated at the solution. We will however for simplicity leave out the
explicit conditioning in the rest of this section.

In the rare case that the solution X is explicitly known, and independent and
identically distributed samples x; where 7 = 1,2,... can be simulated from the
distribution of the solution, we know from the strong law of large numbers that

gn= Nzg ()] = . 61
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I I
— Exact
—e— Euler-Maruyama
1.5 | | —= Milstein

0.5+

| | | | | | | |
0 01 02 03 04 05 06 07 08 09 1
t

Figure 2: An exact solution together with Euler-Maruyama and Milstein approxi-
mate solutions for the geometric Brownian motion defined in (18) with parameters
a=b =1 and initial value X (0) = 1.

The cost of computing the estimate ¢ 5/, in terms of number of random variables
that need to be simulated, is simply V. From the central limit theorem we have

VN (45— u) S N(0,02). (32)

Since ¢, is an unbiased estimator, it is clear that if we want to have an estimator
with a mean squared error €2 we should choose the number of samples and thereby
the computational cost as O(e72).

When the exact distribution of the solution to a stochastic differential equation
is unknown, we instead have to rely on approximations. If a numerical scheme
with step size 4 is used to generate samples xih , we can define a new estimate of the
expectation in (30) as

1 N
Zg / [g(X7)]. (33)

i=1

It follows from the weak order of converge stated in Definition 1.3 that the bias of
this estimate tends to zero as the step size goes to zero. To analyze the computational

10
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cost of the estimator ¢ 5’\, we decompose the mean squared error as

MSE(¢4) = - VIg (6] + Elg (X,) - g 0K (34)

Assuming Vg (X7)] < 0o, we can balance the two terms of the error decomposition.

2

If we seek to obtain an estimate with a mean squared error € it can be shown that

the optimal balance between the step size and number of Monte Carlo samples is
obtained by choosing 4 = O(¢'/#) and N = O(¢~2), where /3 is the weak order

of convergence of the numerical scheme. This will lead to a computational cost in

terms of number of random numbers given by N7/ h = 0(6_2_/% ). In particular,
the computational complexity when using the Euler-Maruyama scheme will be of
O(e73). In the next section we will introduce a brilliant technique that can reduce
this cost significantly to 0(6_2 (log 6)2).

1.7 Multilevel Monte Carlo

Multigrid methods are standard tools in numerical analysis that allow for significantly
reduced computational complexity by introducing a hierarchy of discretizations.
Multilevel Monte Carlo provides a class of methods inspired by the same ideas, that
can be used for reducing the computational cost when estimating expectations
using Monte Carlo simulations, see e.g Giles (2015) for an overview.

Assume we can generate approximations of the diffusion X~ on a series of grids
with step size b, = T/M[, where / =0,1,...,L and M > 2 is some integer, as
illustrated in Figure 3. We can then construct an approximation of the expectation

E[g(X7)] as

L
Elg (X)) = E[g (X)) + > Elg (X)) — g (X)), (35)

i=1

This can be seen as adding a series of gradually refined correction terms to an
approximation on a very coarse discretization level. This would be a superfluous
rewrite if all random variables were independent, but by letting the individual

. b, by, . .
correction terms g (X;') — g(X;'™") be based on the same underlying Wiener
process the variance is given by

Vg (X7H)] = VIg(X) + > VIg () — g (X)) (36)

11
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Figure 3: An example of the hierarchy of discretization levels for multilevel Monte
Carlo simulations. Here the step size at each level is divided by M =2 compared
to the previous level.

This is where the strong order of convergence in Definition 1.2 is important. Given
some minor extra conditions, see Kloeden and Platen (1992), it is possible to show
that there exists a constant C such that the variance of each correction term can be
bounded as

V[g(X2) = g (X)) < ChY. (37)

Additionally, this has the benefit of allowing simulation of both g(X;]/) and

g (XTh”‘) at the cost of simulating ¢ (XT}” ) since only one Wiener process have to
be simulated.
A Monte Carlo estimate of the approximated expectation E[g (XTbL)] is con-

structed as

P 1y S b
g =N g(xj0)+z_zg(xil)_g(xilil)’ (38)
Ny 7= A=
where N;,/ =0,..., L is the number of samples at each level. The variance of this
estimator is then given by
1y 1 by L h by
Vg = Vg + >0 VIg(") — g (X)) (39)
Ny =

and the computational cost in terms of number of random variables that need to be
generated is given by 3°7_ | N, M". By simulating more Monte Carlo samples on
coarser levels and fewer on finer levels, we typically achieve the estimation bias

12
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determined by the finer level but at a significantly reduced computational cost.
By balancing the number of levels and the numbers of Monte Carlo samples at
each level Giles (2008) showed that the computational complexity of obtaining an
estimate with mean squared error €2 can be bounded by

-2

€ y>1/2,
Cost(g") < C-{ ¢ log(e)* y=1/2, (40)
1-2y
T 0<y<1/2,

where C is some constant. This is a significant reduction compared to the cost ¢~
of the naive Monte Carlo estimate in Section 1.6.
In Paper B and Paper C we apply the multilevel Monte Carlo technique on two

methods for density estimation of diffusion processes.

2 Parameter estimation

In this section we are going to briefly cover the different parameter estimation
techniques for diffusion processes that are used in the enclosed papers. We will
assume our diffusion process is observed at known discrete time points, and that
the process is governed by an unknown parameter vector . in which we are
interested to estimate.

2.1 Maximum likelihood estimation

One of the most popular parameter estimation methods in statistics is the maximum
likelihood estimator, which is based on the idea that the observed data should be
most probable under the assumed model. The likelihood function is defined as the
joint probability density for all observations under the given set of parameters &,

L(0) = po(xp.,)

(41)
= po(%o 1_[]’6 i | %0.-1)

where we have used the short hand notation x,, = {x,...,x,} for the set of
observations. The maximum likelihood estimator is then defined as the set of

13
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parameters that globally maximize the likelihood function given the observed data,
ie.
6= argmax L(6), (42)
0O
where © is the possibly constrained parameter space. It is usually more convenient
to work with the log-likelihood function #(&) = log L(€) which has the same max-
imizing argument. The maximum likelihood estimator may therefore equivalently

be defined as

6= argmax £(9), (43)
ZEC)
where .,
£(0) =log pg(x,) + Zlogﬁe(xi | %0,i—1)- (44)
i=1

In practice the first term is usually disregarded when working with time series models.
Since diffusions are Markov processes, all densities on the form py(x; | xq.;_1)
reduce to a simple transition density pg(x; | x,_;). Therefore we can simplify the
definition of log-likelihood function for diffusion processes further to

46) = log pylx, | ._,)- (45)
i=1

The maximum likelihood estimator has numerous desirable properties under
rather general assumptions, see e.g Lehmann (1999). For example it is both
consistent and asymptotically efficient, as well as asymptotically Gaussian with
convergence given by

VN(6-6,..) SN0, 171 (46)

true)

Here 7, denotes the so-called Fisher information matrix defined by
]F =-E [H<€(6)true))] ’ (47)

where H (¢ (ﬁtrue)) is the Hessian of the log-likelihood function given a single ob-
servation evaluated in the true parameter. By approximating the Fisher information
it is straightforward to construct confidence intervals for the parameter estimates.

So far we have assumed that the correct distribution of the observations is
known. This is however rarely the case when working with diffusion processes.
For example, by applying a discretization scheme from Section 1.5 such as the

14
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Euler-Maruyama scheme we can approximate the unknown likelihood function
with a Gaussian likelihood. This will result in an estimator which is still consistent,
but no longer efficient. Maximizing this approximated likelihood is often referred
to as naive or quasi maximum likelihood estimation. This approach generally works
well when the discretizing step size is small, but might lead to large estimation bias
when the step size is too big.

In the rest of this section we will cover alternative techniques for approximating
the likelihood when the density of the observed process is unknown.

2.2 EM algorithm

The expectation-maximization (EM) algorithm formally introduced by Dempster
et al. (1977) provides an iterative procedure for finding maximum likelihood
estimates of the parameters in a statistical model with some form of hidden or
latent state. An example when this is particularly useful is when we are interested in
estimating parameters in a stochastic volatility process, where the volatility is not
directly observed, or when we observe our dynamical process x through a proxy y
such as option- or bond prices.

The idea of the EM algorithm is to extend the original maximum likelihood
problem into two closely related problems which individually are easier to solve than
the original problem. After providing an initial set of parameters, the algorithm
proceeds by alternating between two steps until convergence is reached, e.g. when
the change in parameters is small enough. In iteration 4 of the EM algorithm, the
steps are defined as follows:

E-step The first step of the algorithm is to obtain the objective function defined as
the expectation

Q(e’ ek) = E[logpﬁ(xlzn’ylzn) } yl:”’ek] : (48)

M-step The second step then involves finding the parameters that maximizes this
objective function,

04 =argmaxQ(6,6,). (49)
=0

The convergence properties of the EM algorithm are covered in McLachlan
and Krishnan (2008). For example it can be shown that the log-likelihood given
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by €(6,,) is guaranteed to increase with each iteration of the algorithm. The EM
algorithm however does not guarantee convergence to the global maximum. Despite
this, the EM algorithm is typically considered to be an easy and robust method
for obtaining maximum likelihood estimates, see e.g. Rydén (2008). For many
distributions of the exponential family the EM algorithm is particularly well suited,
since the M-step can be solved analytically without the need for costly numerical
optimization.

In Paper A we introduce an adaptive sequential estimation algorithm for
diffusion models based on the EM algorithm. The diffusion process is augmented
with a latent state describing the evolution of the model parameters. This hidden
state is allowed to randomly evolve according to some model dynamics governed by
a set of tuning parameters, which in turn are estimated from data using the EM
algorithm. In the next section we will cover a method that is used to compute
quantities that appear in the EM update equations derived in Paper A.

2.3 Filtering and smoothing

Filtering is a powerful tool used for state estimation and forecasting of state space
models. In finance filtering techniques are commonly used to estimate volatility in
stochastic volatility models.

As an example, consider that we are interested in recovering the short rate (),
i.e. the instantaneous spot interest rate, which we want to model using the Vasicek

model defined as
dr(t)zk(@—r(t)) dt + o dW (). (50)

Since the short rate is not a traded asset we have no direct observations. Instead we
have to rely on e.g. observed bond prices p(#, 7"), which for a large class of interest
rate models, including the Vasicek model, can be written on an affine form

P(t’ T) _ ea(t,T)—ﬂ(t,T)r(t)‘ (51)

The coefficients o(#,T) and (¢, T") depend on the choice of model, see e.g.
Bjork (2009). In this case where there is no observation noise it is easy to solve this
expression to recover the short rate. In finance however, there is rarely such a thing
as a single correct price. There is a difference in what price people are willing to sell
at and what people are willing to buy at, which is called the bid-ask spread. The

uncertainty can be modeled as a form of measurement noise. In this case filtering
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can provide an alternative approach to recover the short rate from observed bond
prices.

2.3.1 Kalman filter

Continuing with the example, by discretizing the Vasicek model with the Euler-
Maruyama scheme described in Definition 1.4 and assuming log p(#, 7") has
additive Gaussian measurement noise with zero mean, we get a system described by

r(t)=r(t—h)+x(@—r(t—h))h+7,, (52a)
logP(t,T)=a(t,T)—B(¢,T)r(¢)+¢,, (52b)
where 7, ~ N(0,02h). We see that both the state equation and measurement

equation are linear.
For general systems on the form

with hidden state x,, measurements y, and deterministic input signal %, we can use
the Kalman filter. In each step the filter equations provide an estimated mean and
covariance, which in the case of Gaussian system are optimal. Using the notation
xy; = Elx | 91, and Py = V[x, | yy,;] the Kalman filter can be described as
follows. The first step is the prediction step where we make predictions of the mean
and covariances of the hidden state and the next measurement,

Xplpo1 = AXp_y oy + By, (54a)
Py = APy AT+ Q, (54b)
Tejp—1 = CxXpppy + Dy, (54c)
PZM—l = Cpk‘k—l CT+R, (54d)
P/:CI)Z—l =Py - (54e)

In the second step we use the predictions and the next measurement to update the
filter mean and covariances,

_ pX) J -1
K= P/elk—l(P/e\/e—l) > (55a)
Xk = Xple—1 T K (7 _)’/e|k—1)’ (55b)
Phip = Prjp —K/ePZVe_lK/J (55¢)
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These steps are then repeated for each £ =1,..., N, where N is the total number
of measurements.

2.3.2 Kalman smoother

The Kalman smoother is closely related to the Kalman filter, but while the filter
provides estimates such as

xp1e = Elx | 1)y (56)
the smoother conditions on all the available data to get estimates such as
xp v = Elxg [ 1) 57)

This is achieved by running the filter backwards in time after the initial forward
filter. The recursive smoothing equations are defined as follows,

Ly =Py A Py (58a)
Xpn = %l + L (g1 (v — Xpgr)8)> (58b)
Py =P + Li(Ppyain = Prap) L (58¢)

In Figure 4 an example of the Kalman filter and smoother estimates for the
Vasicek model is shown. Looking carefully we can see that the Kalman smoother
indeed provides a smoother estimate.

2.3.3 Unscented Kalman filter

A major limitation to the standard Kalman filter is that it only works for linear
models. There are however many extensions to the Kalman filter which can be used
for general models on the form

xp=f () + 7 (59a)
Ve =g(x,) + € (59b)

One such non-linear filter is the unscented Kalman filter. The basic idea is to
cleverly select a number of points, called sigma points, in order to represent all prior
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Figure 4: An example of a Kalman filter estimate and a Kalman smoother estimate
for the Vasicek short rate model where the observations consist of the log price of a
single zero coupon bond.

central moments. In each iteration of the filter the sigma points are defined as

Xo,bll = Xpp> (60a)
Lokl =x/e|k+<\/ (d + I)Pk\k>i i=1,...4d, (60b)
Xi,/e\/e:xﬂle_(\/ MH)PW),-_d i=d+1,...,2d, (600

where (\/(d + 1)y /e)z‘ is the 7th matrix column. Alongside the sigma points a

number of weights for estimating mean and covariance are defined as

w = A/ (d + A), (61a)
we=A)(d+)+(1—a”+ ), (61b)
w'=w{=1/(2(d+12)) i=1,..,2d, (61c)

where some tuning parameters are introduced. A common choice for these are
k=107, «=0and =2, cf. Wan and van der Merwe (2000).

The sigma points are then propagated through the non-linear state function f
and predictions are computed using weighted average. Predictions for the measure-
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ments are obtained in a similar way. The full prediction step for the unscented
Kalman filter can be defined as

X k- 1:f(Xi/e 1k—1)> (62a)
Xk — 1-2”’ i klk—1> (62b)
Ppipr = Z w; (X, e = ) (X gy — X)) + Q, (62¢)

i=0

Vikie—1 = &(X; 41e-1)s (62d)

2d
Vi1 :Zwi Vi klb-1> (62e)
/e|/e ! Zw Vi bkt = b)) Vi b1 — app1)’ + R, (62f)
/e|/e | Z“’ Xy e = %) Ve = M) (62g)

The update step is then exactly the same as for the standard Kalman filter,

y -1
K= Pk|k VP (63a)
x/e|k:‘xk|k 1+Kk(.yk_.yk‘k71)’ (63b)

2.4 Kernel estimation

When little is known about the distribution of the observations we can either make
some strong assumptions or we can rely on non-parametric estimation methods.

The kernel density estimator is probably one of the most well-recognized
techniques for non-parametric estimation of probability density functions, see e.g.
Silverman (1986) and Wand and Jones (1995) for an overview of the topic. The
kernel density estimator is defined as

() = o> K25, (64

i=1

where x1,...,x" are independent samples from our unknown distribution.
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The foundation of kernel density estimation is the kernel function #: R — R
which can be any function as long as [*°_ %(#) du = 1. The two most common
choices of kernel function are the Epanechnikov kernel introduced in Epanechnikov
(1969) which is optimal in the sense of mean integrated squared error defined as

3 20
b() = Z(l—u ) if|u] <1, 65)
0

if |u| > 1

k(u)= e 2", (66)

The rth moment of a kernel function # is defined as ., (k) = [*°_ u"k(u) du
and if u,(#) is the first non-zero moment we say that the kernel is of order 7.
Both the Epanechnikov kernel and the Gaussian kernel defined above are of order
r = 2. It can in fact be shown that all non-negative and symmetric kernels are
of order » = 2. These kernels will guarantee that the resulting estimate satisfies
the requirements of a probability density function such as non-negativity and
integration to 1. While this is reassuring, it might be beneficial to choose a kernel
of higher order since these result in a lower estimator bias. For this reason kernels
of order 7 > 2 are sometimes called bias reducing kernels. It is possible to construct
higher order variants of the Epanechnikov and Gaussian kernels by multiplying the
original kernel with a polynomial factor, see Hansen (2005) for general formulas
for a larger polynomial family of kernels and Wand and Schucany (1990) for the
Gaussian family. A comparison of kernels of different orders is presented in Figure 5.

Although the Epanechnikov kernel is optimal, many other kernel functions
perform equally well in practice. Much of the literature on kernel density estimation
instead focuses on methods for selecting the smoothing parameter or bandwidth
8. If the bandwidth is too large the resulting estimate will be oversmoothed with
low variance but high bias, and if the bandwidth is too small the estimate will be
excessively noisy with high variance but low bias. It is necessary to balance the
variance and the bias of the kernel density estimator and this has lead to many
approaches being developed for solving the bandwidth selection problem, see e.g.
Gramacki (2018). The most widely used techniques include rule of thumb, plug-in
and cross validation methods.
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Figure 5: The Epanechnikov kernel and the Gaussian kernel of order » = 2 are the
most commonly used kernel functions, but both can be extended to higher order.
Here they are compared to their 4th order counterparts. Note that all kernels of
order 7 > 2 have regions where the function is negative.

It can be shown that the optimal bandwidth that minimizes the asymptotic
mean integrated squared error (AMISE) can be defined as

- (7')2R(k) >1/(2r+1)
) (wwaw(ﬂ”) | 7

opt

where R(f) = [ % f(u)* du. While many other bandwidth selection methods
are data-driven, the rule of thumb method introduced in Silverman (1986) proposes
to replace the unknown target density p in the expression above with the density of
a Gaussian reference distribution in order to be able to compute R(p(")).

In the context of diffusion processes we can estimate unknown transition
densities using simulation. By discretizing the process using a numerical scheme
from Section 1.5 we can generate the samples from a known distribution in order
to estimate an unknown density. Desired accuracy can be achieved by adjusting
the number of samples and the step size for the simulation. This idea was further
developed by Giles et al. (2015) to incorporate multilevel Monte Carlo simulation
of the diffusion process as a mean to reduce the computational complexity. In
Paper B we further develop this lower-complexity method to give more robust
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estimates at unchanged cost by proposing a reference distribution bandwidth which
is balanced to the rest of the multilevel algorithm parameters.

2.5 Simulated maximum likelihood estimation

Another method for estimating probability density functions related to kernel
estimation was introduced in Pedersen (1995) and in an earlier version of Brandt
and Santa-Clara (2002). By combining the law of total probability with the
Markov property of diffusion processes we can reformulate the transition density by
imputing an intermediate unknown sample x; as

p(xt|x0) :E[P(xt|x:) ‘ XO]
. f Dl 1) p(x, |x) d,.

We can then generate an empirical version of p(x,|x,) using Monte Carlo simulation

(68)

as
Py (x]x) = Zé‘ X, —x (69)

where & denotes the Dirac delta functlon. Replacmg p(x,]x) with pp(x,]x,) in
the integral above we obtain the density estimate given by

R -

b= 2 p(xlx), (70)

i=1

where the samples x’ can be generated using a numerical discretization scheme such
as the Euler-Maruyama scheme defined in Section 1.5. However, the expression
in (70) is still intractable since the transition density p(x,|x,) is unknown. The
final Pedersen estimator is thus obtained by also replacing this transition density
with a known density via numerical discretization of the diffusion process. An
illustration of the Pedersen estimator is shown in Figure 6.

The asymptotic properties of the Pedersen likelihood estimator are discussed
in Stramer and Yan (2007), where an optimal balance between the number of
Monte Carlo samples and the simulation step size is presented. In order to obtain a
root mean squared error of O(¢€) the Pedersen estimator has a computational cost
of O(e73) when the Euler-Maruyama discretization scheme is used. In Paper C
we adapt the Pedersen likelihood estimator to use the multilevel Monte Carlo
techniques from Giles (2008) in order to reduce the computational cost significantly

to 0(6_2 Iog(e)z).
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Figure 6: In the Pedersen likelihood estimator an intermediate data point x, is
imputed in order to estimate transition densities as p(x,|x,) = E[p(x,]x,) | x,].
The diffusion process is discretized using a numerical scheme, and samples of the
intermediate point x, are simulated using Monte Carlo (solid lines). The transition
density is then finally evaluated by replacing the expectation with a simple average

(dashed lines).
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3 Outline of the papers

This section gives a very brief overview of the papers included in this thesis.
Additionally, for each paper the individual contributions from Carl Akerlindh (CA)
and Erik Lindstrom (EL) are specified.

Paper A

Optimal adaptive sequential calibration of option models

In this paper we consider the problem of calibrating diffusion processes with adaptive
parameters using discrete noisy observations. By assuming the diffusion parameters
follow one of three different linear dynamic models and to be part of a hidden
state, the problem is formulated on state space form with a nonlinear observation
equation. The unscented Kalman filter is then used to recover the trajectories for
the diffusion parameters. This approach, however, introduces additional unknown
variables in the form of tuning parameters describing the evolution of the diffusion
parameters. We therefore propose to use the EM algorithm for estimating the hyper
parameters, and provide optimal recursive update equations for the considered
model dynamics. The method is evaluated on two models commonly used in
finance using simulated data as well as options on the S&P 500 index, where it is
shown to be robust.

My contribution The initial idea for this project was conceived by EL. Theoretical
derivations were performed jointly by CA and EL with equal contribution. The
implementations and collecting of numerical results were done by CA. The paper
was written jointly.

Paper B

A reference bandwidth for multilevel kernel estimation of densities and
distributions

In this paper we introduce a method for pointwise estimation densities and distri-
butions of diffusion processes, using multilevel Monte Carlo techniques for kernel
estimation. It is known that choice of bandwith is crucial, and it is important to
take model specific information into account. We improve on existing theoretical
derivations of multilevel kernel estimation by proposing a model-dependent band-
with using the rule of thumb method. Simulations show that this approach results
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in estimators that are significantly more robust and accurate than the compared
multilevel kernel estimation methods.

My contribution The idea for this project was developed by CA. Theoretical
derivations were performed mainly by CA, with the help of EL. The implementations
and collecting of numerical results were done by CA. The paper was written mainly

by CA, with the help of EL.

Paper C

Multilevel simulated maximum likelihood estimation of diffusion pro-
cesses

In this paper we take a different approach on density estimation for diffusion
processes, by deriving a multilevel Monte Carlo algorithm for simulated maximum
likelihood. It is known that this technique is robust and does not rely on choosing a
smoothing parameter. Additionally, we propose a technique for reducing estimator
variance by computing the first term in the multilevel sum analytically. This is
done by combining a fully explicit Gaussian numerical scheme with a fully implicit
Gaussian numerical scheme. The proposed multilevel estimator is tested on three
different models. It is seen that the estimator variance is reduced compared to the
non-multilevel method, when using the same bias and computational budget.

My contribution The initial idea for this project was conceived by EL. Theoretical
derivations were performed jointly by CA and EL with equal contribution. The
implementations and collecting of numerical results were done by EL. The paper
was written jointly.

Paper D
High performance simulation of diffusion processes with SDEModels.jl

This paper introduces a software package for simulating multivariate diffusion
processes in the Julia programming language. A novel approach is taken by allowing
a model to be defined using the same notation as the mathematical definition.
The expression is then automatically transformed into code using the powerful
metaprogramming tools available in Julia. By utilizing features such as automatic
differentiation and statically sized arrays, a highly performant software framework is
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created, without the need for multiple programming languages and thereby avoiding
the two-language problem. The simulation performance of the provided package is
compared to other available libraries, where it is shown to have significantly better
performance.

My contribution  All the work for this project was performed by CA.
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