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Abstract—In this paper we study reliability, timeliness and load
reduction in an hybrid Mobile Edge Computing (MEC)/Cloud
game streaming infrastructure. In our scenario, a user plays
a game streamed by the producer to their handheld device –
or User Equipment (UE). The UE communicates user actions
to the edge/cloud via the mobile communication infrastructure;
the object is to retrieve the latest game status, of which the
most important information is the rendered frame. Particularly,
we study reliability through replication in a number of MEC-
servers, timeliness through Age of Information (AoI) and load
reduction by leveraging the X2 interface at the edge, in order to
abort useless frame rendering computations. We translate it as a
scenario where a sink – representing the UE – is interested in the
freshest possible update from distributed nodes. Each node sends
updates following a Last Come First Served (LCFS) policy with
preemption. We consider two scenarios; the first is n parallel
LCFS systems sending updates, and the second adds a feedback
loop aimed at decreasing the number of jobs sent per second
by the nodes, thus decreasing the load per node. We analyze
the number of jobs sent per second and average peak Age of
Information at the sink, showing that the second scheme achieves
a significantly lower rate of jobs compared with the first, while
maintaining constant AoI, thus reducing the load at the edge. We
also find that using the feedback loop, we achieve the maximum
saving in transmitted jobs per second when the average arrival
rate per system is equal to the inverse of the average busy time
in every node.

Index Terms—Age of information; Queuing theory; Cloud
gaming; Edge computing.

I. INTRODUCTION

A gaming industry trend is the shift from the traditional
paradigm of locally installed software rendered directly on the
device hardware, to the streaming cloud gaming paradigm [1].
In this context, the game is streamed to the device, thus allow-
ing it to run in a platform independent manner. Processing is
offloaded to the cloud/edge, leveraging greater computational
power than that of the single device. Also, the shift is pushed
along since it helps the game producers to control piracy [2].

On the other hand, video game producers have to provide
the necessary cloud infrastructure to accommodate the in-
creased computational needs and increased bandwidth, which
brings high costs that may be difficult to cover fully [3].
Also, latency issues must be addressed, since a user is going
to experience poor Quality of Experience when delays are
larger than 100 ms from the moment of interaction with
the game to the rendered frame being displayed on their

device [4]. In this context, edge computing could be a solution
to the aforementioned issues, having lower latency, bringing
the computational core closer to the user, and being easy to
deploy.

The rise of Massively Multiplayer Online Game (MMOG)
demand added strain to the infrastructure, being affected not
only by the single user interaction, but also by other users
playing the same scenario, as opponents or allies. A user is
usually interested more in the current state of the game, being
it the scenario in which their character interacts, determining
score, victory or other rewards.

A suitable metric for the “timeliness” of updates is the Age
of Information (AoI) [5]. In the AoI view, the ’freshness’
of data is considered, which may not follow network delay
directly. In a sense, the cross layer nature of AoI, stemming
from it being a characteristic of the end-to-end information
flow, represents a broader view of information freshness than
delay does. To illustrate the difference between network delay
and AoI, consider a scenario with sensor data traversing a
single First Come First Served (FCFS) queueing system. If
the sensor data generation rate increases, the queueing delay
increases which in turn increases the delay through the system.
Decreasing the data generation rate leads to shorter delay
through the system, but at the same time, the time between
samples increase, which leads to larger AoI.

AoI has been considered in the contest of cloud gaming.
In [6] the authors study a system comprised of a device
sending user commands to a remote game server via the
network (e.g. in the cloud or at the edge). Then the command
is passed through a buffer to the game server that processes
it and creates the appropriate responses. Afterwards it goes
to a buffer that ends in a frame renderer, that finally renders
the frame and sends it to the device via the network. They
use a preemption with a time threshold τ (defined by the
system designers), in which a frame is considered obsolete and
replaced by a new frame if its age is greater than a function
of τ . They study the system and find a model describing the
average AoI at the user end.

On the other hand we consider an hybrid Mobile Edge
Computing (MEC) scenario/cloud based scenario (Fig. 1), with
replicated renderings being computed in parallel, for reliability
purposes when users are mobile. As the authors of [6] observe,
user commands are usually small in size and it is very unlikely
that a human will send more than 100 updates per second to
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Fig. 1. Mobile edge computing scenario.

the server. We then concentrate on the more computationally
intense part of frame rendering. We consider a user playing a
MMOG on a mobile device – i.e. their User Equipment (UE).
As the UE is moving, it could be within range of one or
more Base Stations (BSs), or eNodeBs in the LTE ecosystem.
eNodeBs are all interconnected via the X2 interface (or an
equivalent reliable link), in order to exchange data. Also the
interface is directly connected to a series of MEC-servers able
to perform calculations. A connection to the cloud is also
present, and can be considered as an additional MEC-server
for our purposes.

Since the user is interested in the latest status of the
game – that is, our piece of information – we want to send
them the freshest update. We then allow our MEC-servers
to preempt, i.e. substitute a staler task from the same user
with a fresher one. We can consider them as Last Come First
Served (LCFS) queueing systems with preemption. Also, for
reliability purposes, the calculation is offloaded to n MEC-
servers in parallel. MEC-servers could be loaded with a
number of tasks (jobs) that we can consider independent from
the calculation requested by our UE; we can then assume
the service time – or, more correctly, busy time, as they are
different in preemptive systems, see Section II – triggered by
the calculation as being exponentially distributed.

Given that the job is replicated in different MEC-servers,
upon the completion of a task by one of them, the staler jobs
in execution in the other n − 1 servers are aborted, since a
staler frame refresh is useless to the end user; also we want
to reduce the load on the MEC-servers, since computation
is the most expensive part of this infrastructure, especially if
leased from telecommunication/cloud resources providers and
paid per clock. We achieve this objective by broadcasting the
time stamp of the executed jobs to the other MEC-servers via
the X2 interface, thus letting them decide whether to abort or

continue the user task. Then the completed task is sent to the
eNodeB closest to the UE for transmission.

In order to model this scenario, we decouple the source of
commands and the receiver of the job (both being the UE in
Fig. 1), having different sources for different LCFS M/M/1
systems with preemption, and a central sink collecting the
pieces of information. The task substitution per MEC-server
is modeled by the preemptive nature of the single queueing
system. The task deletion on the other MEC-servers is modeled
via a feedback loop from the sink to every MEC-server
involved in the calculation, communicating the timestamp of
the freshest piece of information received. Also, we consider
exponentially distributed inter arrival times to account for
network delays between the UE and the MEC-servers. A more
detailed description of the model is in Section II.

LCFS systems with preemption have been studied, in terms
of average AoI, for single queuing systems [7]–[9]. Due to
the nature of our scenario, jobs arrive at the sink out of order;
AoI in conjunction with preemptive disciplines for multi-class
systems and jobs arriving out of order at the destination were
studied in [10]–[13].

In general, this paper considers a case in which a central
monitor (sink) is interested in the freshest possible update
from some remote systems, either performing a calculation, or
measuring a phenomenon. We have only a single information
flow. Optimal policies for systems with n transmitters and n
information flows sent through a shared resource were studied
in [14], [15], while in [16], [17] there is a central system
updating remote devices with different flows.

Specifically, we study two scenarios: first we find the num-
ber of jobs sent per second of several LCFS M/M/1 queuing
systems with preemption in parallel, all sending updates from
the same information stream to a sink. Then we add a feedback
loop in order to decrease the number of jobs sent to the sink,
while maintaining the same AoI at the receiver end. In the
latter, a back channel is used by the sink to communicate
directly with the queues. We find that by using the feedback
loop we can achieve a saving in sent jobs close to 50 % for
20 parallel servers.

Summarizing, the main contributions of this paper are:
• we study a MEC/cloud hybrid game streaming scenario

where rendering tasks are replicated in n MEC-servers
for reliability purposes; we add a mechanism to reduce
the overall load in the system; we model it with a series of
LCFS M/M/1 systems with preemption sending updates
to a central sink with a feedback loop in place;

• we consider AoI as a metric for timeliness, being users
more interested in the current state of the game;

• we find the expression of the number of jobs sent by a
number n of LCFS M/M/1 systems with preemption with
or without a feedback loop from the sink and show the
advantage in terms of saved job transmissions by using
the feedback, while maintaining the AoI constant;

• we find that the maximum saving in transmitted jobs
per second is achieved when the average arrival rate per
system, is equal to the inverse of the average busy time



period per system (as we will see in Section II service
time and busy time are different in preemptive systems);

• we also find the expression of the average peak Age of
Information (pAoI) at the sink side.

The rest of this paper is subdivided as follows. In Section II
the scenario is described in detail. In Section III an expression
for the number of jobs sent per second for both scenarios is
derived. In Section IV an expression for the average pAoI
is derived. In Section V the previous expressions are tested
against simulations and numerical results analyzed. Finally in
Section VI conclusions and future work are discussed.

II. MODEL DESCRIPTION

...

Sink

Fig. 2. Our scenario.

Our model is depicted in Fig. 2. Each source generates
pieces of information with an average rate of λ jobs per
second, modeling, for example, an exponentially distributed
delay between the UE and the MEC-servers. The servers
all serve jobs with an average rate of µ jobs per second,
modeling the fact that the MEC-servers are loaded with tasks
independent from our rendering. All the sources are about the
same information/calculation. We assume the communication
with the queues is instantaneous and without errors.

We will refer to the time generated when a job arrives to
the server without finding any other job in service as busy
time, while the time from the arrival of a job to the server
and its departure from the system will be referred as service
time. While in systems without preemption they are the same,
in preemptive systems they are different, as we will see in the
next paragraphs.

The sink is only interested in the freshest piece of informa-
tion, hence it is interested in minimizing the AoI at its end.
Both the inter generation times and the busy times follow
an exponential distribution i.e. their respective Probability
Density Functions (PDFs) are:

fA(t) = λe−λtH (t) , (1)

and
fS(t) = µe−µtH (t) , (2)

where H (t) is the Heaviside step function defined as:

H (t) =

{
1 , t ≥ 0

0 , t < 0
.

It is also worth mentioning that for the remainder of the
paper the PDF of a random variable X will be expressed
as fX(x) and its Cumulative Density Function (CDF) as
FX(x) = Pr {X ≤ x}. We will also assume that, unless
specified, all the random variables have non negative support.

Each queuing system employs preemption, in which each
time a fresher piece of information is generated, the new job
takes the place in the server of the previous one already in
service. Note however that since we consider exponentially
distributed busy times, the residual time has the same distri-
bution as the busy time. The service time experienced by the
new job will be the residual service time of the preempted
job. The substituted job is discarded. Since we consider only
one information stream, and each system has only one source,
there are no jobs in the queue; they can only be in service.

Having exponentially distributed inter arrival times and busy
times in a single LCFS M/M/1 system with preemption has
the property that the service time for a successful job (i.e. a
job that is not preempted) is also exponentially distributed, as
we will prove in Lemma 1. This means that, when preempting
the staler job in the MEC-server, the residual service time is
distributed in the same manner for all successfully rendered
tasks, irregardless of how many tasks have been preempted
before.

Lemma 1. In a single LCFS M/M/1 system with preemption,
with average arrival rate λ jobs/s and average busy time µ−1

s, the service time of a successful job (i.e. is not preempted)
T is also exponentially distributed with rate λ + µ jobs per
second.

Proof. We call A the random variable describing the interar-
rival times, that is exponentially distributed with rate λ jobs
per second Eq. (1). On the other hand, S is the random variable
describing the busy time, also exponentially distributed with
rate µ jobs per second Eq. (2).

The effective service time will be the service time experi-
enced by a successful job. It means is the service time of a
job given that the next arrival comes after the remaining busy
period, i.e:

FT (t) = Pr {S < t|S < A} =
Pr {S < t, S < A}

Pr {S < A}

=

∫∞
0

Pr {S < t, S < a} fA(a)da∫∞
0

Pr{S < a}fA(a)da

=

(∫ t
0
FS(a)fA(a)da+ FS(t)

∫∞
t
fA(a)da

)
∫∞

0
FS(a)fA(a)da

=
λ+ µ

µ

(∫ t

0

FS(a)fA(a)da+ FS(t) [1− FA(t)]

)
= 1− e−(λ+µ)t.

In the feedback case, the sink acknowledges each received
piece of information by broadcasting the latest information
generation timestamp to all the n queues. Upon receiving



the broadcast, each system checks whether it has a piece of
information in service older than the broadcasted generation
timestamp. If there is such a job in service, it is aborted, thus
saving a useless transmission.

...
System 0

Superposition

...
System 1

Filtering/Feedback

Fig. 3. Example of the time axis for two systems in parallel. Preemption,
superposition, and finally filtering.

In order to formally introduce our calculations, we will first
consider the behavior of jobs in our systems. Fig. 3 shows
an example of the timeline with two systems in parallel. In
each system a preemption happens independently from the
other system. Generation times are denoted by ti,j where i
is the number of the piece of information generated, and j
is the system where it is generated. In system 0, job −1
completes service after a residual service time of T−1,0. Then
job 0 arrives, and is preempted by job 1 and so on, until job
l completes service after a service time S0,0. Similarly, in
system 1 only job −1 and job l′ survive. In each system the
inter-generation times are denoted Bi,j .

The surviving jobs are then superimposed before filtering
takes place. Since job (−1, 1) is generated before job (−1, 0),
but arrives after the latter, job (−1, 1) is filtered out in the
AoI calculation. Then, the surviving inter-generation times are
denoted Di, where i is the job number in the resulting thinned
process. In general we are dealing with n preemptions based
on the generation times, a superposition, and filtering of staler
jobs that have managed to survive the preemption.

The AoI, which is a measure of the freshness of the
information stored at the sink, has a characteristic sawtooth
behavior. When a job is received, the AoI takes the value
of the time it took for the job to arrive, from generation to
reception (in our case, the service time). Then the AoI grows
with slope 1 until the next job is received. If the AoI of the
job is less than the current AoI, the AoI drops to the age of
the received job; otherwise it continues to grow with slope 1
until the next meaningful event.

In our scheme, jobs do not arrive in generation order
(Fig. 4). In the example, job 2 is received after job 3, then
is discarded by the sink. The average AoI is given by the
average area of a generic trapezoid Qj scaled by the effective

Fig. 4. AoI for a sink receiving jobs out of generation order. ti is the i-th
arrival time, while t′i is the corresponding (expected) departure time.

rate; an example of a trapezoid is highlighted in Fig. 4. We
call Dq the inter-generation times between jobs that are not
filtered out, and Yq the relative service times.

By using reasoning similar to that in [12] for out of order
update arrivals, and looking at Fig. 4, we can derive the
average pAoI Υ. It is defined as the average of the AoI just
before a job carrying fresh information is received (Υq in
Fig. 4). It gives the average “worst case scenario” for the
freshness of the updates and is useful in case there is an upper
limit on the AoI at the sink. It can be computed as the sum
of the q-th inter-generation time and the q-th service time:

Υ = E[Υ] = E[Υq] = E[Dq + Yq] = E[Dq] + E[Yq] . (3)

III. NUMBER OF JOBS SENT PER SECOND

A. LCFS systems with preemption in parallel without feedback
loop

Since we have only one source per system, a freshly
generated job in a generic system can only find either no jobs
in the system, or one job in service. In the former case, the
job simply goes into service. In the latter case, it substitutes
the existing job in the server, with a service time that is the
residual service time of the job it has substituted. Since both
the interarrival times and the busy times are generated from
a memoryless process, the residual service time will also be
exponential. If we call A the random variable associated with
the interarrival times, and S the random variable associated
with the busy times, then the probability that the generated
job will substitute a job in service is given by the probability
that the interarrival time is less than the residual service time.
Conversely, the probability p1 of not being filtered out is the
probability that the interarrival time is greater than the residual
service time, i.e.:

p1 = Pr{S < A} =

∫ ∞
0

Pr{S < t}fA(t)dt

=

∫ ∞
0

FS(t)fA(t)dt =
µ

λ+ µ
=

1

ρ+ 1
.
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Fig. 5. Time axis for two queuing systems.

Then the effective rate λe,1 for n systems in parallel will be:

λe,1 = p1nλ = n
λµ

λ+ µ
. (4)

B. LCFS systems with preemption in parallel and feedback
loop

We will now examine the second scenario, where feedback
from the sink is included. As a first example, we consider only
two systems in parallel, discarding the effect of preemption
(Fig. 5). If job 0 is generated at time 0, and job 1 is generated
after a time a1, then job 0 will be kept (that is, not discarded)
if and only if its service time s0 is shorter than the sum of the
arrival time a1 of job 1 and its service time s1. In the case
shown in Fig. 5, job 0 is discarded.

In general, if we take the generation time of job 0 as a
reference time, this job will not be discarded only if its service
time s0 is less than the minimum of

• the sum of all the interarrival times of subsequent jobs
ai , i = 1, . . . , n − 1, plus their relative service times
si , i = 1, . . . , n− 1, and

• the next interarrival time in system 0, a0 (job not pre-
empted).

Therefore, the total probability p2 for a job to not be discarded
due to preemption or filtering is given by:

p2 = Pr

{
S0 < min

i=1...n−1
{Ai + Si} ∧ S0 < A0

}
= Pr {S0 < min {{Ai + Si | i = 1 . . . n− 1} ∪A0}}

=

∫ ∞
0

[1− FQ(t)] fS(t)dt, (5)

where Q = min {{Ai + Si | i = 1 . . . n− 1} ∪A0}. Since all
the Zi = Ai + Si are independent and identically distributed,
we may drop the index i and write:

FZ(t) =

{
1 + λ

µ+λe−µt − µ
µ+λe−λt, λ 6= µ

1− (λt+ 1)e−λt, λ = µ.

The CDF of Q is simply:

FQ(t) = 1− [1− FZ(t)]
n−1

[1− FA(t)] . (6)

By using Eq. (6) in Eq. (5) and integrating over the support
of S0 we can finally write:

p2 =

∫ ∞
0

[1− FZ(t)]
n−1

[1− FA(t)] fS(t)dt.

By manipulating the above for λ 6= µ, by changing the
integration variable t to e−t = q, and using [18, (3.259.1)],
we get:

p2 =
µn

(λ+ µ)n−1

∫ ∞
0

[
1− ρe−(λ−µ)t

]n−1

e−(λn+µ)tdt

=
2F1

(
ρn+1
1−ρ , 1− n; ρ(n−1)+2

1−ρ ; ρ
)

(ρn+ 1)(ρ+ 1)n−1
, (7)

where ρ = λ/µ and 2F1 (a, b; c; d) is the hyper-geometric
function [19, (15.1.1)]. For λ = µ, by changing the integration
variable t to λt+ 1 = q we find:

p2 = λ

∫ ∞
0

(λt+ 1)
n−1

e−λ(n+1)tdt =
Γ(n, n+ 1)

(n+ 1)n
en+1,

(8)

where Γ(a, x) is the upper incomplete gamma function defined
as:

Γ(a, x) =

∫ ∞
x

ta−1e−tdt. (9)

Finally, by combining Eq. (7) and Eq. (8), we have:

p2 =

 2F1( ρn+1
1−ρ ,1−n;

ρ(n−1)+2
1−ρ ,ρ)

(ρn+1)(ρ+1)n−1 , λ 6= µ
Γ(n,n+1)
(n+1)n en+1, λ = µ.

(10)

Then the effective rate λe,2 for n LCFS queues with preemp-
tion in parallel and feedback loop will be:

λe,2 = p2nλ . (11)

IV. PEAK AGE OF INFORMATION

Since the sink discards jobs that are staler than the freshest
piece of information it has previously received, the AoI and
the pAoI at the sink do not depend on whether preemption
is used alone or in conjunction with feedback. The feedback
simply moves the filtering from the sink directly to the systems
and the only difference will be the number of jobs sent.

The formula to calculate the average pAoI was given in Eq.
(3). The average inter-generation time for jobs not preempted
and not filtered out is (by using Eq. (11)) simply:

E[Dq] = E[D] = (λe,2)
−1

= (p2nλ)
−1
. (12)

The average service time for jobs not preempted and not
filtered out is:

E [Yq] = E [Y ] = E [S0|S0 < Q] , (13)

where Q is the random variable defined in Eq. (6). From the
definition of conditional expectation we have:

E [Y ] =

∫ ∞
0

1− FS0|S0<Q(t)dt =

∫ ∞
0

1− FY (t)dt. (14)

We then find the CDF of Y as:

FY (t) =
Pr {S0 < t ∧ S0 < Q}

Pr {S0 < Q}
= p−1

2 Pr {S0 < t ∧ S0 < Q}

= p−1
2

∫ ∞
0

Pr {S0 < t ∧ S0 < q} fQ(q)dq



= p−1
2

(∫ t

0

FS(q)fQ(q)dq + FS(t)

∫ ∞
t

fQ(q)dq

)
= p−1

2

(∫ t

0

FS(q)fQ(q)dq + FS(t) [1− FQ(t)]

)
.

(15)

For λ 6= µ:∫ t

0

FS(q)fQ(q)dq = FQ(t)

− [λ+ (n− 1)µ] (−1)n+1(1− p1)n−1

×
∫ t

0

(
1− ρ−1e−(λ−µ)q

)n−2

e−(λ+nµ)qdq

+ nµ(−1)n+1(1− p1)n−1

∫ t

0

(
1− ρ−1e−(λ−µ)q

)n−2

× e−(2λ+(n−1)µ)qdq .

We notice that, by changing the integration variable q to z =
ρ−1e−(λ+µ)q:

ψ(ν; t) =

∫ t

0

(
1− ρ−1e−(λ−µ)q

)n−2

e−νqdq

=
ρ

ν
λ−µ

λ− µ

ρ−1∫
ρ−1e−(λ+µ)t

(1− z)n−2z
ν

λ−µ−1dz

=
ρ

ν
λ−µ

λ− µ

[
B

(
ρ−1;

ν

λ− µ, n− 1

)
− B

(
ρ−1e−(λ+µ)t;

ν

λ− µ, n− 1

)]
, (16)

where B(x; a, b) is the incomplete beta function [(6.6.1)][20].
By calling q1 = 1−p1 and using the previous in Eq. (15), for
λ 6= µ we obtain:

FY (t)|λ6=µ= p−1
2

(
FQ(t)− [λ+ (n− 1)µ] (−1)n+1qn−1

1

× ρ
λ+nµ
λ−µ

λ− µ

[
B

(
ρ−1;

λ+ nµ

λ− µ , n− 1

)
− B

(
ρ−1e−(λ+µ)t;

λ+ nµ

λ− µ , n− 1

)]
+ nµ(−1)n+1qn−1

1

ρ
2λ+(n−1)µ

λ−µ

λ− µ

×
[
B

(
ρ−1;

2λ+ (n− 1)µ

λ− µ , n− 1

)
− B

(
ρ−1e−(λ+µ)t;

2λ+ (n− 1)µ

λ− µ , n− 1

)]
+ FS(t) [1− FQ(t)]

)
.

We then plug the previous in Eq. (14), using a similar
procedure as for the previous, finally having:

E [Y ] |λ6=µ= p−1
2

×
(
pn−1

1

λn
2F1

(
1− n, ρn

ρ− 1
;
ρ(n+ 1)− 1

ρ− 1
; ρ

)
+ [λ+ (n− 1)µ] (−1)n+1qn−1

1

∫ ∞
0

ψ(λ+ nµ; t)dt

− nµ(−1)n+1qn−1
1

∫ ∞
0

ψ(2λ+ (n− 1)µ; t)dt

−
2F1

(
ρn+1
1−ρ , 1− n; ρ(n−1)+2

1−ρ ; ρ
)

µ(ρn+ 1)(ρ+ 1)n−1

)
, (17)

where the integrals of ψ(ν; t) (as defined in Eq. (16)) can be
solved numerically. For λ = µ:∫ t

0

FS(q)fQ(q)dq = FQ(t)

− e−n

nn−1

[
(n− 1) (Γ (n− 1, n(λt+ 1))− Γ (n− 1, n))

− Γ (n, n(λt+ 1)) + Γ (n, n)

]
.

By inserting the previous in Eq. (15) we obtain:

FY (t)|λ=µ= p−1
2

(
FQ(t)

− e−n

nn−1

[
(n− 1) (Γ (n− 1, n(λt+ 1))− Γ (n− 1, n))

− Γ (n, n(λt+ 1)) + Γ (n, n)
]

+ FS(t) [1− FQ(t)]

)
.

(18)

Finally by substituting the previous in Eq. (14) we obtain:

E [Y ] |λ=µ= p−1
2

×
[(

1− 1

µ

)
p2 +

e−n

nn−1
(n− 1)

∫ ∞
0

φ(n− 1, t)dt

− e−n

nn−1

∫ ∞
0

φ(n, t)dt

]
, (19)

where

φ(a, t) = Γ (a, n(λt+ 1))− Γ (a, n) .

Finally, by using Eq. (17) and Eq. (19) we obtain:

E [Y ] =

{
E [Y ] |λ6=µ, λ 6= µ

E [Y ] |λ=µ, λ = µ
. (20)

By summing up Eq. (12) and Eq. (20), we finally find the
average pAoI Υ:

Υ = E[D] + E [Y ] . (21)
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Fig. 6. Effective rate, simulation vs analytical.
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Fig. 9. Percentage of saved jobs transmissions per second, isometric view.
The red line is the line where ρ = 1.

Fig. 10. Percentage of saved jobs transmissions per second, view from a plane
parallel to the axis representing n and the one representing the percentage of
saved job transmissions per second. The red line is the line where ρ = 1.

V. NUMERICAL RESULTS

We conducted simulation studies using OMNeT++ [21]. We
fixed λ = 100 s-1 – i.e. the maximum number of actions
per second the user could send, as described in Section I
–, n = {5, 10, 20} and let µ vary between 30 and 200
fps (frames per second). All plots are presented with 95%
confidence intervals, allowing for a sufficient warm-up period
before taking measurements. All the plots make use of a black
and white printer-friendly and accessible color scheme [22].

First we checked the effective rates (Eq. (4) and Eq. (11))
against the simulation (Fig. 6). As we can see the simulation
agrees with the analytical results. Then we tested the pAoI
(Eq. (21)) against the simulations (Fig. 7), again confirming
our results. We can see that the pAoI never goes over the 100
ms threshold, after which, the user starts to perceive the lag.



We then plotted in Fig. 8 the percentage of saved jobs trans-
missions per second using the feedback mechanism, defined
as:

λe,1(λ, n)− λe,2(λ, n)

λe,1(λ, n)
· 100 =

(
1− p2(ρ, n)

p1(ρ)

)
· 100. (22)

As we can see, even at a low number of systems in parallel,
there is a substantial saving in jobs sent per second. Also we
can see that there is a maximum in ρ = 1 (dashed vertical
line) independent from n. In order to confirm our finding we
plotted the percentage of saved jobs against both n and ρ.
In Fig. 9 the isometric view, where the red line is the value
of the percentage when ρ = 1. We can appreciate the fact
that effectively, for a fixed number of systems, the maximum
job saving happens at ρ = 1, by taking the view from a plane
parallel to the axis representing n and the one representing the
percentage of saved job transmissions per second (Fig. 10).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied reliability, timeliness and load re-
duction in an hybrid MEC/cloud game streaming infrastructure
by modeling it as a network of M/M/1 LCFS systems with
preemption. In particular, reliability is given by task replication
in n MEC-servers and timeliness is analyzed through the
Age of Information metric. We addressed load reduction by
leveraging the X2 interface at the edge, in order to abort staler
computations, and translating the mechanism as a feedback
loop from a sink to the various queueing systems.

We studied our model, with and without a feedback loop
aimed at decreasing the number of transmissions from the
nodes, while maintaining low average AoI at the sink. We
have derived expressions both for the number of jobs sent per
second for the two scenarios, and the peak age of information,
and compared them to simulations.

We found that the use of the feedback loop significantly
decreases the number of jobs sent, thus saving transmissions,
that translates to reducing the load per MEC-server. We also
found that in order to maximally reduce transmissions with
the feedback loop in place, for a fixed number of systems,
the optimal value is when the average arrival rate equals the
inverse of the average busy time in all the systems.

Future work will involve the calculation for an expression
for the average AoI, the addition of a delay in the feedback
loop to study possible long transmission times from the UEs,
the introduction of an error channel both from the UE to the
edge and back, and the introduction of a limited resource
channel involving collisions. Also, in order to account e.g.
for different delays from the MEC-servers, different service
rates and distributions for the busy time could be taken into
account, modeling different routes the piece of information
takes in order to reach the UE.
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