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Abstract

Things such as organizations, persons, or locations are ubiquitous in all texts cir-
culating on the internet, particularly in the news, forum posts, and social media.
Today, there is more written material than any single person can read through
during a typical lifespan. Automatic systems can help us amplify our abilities to
find relevant information, where, ideally, a system would learn knowledge from
our combined written legacy. Ultimately, this would enable us, one day, to build
automatic systems that have reasoning capabilities and can answer any question
in any human language.

In this work, I explore methods to represent linguistic structures in text, build
processing infrastructures, and how they can be combined to process a compre-
hensive collection of documents. The goal is to extract knowledge from text via
things, entities. As text, I focused on encyclopedic resources such as Wikipedia.

As knowledge representation, I chose to use graphs, where the entities corre-
spond to graph nodes. To populate such graphs, I created a named entity linker
that can find entities in multiple languages such as English, Spanish, and Chi-
nese, and associate them to unique identifiers. In addition, I describe a published
state-of-the-art Swedish named entity recognizer that finds mentions of entities in
text that I evaluated on the four majority classes in the Stockholm-Umeå Corpus
(SUC) 3.0.

To collect the text resources needed for the implementation of the algorithms
and the training of the machine-learning models, I also describe a document repre-
sentation, Docria, that consists of multiple layers of annotations: A model capable
of representing structures found in Wikipedia and beyond. Finally, I describe how
to construct processing pipelines for large-scale processing with Wikipedia using
Docria.
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Att lära datorn hitta kunskap i text genom namngivna saker

Marcus Klang
Institutionen för datavetenskap

Lunds universitet
Lund, Sverige

marcus.klang@cs.lth.se

Det finns idag massvis med kunskap på Inter-
net och det ökar konstant, långt mer än en en-
skild människa kan ta till sig under en livstid.
Hur lär vi datorn att hitta kunskap och på så
sätt förstärka människans förmåga?

1 Namngivna saker

I det svenska språket så använder vi namn för
att hänvisa till saker och ting. Ta meningen:

Jag köpte kaffe på LED-café i E-
huset.

Här finns två namngivna saker: LED-café och
E-huset. Utifrån meningen kan vi också utläsa
att LED-café är en plats där man kan köpa
kaffe. Det finns en angivelse om var detta
café finns: i E-huset. Men denna beskrivn-
ing är inte komplett. Läsaren förväntas känna
till var E-huset finns. Låt säga att vi kände till
alla platser i världen och hur dessa förhåller
sig till varandra, ett nätverk av saker. Då kan
vi slå upp E-huset och utläsa att det finns i
Lund. Genom detta nätverk så finns informa-
tion som att staden Lund finns i Skåne som
tillhör landet Sverige på planeten Jorden och
så vidare.

Kunskap om namngivna saker kan alltså
användas för att utöka och komplettera infor-
mation som kommer i bitar och på så viss
tillföra mer information än vad som fanns från
början. Detta kan användas för att hjälpa da-
torer att förstå innehåll och kopplingar i en
text. Människor kan också hjälpas genom att
datorn kan påvisa kopplingar och tillföra bak-
grund till ett inlägg eller nyhetsartikel som en
läsare möjligen inte kände till.

Andra användningsområden inkluderar att
sammanfatta vad en nyhetsartikel handlar om
baserat på vilka namngivna saker som nämns,
som t ex personer, organisationer och platser.
Ett nätverk av saker kan också användas för
att ge svar på frågor som genom att koppla
fakta till saker:

Hur många är bosatta i Lund?

Namngivna saker fungerar som ingångar i
ett nätverk som kan användas för tillföra fakta
och kopplingar mellan olika saker.

1.1 Uppslagsbok

Att manuellt skapa en uppslagsbok och ett
nätverk av namngivna saker och ting tar my-
cket tid. Mitt arbete handlar om att göra detta
automatiskt från information som redan finns
och det börjar med att lära en dator känna igen
namngivna saker i en text.

Det som då behövs är ett uppslagsverk
över namngivna saker. Wikipedia1, är en fri
encyklopedi online med artiklar skrivna av
användare runtom i världen och täcker idag en
stor mängd ämnen samt finns i 294 editioner,
mestadels motsvararande riktiga språk.

Många artiklar på Wikipedia berör namn-
givna saker som personer, platser, organisa-
tioner, skapade verk och mycket mer. Genom
Wikipedia kan vi skapa en grundläggande
katalog av namngivna saker. Artiklar på
Wikipedia innehåller också länkar till andra
artiklar vilket möjliggör att en dator automa-
tiskt kan finna kopplingar mellan saker bara
för att de ofta nämns ihop.

1https://www.wikipedia.org/
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Figure 1: Att gå från artiklar på Wikipedia till ett nätverk av saker.

Tillsammans med Wikipedia finns ett sys-
terprojekt vid namn Wikidata2 som har som
mål att skapa ett nätverk av saker genom
manuellt arbete, en s.k. kunskapsgraf. Wiki-
data ger unika namn till artiklar på Wikipedia
med något som liknar ett personnummer, ett
s.k. Q-nummer. I Wikidata benämns Sverige
som Q34 och Lund Q2167. Wikidata in-
nehåller fakta som exempelvis antalet per-
soner bosatta i Lund.

Wikidata kopplar också ihop artiklar
skrivna på olika språk vilket möjliggör att vi
kan ta del av kunskap från många olika språk.
Wikidata är ett pågående projekt som inte är
komplett där en del information endast finns
som brödtext inuti en artikel.

Vi använder Wikidata som en uppslags-
bok över vilka saker som kan kopplas och
använder det för att slå samman information
från artiklar skrivna på 9 språk i Wikipedia3.
Denna sammanslagningen möjliggjorde att vi
kunde skapa ett system som kan hitta och kop-
pla namngivna saker i språk som engelska,
spanska och kinesiska.

En egenskap som Wikipedia, Wikidata, och
världen i stort har är att det finns namn som
kan betyda flera saker. Exempelvis, stadsnam-
net ”Lund” är ett namn som använts på städer
i Norge, England, Kanada och USA. Att finna
vilken namngiven sak som passar ett namn är

2https://www.wikidata.org
3Svenska, engelska, tyska, spanska, kinesiska, ryska,

franska, danska och norska

kärnpunkten i mitt arbete och beror på om-
givningen där namnet nämns.

För att förenkla problemet något, så har
fokuset varit att länka namn av utvalda kate-
gorier: personer, organisationer, platser, byg-
gnader, flygplatser, m.m.

2 Hitta namn

Att lära en dator hitta namn kan initialt
ske genom att skapa ett antal enkla regler,
åtminstone för språk som liknar svenska. Men
förr eller senare så kommer antalet regler bli
så stort att det kräver mycket tid för att ut-
forma dessa. Som alternativ kan denna pro-
cess automatiseras genom att låta en dator
hitta mönster och på så sätt komma på re-
gler själv. Det som krävs är exempel på namn
och var de finns i en mening. Detta kallas för
maskininlärning. Den metod som vi tillämpat
är s.k. artificiella neurala nätverk som är
gjorda för sekvenser4 anpassade för att lära sig
från ord i följd.

Genom dessa neurala nätverk så kan vi
lära en dator hitta namn som finns i vanliga
meningar. Dessutom kan nätverken säga om
namnet speglar en person, plats, eller organi-
sation, m m.

2.1 Koppla namngivna saker
När väl namn har identifierats, så ska dessa
kopplas till vår uppslagsbok bestående av Q-
nummer i Wikidata. Detta gör vi genom att

4Eng. Recurrent Neural Network, specifikt LSTM



analysera vilka saker som ofta förekommer
ihop eller hur saker specifikt namnges. På så
sätt väljer vi det Q-nummer som är mest rele-
vant bland på de alternativ som finns.

3 Infrastruktur

Genom att kombinera alla 9 språk som vi
använt så får vi en stor samling skriven text.
Bara engelska Wikipedia för sig själv in-
nehåller vid skrivande stund 5.9 miljoner ar-
tiklar och över 3 miljarder ord.

För att kunna samla in relevant information
från textkälla som denna krävs en infrastruk-
tur. En viktig aspekt är hur man kan represen-
tera dessa artiklar och hur man kan tillföra in-
formation som namn och kopplingar till saker.

En viktig bit när man har mycket text
som ska bearbetas är att det kräver mycket
beräkningskraft, vilket innebär att flera da-
torer behövs för att lösa uppgiften inom rimlig
tid.

3.1 Struktur

Vårt språk består av ord i meningar, som
kan samlas i stycken och i flera nivåer tills
det exempelvis kan utgöra en bok. Orden vi
använder och vilken följd dessa har är inte
slumpmässig, det finns en ordning. Man
kan t ex tillföra ordklass, alltså om ordet är
ett substantiv som ”Lund” eller ett verb som
”hitta”, preposition som ”under”, pronomen
som ”hen” osv. Vi kan utöver detta t ex koppla
ihop namn som ”Anna” och ”hon”, ”Björn”
och ”han” som nämns upprepade gånger i en
text.

Dessa strukturer som återfinns i vårt språk
kan vi lära en dator att hitta. Tyvärr är det
en uppgift som ofta kräver att flera människor
och forskare arbetar tillsammans. Konkret in-
nebär det att vi delar program och lösningar
med varandra som är gjorda för att infoga
olika strukturer. Kruxet är att alla dessa pro-
gram använder olika språk för att säga hur en
struktur ska se ut.

Vi har utvecklat en metod som kan spara
dessa strukturer och så att säga förena
olika språk och samtidigt hantera successiv
utökning av nya strukturer med fokus på stora

mängder text. Idén går ut på att konvertera
strukturen till lager. Tänk dig ett kalkerpapper
som ligger ovanpå varandra. Ett kalkerpapper
där man har understrukit var ord finns med or-
dklasserna undertill substantiv, verb, osv. Ett
annat papper innehåller var namnen finns, ett
beroende mellan ord, osv.

Detta sätt att lagra struktur kan användas
för att tillföra viktig kunskap i text som sedan
kan delas, förändras, och utökas med ny infor-
mation givet andra metoder.

4 Kunskap från nätverk

Vi kan slutligen använda namngivna saker och
identifiera att t ex ”Måns Zelmerlöv” är son
till ”Birgitta Sahlén”. Att ”Lund” hade en
befolkningsmängd på 91 940 (2018) och att
Sverige tillhör EU. Denna information har vi
lärt en dator att känna igen och kan i framtiden
använda för att besvara frågor.

5 Sammanfattning

Genom att använda namngivna saker i van-
lig text så kan vi tillfoga kunskap och bak-
grund genom ett nätverk av saker. Ett nätverk
som kan hjälpa datorer och människor att
förstå innehållet. Genom en infrastruktur som
kan bearbeta miljarder de ord som finns i
Wikipedia så kan vi hitta namn och koppla
saker till ett nätverk av saker som Wikidata.



Introduction

1 Introduction

This thesis deals with the construction of repositories containing facts or things
derived from collections of texts. In the past 30 years, the online availability
of such collections, also called corpus, plural corpora, literally “body” in Latin,
has increased considerably. Their style, genre, and quality vary from the free-
form nature of tweets, comments, and forum posts to the stricter style of books,
encyclopedic, and news articles.

By reading and processing texts, we can gather a wealth of knowledge. In
addition, using prior structured knowledge, in the form of graphs, allows us to
reference known things and add new connections between them.

The focus of this thesis is to identify things in text, such as persons, organiza-
tions, locations, works of art, etc. and disambiguate them into unique references.
We can then use these things, also called entities, as nodes in a graph to create
a web of knowledge. Building automatic systems to carry this out requires first
some prior structured facts on the entities and how they relate. Then, mapping
entities in text to nodes in graphs requires knowledge from corpora. For open-
domain identification, this entails that corpora must cover a large range of topics.
This problem is easier to solve, in practice, when the topics or entities are well
delimited in the text, i.e. when the texts are divided into sections which loosely
correspond to an entity.

Automatic systems use machine learning: Techniques allowing a machine,
for instance, to create semantic models of entities and then identify them in a
text. The machine learning models are trained to find patterns in natural language;
they often rely on the manual annotation of structures in texts or on statistical
patterns derived from large corpora. The size of the collected corpora is important
as natural language evolves and changes. This thesis deals with contemporary
language and this enabled us to use pretrained language models and other existing
resources.

Wikipedia is a free online encyclopedia with articles on a large range of topics,
hosted by the Wikimedia Foundation. Wikipedia’s content is written by users



2 Introduction

from all around the world; divided into 294 active editions1, where most of them
correspond to distinct languages. Wikipedia is permissively licensed and can be
downloaded in bulk, making it one of the largest available textual resources with
few restrictions online. This kind of corpora matches the openness, contemporary
language, size, and variation needed to serve as the primary knowledge source for
this thesis.

We used Wikipedia to bootstrap the identification of what an entity is and how
entities relate. However, Wikipedia is not the golden standard of truth and one
must always consider the risk of untruth as it is user-driven with few restrictions
on what can be added. We assumed, nonetheless, that Wikipedia has enough
content, users, and a proper moderation by the community itself, so that it is
as close as we can get to the truth today in a freely accessible resource. Most
importantly, it is a resource accessible and modifiable by anyone with an open
internet access.

Processing and transforming large corpora with millions of documents such
as Wikipedia requires a practical methodology, a processing infrastructure. Al-
though some frameworks exist such as UIMA (Ferrucci & Lally, 2004), these
frameworks introduce undesired complexity when used as an evolutionary and
prototyping tool in research. The same applies to the construction of processing
pipelines, introducing technical challenges in executing and combining the out-
put from different tools within a pipeline. Therefore to process the encyclopedic
corpora and identify entities, I designed and built new infrastructure tools. In
this thesis, I focused on three essential parts of such an infrastructure: document
representations, efficient storage techniques, and methods to create processing
pipelines operating in parallel distributed across multiple computers.

1.1 Outline
In this part of my dissertation, I explain and connect the elements I designed to
create graphs of entities from text. It consists of a machine learning pipeline for
named entity recognition and entity linkage. In addition, as the volume of data
requires a nontrivial architecture, I describe how I built the infrastructure and
document data representations.

The outline of this introductory chapter is as follows:

• Section 2, Natural language processing, introduces the concept of a knowl-
edge graph and the spectrum of structure complexity;

• Section 3, Corpus, describes the main text collections I used in this thesis;

• Section 4, Infrastructure, introduces frameworks I designed for large-scale
computation and considerations when adding structure and processing text;

1https://en.wikipedia.org/wiki/List_of_Wikipedias

https://en.wikipedia.org/wiki/List_of_Wikipedias
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• Section 5, Machine learning (ML), describes ML concepts in relation to
this work;

• Section 6, Data representation, describes how to structure text for machine
learning;

• Section 7, Models, introduces machine learning models I used in this work;

• Section 8, Document database, introduces a document indexing tool and an
online frontend to annotate documents.

• Section 9, Named entity recognition, introduces methods to find names in
arbitrary text;

• Section 10, Named entity linking, takes the recognized names and links
them to an entity repository.
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2 Natural Language Processing (NLP)
The Internet has profoundly changed the way ideas and information reach us from
distant places. The steady increase of daily text production throughout the 21st
century has made it more difficult to overview and navigate available information.
Its amount today is more extensive than any single human being can read under a
typical lifespan. Machines can hopefully provide a way to amplify our intellectual
abilities through the development of systems that understand natural language.
It is already the case that these machines can process and transform text into
structured resources that can serve as the basis for many applications.

Typical NLP applications include spell-checkers, word predictors, multilin-
gual translation systems, grammar checkers, synonym generators, the automatic
construction of knowledge bases, entity search, interactive assistants or agents
such as Apple Siri, Amazon Alexa, Microsoft Cortana or, Google Assistant, and
much more.

Systems built using NLP often start from small to large collections of text
from various sources such as news articles, the web, or books. In this thesis, I
mostly used multilingual versions of Wikipedia (Klang, Dib, & Nugues, 2017;
Klang & Nugues, 2016a, 2016b, 2016c, 2017, 2018b, 2019b).

In the next sections, I outline the building blocks of machine reading from
the lowest level of textual representation in machines, to syntax, semantics, and
finally discourse or top-level structures.

2.1 Knowledge Graph
In this section, I discuss how knowledge graphs can represent entities and knowl-
edge about them.

Definition. There are multiple definitions of what a knowledge graph is in the
literature. Ehrlinger and Wöß (2016) provide a selection of plausible definitions
and an attempt at a single definition. In my thesis, I used Wikidata, a Wikimedia
Foundation project and I followed their definition of a knowledge graph.

Wikidata is a database describing things found in Wikipedia. These things
frequently correspond to a single Wikipedia page as, for instance, the city of Lund.
Each thing is called an item in the vocabulary of Wikidata. Figure 1 shows that
various kinds of information that can be attached to these items: Factual state-
ments that describe a property such as where a person has been educated, a short
description of the item, possible aliases, references to these property-value claims,
etc.

In Wikidata, each thing is uniquely identified using a naming system made up
of a single letter and a number, e.g Earth is identified as Q2 and Sweden as Q34.
Properties use a different letter: P, e.g. the mass property for Earth is P2067; the
official name of Sweden is described by a statement having the type of P1448.
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.org/wiki/File:Datamodel_in_Wikidata.svg
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Example. As a complete example of how a text is transcribed into a graph struc-
ture in Wikidata, the sentence:

Douglas Adams was educated at St. John’s College between 1971
and 1974.

is represented as a statement, see Figure 1. The statement consists of a property
with a value and a list of references backing it up. In this example, the property
educated at (P69) contains a value with a reference to another entity: St
John’s College (Q691283). In addition, metadata such as the academic degree of
Bachelor of Arts (Q1765120) is also attached. One of the references backing up
this claim refers to the entity Encyclopædia Britannica Online (Q5375741).

Properties and entities. The properties themselves, such as educated at
(P69), are part of the graph. This property has attached examples, references to
other relevant properties, a short description of its meaning, allowed values, and
more. This higher level self-description of the graph structure is the ontology of
Wikidata.

The key elements of a knowledge graph consist of uniquely identified entities,
relationships between them, connected information such as facts, and a descrip-
tion of its structure: an ontology. In addition, a possible additional reasoning
component may contain rules which accelerates queries and enables inference in
the graph to extract usable information. All this is precisely the definition of Wiki-
data. I used it as a basis for the identification of entities over many languages and
the classification of entity types (Exner, Klang, & Nugues, 2015, 2016; Klang et
al., 2017; Klang & Nugues, 2019b).

2.2 Structure

Raw information can be categorized along a spectrum of structure levels. This sec-
tion gives a background of the concepts used when discussing the structure of data
sources such as the Wikipedia corpus and knowledge graphs such as Wikidata.

I divide information into three distinct categories of structure:

Unstructured data lacks structure for an effective analysis and requires packag-
ing and processing beforehand. This includes plain text, raw audio samples,
etc.

Semi-structured data is unambiguously packaged, but may be ambiguously struc-
tured requiring further processing for an analysis: e.g. XML, JSON.

Fully structured data is unambiguously structured information suitable for anal-
ysis, e.g. relational tables, typed messages, or column based data.



2 Natural Language Processing (NLP) 7

Wikipedia articles are written as plain text using natural language with few
restrictions. The lack of structure puts Wikipedia articles into the unstructured
category. Nonetheless, Wikipedia articles may contain some structure defined by
the user, such as sections, paragraphs, lists, and tables.

An example of a semi-structured resource is Wikidata, parsable in a language-
independent way. However, its structure can vary requiring further processing for
a practical analysis and therefore not a sufficiently structured resource. Knowl-
edge in Wikidata is incomplete, and some information only exists as plain text in
natural language in Wikipedia articles.

Adding structure to Wikipedia represents a large part of the corpus processing
step, where the extraction of information requires a language-dependent analysis.

Adding structure to natural language. In the papers we published, we utilized
three layers of existing structure (Exner et al., 2015, 2016; Klang et al., 2017;
Klang & Nugues, 2019b):

• The logical structure of text;

• Entities in the text;

• Co-occurring entities per paragraph.

The logical structure of text. The text contains subdivisions such as sections
and paragraphs in Wikipedia articles. These subdivision are typically not indepen-
dent and information flows from one section to another with bidirectional refer-
ences.

Entities in text. Wikipedia articles contain links referencing other pages within
Wikipedia and often refer to entities. In this context, an entity in the text consists
of two parts: the word sequence within a sentence, the mention of a thing, fre-
quently consisting of a name, a noun, or a pronoun, and the actual entity, called
the target. This has the form [[target|mention]] in the wiki syntax, or
simply [[mention]], if the target and mention strings are equal.

In a long article, some of these references might be multiply mentioned but
not linked. Automatically finding chains of mentions of a same entity is the task
of co-reference resolution. Expanding co-reference resolution into linkage over
multiple documents with name references is the task of entity linking.

Finally, co-occurring entities. In paragraphs, sentences often connect entities,
e.g:

The Swedish Government sold the state-driven train company SJ.
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Using this sentence as an example, something is sold by the entity The Swedish
Government, and the entity sold was train company SJ. This sentence fits the
semantic frame of the word sell, with three independent bits of information:

• a predicate sold,

• a seller, The Swedish Government, and

• a thing sold, train company SJ.

The task of identifying and classifying bits into roles is the task of semantic
role labeling (SRL) in which words are given a semantic role. In SRL, a frame
consists of a predicate usually a verb, and arguments referencing mentions. Co-
occurrences of entities within a paragraph can be used to find relations that are
often mentioned together. If links are resolved to Wikidata Q-numbers, this infor-
mation can be combined from multiple Wikipedia editions representing different
natural languages.
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3 Corpus
This section describes shortly the corpora I used throughout my thesis and their
particulars.

3.1 CoNLL03: Language Independent Named Entity Recogni-
tion

The CoNLL 2003 shared task on Language-Independent Named Entity Recogni-
tion (Tjong Kim Sang & De Meulder, 2003) was a competition designed to eval-
uate the performance of named entity recognition (NER) in English and German.
As with the others CoNLL tasks, the competition was open to any participant and
the organizers published the data.

The CoNLL 2003 dataset consists of two corpora annotated with named en-
tities, divided into training, development, and test sets and an evaluation script.
The CoNLL 2003 corpora used news articles from the Reuters Corpus Volume I
(RCV1) in English and the Frankfurter Rundschau in German. One year earlier,
CoNLL02 (Tjong Kim Sang, 2002) ran a similar task, this time with Spanish and
Dutch corpora.

Both CoNLL 2003 and 2002 datasets are frequently cited resources for train-
ing and evaluating NER systems. These tasks define four classes of named enti-
ties2:

Person (PER): Name of real and fictional individuals;

Location (LOC): Regions (cities, countries, continents, etc.), public places (air-
ports, markets, hospitals, etc.), natural locations (mountains, rivers, beaches,
etc.);

Organizations (ORG): Institutions, organizations, companies, etc.

Miscellaneous (MISC): Events, languages, titles of works, etc.

The CoNLL02/03 corpora consist of sequences of tokenized sentences anno-
tated with their named entities. Both corpora use a tabular plain text format and
the phrases mentioning the named entities, or chunks, are sequentially annotated
with the IOBv1 or IOBv2 tagsets. These sets consist of three tags:

• The IOBv1 tags are inside (I), outside (O), and between (B), while

• (IOBv2) redefines B as the start of a chunk instead of marking the following
chunk.

2For in-depth information, refer to official guidelines: https://www.clips.uantwerpen
.be/conll2003/ner/

https://www.clips.uantwerpen.be/conll2003/ner/
https://www.clips.uantwerpen.be/conll2003/ner/
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The CoNLL evaluation software is a Perl script that computes F1 scores with
precision and recall with regards to the phrases.

The IOB tagset was further enhanced with the addition of two tags: E, mean-
ing the end of a sequence, and S, for singleton tags. The IOBES tagset has been
shown to perform slightly better than the IOB tagset (Ratinov & Roth, 2009). A
lossless transform can be applied to convert between IOBv1, IOBv2, or IOBES3.
A notable property of the annotation is that the outside O tag is assigned to the
majority of tokens, reflecting the fact that most words are not part of a named
entity.

This corpus was used in two papers: Klang et al. (2017) and Klang and Nugues
(2018a).

3.2 Text Analysis Conference EDL Data
The Text Analysis Conference (TAC) arranged by the National Institute of Stan-
dards and Technology (NIST) consists of evaluation tasks similar in their orga-
nization to CoNLL. TAC includes an entity discovery and linking (EDL) track.
This track provides annotated data of newswires and discussion forum texts in
three languages: English, Spanish, and Chinese. The TAC EDL goal is to first
recognize named entities and then link them to unique identifiers.

The task has been reoccurring at an annual basis for several years. Recent
years 2014-2017 provided usable training data on an annual basis. Training and
evaluation data is provided as XML files combined with a standalone gold-standard.
While older versions provided tokenized data, newer versions are entirely based
on referencing spans consisting of Unicode codepoint offsets4.

Named entities. For the recognition step, the EDL track defines five categories
of named entities:

Person (PER) is identical to the equivalent category in CoNLL02/03 with the
exclusion of fictional characters;

Organizations (ORG) matches the CoNLL02/03 category;

Location (LOC) contains only natural locations and non-administrative regions

Geo-political entities (GPE) corresponds mostly to named locations that are gov-
erned by a political entity: cities, villages, states, countries, administrative
regions, etc.

Facilities (FAC) corresponds to transportation infrastructure, man-made build-
ings, hospitals, airports, etc.

3Also called BILOU and BIOES in literature.
4Described in Sect. 4.3.
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A notable difference with CoNLL02/03 is the absence of a MISC class mean-
ing that TAC2017 excludes named entities corresponding to events, languages,
works of art, etc.

In addition to named categories, TAC EDL includes a nominal category of
entities. This category was introduced in the last years and can be described as hy-
pernyms or phrases consisting of common nouns that reference named mentions
(Klang et al., 2017; Klang & Nugues, 2019b).

Entity linking. The TAC EDL mentions are linked in two ways: to a knowledge
base or, if the entity is not in the base, with a system-dependent unique number
prefixed with NIL, for instance NIL23 or NIL768.

TAC EDL was annotated and linked to the Freebase knowledge base. Freebase
is Google’s entity repository, which is similar to Wikidata. Google discontinued
it and merged it with Wikidata. In the works I published, I used Wikidata as the
underlying knowledge base and I converted the identifiers from and to Freebase
using a Google provided conversion dataset (Klang et al., 2017; Klang & Nugues,
2019b).

The entities in the TAC EDL corpus not found in Freebase are encoded with a
unique sequential number for each distinct annotated entity, for instance NIL768.
In the linking step, different systems may produce different numbers, for instance
NIL23, as long as the same distinct entity correspond to the same unique number.

Notable properties. A noteworthy difference, compared to CoNLL03, is the
practice of multilingual end-to-end evaluation, i.e. the system is given the raw
XML text without any sentence and token segmentation.

In the dataset of forum discussions, this raw XML contains the text of the
discussion as well as metadata such as the author and timestamp, quotes from
earlier posts, and links are structurally marked in the discussion form set. The
newswires dataset similarly contains metadata with the addition of paragraphs
being structurally annotated in the newswires text (Klang et al., 2017; Klang &
Nugues, 2019b).

The TAC EDL corpora is also noisy: The discussions contain incorrect spelling
variations and unconventional abbreviations. This makes entity linking more chal-
lenging as the mentions do not align with those found in Wikipedia.

Arguably, the TAC EDL corpus combines the best of both worlds: clean news
articles with noisy posts in discussion forums. This is what entity linking systems
will ultimately face when used on arbitrary web content in practice.

3.3 The Stockholm-Umeå Corpus (SUC)
The Stockholm-Umeå corpus (SUC) is a joint effort by the Department of Lin-
guistics at Stockholm University and the Department of Linguistics at Umeå Uni-
versity to annotate approximately one million words in Swedish.
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SUC is a balanced corpus, text with varying styles, collected from various
sources. The corpus contains part-of-speech annotation, extended word features,
and name annotations. To the best of my knowledge, SUC is the largest balanced
Swedish gold annotated corpora freely accessible for research applications.

SUC is available in multiple formats: an original SGML variant, XML, and
tab separated values (TSV) similar to the basic format used by CoNLL with dif-
ferent fields. It has sentence separators and is fully tokenized. I used this corpus
to build a named entity recognizer for Swedish (Klang & Nugues, 2018a).

3.4 Wikidata

Wikidata is a knowledge graph project initiated by Wikimedia, the organization
behind Wikipedia. The goals of Wikidata for their phase one were:

to centralize interlanguage links across Wikimedia projects and to
serve as a general knowledge base for the world at large5.

Practically, this is translated into items bound to a unique identifier: the Q-
number. Items can be linked to zero or more Wikipedia language editions, con-
tain a collection of statements which consists of properties and values. For a per-
son, common statements include instance-of, date of birth, father,
mother, etc.

The statement values can be a date value, URL, or, commonly, another item
reference using its Q-number identifier. The statement values can also have prop-
erties such as start and end times e.g. political election terms. This results in a
graph of connected knowledge.

The set of available properties and their allowed values are determined by a
continually evolving ontology. The common elements of the Wikidata ontology
are the instance-of and subclass-of relations.

3.5 Wikipedia

Wikipedia is a large freely accessible online encyclopedia; It is a project within
the nonprofit organization Wikimedia Foundation. Wikipedia is written and mod-
erated by users around the world. As of July 2019 there is 294 active editions6;
most correspond to a natural language. Exceptions exist such as simplified En-
glish and constructed languages: Esperanto and Volapük. Wikipedia received its
first edit on 15 January 20017.

Wikipedia consists of pages, each with a unique name called a label in the
Wikipedia vocabulary. In addition, each page is associated with a namespace

5https://www.wikidata.org/wiki/Wikidata:Notability retrieved 2019-04-08
6https://en.wikipedia.org/wiki/List_of_Wikipedias
7https://en.wikipedia.org/wiki/History_of_Wikipedia retrieved 2019-08-05

https://www.wikidata.org/wiki/Wikidata:Notability
https://en.wikipedia.org/wiki/List_of_Wikipedias
https://en.wikipedia.org/wiki/History_of_Wikipedia
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which serves different purposes. The default namespace contains articles, redirec-
tion pages, disambiguation pages, etc. The namespace association is reflected in
the URL of the page, which uses prefixes to identify the namespace: For instance.
category pages have the prefix of Category: in the English edition.

The article pages are written using the Wikitext markup, which is a plain text
format that is automatically transformed into HTML. Wikitext has support for
page inclusion, style formatting, common HTML structures such as paragraphs,
tables, lists, and more. Wikitext can include source code written in a programming
language such as Lua, commonly used to build templates. A template is a directive
included in a Wikipedia page that is replaced by a specific content when viewing
the page. Examples of templates include infoboxes containing factual information
and unit conversions. All the Wikipedia editions run on the same underlying
software: MediaWiki.

Parsing Wikitext is challenging as it is a diverse markup language. Specu-
latively, the original authors wanted to minimize the technical barrier of entry.
Wikimarkup is therefore an error-tolerant markup language with regards to pars-
ing failure. This does shift the burden from the user to the implementer of a parser,
resulting in a complex software with many rules.

MediaWiki is open source and Wikimedia provides configuration settings to
setup a mirror. However, for research projects, this is often a huge endeavor in
terms of environment complexity and computation resources, both in time and
space.

Most research projects using Wikipedia are more interested in a processed
clean plain text version. As a result, an approximate conversion is often acceptable
and many parsers exist to carry this out. The typical approach for such parsers is
to apply heuristics which mimic the original MediaWiki parser implementation.
However, corner cases frequently result in incorrect parsing.

The success of the Wikitext parsing approach varies with languages as each
language has localized templates. For instance, English works relatively well with
this approach. However, French uses templates more extensively, requiring more
support from the parser to avoid losing too much content. To further complicate
the implementation of approximate parsers, plug-ins are supported using custom
tags.

As reproducing the Wikitext-to-HTML transform is difficult, MediaWiki pro-
vides a REST API8, which converts Wikitext into HTML. This API is suitable for
volume access and downloading the English Wikipedia using this it takes about
three days.

Transforming HTML to plain text can be done using commonly available
DOM parsers combined with rules. As approach, I used the JSOUP parser which
tries to mimic a web browser behavior when the source document is incorrect.

8https://en.wikipedia.org/api/rest_v1/

https://en.wikipedia.org/api/rest_v1/
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I then applied rules to flatten and filter the hierarchy. These rules produce
a raw, clean text. However, information provided in hierarchical form, such as
paragraphs, sections, and anchors, is important to entity linking. I reconstructed
it as layers on top of the clean text (Klang & Nugues, 2016a, 2016b, 2016d, 2017,
2018b, 2019a).
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4 Infrastructure
A natural language processing infrastructure is, at its core, a set of tools and li-
braries used by applications to carry out large-scale processing of text.

In this thesis, the infrastructure focuses on storage, document representation,
and the construction of processing pipelines that can be applied to large corpora. It
is a problem with many aspects that I broke down into the following subproblems:

• Understand the corpus and the data representations required by NLP algo-
rithms;

• Design a combined document representation to unify the corpus and the
data representations produced by the algorithms;

• Design reusable multilingual pipelines that can be applied and distributed
in parallel across multiple machines;

• Implement interactive pipelines that can be used for prototyping.

4.1 Motivation
Creating knowledge graphs with the goal of covering encyclopedic knowledge,
broad or complete, must be based on textual sources reflecting the varied nature of
knowledge. Wikipedia is a choice that meets this requirement as Wikipedia’s goal
is to be an online encyclopedia that can be extended by anyone, hence potentially
benefiting from the knowledge of all the individuals on earth. As a consequence,
this also entails that over time Wikipedia has become larger and processing it with
resource-intensive algorithms requires considerable computing power.

An initial solution to this problem of scale is to reduce the size of the cor-
pus. However, this reduction would affect the infrastructure design and results.
Arguably, at some point, the algorithms must be tested on real scale. Otherwise,
they would often yield different results and different performance characteristics,
as implementations may have unintended weaknesses overlooked when working
at small scale.

Accurate feedback is important to verify experimentally if hypothesized meth-
ods work when applied to large corpora. Also, there is a human element: Not all
algorithms exist in ready-to-use software packages or may be technically difficult
and inefficient to apply to large corpora. This forces researchers to implement or
re-implement them. Usually, this leads to the following trade-off in complexity:
quickly written or well-optimized software. In a research context, the ideal is to
combine simple, quickly written software, while still maintaining the possibility
to run it over a large corpus.

This is where distributed computing comes as a solution. The facts that sup-
port this kind of computing are:
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1. Single machines produce results, with potentially long iteration cycles and,
in some cases, prohibitively long;

2. Using a cluster consisting of multiple machines can linearly scale up com-
puting power, reducing the iteration cycle. Clusters add constraints that
increase complexity, but, combined with a functional programming model,
this complexity can be reduced to acceptable levels, as when using Spark.
See Sect. 4.2.

4.2 Distributed computing
When processing Wikipedia, typical applications run language pipelines, extract
statistics, and aggregate information from documents. In this section, I describe
methods for distributed computing.

Parallelization. Many frameworks have been developed with the promise of
scaling software to run in parallel on multiple computers.

One method with a standard and many implementations is the Message Pass-
ing Interface (MPI) (Clarke, Glendinning, & Hempel, 1994). It provides mes-
saging and synchronization over many machines, enabling programmers to write
programs that run in parallel on many computers. Another more modern approach
is the Akka toolkit9 that runs on the Java Virtual Machine (JVM). Akka, with its
modules, provides abstractions to schedule, distribute, and run computations in
parallel. Akka modules can be used with a single machine or distributed over
multiple computers in a cluster.

Both of these approaches abstract away the underlying complexity of manag-
ing communication with many machines. These abstractions enable a developer
to write software that is optimized for different characteristics such as low-latency
processing of real-time information.

Hadoop and Map-Reduce. Dean and Ghemawat (2004) described a program-
ming model that enables efficient processing and aggregation over many comput-
ers: the Map-Reduce model.

Map-reduce is based on the use of key and values, transforming them into
lists of key and values, ultimately sorting and grouping by key and transforming
these grouped values into a list of values representing the final output. A notable
property of the map-reduce programming model is that it enables the processing
of datasets larger than the available working memory. It is only limited by the
available storage space.

Hadoop was one of the first open-source Map-Reduce implementations de-
signed to run on commodity hardware. Hadoop is written in Java and runs on the

9https://akka.io/

https://akka.io/
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Figure 2: Map-Reduce word counting using two nodes.

JVM. Map-Reduce, as implemented in Hadoop, consists of the following parts,
see Figure 2:

Map function: a function that is given a key and value pair, transforms them it
into lists of key and value pairs. A map function, when computing word
counts, transforms a document into a list of words as key and an initial
count of one as the value.

Reduce function: a function that is given a key and a list of values with the same
key and transform this information into the final output. Continuing with
word counting, the reduce function computes the sum of occurrences from
the list of values and emits a word and total count.

Mapper: The concrete worker or thread that executes the map-function over the
data;

Reducer: The concrete worker or thread responsible for running the reduce func-
tion;

Combiner function: An optional function for partial reduction. The combiner
function is only an optimization to reduce partial results early, minimizing
the work required by the final reducer. Using the word count example, a
combiner would sum up partial lists of counts.

Partitioning function: An optional function that computes an output partition
given a key and a number of output partitions. The default implementation
uses the hash value of the key.
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Shuffle operation: The distributed synchronization and sorting step. Key and
values emitted by the map function are first optionally reduced through the
combiner and then assigned to a destination partition. The destination par-
tition is sorted by key and the results streamed through the reducer.

Hadoop can scale to a large number of nodes10 for massively parallel compu-
tation. However, writing software for the Hadoop ecosystem, or more specifically
the classic Map-Reduce implementation, is verbose, repetitive, and often requires
a deep knowledge of the internals to make sufficiently efficient software. In ad-
dition, many problems must be formulated as a sequence of map-reduce jobs,
further adding to the amount of code required.

The classic map-reduce implementation is not memory bound like the origi-
nal paper. The Hadoop map-reduce implementation streams key-value pairs and
stores intermediate results on a disk. Storing key-value pairs to a disk requires
serialization11 and hence more storage. The consequence is reduced overall per-
formance due to the increased volume of data to store.

Distributed file systems. In the context of this thesis, a typical cluster consists
of ordinary computers (nodes) connected together with a standard Internet Proto-
col (IP)-based local network. Each machine consists of processors with multiple
cores and independent storage systems.

Hadoop was designed to run on commodity hardware and, when using thou-
sands of nodes, there is a high probability that one or more nodes fail during a
long-running job. To avoid the loss of data, the solution is to have redundant stor-
age and reschedule tasks to resume parts that failed. In addition, network band-
width is limited and therefore mappers should ideally process what is available
locally first before requesting data from other machines; increasing redundancy
by duplication improves data locality and resilience to data loss, reducing overall
network bandwidth requirements.

Hadoop include a file system called the Hadoop Distributed Filesystem (HDFS).
This file system transparently balances stored data over many machines, maintain-
ing sufficient duplication for locality and resilience to node loss by redundancy.

Spark. The Apache Spark project introduced a higher-level programming model,
addressing three primary weaknesses of the classic map-reduce implementation:
inefficient round-trips to the storage layer, no automatic job pipelining to enable
fusing of mappers in sequence, and the verbose nature of writing map-reduce jobs.
Spark is written in Scala running on the JVM, but provides API bindings for Java,
Python, and R. I used Spark for the large-scale processing tasks of Wikipedia
(Klang & Nugues, 2016b, 2016d, 2017, 2019a).

10Virtual or physical machines
11converting in-memory objects into a standalone representation that can be written to a storage

medium
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First, the round-trips are reduced by in-memory reduction and caching, using
the available memory to speed up reduction steps. Pipelines are optimized by
introducing a functional programming model that modifies a Resilient Distributed
Dataset (RDD) representing all data divided into partitions distributed over the
machines. This programming model enables a developer to define pipelines as a
sequence of RDD transformations. The RDD is not actually transformed until an
action, such as saving to disk, is triggered.

This lazy evaluation enables Spark to compile a pipeline into a directed acyclic
graph (DAG), fusing sequential operations together for optimal processing. This
fusing reduces the number of shuffles required overall and lowers the number of
round-trips to the storage layer by doing more in-memory. In addition, Spark is
compatible with the data storage APIs found in the Hadoop ecosystem and makes
use of them. The map-reduce based version of counting words (see Figure 2)
is transformed into two stages in Spark (see Figure 3) with each stage running
sequentially.

Spark also introduces the ability to share read-only data efficiently in the clus-
ter and allows the developer to cache datasets in-memory for repeated processing
to reduce the overhead of accessing the storage layer.

Spark has modules built on top of the core engine:

Dataframes: Structured columnar datasets with support for hierarchical struc-
tures. These dataframes, when used properly, reduce the memory footprint
of a large dataset. In addition, they can make use of the Parquet format for
saving and loading datasets efficiently;

SQL: Modified SQL query language applied to dataframes for scalable queries
larger than memory;

Streaming: Real-time processing of data that is distributed over many machines;

Machine learning: Algorithms for various supervised machine learning models
such as logistic regression and support vector machines, and unsupervised
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methods such as word embeddings (Word2vec), clustering via K-means,
and dimensionality reduction via a principal component analysis.

4.3 Document Representation
A core requirement for scalable text processing is a flexible and robust data model
capable of representing the diverse sets of structures found in NLP applications.
Moreover, good tools to extract, visualize, and inspect data are also important for
the understanding and verification of a correct operation.

Text segmentation. Text is a sequence of characters. Before processing and
transformation, software initially treats this sequence as a continuous stream of
bytes with no apparent structure. However, many algorithms rely on a segmented
stream of tokens and sentences. These tokens, i.e. the segmented units in a sen-
tence, include the words, punctuation, numbers, symbols, emoticons, etc. Per-
forming segmentation using simple rules works well for languages such as En-
glish or Swedish. However, logographic languages such as Chinese make minimal
use of whitespaces or punctuation for word segmentation.

Grammatical processing. From segmented text, we can apply methods which
use token sequences instead of raw characters. This includes part-of-speech tag-
ging, assigning a category to each token e.g. noun, verb, preposition, punctuation,
etc. In addition, dependency parsing can assign labeled dependencies between
words.

Although, token sequences are useful, depending on the language, some se-
mantic details can only be found by analyzing the morphology of the word. The
simplest example is when going from singular to plural mentions, e.g. car and
cars. More complex changes can also occur: run, runs, running, and ran are all
variants of the canonical form or lemma run.

Text representation in machines. The byte stream discussed previously repre-
sents a sequence of characters. A single byte12 could represent 255 characters
with 0 as a special delimiter, which is more than enough for English. However,
writing systems used by natural languages around the world are varied. They
include the Arabic abjad, Devanagari with Hindi, Han characters with Mandarin
Chinese, Cyrillic with Russian, etc. One of the first attempts to extend support was
to use code-pages which divided the byte into a upper and lower region, with the
lower 0-127 fixed, and the upper range of 128-255 could be changed depending
on region or application. Remnants of this solution can still be found in com-
mon software such as Windows, for instance Windows-1252 is the code-page for
Western Europe used in Sweden.

12unsigned 8-bit integer with 256 possible values
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With the introduction of internet, and the rise of multilingual communication,
this quickly became unfeasible as scripts such as Han used with Chinese do not
fit into single code-pages, requiring specialized software support. To provide a
common code, a standardized international character set was developed: Unicode.
Unicode is also an international consortium founded 1991 that comprises various
international technology companies, universities, and governments.

Concretely, the Unicode standard consists of a list of code points, integers,
where each code point is associated with a character name and its visual repre-
sentation, as well as a set of properties. The specific graphical rendering of the
characters is determined by the font used.

Unicode is frequently implemented at the binary level using one of several
predefined encodings: one popular choice being UTF-8, a variable length encod-
ing method. In particular, UTF-8 supports the fixed lower code-page region used
by English without any special encoding. Today, UTF-8 is widely supported in
web browsers, operating systems, and application frameworks. However, it is not
always the default option; web pages that use the Hypertext markup language
(HTML) must explicitly be set to use UTF-8 or web servers configured to use
UTF-8 by default for text transmission.

Wikipedia uses Unicode as the character set for text, as it allows multilingual
text. However, Unicode contain ambiguous characters for certain classes such
as letters, punctuation including dashes, periods, and numbers. This becomes an
issue when the visual representation differ from the actual code-point sequences
used requiring normalization to be unified over many languages.

Requirements. Over the time, the NLP research has produced quantities of
quality tools with verified results. Reusing them reduces efforts in new projects,
but also makes the research community dependent on the works of others. Lock-
ing longer term research into these works is inherently risky as it can be difficult
to change a particular tool. For small scale and domain specific research, this is
typically an acceptable risk as this kind of research has few moving parts.

However, when attempting to run a complex set of tools over a large number of
documents, the number of moving parts and sources of issues increases. Possible
strategies to mitigate this is to use pipelines, where multiple independent annota-
tors are run in sequence as shown in Fig. 4. These tools are often research projects
in themselves and move too quickly to be thoroughly tested. This requires a high
degree of tolerance to variability in output and to software issues.

One of the key issue is to unify the output produced by these tools into a single
representation with few hard dependencies on the original software. The general
aspects that arguably cover most tool output are summarized in Figure 5. In this
figure, we introduce concepts such as annotation, property, connections, spans,
and offsets.

No model will be perfect for all the uses as there is a balance between the
ease of use, from a researcher perspective, and rigidity imposed by the use of
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well-defined storage formats such with as FoLiA (van Gompel & Reynaert, 2013).
Rigid type definitions add a layer of complexity, which is prohibitive for smaller,
typically student projects: steep learning-curves, forced run-time environments,
and resource requirements.

In this thesis, I designed Docria (Klang & Nugues, 2019a), which tries to cre-
ate a middle-ground between rigidity and ease of use by defining data structures
and a storage API in at least two languages: Java and Python. By applying in-
version of control, most libraries and tools can be wrapped and adapted to fit this
model. In addition, Docria has few hard dependencies.

To put the Docria model in context, we need to compare its representation to
what is described in the literature. I have identified three families of formats: plain
text, XML, and a variable representation family which Docria is part of. A major
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class divider for these formats is the support for stand-off annotations (Thomp-
son & McKelvie, 1997). The stand-off idea is to use offset references instead of
modifying the text to fit the representation. Stand-off is primarily needed to:

• Deal with copyright issues when sharing original data;

• Support overlapping annotation; and

• Preserve the original text.

Plain-text formats. The flat text format is used extensively by CoNLL tasks,
arguably for its simplicity in reading. However, these formats lack standardization
and vary from task to task (or user to user).

Re-occurring conventions are double newlines for sentence separation, where
each line is a separated list of fields; the fields usually correspond to what is
needed for training or processing in a particular task. The oldest widespread usage
of this format seems to be the task of CoNLL99 on chunking (Osborne, 1999).

Currently, plain-text format has one popular variant in the form of CoNLL-U
to annotate the Universal Dependencies (Nivre et al., 2018). It is a variation of
the format used for in CoNLL-X (Buchholz & Marsi, 2006). CoNLL-U defines
extensions for stand-off reconstruction and subwords.

Plain-text formats are mostly centered around sentences, which renders higher-
level structures hard to represent naturally.

XML-based formats. The eXtensible Markup Language (XML) is by far the
most frequently-used format in the literature, typically for treebank annotation
and other larger projects. Pustylnikov, Mehler, and Gleim (2008) give a short
overview of some common treebanks, where most use XML-based formats in
different variations. Notable ones are TIGERXML used for the TIGER corpus
(Brants, Dipper, Hansen, Lezius, & Smith, 2002), the Text Encoding Initiative
(TEI) XML encoding (TEI Consortium, 2019), and more recently FoLiA (van
Gompel & Reynaert, 2013). TIGERXML, TEI, LAF, and FoLiA are primarily
format specifications; tooling is secondary.

XML has a high degree of flexibility, well-proven and extensive tools for the
general case. The primary weakness of XML based formats is their variability
and flexibility. XML supports schemas which define the data layout, but this is
not a requirement. In a real-world setting, format specifications such as TEI and
FoLiA need automated verification tools to ensure compatibly in software tooling.
The size of these specifications implies a high degree of effort to support all the
aspects.

Variable representation models. The NLP Interchange Format (NIF) (Hell-
mann, Lehmann, Auer, & Brümmer, 2013) defines a way to attach linguistic infor-
mation via the use of the Resource Description Framework (RDF) standard used
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in the semantic web community. NIF defines a URI encoding to refer to spans,
stand-off encoding.

As the original XML representation of RDF is very verbose, many competing
encoding have been developed: Turtle, N-Triples, N3, JSON-LD, etc.

4.4 Creating a New Document Model: Docria

In this section, I explore three major revisions to the document representation I cre-
ated. These revisions build on the ideas found in pieces throughout the literature.
Many document representation models are annotation-based, models that add
properties to ranges and divides these annotations into groups. Annotation-based
data models are old, offset-based models can be found in TIPSTER (Harman,
1992) project, and then later in GATE (Cunningham, Humphreys, Gaizauskas, &
Wilks, 1997). Encoding graph structures are secondary in pure annotation models
and is frequently encoded using unique references, requiring an extra pass of pro-
cessing to index and resolve. Graph structures are standard in problems such as
dependency parsing, semantic role labeling, co-reference resolution, etc.

WIKIPARQ. The first iteration, WIKIPARQ (Klang & Nugues, 2016d), was
based on the idea to use the RDF triple representation, i.e. a subject, predicate,
and object. In our case, this meant transforming a multi-layer description with
nodes and edges to RDF triples. A common issue with storing RDF naïvely is
that it is highly redundant. RDF typically uses URLs and these might be long.

Parquet13 is a storage format designed by Twitter to store logs and process
them in a scalable way. This made Parquet the ideal choice as it was designed to
reduce the effects of redundant information on disk. In combination with Spark
SQL, a query language was provided which allowed many simple questions to be
asked at once.

A typical English Wikipedia dump could hold up to 7 billion entries. Com-
bined with the storage tricks used by Parquet, most data can be discarded when
running a simple query by reading metadata or only reading columns required to
determine if it should be included. This means that even though the number of
rows is substantial, most can be excluded, yielding an acceptable performance.
The assumption and requirement is that the query planner used by Spark SQL can
transform the query into a sensible plan which minimizes a full shuffle.

In practice, query performance is uneven, making the real query cost hard to
predict. Many operations when processing documents are inherently local, which
increases query complexity. As a storage format, WIKIPARQ was a good choice;
as a general purpose information storage, reprocessable resources and retrieval
format, it was not.

13http://parquet.apache.org/

http://parquet.apache.org/
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Docforia. The second revision was Docforia (Klang & Nugues, 2017), a first
attempt to solve the drawbacks of WIKIPARQ, particularly to eliminate the risks
of data explosions when the query planner produced a poor plan. Docforia is
a programmer-oriented architecture which defines a storage model, serialization
format, and some query APIs to process the content found in documents. It is
built on the ideas of using a layered property graph for nodes and edges, and
some heuristics to store token spans efficiently.

Docforia solved almost all the practical issues. However, the node-edge dual-
ity introduced duplication and redundancies into the implementation. Combined
with a convention based schema, this increased the cost of implementing many
performance optimizations.

Docria. This led us to the final revision: Docria (Klang & Nugues, 2019a).
Docria was designed to reduce the effort required when porting to other program-
ming languages. In addition, we removed the node-edge duality by using property
hypergraphs that merge nodes and edges.

Docria separates text and layers that add linguistic information. Each layer
consists of a variable number of nodes, where each node has a set of typed fields
defined in a schema. The schema is required per layer and can define fields that
reference spans in a text. Spans are encoded in a way that minimizes portability
issues when implemented in different programming languages. Using a relational
database terminology, a single Docria document is a database, in which each layer
is a named table of rows with a fixed set of columns according to its schema.
Additionally, the fields define types and spans for nodes.

Docria was designed to separate serialization from its in-memory API allow-
ing future extensions. Docria defines and includes implementations for JSON,
XML, and a binary format using MessagePack. The most compact encoding is
MessagePack. MessagePack was ideal as it is self-describing, has many imple-
mentations in a diverse set of programming languages, has well-defined specifica-
tions, and is fast and compact enough.

Docria can be used on a per document basis or in a collection of documents in
a file.

4.5 Language pipelines

The construction of large NLP systems frequently requires the assembling of dif-
ferent modules, where each module adds structured information to the overall
representation. These modules may not conform to any particular specification
and may be implemented in separate software packages.

I designed Langforia to build processing pipelines from modules, possibly
disparate. My explicit goal was to make the process more concrete and with fewer
software layers. Langforia enables a researcher to compose pipelines that can be
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used interactively, in an online fashion, or be applied offline to a large corpus, i.e.,
in a scalable way.

Previous Work

GATE. The General Architecture for Text Engineering (GATE) (Cunningham
et al., 1997) consists of a document model that support stand-off annotations, a
plug-in approach to constructing pipelines (CREOLE), and a graphical user in-
terface that enables manual annotation, interactive pipeline construction, and to
apply constructed pipelines to a collection of documents.

GATE’s document model consist of:

annotation type that defines types such as tokens, sentences; similar to layers in
Docria.

annotation that corresponds to a node with range reference in the original text.
Annotations are associated with a type, and can contain properties. Annota-
tions are similar to nodes in Docria that have a single span field.

annotation set that is a named group of annotation nodes.

GATE supports via plug-ins a variety of input formats and its default document
output format is XML.

UIMA. The Unstructured Information Management Architecture (UIMA) is a
framework that can be used to develop applications that require e.g. text analysis
by combining reusable components (Ferrucci & Lally, 2004).

UIMA covers aspects such as design and research to pipeline construction
and deployment at scale. UIMA was motivated by the observed difficulties in
developing reusable technologies. Technologies that frequently start as research
prototypes and require considerable effort to be converted into production ready
pipelines. UIMA defines a software architecture that aligns development prac-
tices, an analysis model for structured information access, and a component model
to discover and encapsulate analysis tools. The entire process from acquisition to
analysis output is covered.

UIMA defines concepts such as:

Text Analysis Engine (TAE) is a recursive structure that consists of components
that add annotation such as named entity recognizers.

Common Analysis Structure (CAS) is the storage model representing a docu-
ment that contains the output from annotators.

Annotator is a component responsible for adding structured information to a
document; it operates on the CAS.
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spaCy. SpaCy14 is a software package written for Python consisting of ready
to use NLP pipelines for multiple natural languages. It was designed for perfor-
mance and to be easy to embed into an application. Unlike GATE and UIMA,
SpaCy was designed to support a set of concrete pipelines.

CoreNLP. CoreNLP (Manning et al., 2014) is a NLP software package devel-
oped at the Stanford University (Manning et al., 2014). Stanford distributes pre-
trained models for multiple languages. CoreNLP support training of new models
and is similar to SpaCy in that it was not designed to abstract arbitrary external
pipelines. Recently, the NLP group at Stanford introduced a neural pipeline writ-
ten in Python15 that also has an official wrapper for the Java based CoreNLP server
(Qi, Dozat, Zhang, & Manning, 2018).

Langforia

Langforia (Klang & Nugues, 2016b) was an attempt to abstract complex research-
oriented pipelines using Docforia as the common ground in which to store the
output. Another goal of this software was to embed it in a Spark pipeline to carry
out the annotation using cluster computing.

Langforia was further developed with a frontend/backend architecture includ-
ing a visualization component which can display the content of a Docforia docu-
ment. The frontend can also be used for debugging, sending in documents, and
running pipelines interactively over a web API.

The embeddable version of Langforia is similar to UIMA and GATE, but dif-
ferent from spaCy and CoreNLP in that it encapsulates external pipelines not part
of the project. It is different from UIMA and GATE in that a pipeline must be
known at compile-time and all dependencies are packaged with the embedding
application. This implies that any change to a pipeline requires a recompilation.

We ultimately used Langforia to process large corpora such as the English
Wikipedia with processing times as short as a few hours to a few days.

5 Evaluation

Before we deal with the techniques we developed and applied to recognize and
link named entities, let us describe how we will evaluate their results. The evalu-
ation metrics will then enable us to select the best techniques or models.

14https://spacy.io/
15https://github.com/stanfordnlp/stanfordnlp

https://spacy.io/
https://github.com/stanfordnlp/stanfordnlp


28 Introduction

tpfn fp tn

Relevant Irrelevant

Se
ar

ch
sp

ac
e

Figure 6: Search space for documents or observations

5.1 F-Measure

In this dissertation, the F1-measure is used to evaluate named entity recognition
and named entity linking. The F1 measure is often used to evaluate the classifi-
cation performance of a model. Originally, the F1-measure was used to assess
the performance of search in information retrieval. It then found its way as the
evaluation metric of NLP systems in MUC-4 (Chinchor, 1992).

F1 consists of two metrics precision and recall combined into one score.

Counting. Using the framework of information retrieval, the problem is to eval-
uate the performance of a search query applied to a set of documents. We can
divide the search result into four classes, see Fig. 6 for a visual representation

True positive (tp) is the set of relevant documents that are correctly retrieved by
the query;

False positive (fp) is the set of irrelevant documents that are incorrectly retrieved
by the query;

False negative (fn) is the set of relevant documents that are incorrectly not re-
trieved by the query;

True negative (tn) is the set of irrelevant documents that are correctly not re-
trieved by the query.

Given the sizes of these sets, we can compute precision and recall, where in
our case a document corresponds to an observation.
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Recall measures the share of documents we should have found:

R =
tp

tp+ fn
, (1)

Precision measures the share of documents we found that are relevant:

P =
tp

tp+ fp
, (2)

Harmonic mean. The F1 measure combines these two measures using the har-
monic mean: recall R and precision P :

F1 = 2
P ·R
P +R

. (3)

Intuition. Recall and precision tend to be opposites with a typical model capa-
ble of optimizing and performing well on either precision or recall; performing
well on both is a more difficult problem.

Assume that a threshold is used when determining if a document matches the
query or not. The motivation is then as follows: to optimize for recall, we can
reduce the threshold for a match, which increases the number of false positives
resulting in a decrease of precision. Conversely, to optimize precision, we just
select the documents we are more confident in. This can be done by increasing
the threshold, thereof reducing the number of false positives. The consequence
is that the number of relevant documents drops, increasing the number of false
negatives resulting in a reduction of recall.

The use of harmonic mean in the F1 measure is to reduce the score when recall
and precision are not in balance.

Weighted F-measure. In some applications, precision might be more important
than recall, or the reverse. The weighted F-measure sets an emphasis on either
precision or recall by adjusting the weight β:

Fβ =
(1 + β2) · P ·R
(β2 · P ) +R

. (4)

Typical values for β in a weighted F-measure are 0.5 or 2.

5.2 Mean Reciprocal Rank
The mean reciprocal rank (MRR) is a metric to evaluate the performance of a
question answering system.
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Given question qi ∈ Q, a system returns a ranked list of answers. The rank of
the correct answer ranki for each given question is used to compute MRR:

MRR =
1

|Q|

|Q|∑
i

1

ranki
(5)

If the correct answer is not found, typically you set the rank to a large number
or set the reciprocal rank to zero.

5.3 Constrained Entity Alignment F-measure (CEAF)

The performance of entity linking or coreference resolution is more difficult to
evaluate than that of named entity recognition. The MUC conferences intro-
duced a coreference scoring scheme based on links (Vilain, Burger, Aberdeen,
Connolly, & Hirschman, 1995), while B-cube (Bagga & Baldwin, 1998) is based
on mentions. X. Luo (2005) proposed the constrained entity alignment F-measure
(CEAF) as an improvement over the MUC link-based and B-cube F-measures. In
this thesis, we followed TAC 2017 (Ji et al., 2017) and adopted CEAFm to rank
the performance of competing entity linking systems.

The metric takes two sets of partitions: the reference set (gold standard), r ∈
R, and the system predicted set, s ∈ S. Each element in R and S represents a
partition of keys, i.e. a set of tuples. In TAC 2017 (Ji et al., 2017), the sets were
created by partitioning the mentions according to their entity identifiers and the
final metric CEAFmC+ defined the keys as tuples with mention span, entity target,
and mention type as shown in Figure 7.

At the core of the CEAF metric, there is a requirement that each reference
key in R is aligned with at most one predicted key in S resulting in a one-to-one
mapping. This mapping g∗ is found by solving an assignment problem i.e. find
the pairs of reference and system predicted partitions that globally maximizes the
total similarity Φ(g∗). Concretely, the assignment problem is solved using the
Kuhn-Munkres algorithm (Kuhn, 1955) and the similarity between partitions is
given by a function ϕ(r, s).
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Mathematically:

Φ(g∗) =
∑
r∈R

ϕ(r, g∗(r)) (6)

PCEAFϕ
=

Φ(g∗)∑
s∈S ϕ(s, s)

(7)

RCEAFϕ
=

Φ(g∗)∑
r∈R ϕ(r, r)

(8)

FCEAFϕ
=F1(PCEAFϕ

, RCEAFϕ
)

=2 ·
PCEAFϕ

·RCEAFϕ

PCEAFϕ
+RCEAFϕ

(9)

Two similarity functions were proposed by X. Luo (2005): a mention-based
CEAFm and an entity-based CEAFe:

ϕCEAFm(r, s) =|r ∩ s| (10)

ϕCEAFe
(r, s) =2

|r ∩ s|
|r|+ |s|

(11)

Moosavi and Strube (2016) showed that CEAF and other commonly used met-
rics suffer from a “mention identification effect” with recall and precision “neither
interpretable, nor reliable” as a result. Moosavi and Strube (2016) proposed the
link-based entity-aware (LEA) evaluation metric to overcome these limitations.
LEA was not used in this work and is provided as a reference for future work.
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Figure 7: CEAFm example from a context in OntoNotes 5 used in CoNLL 2011 (Pradhan
et al., 2011)
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6 Machine Learning

6.1 Definition
Machine learning is the field of constructing models and algorithms that learn
from data (cf. past experience), to make predictions. The word learning is used
metaphorically and is frequently reduced to a gradient decent optimization prob-
lem in practice. Arguably, a model has learned something when it is capable of
generalizing from known observed data, ultimately, producing good predictions
on unseen data.

In this thesis, I applied machine learning and as a means to compute entity
similarity to predict classes for entities:

• Find names in sentences;

• Determine their type;

• Improve entity disambiguation by predicting context compatibility;

• Build language models to define the word meaning based on context.

6.2 Concepts
This section provides the definition of the important concepts used throughout this
thesis:

Observation: An instance or example, e.g. word, sentence of words.

Prediction: The computed output using an observation as input with a trained
model.

Feature: Discrete unit of information as part of the observation, e.g. a word
vector, scalar indicating if word is title cased. A set of features makes up
the input;

Label: In many cases, each observation has a matching label, a category or value.
This is also called the output, e.g. noun, verb, for the part-of-speech task, a
tag per word which indicates first, part of, and last word of a name.

Model: An instance of a mathematical model: ŷ = fθ(x), where ŷ is the pre-
dicted label given the input x for a model fθ with parameters θ. For a
dataset, we have ŷ = fθ(X);

Architecture: The high-level structure of a model. Predictive models discussed
later such as feedforward, convolutional, or recurrent neural networks can
be constructed in many ways.
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Loss: The scalar value to optimize during training. Related variants include cost,
error, or learning objective. Loss, in particular, is a value which should be
minimized.

Training set: Full collection of observations with matching labels used when fit-
ting a model.

Test set: Collection of observations with matching labels withheld during train-
ing. Used to evaluate the performance of the model.

Validation set: Same as test set, however used in situations in which we use
evaluation data to improve the training process.

Batch: Limited collection of observations.

Parameter: Tunable weights which contribute to the output prediction given an
input.

Hyper-parameter: High-level settings which alter aspects of the training and/or
the structure of chosen model.

Dense vector: A vector where a substantial number of elements are nonzero.

Sparse vector: A vector where most elements are zero.

6.3 Learning Paradigm

In this thesis, I used two paradigms of learning:

Supervised learning: Given an input, predict and compare the predicted with
the expected result and minimize the difference between predicted and ex-
pected result.

Unsupervised learning: Given an input, find patterns in the data.

Supervised learning requires a gold standard, a training set that maps an ob-
servation to the expected output. For instance, in the context of classifying names,
given an observation Lund University, we expect an output in the form of a cate-
gory such as organization.

Conversely, unsupervised learning finds patterns using only the observations.
Word2vec is an example of a method that produces word representations, embed-
dings, from word co-occurrence observations. These embeddings can be used to
measure word similarity or find patterns such as the fact that the words man and
woman are analogous to king and queen.
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6.4 Machine Learning Methodology
Cross industry standard process for data mining (CRISP-DM) (Wirth & Hipp,
2000) is a process model for carrying out data mining projects. A variant adapted
to research and machine learning was used when creating machine learning mod-
els, see Figure 8.

The adapted process consists of the following parts:

Research goals such as finding the named entities in text in a way that improves
the state of the art (and publishing it); then mark the named entity ranges
for a subsequent named entity linker;

Understand data is a phase that attempts to bring clarity to what data is available
and its particular properties. Most importantly, determine if the available
data is suitable to solve the goal;

Prepare data is a cleaning and transformation phase, removing noise, and trans-
forming raw data into a form that can be used to train models;

Model & train is the phase that attempts to find a suitable model, and train it to
fit the prepared data;

Evaluate is the evaluation phase that determine how general a suggested model
is. The evaluation phase often gives hints at whether we have sufficient
data or not, or if some aspects have been misunderstood, suggesting an
improvement in data understanding or acquisition;
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Apply in research is the final phase when a trained model is judged to be good
enough to be ready to be encapsulated for future research.

7 Data Representation for Machine Learning
Machine learning, with popular frameworks such as Pytorch and Tensorflow, use
tensors for input and output. Tensors are a generalized representation to arrange
numbers in a variable number of dimensions. Technically, tensors are multidimen-
sional arrays combined with a set of computational rules and methods.

To process and learn from natural language using frameworks such as Pytorch
or Tensorflow requires a tensor representation. These representations are built
from features. The common feature types I used in this thesis are:

Scalar: A numeric value, for instance to represent the share of pages with a par-
ticular name;

Embedding: A dense vector representing a symbol in an abstract space, e.g. a
word;

Categorical: Sparse vectors indicating a class such as person or location for a
name;

Bag-of-words: Sparse vectors representing a set of symbols, frequently words.

In the following sections, I describe popular encoding methods for these fea-
tures.

7.1 One-Hot
Definition. One-hot encoding is a method that encodes categorical features. The
one-hot method maps all the symbols to elements of a vector. Converting a symbol
into a vector is carried out by setting the mapped element to one.

Mathematically, a one-hot encoded vector wi for symbols wi ∈ W , produces
vectors of Rn, where n = |W |, the number of unique symbols in the vocabulary
W .

Example. Given the vocabulary W = {Red,Green,Blue}, with n = 3, pro-
duces R3 vectors:

−−→
Red =

(
1, 0, 0

)
−−−→
Green =

(
0, 1, 0

)
−−→
Blue =

(
0, 0, 1

)
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A notable property of one-hot vectors is that they are orthogonal to each other.
Also, the vectors are sparse with only a single nonzero element. Encoding a one-
hot vector as an index is frequently carried out in optimized software, eagerly
converting the index into a full dense vector when required.

7.2 Bag of Words

The one-hot method produces vectors for each symbol. The bag-of-word encod-
ing is a technique to create a single representation of multiple symbols, such as
all the words in a document.

As a word can appear in many forms such as Car, car, Cars, cars; these
variants are often reduced to a single form in practice, the term. In English, words
are often transformed into stemmed and normalized terms by removing frequent
suffixes such as (-s, -ing, -ed), lowering the case of all characters, and more.

Building upon the one-hot method, documents can be represented through a
sum operation:

n∑
i

wi.

This sum operation is a baseline method to encode bag-of-word features. If
the words are allowed to repeat, this representation corresponds to a vector, where
the axes are the term frequencies for all the words in the document.

A notable property of bags of words is that they ignore the word order.

7.3 TF-IDF

The term frequencies (TF) and inverse document frequencies (IDF) are scalars
that introduce a measure of word significance in a document.

In natural language, some words are frequently used to fill out and connect
sentences such as the, and, in, and of. In practice, less frequent words tend to be
more salient and thus, be more important than frequent ones. The idea with the
inverse document frequency it to reduce the significance of words mentioned in
many documents d ∈ D. To do so, it normalizes a word count with the number
of documents the word appears in. This normalization mitigates the effect of
frequent words dominating the representation.

To produce TF-IDF vectors, first terms in document d are counted: C(term);
this term may be scaled with respect to the total number of terms:

TF(term, d) =
C(term)∑

termd∈d

C(termd)
(12)



38 Introduction

The IDF weight counts the number of documents, where the term occurs and
uses it to normalize the total number of documents:

IDF(term,D) = log
|{d|d ∈ D}|

|{d|term ∈ d, d ∈ D}|
= log

N

nterm
(13)

Combining both terms, TF-IDF is computed as this:

TF_IDF(term, d,D) = TF(term, d) · IDF(term, D) (14)

Combined with the bag-of-word technique, we can produce representations
for multiple words. A bag-of-word TF-IDF often provides a strong baseline such
as in the task of document classification (Yang et al., 2016).

Example. For simplicity, assume there are 4 terms (LTH, Lund, Scania, and
Sweden) in three documents d1, d2, d3.

The first step is to locally and globally count terms in documents. Local count-
ing corresponds to the first three rows in Table 1, and the last row corresponds to
the global count.

Term counts LTH Lund Scania Sweden
d1 0 2 0 2
d2 1 0 2 1
d3 3 1 0 3
|{d|term ∈ d, d ∈ D}| 2 2 1 3

Table 1: Local and global counting of terms

The final step is use the local and global counts to produce a final weight. In
Table 2, each row corresponds to a vector and each component a term. The term
Sweden is part of all the documents and therefore has a weight of zero.

TF-IDF LTH Lund Scania Sweden
d1 0 2

4 log
3
2 ≈ 0.088 0 0

d2
1
4 log

3
2 ≈ 0.044 0 2

4 log
3
1 ≈ 0.239 0

d3
3
7 log

3
2 ≈ 0.075 1

7 log
3
2 ≈ 0.025 0 0

Table 2: Example TF-IDF representation

7.4 Embeddings
The one-hot and TF-IDF methods produce sparse vectors when transforming bags
of words and categorical features. Both models typically ignore co-occurrences
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Figure 9: CBOW vs Skip-gram mode in Word2vec

and rely entirely on symbols overlapping. This makes these models perform
poorly when synonymous words of different forms are present in the represen-
tation. Embeddings, specifically word embeddings, are an attempt to mitigate this
problem by learning a fixed low dimensional dense representation that transforms
each symbol into a vector space.

In the published papers in this thesis, I used word embeddings produced by
two methods: Word2vec and GloVe. A newer method FastText builds upon these
methods and includes the ability to create representations for words out of the
known vocabulary by using subword embeddings (Bojanowski, Grave, Joulin, &
Mikolov, 2017). Word embeddings are typically static; their representation is
fixed per word regardless of the sentence. Some methods, that are more compu-
tationally intensive, overcome this limitation by contextualizing the word embed-
ding based on where in a sentence the word appears. Examples of contextualized
embedding methods include ELMo (Peters et al., 2018) and the Flair embeddings
(Akbik, Blythe, & Vollgraf, 2018).

Word2vec. Word2vec is a model consisting of a shallow neural network that
can operate in two modes: continuous bag-of-words (CBOW) and skip-gram
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), see Figure 9. The first mode,
CBOW, uses a context window that is continuously moved over sentences. The
goal of CBOW is to learn representations by predicting the most probable word
given a context window. Conversely, skip-gram learn representations by predict-
ing nearby words given a focus word.

For a model such as Word2vec to work practically, various tricks are used
such as: negative sub-sampling that limits the number of negative examples of
words used during training and hierarchical softmax that reduces the computa-
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tional complexity of large output-spaces. In addition, word embeddings rely on
the distributive hypothesis (Harris, 1954) assuming that the meaning of a word
tends to be defined by the words occurring with it.

GloVe differs from Word2vec in that word co-occurrences are used directly
to learn representations, instead of the iterative process in Word2vec that moves a
window over the training corpus. GloVe, as a consequence, requires more memory
and a preprocessing step. However, Pennington, Socher, and Manning (2014)
show that Glove produces better embeddings with higher accuracy in less time
than Word2vec, regardless of mode given sufficient data.

Intuition. Embeddings make related symbols converge in vector space, essen-
tially embedding relevant information into the vector representation.

Practical use. Word embeddings provide a practical solution to the problem of
sparse vectors, and their associated huge spaces, by reducing these vectors into
a representation in a vector space of related symbols. Using tensors with recur-
rent and/or encoding methods such as FOFE can process sequences of symbols.
When training models for concrete tasks, embeddings are often initialized with
pre-trained values to save time.

7.5 Sequence Compression Encoding
Single words in NLP are rarely useful: We need a sequence of them to define or
convey an idea. Consequently, most models have to deal with sequences. Recur-
rent neural networks, discussed later, model this sequence behavior directly. The
encoding is then embedded within the structure of the model.

Due to computational requirements, simplified methods are sometimes good
enough. A baseline method using the bag-of-words technique is to compute the
mean vector ē, add all the vectors together, and normalize the sum by the vector
length.

ē =

∑
t et

∥
∑

t et∥
This approach may work for short sequences.

FOFE. Another approach is to use fixed-size ordinally-forgetting encoding (FO-
FE) (Zhang, Jiang, Xu, Hou, & Dai, 2015), which uses an exponential weighting
scheme with a decay factor, α to produce an encoded vector z:

zt = et + α · zt−1 (1 ≤ t ≤ T )

This decay factor models the receptive field, and it can be proven that if α is
tuned properly, it will result in unique vectors a neural network can successfully
fit.
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Attention. A more elaborate method uses a word attention mechanism, applied
by Yang et al. (2016) to document classification.

Word attention is the transformation of a sequence of embeddings et into a
single compressed vector representation s. The idea is to transform the sequence
by passing each embeddings through a dense layer with a tanh activation ut with
weights Wa and ba, and reduce it via a dot product with a context vector ua fitted
during training. Ultimately, this produces a compressed vector representation s as
a softmax normalized at weighted average of the embedding sequence et.

ut = tanh (Waet + ba),

at =
exp (uT

t ·wa)∑
t exp (u

T
t ·wa)

,

s =
∑
t

at et.

(15)
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8 Models

In this section, I introduce the models I used in the published papers of this thesis.

8.1 Logistic Regression

Logistic regression is a a classification model used to determine the probability p
of class given the vector x by fitting weights w.

Mathematically, t = w · x where p = σ(t) is the sigmoid or logistic function:

σ(t) =
1

1 + e−t
(16)

Notable properties of the sigmoid function is that it is constrained to the range
of 0 to 1 with 0.5 at the center.

8.2 Neural Network

An artificial neural network (ANN) is loosely modeled after the biological equiv-
alent, and is a class of graphical models. These models were used in the design of
the Ugglan and Hedwig entity linker and named entity recognition in Swedish, En-
glish, Spanish, and Chinese (Klang et al., 2017; Klang & Nugues, 2018a, 2018b,
2019b).

Figure 11 shows a simple neural network: It takes an input vector x and trans-
forms it into a new vector y. An ANN typically consists of multiple neurons,
where each takes the input, weights the input with a neuron specific weight, and
finally passes the weighted sum to an activation function.

Mathematically:

yk = activation(
∑
i

xi · wk
i + bk) (17)

or in matrix notation:

y = activation(Wx+ b), (18)

where x is the input vector, y the output vector, and W is the weight matrix and
b is a bias term for all connections to the input x.

Activation. The choice of an activation is important as it introduces nonlinearity
into the model, one distinct feature of neural networks.
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Figure 11: Artificial neuron with inputs x and outputs y

Figure 12 shows common functions known to work well in practice:

relu(t) =

{
t if t > 0,

0 otherwise
(19)

sigmoid(t) =σ(t) =
1

1 + e−t
(20)

tanh(t) = 2σ(t)− 1 (21)
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Hidden 1 Hidden 2 Hidden 3Input Output

Layers

Figure 13: A artificial neural network, visualized as a stack of layers with a decreasing
number of neurons in each layer.

Layers. Modelling large neural network architectures consists of reusing small
models such as that in Sect. 8.2 and composing them together as a sequence of
functions. Conceptualizing these models as layers simplifies the description of
the encoding of the architecture of a neural network; see Figure 13.

The simple neural network described previously has multiple names, but in
this dissertation, it will be called a dense layer as it transforms one dense vector
into another.

There is a special type of layer called embedding layer, different from Word2vec
and GloVe, in that it is only used to learn a vector representation for input sym-
bols or contain a pre-trained embedding. Embedding layers are similar to standard
dense layers, except for a few implementation details.

Back-propagation. Finding suitable parameters that make a neural network per-
form well on different tasks is the task of an optimizer combined with a loss func-
tion. Back-propagation is a popular method that exploits a derivative w.r.t. an
error using the chain rule to optimize parameters during an iterative gradient de-
scent.

This method consists of:

1. A forward pass, transforming an observation to a predicted output;

2. The computation of the loss by comparing prediction with the known cor-
rect answer;

3. A backward pass, using the error, i.e. the difference between expected and
predicted output, and tuning the parameters going backwards through the
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network using the derivative w.r.t. the error for each layer until the input
has been reached.

Finding derivatives for complex models can be a time-consuming task. Popu-
lar machine-learning frameworks such as Tensorflow and Pytorch were designed
to remove or reduce the need of doing this manually, requiring the user to only
specify the forward pass. The backward pass relies on automatic differentiation
to find the derivatives needed to optimize parameters.

8.3 Regularization
Training neural networks finds a local minimum of the error as given by the loss
function. One key goal is to make the network generalize well, meaning that a
network, given unseen observations, should produce reasonable predictions.

When networks do not generalize well, it can be due to the problem of over-
fitting, i.e. the network tunes its parameters to match precisely the outputs in the
training set, but cannot generate meaningful predictions on unseen data.

To reduce the risk of overfitting, Srivastava, Hinton, Krizhevsky, Sutskever,
and Salakhutdinov (2014) introduced a method called dropout, which randomly
disables neurons. This dropout reduces the overfit risk associated with two neu-
rons being tightly dependent on each other. The strength of the dropout is adjusted
by specifying a share of neurons p to drop randomly.

8.4 Recurrent Neural Networks
A recurrent neural network is an extension to ordinary feed-forward ANNs that
incorporates a feedback mechanism to make use of previous time steps. Time
steps can be rephrased as words in a sentence: Making prediction at step i depends
on predictions made previously from i− 1 to the start.

A recurrent neural network, simplified from Elman (1990) found in Pytorch16

and in Keras as SimpleRNN (Chollet, 2017), has this mathematical definition:

yt = σ(Wihxt + bih + Uhhyt−1 + bhh), (22)

where σ is the activation function typically tanh, the matrix Wih and its bias term
bih transforms the input features xt into a hidden representation, and finally the
matrix Uhh and its bias term bih transforms the previous output yt−1 prediction
into a feature that is added onto the hidden representation.

In the litterature, two simple recurrent networks are mentioned: Jordan (1986)
and Elman (1990) networks. The Elman network can be constructed using a
SimpleRNN layer and a dense layer in sequence. The Jordan network is similar
to the Elman network but with one difference: instead of using the SimpleRNN
output as feedback, it uses the output of the dense layer as feedback forcing an
intermediate step.

16https://pytorch.org/docs/stable/nn.html#rnn retrieved 2019-08-15

https://pytorch.org/docs/stable/nn.html#rnn
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8.5 LSTM

Simple recurrent neural network models are hard to fit due the vanishing and
exploding gradient problem (Hochreiter & Schmidhuber, 1997). The long short-
term memory (LSTM) model was designed by Hochreiter and Schmidhuber (1997)
to address and solve this problem.

There exist different variants of LSTM, the one I describe is based on the
Pytorch17 implementation.

ℎ"#$
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( (tanh

Element-wise mult. Matrix mult. Add
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Figure 14: Visualization of one time step t given input xt in a LSTM cell to predict output
yt, bias terms are excluded.

The core principle of a LSTM is a memory cell that is used to predict the
output using four gates: input, forget, cell and output, as can shown in Figure 14.

Mathematically, this yields:

it = σ (Wiixt + bii +Whiht−1 + bhi) (23)
ft = σ (Wifxt + bif +Whfht−1 + bhf ) (24)
gt = tanh (Wigxt + big +Whght−1 + bhg) (25)
ot = σ (Wioxt + bio +Whoht−1 + bho) (26)
ct = ft ∗ ct−1 + it ∗ gt (27)
ht = ot ∗ tanh ct (28)

17https://pytorch.org/docs/stable/nn.html#lstm

https://pytorch.org/docs/stable/nn.html#lstm
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where it, ft, gt, ot are the input, forget, cell, and output gate, respectively, ht is
the hidden state and the output in each step, and ct is the cell state. σ and tanh
are activation functions.

This construction allows the model to save long-term information found many
steps earlier, but still allows short-term predictions that do not modify the cell
state.

Intuition. The sigmoid activation function produces values with a range be-
tween 0 and 1, and can be used to choose what information to retain via an
element-wise multiplication. The tanh activation can be used to add information.
The cell-state ct could be called the long-term part of the model and the hidden
state ht, the short term. The cell state can remove information via the forget gate,
and add information via the input gate and cell gate. As the model can block out
input and short term information from the hidden state, the model can store infor-
mation over many steps. The short term ht combines the input, short-term, and
long-term to produce a final prediction.

Related models. The LSTM model is complicated and, as such, hard to opti-
mize. It therefore requires heavy computations. Cho et al. (2014) introduced a
simplified variant: the gated recurrent units (GRU). This model tries to simplify
LSTM, reducing the overall complexity and was found competitive to LSTM in
e.g. speech synthesis (Chung, Gulcehre, Cho, & Bengio, 2015).

8.6 Bidirectional Recurrent Neural Networks
Recurrence for sequences can be done for arbitrary orderings; a common trick
is then to use bidirectional layers, in which we essentially train two independent
layers. This is shown to perform better compared with using only a single direc-
tion (Schuster & Paliwal, 1997). We use different input directions and, in the end,
combine the results. We used this method when training the LSTM based named
entity recognizer (Klang & Nugues, 2018a).
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9 Document Database
Docforia collections are accessed sequentially and each document is standalone,
making search and random sampling of the collection difficult. To make search
easier, I designed Panforia (Klang & Nugues, 2018b), a system to index Docforia
dumps. Panforia makes large collection accessible by search and includes special-
ized tools for visualization of the layers contained within documents.

Panforia (see Figure 15) is built on top of a full-text search engine: Lucene,
and includes a web browsed visualizer capable of rendering the potentially many
nodes a document can contain. The visualization component also allows the dy-
namic selection of node and edge layers to visualize.

Panforia can index millions of documents in a few hours over multiple lan-
guages and could be run locally on a laptop. Panforia enables quick referencing
of annotated layers produced by algorithms applied to large collections of text.
The closest match to Panforia I could find is the Open Semantic Search18, an open
source project that can index millions of document with a modular architecture.
However, it was not designed to support the complex layered nature of Docria
documents that Panforia supports.

18https://www.opensemanticsearch.org/

https://www.opensemanticsearch.org/
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10 Named Entity Recognition
Named entity recognition (NER) is the task of finding phrases referring to a thing
with a name, a named entity, and assigning each phrase a category such as the
class of persons.

Applications of named entity recognition can be found in areas such as:

• Information categorization, by adding tags using named entities as basis to
e.g. news articles;

• Automatic document summarization, by using entities as a basis to deter-
mine what is mentioned and thus what may be important;

• Search, by using named entities as means of improve ranking relevance and
reducing search space;

• Question answering, by identifying and aggregating relations between enti-
ties;

• Identification of major events, by finding and aggregating mentions of loca-
tions in tweets which could aid in earthquake detection or events requiring
a fast first response from authorities;

• Brands and security, by tracking and aggregating mentions about an organi-
zation or persons.

We developed a multilingual named entity recognizer as a preliminary step to
entity linking so that it marks potential mentions accurately (Klang et al., 2017;
Klang & Nugues, 2019b). We designed it so that it could handle multiple lan-
guages with a flexible output of classes. From an input of words or word em-
beddings, the named entity recognizer predicts an output in the form of IOB or
IOBES tags as described in Sect 3.1.

To ease the linking step, I focused on the elimination of potentially noisy
mentions, i.e. I favored precision over recall so that the candidate link graph
becomes smaller and less noisy. The goal was then to make the NER and linker
work well together. This implied that we did not try to over-optimize the NER
intermediate step at the expense of the linking score.

10.1 Related Work
The proceedings of the message understanding conference (MUC-5) (Sundheim,
1995) provide one of the earliest definitions of a named entity. In MUC-5, a
named entity is a thing, which belongs to one of three categories: person, organi-
zation, or location. In addition, MUC-5 included temporal expressions (TIMEX),
such as dates or times, and numerical expressions (NUMEX), essentially typed
numbers, which include currencies and percentage values.
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MUC-5 was also one of the first conferences with the F1 score as primary
metric when conducting evaluations of NER systems. The best system in MUC-5
achieved a F1 score of 96.42% on a small annotated corpora of 30 articles.

Multilingual named entity recognition with larger corpora was attempted in
CoNLL-03 (Tjong Kim Sang & De Meulder, 2003) with the newswires corpus
RCV-1 (Sect. 3.1) from Reuters. CoNLL-03 excluded TIMEX and NUMEX
used in MUC-5 and introduced a new class: miscellaneous (MISC). CoNLL-03
is frequently cited in the literature and has become one of the standards when
evaluating English NER performance.

Florian, Ittycheriah, Jing, and Zhang (2003) achieved an F1 score of 88.76%
with an ensemble of systems in CoNLL-03. This system included one classifier
based on logistic regression, which, on its own, was the best classifier. Since
then, Ratinov and Roth (2009) improved the score to 90.57% using hand-crafted
features and dictionaries. Ma and Hovy (2016) used recurrent neural networks
such as bidirectional LSTMs with word embeddings as input improving the F1
score to 91.21%. Peters et al. (2018) used a new contextualized embedding called
ELMo to further improve the score to 92.22%. Finally, the FLAIR system (Akbik
et al., 2018) reached 93.09%. This corresponds to the state of the art, as of today.
As a side-note, the transformer-based BERTLARGE model achieved a competitive
F1 score of 92.8% (Devlin, Chang, Lee, & Toutanova, 2019).

Dictionary methods using rules and statistical thresholds have proven success-
ful in the context of entity linking (Eckhardt, Hreško, Procházka, & Smr, 2014;
Lipczak, Koushkestani, & Milios, 2014). However, they tend to overgenerate
mentions since many common words are names in specific contexts. Increasing
thresholds, thus increasing precision in the dictionary method discards many rel-
evant mentions. This increase can cause a poor recall, excluding mentions that
have few entity candidates. Mentions with few candidates further aid in the res-
olution of other highly ambiguous mentions, because they may restrict possible
entities due to their relations.

NER scores are language, corpus, and domain sensitive as can be seen in our
experiments on Swedish and English (Klang & Nugues, 2018a). The annotated
RCV-1 subset from CoNLL03 is based on news articles. These articles have been
written by journalists proficient with the written word. But news articles are only
one style of writing that we can find in the internet. The TAC EDL corpora, which
are mixtures of news and discussion forum texts written by the general public in
three languages, contain higher levels of ambiguity and more differences in style
and domain.

10.2 Entity Classification
Classifying named entities into broad categories can help reduce ambiguity when
linking, by excluding irrelevant hypotheses that are not things or do not conform
to the annotation guidelines.
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Wikipedia has a categorization system for pages corresponding to things such
as persons, organizations, or locations. This is useful as we can select a specific
set of entities based on their category, for instance all the persons. Unfortunately,
Wikipedia categories are not completely coherent and are language-specific. In
addition, in most annotated corpora, we have predefined sets of categories, as in
CoNLL03 and TAC-EDL, that have no direct mapping to the Wikipedia nomen-
clature.

A first technique to standardize the categorization of the Wikipedia pages is
to use Wikidata. Wikidata provides additional information, in this case, via the
instance-of, and subclass-of property. However, this property is loosely
defined and simple top-level Wikidata items, such as human settlement, will not
match cities, villages, and metropolitan areas.

To solve this problem, I reformulated it this way: Given an entity in Wikidata,
traverse the graph to create a set of features, and use these features to classify the
entity into a class from a predefined set of classes, for instance that of CoNLL,
MUC, or TAC-EDL. I applied this idea in Klang and Nugues (2019b) with in-
domain data, i.e. the training corpus of TAC-EDL, and a training set constructed
from entities extracted with manually defined rules.

The extraction rules consisted of queries that traversed the Wikidata graph, de-
termining if a path exists between two entities using a breadth-first search. Rules
matching a broad set of entities were filtered and sampled to keep the training set
balanced. All unlabeled entities were assumed to be member of the outside NONE
class. However, during training, the NONE class was sampled, with 10% per mini-
batch. This sampling forces the classifier to assign NONE by default, assuming
there is no feature overlap with other classes.

Finally, after training, I applied the fitted model to all the entities in Wikidata
to create an entity class mapping that I subsequently used in the Hedwig linker.

11 Named Entity Linking

Named entity linking can be divided into two broad groups, supervised and unsu-
pervised:

1. Supervised entity linking requires that all the linkable things are known and
typically available in a entity repository. Wikidata is an example of such a
repository that I used in this thesis.

2. Unsupervised entity linking attempts to construct a reference for all the
detected names, not part of the repository. It links the mentions referring
to such entities to unique generated references. This group corresponds
to a coreference resolution across multiple documents (Bagga & Baldwin,
1998).
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Supervised entity linking provides unique identifiers that can be referenced,
such as the Q-numbers in Wikidata. Conversely, unsupervised entity linking does
not have pre-defined identifiers.

In this thesis, I developed two entity linkers: Ugglan and Hedwig, both with
supervised and unsupervised aspects:

1. Ugglan (Klang et al., 2017) is based on creating a mention-entity, entity-
entity graph, running a Pagerank algorithm and then reranked with neural
network trained on TAC-EDL data with features such as word context en-
coded with the FOFE method.

2. Hedwig (Klang & Nugues, 2019b) builds on Ugglan with a re-implemented
Pagerank algorithm, additional features such as entity-mention and entity-
word constructed using point-wise mutual information (PMI) in entity con-
texts from Wikipedia.

Named entity linking is frequently formulated as a ranking problem, i.e. given
a list of potential candidate entities for each mention, rank them with respect to
a score. The potential candidates are derived from a dictionary in the supervised
case. This dictionary is frequently populated with names and aliases of known
entities. In Klang et al. (2017) and Klang and Nugues (2019b), we used titles,
redirect titles, the text of links in Wikipedia, and more to derive such a dictionary.

Entity candidates frequently incorporate priors in the computation of scores.
A prior is a statistical or similarity measure derived from a larger linked corpora
such as Wikipedia. Medelyan, Witten, and Milne (2008) proposed a measure
called commonness, which is the conditional probability that a given mention
refers to an entity candidate. Ranking by commonness is a strong baseline as
shown in Klang and Nugues (2019b).

11.1 Related work

A variety of methods has applied to carry out entity linking such as simple classifi-
cation models (Bunescu & Paşca, 2006; Cucerzan, 2007; Milne & Witten, 2008),
end-to-end linkage with a voting scheme for linkage (Ferragina & Scaiella, 2010),
graphical models (Guo & Barbosa, 2014; Hoffart et al., 2011), integer linear pro-
gramming (Cheng & Roth, 2013), fully probabilistic models (Ganea, Ganea, Luc-
chi, Eickhoff, & Hofmann, 2016) to deeper neural models (Ganea & Hofmann,
2017; Sil, Kundu, Florian, & Hamza, 2018).

Wainwright, Jordan, et al. (2008)19 showed that entity linking that tries to
maximize local and global agreement jointly is a NP-hard problem. Therefore,
most authors approximate or simplify this to make it feasible.

19cited in Globerson et al. (2016).
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11.2 Agreement

Linking methods could broadly be divided into local and global methods. Local
methods try to link mentions independently, based on their surrounding context.
Global methods, in contrast, try to find a coherent, agreeable linkage, which sat-
isfies a global objective, usually across a single document (Klang et al., 2017;
Klang & Nugues, 2019b).

One approach used in Klang and Nugues (2019b) is to use the entity coref-
erences found in multiple Wikipedia editions as they can be traced via Wikidata
Q-numbers. We populate the graph using entity candidates derived from mentions
and add mention-entity and entity-entity edges similar to Hoffart et al. (2011). In
addition, we add entity-mention and entity-word edges to introduce more of the
local context as can be seen in Figure 16.

Concretely, we search for local features in context: words, other mentions,
and other entity candidates. The graph is constructed by adding vertices such as
mention, entity, and words, and directed edges representing the features found in
a local context that bind these elements together. The features are precomputed
lists per candidate entity and were derived using the context surrounding links
in Wikipedia. The features consist of language-specific parts that include edges
binding mention-entity and entity-word, and a multilingual part such as entity-
entity. Once we populated the graph with all vertices and directed edges that
represent connections to local features, we run the Pagerank algorithm over this
graph. Pagerank assigns a weight to each vertex, specifically entity candidates,
which is used to link mentions.

Depending on the evaluation framework and test set, the resulting linked doc-
ument may contain entities that do not conform to the annotation guidelines, for
instance TAC-EDL 2017 excludes concepts or references to works and events. To
mitigate this, we assigned a class based on the mapping discussed in Sect. 10.2
and we removed entities with non-conforming classes from the linked graph.

11.3 Discussion

There is no consensus on the dataset to use for evaluation; this makes it hard
to compare different approaches. GERBIL (Röder, Usbeck, & Ngonga Ngomo,
2018) is a online platform that enables a researcher to compare his or her system
with others on a variety of English datasets. An English entity-linked version of
CoNLL03 Hoffart et al. (2011) is another popular dataset.

Entity linking systems consist of many moving parts, namely: named entity
recognizers, databases of entities, word embeddings, and more. The fact that most
systems contain so many moving parts makes it hard to independently reproduce
suggested systems or requires considerable effort. In addition, the computational
resources required are not a factor when the goal is only to produce the best link-
age on a small dataset. All these reasons combined made that the work in this



11 Named Entity Linking 55

Localized Context Localized ContextMultilingual context

Mention
Entity

Men4on

Words

Words

WordsMention
Entity

Entity

Entity

En4ty

Figure 16: Localized and multilingual pagerank linkage

thesis opted for a page-rank method in linkage, simply because it is fast and pro-
duces reasonable results.

Ugglan achieved a CEAFmC+ of 56.1%, and Hedwig 59.9% on the TAC 2017
multilingual dataset; recall is the weakness of both systems with 46.4% and 50.2%,
while it reaches a high precision of 89.4% for Ugglan and 91.4% for Hedwig. If
we exclude the nominal mentions, a peculiarity of TAC-EDL 2017, the recall
increases to a CEAFmC+ of 65.8% for Ugglan, and 69.0% for Hedwig with im-
provements in both recall and precision. Finding the correct mentions in Hedwig
reaches an F1 score of 85.6%, and linkage 81.5%, an increase over Ugglan 80.8%
to find names and 75.7% in linkage.

It should be noted that Ugglan used a neural reranker that improved the score
of the baseline system. The results obtained by Hedwig advocate that a stronger
NER in combination with a better Pagerank graph produce better scores than a
re-ranker. In addition, it may be significantly faster than deep neural network
systems that often are tricky to train properly.
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12 Conclusion
Through this thesis, the common denominator is the development of concrete
methods that can be used to store, transform, and process encyclopedic knowledge.
I applied these methods in two main applications: named entity recognition and
named entity linking.

I developed an infrastructure together with a suitable document representation
to process Wikipedia and related resources. The document representation was
refined through three revisions:

1. The RDF triplets inspired WIKIPARQ that can represent the structures in
Wikipedia (Klang & Nugues, 2016d);

2. Docforia supporting more complex representations (Klang & Nugues, 2017);
and finally

3. Docria that tries to preserve the best qualities from Docforia, while intro-
ducing a more rigid structure implemented in Python and Java (Klang &
Nugues, 2019a).

In addition, mixing and matching commonly available libraries in a scalable
way is time consuming. To alleviate this, I made an attempt to unify generic
NLP libraries with the Langforia framework (Klang & Nugues, 2016b). Langforia
abstracts libraries and can define pipelines for offline and online uses. The online
version is used for prototyping and allows pipelines to be pluggable.

These infrastructure and document modeling tools enabled me to create named
entity recognizers and named entity linkers. To the best of my knowledge, when
it comes to published results, I have produced a state-of-the-art named entity rec-
ognizer on the four majority classes in SUC 3.0 using a BILSTM-CRF method
(Klang & Nugues, 2018a). We have produced a competitive named entity linker
applied to three languages in TAC EDL 2017, English, Chinese, and Spanish,
reaching a final trilingual score of 59.9% CEAFmC+, 71.9% F1 on linkage, and
69.5% F1 in finding and classifying names correctly (Klang & Nugues, 2019b).
As resources, I only used Wikipedia, Wikidata, and the datasets provided by the
TAC organizers to train an in-domain named entity recognizer.

The entities resolved over multiple languages with a common repository served
as distant supervisors to train a semantic role labeler (SRL) (Exner et al., 2016).
While there are SRL tools for English, there are no large annotated datasets for
many languages, including Swedish or French, and this means that we cannot
apply them supervised learning techniques. Concretely, we applied the entity res-
olution to English, French, and Swedish texts; we aligned sets of identical entities
across multilingual sentences, such as English and Swedish; we applied an exist-
ing SRL for English, and we transferred the semantic annotation from English to
Swedish. Finally, we trained the SRL on this transferred annotation.
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These tools, methods, and representations will serve as a foundation for future
work.

12.1 Future Work
There are multiple possible avenues for future research: constructing a question
answering system, training new semantic role labelling (SRL) systems for more
languages expanding on the work in Exner et al. (2016), introducing the overall
background of news articles through entities, either historical, geographical, polit-
ical, for example, and improving search.

Constructing a question answering system can consist of the three following
parts:

1. Find relations using entities as anchors with semantic roles aligned with
multiple languages;

2. Enrich Wikidata with these relations resulting in a knowledge graph with
information previously only available as text;

3. And finally, build a question answering system that transforms a free-form
query into a lookup of the knowledge graph, generating a human under-
standable answer.

Another possibility is the construction of a system that introduces the histor-
ical, geographical, political, or scientific background in articles by the entities
mentioned in the text. Such a system could potentially be used to identify factual
errors and/or contradictions while cross-checking it against known information in
e.g. Wikidata.

Finding and linking entities in queries for a search system with a huge collec-
tion of documents is a third possible future research area. Concretely, the system
would use entity candidates and linked entities to reduce the search space by a
progressive refinement. Such a system could be constructed as a sequence of
questions to the user that would add constraints to exclude candidates. Eventually,
the space would be small enough to apply computationally expensive methods for
ranking, helping the user to find more relevant information.
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Abstract
In this paper, we describe how we use a named entity disambiguation module to merge entities in a question answering system.
The question answering system uses a baseline passage retrieval component that extracts paragraphs from the Swedish version of
Wikipedia. The passages are indexed and ranked using the Lucene platform. Prior to the indexing, we carried out a recognition
and disambiguation of the named entities. We used the Stagger part-of-speech tagger to tag the documents and we implemented
a disambiguation module. We extracted and merged the answer candidates using their wikidata Q-number. This enables the
question-answering system to benefit from the synonymy facility of Wikipedia as well as an extended set of properties.

1. Introduction
Factoid question answering systems aim at answering short
questions, where answers often consist of a single con-
cept or a named entity. The typical architecture of most
such systems features a question analysis step, a passage
retrieval step, where documents containing the answer are
extracted from a collection of texts, and an extraction and
ranking step of the candidate answers. See IBM Watson
(Ferrucci, 2012) for an example of such an architecture ap-
plied to the Jeopardy! quiz show.

When the answers correspond to named entities, their
identification in the texts that serve as knowledge source
and their disambiguation enables the answer extraction step
to merge more accurately the candidates coming from dif-
ferent passages. In addition, it makes it possible to carry
out inferencing over external structured data sources that
can be associated to these entities. While there exist avail-
able named entity disambiguators targeted to English, such
as AIDA (Hoffart et al., 2011) or SMAPH (Cornolti et al.,
2014), to the best of knowledge, there is nothing equiva-
lent for Swedish. In this paper, we describe a named entity
disambiguator for Swedish and its integration to the Hajen
question-answering system.

2. Named Entity Disambiguation
Named entity disambiguation or named entity linking con-
sists in associating a sequence of words, typically a proper
noun, to a unique identifier. As source of identifiers, we
can use entity repositories, such as Freebase (Bollacker et
al., 2008) or Wikidata1, that define popular nomenclatures.

In the Hajen system, we use the wikidata identifiers that
gather properties collected from the Wikipedia online en-
cyclopedia and the infobox tabulated information that is as-
sociated to some of its articles. The city of Lund, Sweden,
for example, has Q2167 as wikidata identifier, while Lund
University has number Q218506. The associated proper-
ties are then accessible from the URL: http://www.
wikidata.org/wiki/Qxxx.

We carry out the named entity linking in three steps: We
first use a part-of-speech tagger, Stagger (Östling, 2013), to

1http://www.wikidata.org/

recognize the named entities; we link the strings to possi-
ble wikidata identifiers; and we finally disambiguate them
using their popularity, commonness, and a Boolean context
method. In a sentence like:

Göran Persson var statsminister mellan åren 1996
och 2006 samt var partiledare för Socialdemokra-
terna
‘Göran Persson was prime minister between
1996 and 2006 and was leader of the Social
Democrats’,

we identify Göran Persson and Socialdemokraterna as
proper nouns. We then identify the entities matching these
strings. The Swedish Wikipedia lists four Göran Persson
with four different wikidata Q-numbers:

1. Göran Persson (född 1949), socialdemokratisk par-
tiledare och svensk statsminister 1996–2006 (The
Swedish Prime Minister): Q53747;

2. Göran Persson (född 1960), socialdemokratisk poli-
tiker från Skåne (A Swedish Member of Parliament):
Q5626648;

3. Göran Persson (musiker), svensk proggmusiker (A
Swedish composer): Q6042900;

4. Jöran Persson, svensk ämbetsman på 1500-talet (A
Swedish state councillor from the 16th century, whose
first name can be spelled either Jöran or Göran):
Q2625684.

We finally rank these candidates using their popularity
and context (Klang and Nugues, 2014). Figure 1 shows the
output produced by the disambiguation module.

3. Entity Linking and Question Answering
We integrated our named entity linker in a baseline question
answering system. Following IBM Watson (Chu-Carroll et
al., 2012), we used the Swedish version of Wikipedia as
textual knowledge source. We processed the whole cor-
pus with the linker so that we associated all the entities we
could recognize to their Q-number. For the named entities



Figure 1: The output of the entity disambiguation module

we identified with the POS tagger that had no Q-number,
we used the Wikipedia page name as identifier instead, e.g.
“Göran Persson” for the Prime Minister. We segmented the
articles into paragraphs and we indexed them using Lucene
(Apache Software Foundation, 2014).

We used a corpus of questions and answers transcribed
from the SVT Kvitt eller Dubbelt – Tiotusenkronorsfrågan
game (Thorsvad and Thorsvad, 2005). Given a question,
we retrieve the set of Wikipedia passages having the highest
similarity using Lucene’s TF.IDF implementation.

3.1 Merging the Candidates.
We applied a POS tagger to the passages and we extracted
the common nouns, proper nouns, and named entities. We
merged all the strings that could be linked to a unique iden-
tifier and we created a list of synonyms with the resulting
set. When the strings have no identifier, we merge them
either by lemma or surface forms. These strings usually
consist of a single token: a noun. However, as the POS tag-
ger identifies multiword named entities, a candidate may
consist of multiple tokens. In such a case, it is merged in
the same way as single tokens.

3.2 Ranking the Candidates.
Ranking the candidate answers to a question is done by
frequency, i.e. the number of candidate occurrences after
merging. Figure 2 shows the output of the system to the
question:

Vem vann melodifestivalen 2004?
‘who won the Swedish Melody Festival in
2004?’.

4. Results and Evaluation
We evaluated the question answering system using four
metrics: the median rank, mean rank, number of answered
questions (recall), and the mean reciprocal rank (MRR),
where MRR = 1

|Q|
∑|Q|

i=1
1

ranki
, Q is the set of answered

questions, and ranki is the rank of question i. The rank
metrics only consider answered questions and we set the
limit of retrieved paragraphs to 100 for all the systems.

We considered a question answered if the correct answer
could be found in the list of candidate answers. As com-
parison criterion, we used a lowercase exact string match
between the corpus answer and the answers provided by
the system in the form of lemma and surface form.

We tested three system configurations:

Figure 2: The output of the question answering system

System MRR Median Mean Recall
Nouns only 0.138 29 109.0 0.52
Disambig. only 0.381 4.5 22.8 0.25
Full 0.172 27.0 121.2 0.58

Table 1: The results

Noun only: Only nouns and proper nouns, always single
tokens;

Disambiguated only: Named entities that were success-
fully connected to a wikidata or Wikipedia entity; and

Full: Nouns, named entity candidates, disambiguations,
paragraph titles, and numerals.

Table 1 shows the results we obtained. The disambigua-
tion step provide a much better precision but a poorer recall.
The opposite applies for nouns, where the recall is higher
but precision is lower. The full system with disambiguation
increases MRR by nearly 25% compared to only nouns, and
the recall by 5.6%.

5. Conclusion
A candidate merging step using a named entity linking
module produces high precision results, although due to the
entity coverage of Wikidata, it misses a significant part of
the answers. A baseline merging method has a much lower
precision, but a better recall. When combining both meth-
ods, we can observe an increase in both precision and recall
over the baseline. More importantly, named entity disam-
biguation provides entry points to structured data, which
would allow questions to be answered using a deeper anal-
ysis such as inferencing over structured data.
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Wikipedia has become one of the most popular resources in natural language processing and it is used in quantities of applications.

However, Wikipedia requires a substantial pre-processing step before it can be used. For instance, its set of nonstandardized annotations,

referred to as the wiki markup, is language-dependent and needs specific parsers from language to language, for English, French, Italian,

etc. In addition, the intricacies of the different Wikipedia resources: main article text, categories, wikidata, infoboxes, scattered into

the article document or in different files make it difficult to have global view of this outstanding resource. In this paper, we describe

WikiParq, a unified format based on the Parquet standard to tabulate and package the Wikipedia corpora. In combination with Spark,

a map-reduce computing framework, and the SQL query language, WikiParq makes it much easier to write database queries to extract

specific information or subcorpora from Wikipedia, such as all the first paragraphs of the articles in French, or all the articles on persons

in Spanish, or all the articles on persons that have versions in French, English, and Spanish. WikiParq is available in six language

versions and is potentially extendible to all the languages of Wikipedia. The WikiParq files are downloadable as tarball archives from

this location: http://semantica.cs.lth.se/wikiparq/.

Keywords:Wikipedia, Parquet, query language.

1. Introduction

1.1. Wikipedia

Wikipedia is a collaborative, multilingual encyclopedia

with more than 35 million articles across nearly 300 lan-

guages. Anyone can edit it and its modification rate is of

about 10 million edits per month1; many of its articles are

categorized; and its cross-references to other articles (links)

are extremely useful to help name disambiguation.

Wikipedia is freely available in the form of dump archives2

and its wealth of information has made it a major resource

in natural language processing applications that range from

word counting to question answering (Ferrucci, 2012).

1.2. Wikipedia Annotation

Wikipedia uses the so-called wiki markup to annotate the

documents. Parsing this markup is then a compulsory

step to any further processing. As for the Wikipedia ar-

ticles, parts of this markup are language-dependent and

can be created and changed by anyone. For exam-

ple, the {{Citation needed}} template in the English

Wikipedia is rendered by {{Citation nécessaire}}
in French and {{citazione necessaria}} in Italian.

Many articles in French use a date template in the form

of {{Year|Month|Day}}, which is not used in other

Wikipedias.

Moreover, the wiki markup is difficult to master for the mil-

lions of Wikipedia editors and, as a consequence, the arti-

cles contain scores of malformed expressions. While it is

relatively easy to create a quick-and-dirty parser, an accu-

rate tool, functional across all the language versions is a ma-

jor challenge.

In this paper, we describe WikiParq, a set of Wikipedia

archives with an easy tabular access. To create WikiParq,

we reformatted Wikipedia dumps from their HTML render-

ing and converted them in the Parquet format. In addition

1https://stats.wikimedia.org/
2http://dumps.wikimedia.org/

to the Wikipedia original content, WikiParq makes it easy

to add any number of linguistic layers such as the parts of

speech of the words or dependency relations.

The WikiParq files are available for download as tarball

archives in six languages: English, French, Spanish, Ger-

man, Russian, and Swedish, as well as the Wikidata con-

tent relevant to these languages, from this location: http:
//semantica.cs.lth.se/wikiparq/.

2. Related Work

There are many tools to parse and/or package Wikipedia.

The most notable ones include WikiExtractor (Attardi and

Fuschetto, 2015), Sweble (Dohrn and Riehle, 2013), and

XOWA (Gnosygnu, 2015). In addition, the Wikimedia

foundation also provides HTML dumps in an efficient com-

pression format called ZIM (Wikimedia CH, 2015).

WikiExtractor is designed to extract the text content, or

other kinds information from the Wikipedia articles, while

Sweble is a real parser that produces abstract syntactic trees

out of the articles. However, both WikiExtractor and Swe-

ble are either limited or complex as users must adapt the

output to the type of information they want to extract. In

addition, they do not support all the features of MediaWiki.

A major challenge for such parsers is the template expan-

sion. Dealing with these templates is a nontrivial issue as

they can, via the Scribunto extension3, embed scripting lan-

guages such as Lua.

XOWA and ZIM dumps are, or can be converted into,

HTML documents, where one can subsequently use HTML

parsers to extract information. The category, for instance, is

relatively easy to extract using HTML CSS class informa-

tion. However, neither XOWA nor ZIM dumps make the

extraction of specific information from Wikipedia as easy

as database querying. In addition, they cannot be easily ex-

tended with external information.

3https://www.mediawiki.org/wiki/Extension:
Scribunto
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3. The Wikipedia Annotation Pipeline

The Wikipedia annotation pipeline consists of five different

steps:

1. The first step converts the Wikipedia dumps into

HTML documents that we subsequently parse into

DOM abstract syntactic trees using jsoup.

2. The second step consists of a HTML parser that tra-

verses the DOM trees and outputs a flattened unfor-

matted text with multiple layers of structural informa-

tion such as anchors, typeface properties, paragraphs,

etc. At the end of this step, we have the text and easily

parseable structural information.

3. The third step consists of a linking stage that associates

the documents and anchors with unique identifiers, ei-

ther Wikidata identifiers (Q numbers) or, as a fallback,

Wikipedia page titles.

4. The fourth step annotates the resulting text with gram-

matical layers that are entirely parametrizable and that

can range from tokenization to semantic role labelling

and beyond. The linguistic annotation is provided by

external language processing tools. This step is op-

tional.

5. The fifth and final stage links mentions of proper nouns

and concepts, possibly ambiguous, to unique entity

identifiers. As in the third step, we use the Wikidata

nomenclature to identify the entities. This fifth step is

also optional.

3.1. Wiki Markup and HTML Parsing

The first and second steps of the annotation pipeline parse

and convert the dumps into an intermediate document

model. As input data, the markup parser uses either HTML

documents from ZIM archives or XOWA outputs. It then

uses the jsoup HTML parser4 to build the document object

model (DOM) of every page, where we extract the text, sec-

tions, paragraphs, infoboxes, anchors (the wiki links), ta-

bles, and lists.

The parser recursively traverses the HTML DOM and uses

heuristic hints based on the CSS classes and HTML tags

such as <table>, <p>, <ol>, and <ul> to carry out the

information extraction. It outputs the flattened text and

nine independent sequences of ranges, where the sequences

describe respectively the tokens, sections, paragraphs, list

items, list sections, anchors, headings, italic and bold char-

acters. This structured data is an intermediate format that

we call the Multilayer Document Model (MLDM), which

is similar to a property graph model. Figure 1 shows the

conversion pipeline from the Wikimedia dumps to the ab-

stract syntactic trees (AST) and MLDM layers.

3.2. Anchor Resolution

The third step links the documents and anchors to their en-

tity id, a unique entity identifier across Wikipedia language

editions available from Wikidata.

4http://jsoup.org/

Prior to the linking step, we collected a set of entities from

Wikidata, a freely available graph database that connects the

Wikipedia pages across languages. Each Wikidata entity

has a unique identifier, a Q-number, that is shared by all the

Wikipedia language versions on this entity.

TheWikipedia pages onBeijing in English, Pékin in French,

Pequim in Portuguese, and北京 in Chinese, are all linked

to the Q956 Wikidata number, for instance, as well as 190

others languages. In total, Wikidata covers a set of more

than 16 million items that defines the search space of entity

linking. In the few cases where a Wikipedia page has no

Q-number, we replace it by the page name. In addition to

the Q-numbers, Wikidata structures its content in the form

of a graph, where each node is assigned a set of properties

and values. For instance, Beijing (Q956) is an instance of

a city (Q515) and has a coordinate location of 39°54’18”N,

116°23’29”E (P625).

We implemented the anchor resolver through a lookup dic-

tionary that uses all the Wikipedia page titles, redirects, and

Wikidata identifiers. The page labels, i.e. the page titles and

all their synonyms, form the entries of this dictionary, while

the Wikidata identifiers are the outputs. In case a page label

has no Wikidata number, the dictionary uses its normalized

page title.

3.3. Grammatical Annotation

Once we have extracted and structured the text, we can ap-

ply a grammatical annotation that is language specific. De-

pending on the language, and the components or resources

available for it, the annotation can range from a simple to-

kenization to semantic-role labels or coreference chains.

Multilinguality. We implemented the grammatical anno-

tation so that it has a multilingual support at the core. All the

language-dependent algorithms are stored in separate pack-

ages and tied to the system through abstractions that operate

on the Multilayer Document Model. More specifically, the

token annotations include a dictionary loosely inspired by

the CoNLL format (Buchholz and Marsi, 2006) extended

with naming conventions from Exner and Nugues (2014).

Dependency Injection. The annotators apply the depen-

dency injection (Fowler, 2004) pattern that solves the prob-

lem of hard-coded dependencies by making the code only

depend on a dependency injector. The dependency injector

is constructed once and reused multiple times. The injec-

tor can be configured to provide different concrete imple-

mentations which allow a high-level way of switching the

implementation of an abstraction. The role of the injector

is to provide instances of requested abstractions as well as

concrete classes. The injector also injects the dependen-

cies needed to construct these instances. We used Guice

(Google, 2011) as base library on top of which we devel-

oped thread-safe constructions to be able to process indices

and storage.

Tool chains. The tool chains are instances of annotators

and are specific to the languages we process. For English,

Spanish, and German, we use CoreNLP (Manning et al.,

2014). For French, we use CoreNLP for tokenizing the

text and MATE for parsing (Björkelund et al., 2010). For

Swedish, we use Stagger (Östling, 2013) and MaltParser
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Figure 1: Conversion of Wikipedia dumps into abstract syntactic trees and the Multilayer Document Model (MLDM)

(Nivre et al., 2006). For Russian, there is no linguistic an-

notation and the tool chain is reduced to nothing as of today.

3.4. Entity Linking

The final step links mentions of named entities and con-

cepts to unique Wikidata identifiers. This last opera-

tion is an optional step. While Wikidata defines unam-

biguous mappings between a Q-number and language-

dependent strings, strings may have ambiguous Q-numbers.

For example, the mention Göran Persson in the Swedish

Wikipedia refers to at least four different entities with three

different Q-numbers: A former Swedish prime minister

(Q53747), a progressive musician (Q6042900), a politician

(Q5626648), and a Swedish statesman from the 16th cen-

tury (Q2625684). The latter is also being spelled Jöran Per-

son.

To carry out the mention disambiguation, we reimple-

mented a variant of TagMe (Ferragina and Scaiella, 2010).

TagMe requires minimal grammatical information as it only

needs a dictionary of mention-entity pairs and of incoming

links. We can then apply it to any of our language versions.

3.5. Visualizing the Annotations

We created a tool to visualize the annotations of the Mul-

tilayer Document Model. The layers are selectable from a

dropdown menu and their visualization uses brat compo-

nents5. Figures 2, 3, and 4 show screenshots with differ-

ent layers. They all refer to the Wikipedia article Carl von

Linné in English.

Figure 2 shows the first paragraph of the article with the

token and named entity layers, while Fig. 3 shows the en-

tity links with those manually marked as anchors in the text

superimposed to the automatically assigned entity links.

The numbers refer to the Wikidata nomenclature. Finally,

Fig. 4 shows the dependency relations. This layer is op-

tional and depends on the availability of a parser for the

language version. This visualization tool is available at:

http://vilde.cs.lth.se:8080/.

4. Parquet: A Storage and Extraction

Format

Parquet6 is a popular column-oriented storage format, i.e.

a columnar format, where instead of storing a file by row,

the data is structured by column. Table 1 shows a simple

example of data tabulated in two columns, where the first

one consists of words and the second one, of their parts of

5http://brat.nlplab.org/
6https://parquet.apache.org/

speech, and Table 2 shows how the first table is stored us-

ing a row-oriented format and a columnar one, where the

columns are stored sequentially.

Word POS

The dt

boy nn

fell vb

Table 1: An example of tabulated data.

Row-oriented Column-oriented

The The

dt First column boy

boy fell

nn dt

fell Second column nn

vb vb

Table 2: Storage organization in row- and column-oriented

formats.

In files with large numbers of columns, the Parquet format

enables a program to read the columns as needed and skip

the others. In addition to providing a faster access to the

selected columns, such a format is also very efficient for

compressing redundant data; something extremely useful in

our case.

5. The WikiParq Format

We created a program to tabulate and store all the annotation

layers we described in Sect. 3. using the Parquet format.

5.1. The WikiParq Columns

In its current version, the WikiParq format consists of ten

main columns. Some columns borrow concepts from graph

database structures in the form of source nodes, target

nodes (values), and predicates (or properties) between these

nodes:

uri: The wikidata identifier of the document, for instance

urn:wikidata:Q34;

lang: The language of the document, for instance de for

German, fr for French;

doc: The part of the document. The values can be article
(the text), category, or disambiguation;
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Figure 2: Visualizing tokens and named entities

Figure 3: Visualizing the links: Anchors and disambiguated mentions of entities and concepts

source: The layer we are annotating. There are two main

types of layers consisting of either nodes or edges. The

token layer contains nodes: node/token. It is equiv-
alent to a node in a graph, while the dependency layer

uses edges;

sourceId: The identifier of an element in the layer, for in-

stance 1 for the first token in a layer;

predicate: The relation annotating the node, for instance

the part of speech: token:pos. We use similar proper-

ties to annotate a token with its lemma, token:lemma,
a head in a dependency graph, token:head, or a re-
solved Wikipedia link, link:resolved_target;

value[1-9]: The values of the target node, normally one:

value1. For instance, for a token and a part-of-

speech property, the value can be a common noun:

NN. Some relations, such as link:resolved_target,
have more than one value. In this case, we have

value1 for the target, value2 for the text, etc.

type: The format of the value, which can either be

string, range, or reference, doclink, weblink,
wikilink (anchor),

valuei1: Start of the range of the node, if this is relevant,

i.e. the type is range or reference. An example of

reference that refers to the first token of a document is:
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Figure 4: Visualizing the grammatical dependencies

valuei1 = 1 and value1 = node/token;

valuei2: End of the range of the node, if this is relevant

(range).

Table 3 shows examples of Wikiparq annotations for a

whole document, a token, its range and part of speech, as

well as an anchor to the Finland entity.

5.2. The WikiParq Predicates

We used a set of predicates to describe the relations linking

a node to its values. This allows us to represent data in the

form of triples consisting of a node, a predicate, and a value.

For instance, the token in Table 3 has a text, a range, and a

part of speech that conceptually correspond to:

wd:Q34/sv/article/node/3614, token:text, "officiellt"
wd:Q34/sv/article/node/3614, range:token, "18-28"
wd:Q34/sv/article/node/3614, token:cpostag, "ADJ"

This representation is very flexible. For instance, we desig-

nate and annotate token sequences or sentences through the

creation of nodes with ranges corresponding to the spans

of the groups or the sentences. We can also easily merge

multiple editions of Wikipedia by just considering the lang

prefix. Table 4 shows the list of all the predicates we are

using so far.

We converted the Wikipedia versions of six languages: En-

glish, French, Spanish, German, Russian, and Swedish,

from archives in the Multilayer Document Model into

WikiParq. We also created a WikiParq version of the

Wikidata content relevant to these languages. We used

Wikipedia dumps from February 3rd or 4th, 2016 and a

Wikidata dump from February 22nd, 2016.

The English WikiParq tar file gives an idea of the resulting

data volume: It is 15 Gbytes large, has 4.8 million articles,

49.8million paragraphs, and 175million resolved links. For

Swedish, the total number of triples is of 7.8 billions for the

language-annotated version.

6. Querying WikiParq

The Parquet format has been integrated in a number of pro-

cessing frameworks including map-reduce based databases.

It is the default storage format of Spark SQL (Armbrust et

al., 2015), a module to query structured data using Spark

(Zaharia et al., 2012). Spark is a memory-based implemen-

tation of the map-reduce framework (Dean and Ghemawat,

2008) that has become a very popular tool in cluster com-

puting.

Spark SQL makes it very easy to extract information from

WikiParq as it follows the familiar SQL syntax and, at the

same time, is very fast. In addition, processing can trans-

parently be distributed on a cluster. Spark uses the concept

of dataframe, similar to that of R or Python pandas, for load-

ing and saving Parquet files. We can consider dataframes as

wrappers to Spark resilient datasets (RDD) with structured

schemas.

In the next sections, we provide query examples to show

how to extract information from Wikipedia using WikiParq

and the Spark (Scala) API.

6.1. Loading a File

The API is straightforward and loading a file, here the En-

glish Wikipedia (en_wiki), only needs two instructions:

val en_wiki = sqlContext.read.parquet(filenames)
en_wiki.registerTempTable("enwiki")

which result in a table.

6.2. Extracting Text

To extract all the articles from a Wikipedia version, here

Swedish, we use this simple query:

SELECT uri, lang, value1 AS text
FROM svwiki
WHERE predicate = 'document:text'

inside a sqlContext.sql().
To count all the nouns in a collection, we use:

SELECT COUNT(*)
FROM svwiki
WHERE predicate = 'token:cpostag'
AND value1 = 'NOUN'

which results in about 116 millions for Swedish. The cor-

responding number for verbs is 34 millions.

In the subsequent examples, we used the Parquet files of six

languages: de, en, es, fr, ru, and sv, as well as the Wikidata

parquet file.

6.3. Counting the Articles per Language

Once the files are loaded, we can extract data or information

using SQL queries as for instance for this request:

Extract all the articles on persons in Wikipedia?
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Ann. target uri doc source sourceId predicate value1 valuei1 valuei2 type lang

Document wd:Q34 article null null document:text Sverige... null null string sv

Token text wd:Q34 article node/token 3614 token:text officiellt null null string sv

Token range wd:Q34 article node/token 3614 range:token null 18 28 range sv

Token POS wd:Q34 article node/token 3614 token:cpostag ADJ null null string sv

Link wd:Q34 article node/anchor 2329 link:resolved_target wd:Q33 null null wikilink sv

Table 3: Examples of the Wikiparq annotations for a whole document, here the article Sverige ‘Sweden’ in the Swedish

Wikipedia, a word in it, here officiellt, its range, and part of speech, as well as an anchor (wiki link) to Finland. We abridged

urn:wikidata in wd

document link category token range edge ne paragraph section

alt_title resolved_target member-of cpostag clean deprel:label label source title

title unresolved_target title deprel heading head

wiki_page_id feats italic tail

text head link

category idx list_item

lemma list_section

norm named_entity

pos paragraph

text section

sentence

strong

token

Table 4: List of available predicates organized by prefix. To have the full name, the prefix is concatenated to the relation

name, i.e. document:title or link:resolved_target

To carry this out, we first extract the persons from the Wiki-

data ontology. We use the instance of property (P31) and

we keep the entities having the property of being an instance

of a human (Q5). This is translated in SQL as:

sqlContext.sql("""
SELECT uri
FROM wikidata
WHERE predicate = 'wd:P31'
AND value1 = 'urn:wikidata:Q5'

""").cache().registerTempTable("persons")

and results in a table called persons.
We then extract the language versions associated with each

of these entities (persons). We run the extraction using this

query:

sqlContext.sql("""
SELECT wikidata.uri AS uri, lang
FROM wikidata
JOIN persons
ON persons.uri = wikidata.uri
WHERE predicate = 'wd:sitelink'

""").registerTempTable("person_sitelinks")

that produces a table of entity identifiers (Q-numbers) and

languages. The wd:sitelink predicate enables us to find

the language versions of an entity according to Wikidata.

Finally, we count the persons per language using this query:

sqlContext.sql("""
SELECT lang, COUNT(lang) as count

FROM person_sitelinks
GROUP BY lang
ORDER BY lang

""").show()

This results in a table with the number of persons per lan-

guage version:

+----+-------+
|lang| count|
+----+-------+
| de| 597515|
| en|1339313|
| es| 274878|
| fr| 462839|
| ru| 313566|
| sv| 183926|
+----+-------+

6.4. Counting the Language Versions of an

Article

Going on with this dataset, a second question we may pose

is:

For a given article, how many language versions

are there?

which is translated in SQL as:

sqlContext.sql("""
SELECT uri, COUNT(lang) AS numLangs
FROM person_sitelinks

4146



GROUP BY uri
""").registerTempTable("lang_person")

The excerpt below shows a subset of the first answers to this

question:

+--------------------+--------+
| uri|numLangs|
+--------------------+--------+
|urn:wikidata:Q100250| 2|
|urn:wikidata:Q100412| 3|
|urn:wikidata:Q100863| 1|
|urn:wikidata:Q101097| 1|
|urn:wikidata:Q101141| 2|
|urn:wikidata:Q101259| 1|
|urn:wikidata:Q101303| 2|
|urn:wikidata:Q101754| 2|
|urn:wikidata:Q101916| 2|
|urn:wikidata:Q102032| 2|
|urn:wikidata:Q102483| 6|
|urn:wikidata:Q102645| 3|
|urn:wikidata:Q10287 | 6|
+--------------------+--------+

The Q-number is the Wikidata identifier of a Wikipedia en-

tity. For instance, Q101916 is the identifier of Friedrich von

Weech, a German regional historian and archivist, who has

German and Swedish versions.

6.5. Counting Articles with a Constraint on the

Language Versions

At this point, we may wonder:

How many articles are available in the six ver-

sions?

This question is rendered by the following SQL query:

sqlContext.sql("""
SELECT COUNT(uri)
FROM lang_person
WHERE numLangs = 6""")

and the answer is: 41,509 articles.

6.6. Extracting the Text of the Articles

So far, we carried out extractions that could have also

been done from Wikidata using the SPARQL language.

WikiParq merges Wikidata and Wikipedia and extends the

query possibilities to span both resources seamlessly as for

instance with this request whose goal could be to build

loosely parallel corpora in six languages:

Extract the text of all the articles with six lan-

guage versions

Such a request is translated by these two following SQL

queries, where the first one selects the articles with six lan-

guage versions:

sqlContext.sql("""
SELECT * FROM lang_person
WHERE numLangs = 6

""").cache().registerTempTable("lang6_person")

and the second one outputs the text, here in Swedish:

sqlContext.sql("""
SELECT lang6_person.uri, value1 AS text
FROM svwiki
JOIN lang6_person
ON svwiki.uri = lang6_person.uri
WHERE svwiki.predicate = 'document:text'

""").show()

6.7. Extracting all the Mentions of an Entity

A last example shows how to build dictionaries of the words

or phrases used in Wikipedia to name an entity: A dictio-

nary of mentions. To carry this out, we need to extract all

the labels of a entity in Wikipedia. This operation is easy

to carry out, for instance for Barack Obama in the English

Wikipedia. Barack Obama has Q76 as Wikidata identifier.

This leads to this query:

sqlContext.sql("""
SELECT value1 AS target, value2 AS mention,
COUNT(*) AS freq
FROM enwiki
WHERE enwiki.predicate =
'link:resolved_target'

AND value1 = 'urn:wikidata:Q76'
GROUP BY value1, value2
ORDER BY value1, freq DESC

""").show()

that results in a table, where we show the first lines below:

+----------------+--------------------+-----+
| target| mention| freq|
+----------------+--------------------+-----+
|urn:wikidata:Q76| Barack Obama|14960|
|urn:wikidata:Q76| Obama| 887|
|urn:wikidata:Q76| President Obama| 546|
|urn:wikidata:Q76|President Barack ...| 142|
|urn:wikidata:Q76| Barack H. Obama| 64|
|urn:wikidata:Q76| Obama, Barack| 45|
|urn:wikidata:Q76| Barack Obama's| 40|
|urn:wikidata:Q76| President Obama's| 21|
|urn:wikidata:Q76| Barack| 21|
|urn:wikidata:Q76|President Barack ...| 13|
|urn:wikidata:Q76|Obama administration| 9|
|urn:wikidata:Q76| Obama's| 8|
|urn:wikidata:Q76|President-elect O...| 8|
|urn:wikidata:Q76| President| 7|
|urn:wikidata:Q76| Sen. Barack Obama| 7|
|urn:wikidata:Q76|Barack Hussein Obama| 7|
|urn:wikidata:Q76|Barack Hussein Ob...| 6|
|urn:wikidata:Q76|U.S. President Ba...| 6|
|urn:wikidata:Q76|Senator Barack Obama| 6|
|urn:wikidata:Q76| Barack Obama’s| 5|
+----------------+--------------------+-----+

7. Conclusion

We have describedWikiParq, a unified tabulated format that

uses the Parquet standard to package the Wikipedia cor-

pora. In combination with Spark, a map-reduce computing
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framework, and the SQL query language, this format makes

it easy to write concise database queries to extract specific

information from Wikipedia and have the answer in a few

minutes.

Currently, six versions of Wikipedia are available as tarball

archives in the WikiParq format from this location: http:
//semantica.cs.lth.se/wikiparq/. We also provide

a Parquet version of Wikidata, as well as a Scala program

and a Jupyter notebook to run the examples described in this

paper. We ran and tested all the examples on a laptop with

an Intel i7 processor and 16 Gbytes of memory.
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Abstract

In this paper, we describe Docforia, a
multilayer document model and applica-
tion programming interface (API) to store
formatting, lexical, syntactic, and seman-
tic annotations on Wikipedia and other
kinds of text and visualize them. While
Wikipedia has become a major NLP re-
source, its scale and heterogeneity makes
it relatively difficult to do experimenta-
tions on the whole corpus. These exper-
imentations are rendered even more com-
plex as, to the best of our knowledge, there
is no available tool to visualize easily the
results of a processing pipeline.

We designed Docforia so that it can store
millions of documents and billions of to-
kens, annotated using different process-
ing tools, that themselves use multiple for-
mats, and compatible with cluster comput-
ing frameworks such as Hadoop or Spark.
The annotation output, either partial or
complete, can then be shared more eas-
ily. To validate Docforia, we processed
six language versions of Wikipedia: En-
glish, French, German, Spanish, Russian,
and Swedish, up to semantic role labeling,
depending on the NLP tools available for
a given language. We stored the results in
our document model and we created a vi-
sualization tool to inspect the annotation
results.

1 Introduction

Wikipedia is one of the largest freely available en-
cyclopedic sources: It is comprehensive, multilin-
gual, and continuously expanding. These unique
properties make it a popular resource now used
in scores of NLP projects such as translation
(Smith et al., 2010), semantic networks (Navigli

and Ponzetto, 2010), named entity linking (Mihal-
cea and Csomai, 2007), information extraction, or
question answering (Ferrucci, 2012).

Nonetheless, the Wikipedia size, where many
language versions have now more that one million
of articles makes it more difficult to handle than
“classic” and older corpora such as the Penn tree-
bank (Marcus et al., 1993). Processing the com-
plete collection of Wikipedia articles, or a part of
it, is a nontrivial task that requires dealing with
multiple markup variants across the language ver-
sions, multiple tools and storage models. In addi-
tion, the application of a NLP pipeline to carry out
the annotation (tokenization, POS tagging, depen-
dency parsing, and so on) is a relatively costly op-
eration that can take weeks on a single computer.

Docforia is a multilayer document model to
store formatting, lexical, syntactic, and semantic
annotations on Wikipedia and other kinds of text
and visualize them. To deliver results in a reason-
able time, Docforia is compatible with cluster pro-
gramming frameworks such as Spark or Hadoop.
Using the Langforia language processing pipelines
(Klang and Nugues, 2016a), we processed six lan-
guage versions of Wikipedia: English, French,
German, Spanish, Russian, and Swedish, up to se-
mantic role labeling, depending on the NLP tools
available for a given language. We stored the re-
sults in the document model. We designed an in-
teractive visualization tool, part of Langforia, so
that a user can select languages, documents, and
linguistic layers and examine the annotation out-
put.

2 The Document Model

We created the Docforia multilayer document
model library to store, query, and extract hyper-
textual information common to many NLP tasks
such as part-of-speech tagging, coreference reso-
lution, named entity recognition and linking, de-
pendency parsing, semantic role labeling, etc., in
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a standalone package.
This model is intended for large and heteroge-

nous collection of text, including Wikipedia. We
designed it so that we could store the original
markup, as well as the the results of the subse-
quent linguistic processing. The model consists of
multiple layers, where each layer is dedicated to
a specific type of annotation. It is nondestructive
and preserves the original white spaces.

The annotations are encoded in the form of
graph nodes, where a node represents a piece of
data: A token, a sentence, a named entity, etc., de-
limited by ranges. These nodes are possibly con-
nected by edges as in dependency graphs. The
data structure used is similar to a property graph
and Fig. 1 shows the conversion pipeline from the
Wikimedia dumps to the abstract syntactic trees
(AST) and Docforia layers.

3 Previous Work

A few graph-based linguistic data models and se-
rializations have structures that are similar to Doc-
foria. They include HyGraphDB (Gleim et al.,
2007), the Linguistic Framework Annotation (Ide
and Suderman, 2014), Off-Road LAF (Lapponi et
al., 2014), the D-SPIN Text Corpus Format (Heid
et al., 2010), and the oft cited UIMA project (Fer-
rucci and Lally, 2004). Some tools also extend
UIMA such as DKPro Core (Eckart de Castilho
and Gurevych, 2014).

In contrast to the UIMA project (Ferrucci and
Lally, 2004), which also provides an infrastructure
to represent unstructured documents, the Docfo-
ria library by itself does not define an equivalent
analysis infrastructure or rich type system. Doc-
foria’s main focus is data extraction and storage of
informal heterogenous data, where the schema can
change many times during a project.

The primary motivation of Docforia was a faster
adaptability in research projects, where rigidity
can adversely affect productivity. Docforia is
semi-structured, contains a simplified static-type
system for common types of layers and has sup-
port for a dynamic-type system. The static types
are defined by convention, can be overridden, and
are by no means enforced.

4 Use-case: Wikipedia

We convert Wikipedia from HTML dumps into
Docforia records using an annotation pipeline.
The first step converts the HTML documents into

DOM trees using jsoup1. The second step extracts
the original page structure, text styles, links, lists,
and tables. We then resolve the links to unique
Wikidata identifiers. These steps are common to
all the language editions we process.

Wikidata is central to the multilingual nature of
Docforia. Wikidata is an entity database, which
assigns unique identifiers across all the language
editions of Wikipedia. The University of Gothen-
burg, for instance, has the unique id: Q371522
that enables to retrieve the article pages in English,
French, Swedish, or Russian.

In addition to the common processing steps and
depending on the available tools, we can apply lin-
guistic annotations that are language specific us-
ing Langforia. These annotations can range from
a simple tokenization to semantic-role labels or
coreference chains. We save all the results of the
intermediate and final steps as files in the Parquet
format; each record being a Docforia document as
binary blob in addition to metadata such as Wiki-
data Q-number, title, and page-type. We selected
this format because of its portability, efficiency,
and ease of use with the Apache Spark data pro-
cessing engine.

5 Application Programming Interface

The Docforia API builds on the concepts of doc-
ument storage and document engine. The docu-
ment storage consists of properties, layers (node
or edge layers) to store typed annotations, token,
sentence, relationship, where the nodes can have
a range, and finally sublayer variants: gold, pre-
dicted, coreference chains. The document engine
defines query primitives such as covers, for in-
stance the tokens in a anchor, transactions, and
partial lightweight documents called views.

The Docforia data structure is similar to a typed
property graph. It consists of nodes (tokens, sen-
tences, paragraphs, anchors, ...), edges (connec-
tions between e.g tokens to form a dependency
tree), and properties per node and edge (Token:
pos, lemma, ...).

The piece of code below shows how to create to-
kens from a string and assign a property to a range
of tokens, here a named entity with the Location
label:

Document doc = new MemoryDocument(

"Greetings from Lund, Sweden!");

1http://jsoup.org/
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Figure 1: Conversion of Wikipedia dumps into abstract syntactic trees and the Docforia multilayer doc-
ument model (Klang and Nugues, 2016b).

// 01234567890123456789012345678

Token Greetings =

new Token(doc).setRange(0, 9);

Token from =

new Token(doc).setRange(10, 14);

Token Lund =

new Token(doc).setRange(15, 19);

Token comma =

new Token(doc).setRange(19, 20);

Token Sweden =

new Token(doc).setRange(21, 27);

Token exclamation =

new Token(doc).setRange(27, 28);

Sentence greetingsSentence =

new Sentence(doc).setRange(0, 28);

NamedEntity lundSwedenEntity =

new NamedEntity(doc)

.setRange(Lund.getStart(),

Sweden.getEnd())

.setLabel("Location");

The API provides SQL-like query capabilities
and the code below shows how to find the named
entities in a document:

NodeTVar<Token> T = Token.var();

NodeTVar<NamedEntity> NE =

NamedEntity.var();

List<Token> lundLocation =

doc.select(T, NE)

.where(T).coveredBy(NE)

.stream()

.sorted(StreamUtils.orderBy(T))

.map(StreamUtils.toNode(T))

.collect(Collectors.toList());

6 Visualization

We built a front-end application, part of Langfo-
ria, to enable the users to visualize the content of
Docforia-based corpora. This application has the
form of a web server that embeds the Docforia li-
brary and Lucene to index the documents. We cre-
ated a Javascript component for the text visualiza-
tion on the client. This client provides a user inter-
face for searching and visualizing Docforia data in
the index. The layers are selectable from a drop-
down menu and the supported visualizations are
the ranges and relationships between them.

Figure 2 shows the annotations of the parts of
speech, named entities, and dependency relations
of the sentence:

Göteborgs universitet är ett svenskt
statligt universitet med åtta fakul-
teter, 37 000 studenter, varav 25 000
helårsstudenter och 6000 anställda.

‘The University of Gothenburg is a
Swedish public university with eight
faculties, 37,000 students, (25,000
full-time), and 6,000 staff members.’

The visualization tool is similar to the brat2 com-
ponents (Stenetorp et al., 2012), but includes a
tooltip support and has a faster rendering. If we
hover over the words, it shows the properties at-
tached to a word in CoNLL-like format. In Fig. 3,
the properties correspond to the word Vasaparken.

7 Conclusion and Future Work

We described Docforia, a multilayer document
model, structured in the form of a graph. It en-
ables a user to represent the results of large-scale
multilingual annotations. Using it and the Lang-
foria language processing pipelines, we annotated

2http://brat.nlplab.org/
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Figure 2: Visualization of six layers including: Tokens, named entities, and dependency relations

Figure 3: Visualization of properties

Wikipedia dump (Klang and Nugues, 2016a).
When applied to Wikipedia, MLDM links the dif-
ferent versions through an extensive use of URI
indices and Wikidata Q-numbers.

Together with Docforia, we used the Lucene li-
brary to index the records. The resulting system
can run on a single laptop, even with multiple ver-
sions of Wikipedia.

Docforia is written in Java. In the future, we
plan to develop a Python API, which will make it
possible to combine Python and Java tools. This
will enable the programmer to build prototypes
more quickly as well as experiment more easily
with machine learning algorithms.

Docforia is available from github at https://
github.com/marcusklang/docforia.
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Abstract

In this paper, we investigate the annotation projection of semantic units in a practical setting.
Previous approaches have focused on using parallel corpora for semantic transfer. We evaluate
an alternative approach using loosely parallel corpora that does not require the corpora to be
exact translations of each other. We developed a method that transfers semantic annotations
from one language to another using sentences aligned by entities, and we extended it to include
alignments by entity-like linguistic units. We conducted our experiments on a large scale using
the English, Swedish, and French language editions of Wikipedia. Our results show that the
annotation projection using entities in combination with loosely parallel corpora provides a viable
approach to extending previous attempts. In addition, it allows the generation of proposition
banks upon which semantic parsers can be trained.

1 Introduction

Data-driven approaches using natural language processing tackle increasingly complex tasks with ever
growing scales and in more varied domains. Semantic role labeling is a type of shallow semantic pars-
ing that is becoming an increasingly important component in information extraction (Christensen et al.,
2010), question answering (Shen and Lapata, 2007), and text summarization (Khan et al., 2015).

The development of semantic resources such as FrameNet (Baker et al., 1998) and PropBank (Palmer
et al., 2005) made the training of models for semantic role labelers using supervised techniques possible.
However, as a consequence of the considerable manual efforts needed to build proposition banks, they
exist only for a few languages. An alternative approach to using supervision is to transfer knowledge
between resources, a form of distant or related supervision. Methods for directly projecting semantic
labels from a resource-rich language to a resource-scarce one were introduced in Padó (2007).

In this paper, we describe a method for aligning and projecting semantic annotation in loosely parallel
corpora by using entities and entity-like linguistic units. Our goal is to generate multilingual PropBanks
for resource-scarce languages. We used multiple language editions of Wikipedia: An English edition
annotated up to a semantic level using the PropBank semantic roles, and syntactically annotated editions
of Swedish and French Wikipedias. By aligning Wikipedias by entities, we constructed loosely parallel
corpora and we used them to generate PropBanks in Swedish and French. We provide an evaluation of
the quality of the generated PropBanks, together with an evaluation on two external FrameNets.

2 Previous Work

As an alternative to using supervised efforts for relation extraction, distant supervision can be employed
to transfer relational knowledge representations from one resource to another. Distant supervision for
relation extraction was introduced by Craven and Kumlien (1999) in the context of biomedical informa-
tion extraction. Mintz et al. (2009) describe a method of using an external knowledge base as an indirect
way of annotating text. Hoffmann et al. (2010) introduced the usage of Wikipedia infoboxes in distantly
supervised relation extraction.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/



The concept of transferring linguistic annotation, in the context of part-of-speech tags, across parallel
corpora was introduced in Yarowsky et al. (2001). Cross-lingual annotation projection of FrameNet
semantics has been described by Padó and Lapata (2009) and Basili et al. (2009). In Van der Plas et
al. (2011), the authors describe an automatic method of direct transfer of PropBank semantics requiring
no manual effort. Akbik et al. (2015) describe an approach to generate multilingual PropBanks using
filtered annotation projection and bootstrap learning in order to handle errors stemming from translation
shifts in corpora.

Most previous approaches have used professionally translated parallel corpora, mainly EuroParl
(Koehn, 2005) and United Nations Corpora (Rafalovitch and Dale, 2009), to transfer semantic anno-
tation. However, creating these resources requires manual efforts; they are thus limited in size and in the
number of languages they cover. In contrast to parallel corpora, loosely parallel corpora describe similar
concepts and events, but are not necessarily the result of a focused effort to translate a large corpus.

In Exner et al. (2015), we introduced the concept of using entities as a method for aligning sentences
and transferring semantic content in loosely parallel corpora. However, the presented approach has the
following limitations: (1) it was evaluated on one language only and (2) the evaluation was performed
on the generated PropBank itself.

The contributions of this paper are the following: (1) We extend Exner et al. (2015) by including
pronouns and other linguistic units that in a local context exhibit the characteristics of entities. (2)
We present and evaluate two methods for aligning sentences by using entities. (3) We demonstrate the
effectiveness and generalizability of our approach by projecting semantic annotations to two languages,
Swedish and French, and we evaluate it using two external proposition databases, the Swedish SweFN++
(Borin et al., 2010) and French ASFALDA (Candito et al., 2014; Djemaa et al., 2016) that are both
semantically-annotated corpora using adaptations of FrameNet frames. (4) We release the source code
used in the annotation projection and we provide the generated PropBanks in Swedish and French1.

3 Method

The aim of the method is to generate PropBank-like resources by fully annotating sentences in target
languages using semantic content, in whole or partially, from a source language. We start with loosely
parallel corpora in two languages: a source language (SL) expressing the semantic content that we
want to transfer to a target language (TL). We then disambiguate and uniquely identify the entities in
all the sentences. By using the unique identifier of each entity, we gain the ability to align sentences
from two different languages forming sentence pairs (sSL, sTL). We annotate the (sSL, sTL) pairs, sSL
to semantic and syntactic levels and sTL to a syntactic level. From each (sSL, sTL) pair, we learn the
alignments between predicates (pSL) in sSL and verbs (vTL) in sTL. Finally, using the aligned entities
and the predicate-verb alignments in each (sSL, sTL) pair, we transfer the semantic annotation in the
form of predicate-argument structures. Figure 1 shows an overview of this approach.

3.1 Using Loosely Parallel Corpora
A prerequisite to projecting semantic annotation between two sentences is that they share the same se-
mantic structure. To this end, we assumed that entities have a constraining property on the sets of
predicate-argument structures they can instantiate. By aligning loosely parallel corpora through entities,
pairs of sentences in two different languages that we will extract, although they are not translations of
each other, should overall express the same semantic content. Furthermore, we believe that by applying
our method on a large scale, the most frequent alignments of entities will elicit valid alignments.

In this context, even partial semantic content from a source sentence, sSL, may be useful for annotating
a target sentence, sTL. As an example, consider the following sentence pair:

sSL ItA0 features01 Kelsey GrammerA1 in his ninth ...
and is the first timeAM-TMP the SimpsonsA0 visit01 ItalyA1

sTL I avsnittet besöker familjen Simpsons Italien
In the episode visit the family Simpsons Italy

1http://semantica.cs.lth.se
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Figure 1: An overview of the approach for transferring semantic annotation from a source language
(SL) to a target language (TL)

in which sSL has been aligned with sTL through the entities (the Simpsons, Italy).
sSL expresses the two predicates feature.01(itA0, Kelsey GrammerA1) and
visit.01(the first timeAM−TMP , the SimpsonsA0, ItalyA1). Although sTL is not an exact
translation of sSL, as it lacks the predicate features.01 and the temporal argument (AM -TMP ) of
visit.01, the partial transfer of the semantic content enables us to annotate sTL with the predicate
besöka.01(familjen SimpsonsA0, ItalienA1).

3.2 Entity Disambiguation

Entity linking is the process of finding mentions, e.g. persons, cities, organizations, events, concepts, in
text, and if available, assign them with a unique identifier provided by a knowledge base. We used Wiki-
data Q-numbers as identifiers as they provide globally unique identifiers between the different language
editions of Wikipedia. As an example, consider the following entities:

Beijing, Pékin, and Pequim

as expressed in English, French, and Portuguese respectively. Although they have differing surface
forms, they are all linked to the Q956 Wikidata number, as well as in 190 other languages. In total,
Wikidata covers a set of more than 13 million items that defines the entity search space.

To carry out entity linking, we reimplemented a variant of TagME (Ferragina and Scaiella, 2010). The
motivating factors behind our reimplementation were:

1. It enabled us to resolve mentions to identifiers in Wikidata, providing us with multilingual and
coherent entity identifiers.

2. By using the same entity linker for multiple languages, we obtained a more consistent mention
resolution across all the languages.

3. It eased the adaptation to new execution environments, in our case a cluster of computing nodes.



Our implementation of TagME requires minimal grammatical information as it only needs mention statis-
tics derived from anchors and a dictionary of mention-entity pairs and of incoming links.

The entity linking algorithm consists of four steps: detection, candidate voting, selection, and resolu-
tion of overlapping mentions.

1. We find all the possible mentions consisting of tokens in sequences up to a maximum length of 6.
The mentions found at this stage might be overlapping. We treat overlapped mentions independently
and they contribute votes to all the other mentions. As an example, consider the following sentence:

Prime Minister of Japan

containing the two mentions: Japan and Prime Minister of Japan. In this case, the overlapped
mention Japan will contribute a vote to the overlapping mention Prime Minister of Japan.

2. We compute the votes for each candidate belonging to a mention. To bound the computation time,
we use voting groups consisting of a collection of mentions using a sliding window approach.
The vote weight per candidate is the sum of all the inlink relatedness between all the candidates
(Ferragina and Scaiella, 2010). In our case, we use all the candidates in a voting group.

3. We rank all the candidates per mention using the computed votes. We then prune the mention list
using a coherence criterion and a threshold that we set empirically.

4. In the final step, we resolve the mention overlap using a greedy algorithm. The algorithm selects
the overlapping mention, where the entity candidate has the largest global vote, removing all the
locally overlapping mentions, until there is no overlap globally.

3.3 Syntactic and Semantic Annotation

In our experimental setup, we used the English edition of Wikipedia as our SL, and we annotated it
with syntactic and semantic dependencies. For the syntactic-semantic parsing, we used an open-source
semantic role labeler (Choi, 2012) trained on OntoNotes 5.0 (Weischedel et al., 2013).

We transferred the semantic annotation to two TLs, the Swedish and French editions of Wikipedia,
both annotated with syntactic dependencies. For French syntactic parsing, we applied a transition-based
dependency parser (Bohnet and Nivre, 2012; Bohnet and Kuhn, 2012) trained on a French Treebank
described in Candito et al. (2010). Correspondingly, to preprocess the Swedish edition of Wikipedia, we
applied a pipeline consisting of a POS tagger (Östling, 2013) and a syntactic dependency parser (Nivre
et al., 2006).

3.4 Extension to Entity-like Tokens

Entities have the property of being uniquely identifiable across languages on a global scope. However, an
obvious drawback to using entities as a means of aligning sentences and transferring roles, is that roles
are not always instantiated by entities. To reclaim these instances, we extended the entity alignment to
include entity-like linguistic units (LU). We focused on units that have the property of being uniquely
identifiable and limited to the scope of a sentence pair. Units correspond to sequences of tokens the
entity disambiguator has either failed to classify as an entity or otherwise lack the ability to be uniquely
identified in a global context.

Our algorithm detects entity-like LUs as spans of tokens sharing the same surface form in both sSL and
sTL. In addition, we set the constraint that they occur at most once in each sentence. As a consequence,
this removes any misalignment issue since a LU in sSL can be matched to only one LU in sTL. This
method enables us to include amounts, dates, and noun phrases that the entity disambiguator fails to
detect.

Using similar constraints, we also include pronouns in the detection of entity-like LUs. However,
rather than using the surface form of pronouns, which would unlikely match across languages, we instead
categorize them by case, gender, and number. For English, Swedish, and French, third person singular
pronouns have different surface forms based on gender. Therefore, in order to increase precision, we



limit the detection to only include third person pronouns. Although this constraint certainly limits the
recall, this should not significantly impact the training procedure as the pronouns in the first and second
persons are in very limited numbers in Wikipedia.

3.5 Aligning Sentences
The first challenge in transferring semantic annotation between loosely parallel corpora is to align sen-
tences expressing the same semantic content. Our baseline method for aligning sentences extracts all
the entities from a sentence and forms entity-sentence pairs, (e1...en, s). By aligning entities in different
entity-sentence pairs, we form new triples containing a source sentence, a target sentence, and the subset
of entities by which they are aligned (sSL, sTL, e1...es), where kmin ≤ s ≤ kmax and kmin, kmax are
prior parameters of our choice.

The baseline method is, in its simplicity, independent of any syntactic or lexical markup. It only
requires the annotations from an entity disambiguator. However, one drawback lies in the inclusion of
entities ungoverned by any predicate. As a consequence, the alignment of partial semantic content, as
described in Sect. 3.1, becomes problematic. We therefore extended this baseline algorithm by using sets
of entities projected by either arguments in sSL or a verb in sTL. Using this projection method, we then
form entity-sentence pairs:

(e1...ep, s), where each entity in (e1...ep) is governed by an argument belonging to a predicate
in sSL

and

(e1...ev, s), where each entity in (e1...ev) is governed by a verb in sTL.

The method for aligning entities in different entity-sentence pairs remains the same as for the baseline
method. In Sect. 4.1, we investigate the effectiveness of the two methods under different settings.

3.6 Forming Predicate-Verb Alignments
Although we use entities as a mechanism to align sentences and transfer predicate-argument roles, pred-
icates in sSL and verbs in sTL cannot be aligned by entities alone. In addition, some sentence pairs
contain more than one predicate or verb, sharing the same subset of entities. This creates a combinatorial
problem, where one predicate in sSL could possibly be aligned to two or more verbs in sTL, or vice
versa. Furthermore, the application of a semantic parser to each sSL annotates each predicate with a
sense. This requires a method to induce new predicates and senses for the verbs in sTL.

Most previous work relies on word alignments or uses bilingual dictionaries to transfer the predicate
annotation between languages. However, when applied to new languages and domains, these approaches
face a scaling problem requiring either training on parallel corpora or otherwise dictionaries which may
not be available for every language.

Our approach builds on Exner et al. (2015) and automatically infers new predicate labels while scaling
with the size of corpora and domains. A formal description of our alignment is:

1. We determine all the combinations of predicate-verb pairs, (pi, vk), extracted from all (sSL, sTL)
pairs, where pi ∈ sSL and vk ∈ sTL.

2. We assign count(pi, vk) as the number of (pi, vk) in all (sSL, sTL), where sSL ∈ SL and sTL ∈
TL.

3. For each pi ∈ SL, we form alignments as (pi → vk) = max(count(pi, v1), ..., count(pi, vn)).

4. For each vk ∈ (pi → vk), we form a new TL predicate by using the lemma of vk and an incremental
counter based on the number of times vk has appeared in an alignment.

We select the verb candidates for the alignment using lexical and syntactical rules to filter auxiliary
verbs and other non-predicates.



3.7 Transferring Propositions

Given a pair of aligned sentences, (sSL, sTL), we transfer the semantic annotation from a predicate,
pSL ∈ sSL, to a verb, vTL ∈ sTL, if (pSL → vTL) = max(count(pi → vTL)), (pi → vTL) ∈
(sSL, sTL), ∀pi ∈ sSL. If a sTL is supervised by more than one sSL, we select the sSL having
the larger subset of aligned entities with sTL. We restrict the semantic transfer to predicate-argument
structures containing at least one numbered argument and a temporal or location modifying argument, or
at least two numbered arguments.

We transfer the argument roles by using the aligned entities between sSL and sTL. We assign the
argument role to the governing token in the token span covered by each entity. However, if the argument
token in sSL is dominated by a preposition, we search for a preposition in sTL governing the entity
and assign it the argument role. We obtain the complete argument spans by taking the yield from the
argument token.

4 Evaluation

In this section, we evaluate the approach described in Sect. 3 and we apply it to three language editions
of Wikipedia in order to generate PropBanks for two languages: Swedish and French. The evaluation
tries to answer the following questions:

1. How do different parameters and methods affect our approach?

2. What is the quality of the generated PropBanks and what level of performance can we expect in a
practical setting?

3. Are there any differences between the languages, and if so what causes them?

4.1 Experimental Setup

For our experimentations, we chose the English, Swedish, and French editions of Wikipedia. These three
Wikipedias are all among the top 6 in terms of article counts. As SL, we selected the English edition, and
as TLs we select Swedish and French editions. We preprocessed all the articles to filter infoboxes, lists,
diagrams, and to keep only text without any markup. Table 1 summarizes the statistics of the linguistic
units in our chosen Wikipedias.

LANGUAGE TOKENS SENTENCES ENTITIES PREDICATES ARGUMENTS

English 3825M 279M 439M 186M 450M
Swedish 481M 71M 58M - -
French 1269M 74M 181M - -

Table 1: Characteristics of Wikipedias used in the experimental setup

4.2 Predicate-Verb Alignment

We first evaluated how the predicate→verb alignment method described in Sect. 3.6 performs under
different conditions and we examined how the number of entities, the method used, and the frequency
affect the quality of the alignments. We grouped the English→Swedish alignments by their frequency
into three bands: High, medium, and low. We then randomly sampled alignments from each band, in
total 100 alignments and we used them to evaluate their precision. We defined precision as the number
of English→Swedish alignments that we evaluate as correct divided by the total number of alignments
in a sample. Figure 2 shows the precision and number of alignments using different number of entities
and methods.

We observe that the precision increases with the number of entities used in the alignments. However,
this increase is followed by a decrease in the number of alignments created. We also note that in all the



alignments, our projection method outperforms our baseline method for aligning sentences in terms of
precision. Using three projected entities, we reach a precision of roughly 80% and 1,000 alignments.

We also investigated if the higher frequency of an alignment improved precision. Figure 3 shows
the breakdown of precision curves into three frequency bands, formed using projected alignments. We
observe that using three projected entities, alignments with high-medium frequencies show little to no
error. This provides empirical evidence to our hypothesis in Sect. 3.1, that the most frequent alignments
of entities will elicit valid alignments and that precision will scale with the amount of data used by the
method.

The combination of aligning sentences with three projected entities gave us the optimal trade off
between precision and number of alignments created. Therefore, in the rest of the evaluation, we use
these settings.
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4.3 Generated PropBanks
Using the annotation projection methods described in Sect. 3, we generated PropBanks in Swedish and
French. We limited the PropBanks to only include fully annotated sentences and we removed the sen-
tences exhibiting parsing errors, such as sentences having more than one syntactic root. We used these
generated corpora to perform the error analysis in Sect. 4.5.

To evaluate our approach in a practical and automatic setting, we used samples of two linguistic
resources: the Swedish FrameNet project (Borin et al., 2010) and the French FrameNet (Candito et al.,
2014; Djemaa et al., 2016). We evaluated the generated Swedish and French corpora on a random sample
of 100 sentences, from the Swedish FrameNet and the French FrameNet respectively. As PropBank and
FrameNet have different annotation styles, we converted the sampled sentences from frame semantics to
the semantics used in PropBank.

Table 2 shows the characteristics of the generated PropBanks and the FrameNets used in the evalua-
tions.

DATASET TOKENS SENTENCES PREDICATES ARGUMENTS

Generated-Swedish 198,008 13,767 14,552 32,659
Generated-French 968,417 47,795 50,091 121,641
SweFN++ (TEST) 1,258 101 101 265
French FrameNet (TEST) 3,606 100 107 227

Table 2: Characteristics of the generated PropBanks used for training the SRL models and the FrameNets
used for evaluating the trained models



4.4 Experimental Results

We evaluated the quality of the generated PropBanks in a practical setting as well as the effectiveness of
using entity-like LUs in addition to entities. To assess the usefulness of the generated corpora, we first
trained a semantic role labeler (Björkelund et al., 2010) on them. We split the generated corpora into
60:20:20 training, development, and testing sets, and we ran a selection process using a greedy forward
selection and greedy backward elimination procedure to find the optimal set of features (Johansson and
Nugues, 2008; Björkelund et al., 2009). We then used the trained models to automatically parse the
test sets described in Sect. 4.3. Table 3 shows the evaluation of the semantic role labeler trained on the
generated corpora.

The performance of the semantic role labeler, trained on the generated PropBanks, compares favorably
with the automatic evaluations on parallel corpora described in Padó and Lapata (2009). For Swedish,
using entity-like LUs, we observe an improvement of the labeled F1-measure by 10%. For French, we do
not see the same dramatic increase, which we believe is caused by the large differences in pronoun clas-
sification and surface forms between English and French. We believe this discrepancy in improvement
stems from projecting entity-like LUs across language groups: while English and Swedish belong to the
Germanic branch, French belongs to the Romance group. Although more investigation is needed, these
early results suggest that the annotation projection using entity-like LUs is most efficient when applied
within a language group.

LABELED UNLABELED

LANGUAGE LINGUISTIC UNITS P R F1 P R F1

Swedish
Entities (Baseline) 79.88 36.89 50.47 93.49 43.17 59.07
Entities + Unique Tokens 84.82 44.26 58.17 92.67 48.36 63.55
Entities + Unique Tokens + Pronouns 72.18 52.46 60.76 81.58 59.29 68.67

French
Entities (Baseline) 68.64 45.21 54.51 75.45 49.70 59.93
Entities + Unique Tokens 64.03 48.50 55.20 70.36 53.29 60.65
Entities + Unique Tokens + Pronouns 64.31 49.10 55.69 69.41 52.99 60.10

Table 3: Evaluation of semantic role labeling on the SweFN++ and French FrameNet corpora.

4.5 Error Analysis

To understand the quality of the generated PropBanks, we conducted an analysis of the predicate and
argument errors. We randomly sampled 200 errors, of which 100 errors stemmed from the incorrect
projection of argument labels and 100 were incorrect projections of predicates. Tables 4 and 5 show the
type of errors for predicates and arguments respectively.

Using loosely parallel corpora, it is no surprise that the largest group of errors in predicate projection
stems from sentences expressing differing semantic content. This error comes from sentence pairs, that
although they contain the same subset of entities, express differing semantic content. However, as shown
in Sect. 4.2, the precision of alignments increases with the number of alignments, leading us to believe
that this category of error can be corrected using more data. The second largest error group is formed
by different types of parsing errors occurring during the preprocessing stage. Encouragingly, only 6% of
predicate projection errors stem from translation shifts, which is a further indication that entities exhibit
a constraining property on the types of predicates that can instantiate them, even across languages.

Looking at argument projection errors, we again notice a group of errors stemming from misaligned
sentences in loosely parallel corpora, Differing Semantic Content and No Source Equivalent. Looking
beyond, alignment errors due to argument labels being assigned to the wrong token is the single most
frequent error. The second largest category of errors is composed of expressions that can not be consid-
ered as entities, e.g. In other words and During this time. Finally, we observed a class of error stemming
from entities undergoing a shift in specificity across sentences in two languages. These translation shifts
included entities being referred to by their name in one language and by their entity type in the other



language, e.g. London→the city.

ERROR CLASS NUMBER

Differing Semantic Content 66
Parsing Error: Target Syntax 8
Translation Shifts: Predicate Mismatch 6
Parsing Error: Target SRL 5
Parsing Error: Entity Disambiguation 5
Auxiliary Verb 4
Light Verb Constructions 4
No Source Equivalent 1
No Target Equivalent 1
TOTAL 100

Table 4: Error analysis of English→Swedish
predicate→verb alignments.

ERROR CLASS NUMBER

Alignment Error: Non Argument Head 16
Argument is not Entity-like 14
No Source Equivalent 14
Parsing Error: SRL 14
Differing Semantic Content 13
Translation Shift: Argument Entity 12
Parsing Error: Entity Disambiguation 9
Parsing Error: Target Syntax 4
Translation Shift: Argument function 3
Parsing Error: Source Syntax 1
TOTAL 100

Table 5: Error analysis of English→Swedish ar-
gument alignments.

5 Conclusion

In this paper, we have described the construction of multilingual PropBanks by aligning loosely parallel
corpora using entities. We have trained a semantic role labeler on the generated PropBanks and that we
evaluated in a practical setting on frame-annotated corpora. Our results compares favorably to annotation
transfer using parallel corpora. In addition, we have extended the entity alignment to include alignment
by entity-like linguistic units such as pronouns and dates.

We believe the growing source of loosely parallel corpora and their alignment using entities offers an
alternative way to creating multilingual hand-annotated corpora. By performing a semantic projection
on loosely parallel corpora, in our case multiple language editions of Wikipedia, we have presented
an alternative approach to using parallel corpora. We believe our approach can be extended beyond
encyclopedias to similar resources, such as news articles in multiple languages describing the same
events.

One future improvement could be to leverage ontologies that categorize entities into types. We be-
lieve that such ontologies would prove useful in adjusting the specificity of entities in order to handle
some translation shifts across languages. In addition, our current method of forming predicate→verb
alignments could be extended by including information about the entity type.

While projecting pronouns from English to Swedish showed an improvement, we did not observe
the same improvement when projecting from English to French. Therefore, an additional avenue of
investigation could compare the performance of annotation projection within versus across language
groups. In addition, a coreference solver could provide an alternative means of resolving pronominal
mentions to entities.
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Abstract

In this paper, we describe Langforia, a multilingual processing pipeline to annotate texts with
multiple layers: formatting, parts of speech, named entities, dependencies, semantic roles, and
entity links. Langforia works as a web service, where the server hosts the language processing
components and the client, the input and result visualization. To annotate a text or a Wikipedia
page, the user chooses an NLP pipeline and enters the text or the name of the Wikipedia page in
the input field of the interface. Once processed, the results are returned to the client, where the
user can select the annotation layers s/he wants to visualize.

We designed Langforia with a specific focus for Wikipedia, although it can process any type
of text. Wikipedia has become an essential encyclopedic corpus used in many NLP projects.
However, processing articles and visualizing the annotations are nontrivial tasks that require
dealing with multiple markup variants, encodings issues, and tool incompatibilities across the
language versions. This motivated the development of a new architecture.

A demonstration of Langforia is available for six languages: English, French, German, Spanish,
Russian, and Swedish at http://vilde.cs.lth.se:9000/ as well as a web API: http:
//vilde.cs.lth.se:9000/api. Langforia is also provided as a standalone library and is
compatible with cluster computing.

1 The Demonstration

Langforia is a multilingual annotation and visualization platform available as a web service and as a
standalone library. Figure 1 shows the interface, where the user chooses the language and tool chain s/he
wants to use from the drop-down menu to the left. Depending on the language and the availability of
components, the annotations can range from tokenization to dependency parsing, semantic role labeling,
and entity linking. The user then either enters a text or writes the name of a Wikipedia page and presses
the “Annotate” button. If the document to analyze is a raw text, it is sent directly to the server; if it is
a Wikipedia page name, the client first fetches the HTML content of this page from https://www.
wikipedia.org/ and then sends it to the Langforia server. Figure 2, left part, shows the resulting
annotations for the Osaka article from the Swedish Wikipedia for three layers, tokens, named entities,
and dependency relations, while the right part of the figure shows the entity linking results.

2 Motivation and Significance

We designed Langforia with a specific focus for Wikipedia, although the pipeline can process raw text.
Wikipedia has become an essential encyclopedic corpus used in many NLP projects. In translation
(Smith et al., 2010), semantic networks (Navigli and Ponzetto, 2010), named entity linking (Mihalcea
and Csomai, 2007), information extraction, or question answering (Ferrucci, 2012), Wikipedia offers a
multilingual coverage and an article diversity that are unequalled. However, processing articles are non-
trivial tasks that require dealing with multiple markup variants, encodings issues, tool incompatibilities

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: The Langforia interface. The upper part of the figure shows the input box, where the user either
selects a Wikipedia page (Wikipedia tab), here the article on Osaka in English, or enters a raw text (Text
tab); The center part shows the language selection menu with six languages (de, en, es, fr, ru, sv), here
English, and submenus to choose the toolchain (three toolchains for English); and the Annotate button;
The lower part shows the annotated text, where the annotation layers are selectable from a drop down
menu in the block just above (black triangle to the right), here the tokens and named entities

across the language versions and significant processing capacities. In addition, the scale and heterogene-
ity of the Wikipedia collection makes it relatively difficult to do experimentations on the whole corpus.
These experimentations are rendered even more complex as, to the best of our knowledge, there is no
available tool to visualize easily annotation results from different processing pipelines.

Langforia builds on a document model (Klang and Nugues, 2016) that stores the linguistic annotations
and enables the pipeline to abstract the components across the languages and tools. This model consists
of layers, where each layer is a sequence of ranges describing a specific annotation, for instance the parts
of speech or the syntactic dependencies. It provides a format common to all the pipelines that makes
them insensitive to the input/output features of a tool.

The list of annotated layers varies depending on the tool availability for a specific language. The layers
common to all the versions are compatible with the Wikipedia markup: They include the text, paragraphs,
text styles, links, and page sections. Using this document model as input, we created a client visualizer
that let users interactively visualize the annotations. Beyond the demonstration, Langforia is available in
the form of a library that provides a uniform way to process multilingual Wikipedia dumps and output
the results in a universal document model. This could benefit all the projects that use Wikipedia as a
corpus.

3 System Architecture

Langforia consists of three parts: A set of language processing components assembled as tool chains; a
multilayer document model (MLDM) library; and a visualizer.
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Figure 2: Left part: Visualization of three layers: Tokens, named entities, and dependency relations from
the Osaka page in Swedish; right part: Visualization of named entity linking with Wikidata identifiers

3.1 Tool Chains
We annotate Wikipedia HTML pages into MLDM records using an annotation pipeline: a sequence of
processing components. The first step converts the HTML documents into DOM trees using jsoup1. The
second step extracts the original page structure, text styles, links, lists, and tables. We then resolve the
links to unique Wikidata identifiers. Wikidata is an entity database2, part of Wikimedia, which assigns
unique identifiers across all the language editions of Wikipedia. The city of Osaka, for instance, has the
unique id: Q35765 that enables the system to retrieve the article pages in English, French, Swedish, or
Russian. We keep the original links occurring in the Wikipedia pages and we resolve them using Wikidata
identifiers, when they exist, or to normalized page names as a fall back. These steps are common to all
the language editions we process. If the input is plain text, we skip these steps.

The annotation tool chains are specific to the languages. We abstracted these chains so that they are
instances of a generic annotator. For English, Spanish, and German, we use CoreNLP (Manning et al.,
2014) or ClearNLP (Choi, 2012). For French, we use CoreNLP for tokenizing the text and MATE for
parsing (Björkelund et al., 2010). For Swedish, we use Stagger (Östling, 2013) and MaltParser (Nivre
et al., 2006). For Russian, only the tokenization is available for now. We also link mentions of named
entities and concepts to unique Wikidata identifiers. To carry this out, we reimplemented a variant of
TAGME (Ferragina and Scaiella, 2010).

3.2 The Document Model
The MLDM library3 (Klang and Nugues, 2016) defines a model for storing, querying, and extracting hy-
pertextual information common to many NLP tasks in a standalone package. We designed this model so
that it could store the original Wikipedia markup, as well as the subsequent linguistic annotations: Part-
of-speech tagging, coreference resolution, named entity recognition and linking, dependency parsing,
semantic role labeling, etc.

The model consists of multiple layers, where each layer is dedicated to a specific type of annotation.
The annotations are encoded in the form of graph nodes, where a node represents a piece of data: a token,
a sentence, a named entity, etc., delimited by ranges. These nodes are possibly connected by edges as in
dependency graphs. This data structure used is similar to a property graph.

3.3 Visualization
The interactive visualization tool enables the user to examine the results. We designed it so that it
could handle large documents with more than 10,000 tokens with a fast rendering of the annotations and
allow cross sentence annotations, such as for paragraphs and sections. The layers are selectable from a
dropdown menu and the supported visualizations are the ranges and relationships between them.

1http://jsoup.org/
2http://www.wikidata.org
3https://github.com/marcusklang/docforia
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Figure 3: The properties attached to the words Japanese, designated, and region, in the form of tooltips

In Fig. 3, we selected the token layer that by default displays the parts of speech of the words. If we
hover over the words, the visualizer shows the properties attached to a word in CoNLL-like format in a
tooltip that the user can fix, move, and discard. Figure 3 shows the properties of the words: Japanese,
designated, and region. Finally, we estimated the rendering speed (time to interactive use) on 30,000
annotations (tokens) with Intel Core i7, 2.3 GHz, with 16 GB RAM running a Chrome browser and we
obtained the figure of 7.7s seconds, i.e. 3,800 annotations per second.

4 Related Work

The UIMA project (Ferrucci and Lally, 2004) provides an infrastructure to store unstructured documents.
In contrast, the MLDM library and Langforia emphasize on simplicity, portability, ease of integration,
minimal dependencies, and efficiency. Other toolchains include CoreNLP (Manning et al., 2014). How-
ever, CoreNLP cannot process the Wikipedia markup or easily integrate external tools. In addition,
CoreNLP does not provide a storage model and its data structures are primarily meant to extend its
functionalities. In contrast to CoreNLP, Langforia builds on Docforia that provides dynamic and typed
annotations as well as multiple sublayers such as gold and predicted. Finally, CoreNLP does not provide
a query API for its data structures.

The Langforia visualization tool is similar to the brat4 components (Stenetorp et al., 2012) for the
text visualization. Brat produces good visual results and has support for multiple layers of information.
However, to the best of our knowledge, it lacks tooltip support in the embeddable version and it does
not handle line-wrapped annotations well. In addition, it revealed too slow to render a large number of
annotations in the documents we tested.

5 Conclusion and Future work

We described Langforia, a multilingual tool for processing text and visualizing annotations. Langforia
builds on a multilayer document model (MLDM), structured in the form of a graph and unified tool
chains. It enables a user to easily access the results of multilingual annotations and through its API to
process large collections of text. Using it, we built a tabulated version of Wikipedia (Klang and Nugues,
2016) that can be queried using a SQL-like language. When applied to Wikipedia, MLDM links the
different versions through an extensive use of URI indices and Wikidata Q-numbers.

6 Availability

The Langforia demonstration is accessible at: http://vilde.cs.lth.se:9000/ and the web
API at: http://vilde.cs.lth.se:9000/api. The source code is available from github at:
https://github.com/marcusklang/.
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Abstract

Ugglan is a system designed to discover named
entities and link them to unique identifiers in
a knowledge base. It is based on a combina-
tion of a name and nominal dictionary derived
from Wikipedia and Wikidata, a named entity
recognition module (NER) using fixed ordinally-
forgetting encoding (FOFE) trained on the TAC
EDL data from 2014-2016, a candidate generation
module from the Wikipedia link graph across mul-
tiple editions, a PageRank link and cooccurrence
graph disambiguator, and finally a reranker trained
on the TAC EDL 2015-2016 data.

In our first participation in the TAC trilingual
entity discovery and linking task, we obtained a
strong typed mention match of 0.701 (Ugglan2),
a strong typed all match of 0.592 (Ugglan4), and
typed mention ceaf of 0.595 (Ugglan1).

1 Introduction

The goal of the trilingual entity discovery and
linking task (EDL) in TAC 2017 is to recog-
nize mentions of entities in Chinese, English, and
Spanish text and link them to unique identifiers
in the Freebase knowledge base. In the TAC
datasets, the mentions have a type, either persons
(PER), geopolitical entities (GPE), organizations
(ORG), locations (LOC), or facilities (FAC), and
their syntactic form can consist of proper or com-
mon nouns, called respectively named and nomi-
nal mentions. Some entities of the annotated cor-
pus are not in Freebase. They are then linked to
a NIL tag and clustered across identical entities,
each with a unique ID.

In this paper, we describe Ugglan, a generic
multilingual EDL platform that required minimal
adaptation to the TAC 2017 tasks. We detail the
system architecture and its components as well as
the experimental results we obtained with it.

2 System Overview

Ugglan has a pipeline architecture that consists of
three main parts:

• A mention discovery that uses a finite-state
automaton derived from Wikipedia and/or a
feed-forward neural network trained on the
TAC 2014-2016 data (Ji et al., 2014, 2015;
Ji and Nothman, 2016);

• An entity linker that uses mention-entity
pairs extracted from Wikipedia and ranks
them using PageRank;

• A reranker trained on the TAC 2014-2016
data.

The Ugglan architecture is modular and param-
eterizable, and its parts can use independent algo-
rithms. To build it, we used a set of resources con-
sisting of Wikipedia, Wikidata, and DBpedia.

2.1 Mention Discovery
The first part of the processing pipeline is the dis-
covery of mentions of entities in text. It starts with
a custom multilingual rule-based tokenization of
the text and a sentence segmentation. We then nor-
malize the letter case based on statistics from all
the Wikipedia pages.

We discover the mentions using a combination
of a finite state transducer (FST) built from men-
tions extracted from Wikipedia and an optional



named entity recognizer (NER) based on neural
networks. As alternative, Ugglan can also use the
Stanford NER (Finkel et al., 2005).

The mention discovery results in an overgen-
eration of mention candidates. For instance, the
phrase

United States of America

results into as many as 8 candidates; see Fig. 1.
We prune them using parameterized rules.

Figure 1: Mention candidates produced by the
finite-state transducer for the phrase United States
of America

Finally, our system does not output overlapping
mentions. We resolve this overlap using a statis-
tical estimation of the mention “linkability”: The
link density; see Sect. 4.2. Figure 2 shows the
overall mention detection steps.

2.2 Entity Linking

Once we have carried out the detection, we as-
sociate each mention with entity candidates by
querying a mention-entity graph.

Some of the entities are referred by mention
variants along a text, for instance starting with
“Barack Obama” and then “Obama” or “Barack”.
We augment the entity recall by sorting the men-
tions in a document with a partial ordering using
the is_prefix or is_suffix relations so that
we have:

Barack ≺ Barack Obama and
Obama ≺ Barack Obama.

We then expand the candidates of the substrings by
adding the candidates of the including strings. For
the mentions: “Barack Obama” and “Obama”, we

add all the candidate entities of “Barack Obama”
to the candidates of “Obama”.

We extracted the graph of mentions to candi-
date entities from Wikipedia as well as the graph
of entity–entity cooccurrences. We built this graph
from outlinks gathered from the combination of
seven Wikipedia editions.

Finally, we disambiguate the text entities using
a local graph of candidates, on which we apply the
PageRank algorithm. For each mention, PageR-
ank assigns a weight to the candidates that enables
us to rank the entities.

2.3 Reranking and Classification
After the entity linking step, each mention has a
ranked list of entity candidates. We rerank these
lists using a multilayer neural network trained on
the TAC2015-16 data. This also results in some
entities being assigned the NIL identifier.

We assign a type to the entities using a prede-
fined dictionary mapping derived from DBpedia;
this type is possibly merged with that obtained
from the NER, if no available mapping exists.

At this point, we have discovered and resolved
the named expressions. We apply a discovery to
the nominal expressions (NOM) using a dictionary
collected from Wikidata and a coreference resolu-
tion based on exact string matches.

Finally, we discard the classes not relevant to
the TAC task.

3 Building Ugglan’s Knowledge Base

Ugglan relies on a graph of mention-entity and
entity-entity for both the discovery and the link-
ing stages. We constructed this knowledge base
from a set of resources:

• Seven Wikipedia editions: en, es, zh, de, fr,
ru, and sv;

• Wikidata, which binds these editions to-
gether;

• DBPedia, which we used for the class map-
ping.

3.1 The Wikipedia Corpus
The Wikipedia corpus is our first resource from
which we extract the text, the mentions, and link
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Figure 2: Overview of the mention pipeline

graph. We can access its content in multiple ways
and with varying degrees of accuracy.

A simple approach is to download a XML
dump, apply some filtering to the raw wiki
markup, and then use this output as text. However,
Wikipedia features many templates that are lan-
guage dependent. Using a dump approach would
leave the template expansion unsolved, as well as
the local context of the links and information about
the logical structure.

We opted therefore to use a rendered HTML
version which expands the templates and has
its Scribuntu scripts executed. This produces a
HTML dump of Wikipedia, which is as true to
the user online version as possible without actu-
ally replicating the full Wikipedia infrastructure.
Concretely, we used a combination of Xowa (of-
fline Wikipedia reader) and the public Wikipedia
REST API to get the HTML dumps.

3.1.1 HTML Annotation Processing
The raw HTML must be filtered and simplified to
be easy to process. We converted the hierarchical
structure using a DOM tree produced by Jsoup and
applied heuristics to produce a flattened version
with multiple layers of annotations using the Doc-
foria structure (Klang and Nugues, 2017). These
layers include information on anchors, headers,
paragraphs, sections, lists, tables, etc.

The Chinese version was processed in a special
way as it can be translated in multiple variants:
simplified, traditional, and localizations. To get
coherent statistics, we reimplemented the transla-
tion mechanism used by the online version to pro-
duce a materialized zh-cn Wikipedia edition.

We finally resolved all the pages and anchors in
the flattened version to Wikidata, which produces
multilingual connections for most entities.

3.2 Multilingual Resources: Wikidata and
DBpedia

Wikidata is Ugglan’s repository of multilingual
entities as it contains clean mappings between the
multiple language editions, as well as detailed
structured data. TAC uses Freebase as knowl-
edge base and we created mappings to translate
Freebase entities to Wikidata. Wikidata entities
are represented by unique identifiers called Q-
numbers. We mapped the Wikidata entities miss-
ing from Freebase to NIL-xx identifiers, where xx
is a number unique for the entity.

We chose DBpedia to map entities to TAC
classes as it produced subjectively better mappings
than using Wikidata. Wikidata would have re-
quired additional rules to carry out the conversion.

3.3 Mention–Entity Graph
We associated each mention in Wikipedia with a
set of potential entities in text. We used a dictio-
nary, where the entry (or key) is the entity mention
from Wikipedia and the value is the Q-number. In
Wikipedia, we extracted the mentions from five
sources across the languages we consider:

The title of the entity’s Wikipedia page with
and without parentheses. For instance, we
have MQ90 = {Paris} and MQ167646 =
{Paris, Paris (mythology)}.

The Wikipedia redirects: i.e. page names
that automatically redirect to another



page like the EU page that moves the
reader to European Union. This en-
ables us to collect alternative names or
spelling variants so that we expand the
mention list for the European Union en-
tity, MQ458, from {European Union} to
{European Union,EU}.

The disambiguation pages, where a page title is
associated to two or more entities. The En-
glish Wikipedia has a disambiguation page
associated with Paris that links to about 100
entities, ranging from the capital of France to
towns in Canada and Denmark and song and
film titles, and finally

The wikilinks. A link in Wikipedia text is made
of a word or a phrase, called the label, that
shows in the text, and the page (entity) it
will link to, where the wiki markup syntax
uses double brackets: [[link|label]].
When the link and the label are different,
the label is often a paraphrase of the term.
We therefore consider all these labels as
candidate mentions of the entity. Exam-
ples in Swedish of such labels for the for-
mer Swedish Prime Minister Göran Persson,
Q53747, include the name itself, Göran Pers-
son, 468 times, Persson, 14 times, and Han
Som Bestämmer, ‘He Who Decides’, one oc-
currence.

The first bold-faced string. We also used the
first bold-faced string in the first paragraph
of an article as it often corresponds to a syn-
onym of the title (or the title itself).

3.4 Statistics

During the mention gathering, we also derive
statistics for a given language. Before we com-
pute these statistics, we apply a procedure that we
called autolinking. In an article, the Wikipedia
guidelines advise to link only one instance of an
entity mention1: Normally the first one in the
text. With the autolinking procedure, we link all

1https://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Linking#
Overlinking_and_underlinking

the remaining mentions provided that we have se-
quences of exactly matching tokens. The statistics
we collect are:

• The frequency of the mention string over the
whole Wikipedia collection (restricted to one
language);

• The frequency of the pair (mention, entity)
that we derive from the links without au-
tolinking (only manually linked mentions);

• The count of (entity1, entity2) pairs in a win-
dow corresponding to a paragraph and lim-
ited to 20 linked mentions. This is carried
out after autolinking;

• Capitalization statistics for all the tokens: We
extract token counts for all tokens with a fre-
quency greater than 5 and we break them
down by case properties: uppercased, lower-
cased, titlecased, and camelcase;

4 Mention Recognition

Ugglan uses a multilingual rule-based tokenizer
and segmenter that we implemented using JFlex.
For logographic languages such as Chinese, the
tokens are equivalent to characters. The parser
was customized to accept a mixture of both logo-
graphic and alphabetic text.

The tokenizer was used in conjunction with the
Lucene analyzers. Lucene provides an infrastruc-
ture consisting of common filters and normalizers
for many languages, from which we use case fold-
ing, accent stripping, Unicode form normalization,
and stemming. These pipelines are configurable
and easy to adapt for new languages.

The mention discovery is carried out by two
modules: A dictionary-based finite-state trans-
ducer and a named entity recognizer (NER) using
neural networks that we trained on the TAC data;
see Sect. 5. These two modules can work in tan-
dem or independently.

The mention recognition pipeline has three pri-
mary steps: discovery, filtering, and overlap reso-
lution. In addition, the discovery pipeline can be
configured to use one of three modes: NER-only,
dictionary-only, and a hybrid mode. The primary



difference between these modes is how the filter-
ing and overlap resolution operates.

Figure 2 shows an overview of these steps.

4.1 Discovery
Before querying the FST dictionary, we normalize
the tokens in uppercase or lowercase characters for
English and Spanish using statistics derived from
Wikipedia. For instance, we convert BEIJING into
the title case variant Beijing. However, due to am-
biguity, we did not apply case normalization to
title-cased words.

4.2 Filtering
The mentions of named entities are likely to be
linked in Wikipedia. Examining the articles, we
observed that, given word sequence, the relative
frequency of linkage often reveals its ambiguity
level. For instance, while the word It can refer to
a novel by Stephen King, it is rarely an entity and,
at the same time, rarely linked.

The link density (LD) is a measure derived from
the analysis of text linkage in Wikipedia. It loosely
corresponds, as the original text is not fully linked,
to the probability of a sequence of tokens being
linked in the source edition.

We estimated the linkage probability by apply-
ing the FST dictionary to Wikipedia in an of-
fline step. We counted the exact matches with the
known ground truth: The anchors created by the
Wikipedia editors. In addition, before counting,
autolinked anchors were added that matched ex-
isting ones perfectly.

Link density =
#Anchor

#Text +#Anchor
(1)

In addition to link density, we used the gold
standard mention counts as a measure signifi-
cance: The link count (LC).

Before the overlap resolution, all the mentions
from the dictionary are classified into either a
proper set or a dubious set. The proper set con-
sists of all the mentions which exceed the LD and
LC thresholds; The proper set also includes the
mentions which do not exceed these thresholds if
at least 75% of the tokens in the mention are title
cased.

4.3 Overlap Resolution

The mentions placed in the proper set and the
mentions found by the NER will be merged and
resolved in the overlap resolution step. The NER
module itself only outputs nonoverlapping men-
tions. This stage works differently depending on
which mode is used:

• NER-only accepts only NER mentions and
produces linkable mentions, if an exact dic-
tionary match is found.

• Dictionary-only ignores the NER mentions
and solves overlapping mentions by picking
the mention which has the largest LD value
until no overlap exists.

• Hybrid merges NER mentions with dictio-
nary matches by trusting the NER output
where applicable i.e. when multiple candi-
dates exist, it chooses the NER output, other-
wise the dictionary output.

5 Named Entity Recognizer

We developed a named entity recognizer (NER)
based on a feed-forward neural network archi-
tecture and a fixed ordinally-forgetting encoding
(FOFE) (Xu et al., 2017; Zhang et al., 2015). This
NER is part of the mention recognition module;
see Figure 2 for the dataflow.

The NER operates over sentences of tokens and
outputs the highest probability class using a mov-
ing focus window with varying width. The focus
window represents potential named entity candi-
dates and ranges from one to seven words. A more
detailed explanation of this, and why there is an
upper limit, is explained in Sect. 5.3

The NER can recognize both named and nomi-
nal expressions and predict their class. The named
or nominal types are just extensions to the classes.
If there were N classes originally, there would
be 2N outputs if all nominal classes were in-
cluded. In the TAC2017 Ugglan system, the pos-
sible classes are:

• {PER, GPE, ORG, LOC, FAC}-NAM and

• {PER, GPE, ORG, LOC, FAC}-NOM.



The NER is identical in its construction for En-
glish and Spanish, without any language specific
feature engineering. However, we modified this
module for Chinese since the word segmentation
was not found reliable. In Chinese, we used the
individual characters (logograms) as word features
and none of the corresponding Latin character fea-
tures. In any case, the Chinese character features
would be a subset of the word features.

5.1 The fixed ordinally-forgetting encoding
We applied a fixed ordinally-forgetting encoding
(FOFE) (Xu et al., 2017; Zhang et al., 2015) as
a method of encoding variable-length contexts to
fixed-length features. This encoding method can
be used to model language in a suitable manner
for feed-forward neural networks without compro-
mising on context length.

The FOFE model can be seen as a weighted
bag-of-words (BoW). Following the notation of
Xu et al. (2017), given a vocabulary V , where each
word is encoded with a one-hot encoded vector
and S = w1, w2, w3, ..., wn, an arbitrary sequence
of words, where en is the one-hot encoded vector
of the nth word in S, the encoding of each partial
sequence zn is defined as:

zn =

{
0, if n = 0
α · zn−1 + en, otherwise,

(2)

where the α constant is a weight/forgetting factor
which is picked such as 0 ≤ α < 1. The result of
the encoding is a vector of dimension |V |, what-
ever the size of the segment.

Zhang et al. (2015) showed that we can always
recover the word sequences T from their FOFE
representations if 0 < α ≤ 0.5 and that FOFE
is almost unique for 0.5 < α < 1. Zhang et al.
(2015) make the assumption that the representa-
tion is (almost) always unique in real texts.

5.2 Features
The neural network uses both word and character-
level features. The word features extend over parts
of the sentence while character features are only
applied to the focus words: The candidates for a
potential entity.

5.2.1 Word-level Features
The word-level features use bags of words to rep-
resent the focus words and FOFE to model the fo-
cus words as well as their left and right contexts.
As context, we used all the surrounding words up
to a maximum distance, defined by the floating
point precision limits using the FOFE α value as a
guide.

Each word feature is used twice, both in raw
text and normalized lower-case text. The FOFE
features are used twice, both with and without the
focus words. For the FOFE-encoded features, we
used α = 0.5.

The beginning and end of sentence are explic-
itly modeled with BOS and EOS tokens, which
have been added to the vocabulary list.

The complete list of features is then the follow-
ing:

• Bag of words of the focus words;

• FOFE of the sentence:

– starting from the left, excluding the fo-
cus words.

– starting from the left, including the fo-
cus words.

– starting from the right, excluding the fo-
cus words.

– starting from the right, including the fo-
cus words.

This means that, in total, the system input con-
sists of 10 different feature vectors, where five are
generated from the raw text, and five generated
from the lowercase text.

5.2.2 Character-Level Features
The character-level features only model the focus
words from left to right and right to left. We used
two different types of character features: One that
models each character and one that only models
the first character of each word. We applied the
FOFE encoding again as it enabled us to weight
the characters and model their order. For these fea-
tures, we used α = 0.8.

In order to ensure the characters fall into an ap-
propriate range, we encoded them with a simple



modulo hash. Each characters ASCII value is nor-
malized to be within the range 0 and 128. This
limitation is reasonable since most characters of
English and Spanish are in the ASCII table. The
Spanish characters in the range 128:256 are con-
fused with unaccented ASCII characters, for in-
stance ñ with q.

5.2.3 Projection Layers
Characters. The character features are gener-
ated first as sparse one-hot encoded vectors of di-
mension 128 and then projected to a dense repre-
sentation of lower dimension: 64. To project the
character features, we used a randomly initialized
weight matrix, which is trained as part of the net-
work. This procedure produced better results than
the direct input of one-hot vectors.

Words. We projected the word-level features to
a 256-dimension dense representation. We ini-
tialized the projection layer with two different
word2vec (Mikolov et al., 2013) models that we
pretrained on the en, es, and zh wikipedias. One
model was trained on normalized text, while the
other was trained on the raw untouched text. These
are incorporated into the rest of the network and
consequently trained as a part of it.

When creating the word projection layers from
the word2vec models, we used the weights of
the top 100,000 words. We disregarded all the
other words and instead mapped them to a un-
known word vector. More specifically, for the
case-sensitive projection layer, we return a UNK
vector when we encounter a word with no embed-
ding; if this word is equal to its normalized lower
cased variant, we return a special unk vector in-
stead.

5.3 Named Entity Candidates

The potential named entity candidates are pro-
duced by looping over each word in the sentence
with a moving window that expands up to seven
words. This exhaustively generates all the possible
candidates in the sentence, which in turn produces
a lot of noise. In the training process, we sample
this noise to build a set of negative examples and
instruct the network how to discriminate mention
boundaries and invalid mentions.

The upper bound of seven was found by going
through the annotations of the TAC 2016 data and
seeing if there was any clear cut-off where results
would start to diminish. After seven words, we
found there was little benefit to go any further.
This upper limit value is significant because each
candidate which is not a positive sample is con-
sidered negative and in turn used in the training
process.

A large focus window results in many negative
samples, which are not representative of the real
world. As the negative candidates are randomly
sampled, we would (to some degree) get a skewed
distribution of the negative samples. If, for exam-
ple, the upper bound was set to 12 words, there
would be many negative 12-token long samples in
comparison to how many positive examples there
are. We attempted to weigh the different selections
with respect to the positive mention count. We set
it aside for the TAC 2017 evaluation due to a lack
of time.

In total, we considered three different cases to
create the training data:

1. The mention candidate matches exactly an
annotated sequence;

2. The candidate is completely disjoint, i.e.,
contains no annotated words;

3. The candidate partially or completely over-
laps with an annotated sequence or is a subset
of the sequence,

where an annotated sequence corresponds to all
the words annotated with a given class in the data,
such as University of Lund.

The first case corresponds to the positive exam-
ples that we label with the TAC classes, while the
two last cases are the negative examples that we
label as NONE. We will keep this stratification in
the training step.

5.4 Training
In the data set we collected, the negative samples
outnumber the positive ones by an order of mag-
nitude. We used a manually-specified distribution
of the samples to mitigate this unbalance and train
the network. At the beginning of each epoch, the



data is shuffled and the negative samples are re-
selected according to the distribution. This means
that we continuously introduce new negative ex-
amples and previously unseen data to the network,
which helps with regularization.

Table 1 shows the distribution we used for the
TAC 2016 EDL task.

Candidate type Ratio of sample size
Negative: Overlapping 60%
Negative: Disjoint 30%
Positive 10%

Table 1: The distribution between positive and
negative mention candidates.

We trained the NER system with data from TAC
2014-15 and evaluated it on the 2016 data; see Ta-
ble 2.

5.5 Neural Network Architecture

The network architecture can be conceptually di-
vided into two parts: A first part projects the in-
put features into a dense space and a second one
classifies the input and outputs a class (see Fig-
ure 3). The classification part of the network con-
sists of three hidden layers, which have batch-
normalization layers sliced in-between them, and
a final layer that outputs multiclass predictions.

During the development, we tested and evalu-
ated several hyperparameters using a grid search
method. Table 3 shows the final hyperparameters
used in the TAC2017 EDL task. We started from
initial values identical to those in Xu et al. (2017).

Both the learning rate and dropout followed a
linear decay schedule in which they would have a
final value of 0.0064 and 0.1024, respectively, by
the end of training. We also conducted tests that
showed that having a constant, lower dropout rate,
yielded slightly better results. We did not use them
for the EDL task due to time constraints.

5.6 Candidate Pruning

We exhaustively generated all the possible men-
tion candidates that we passed to the classification
step. The output is a probability distribution for
each class (named and nominal), whose sum is 1.
We used the highest probability class to tag the

mention if it was 0.5 or greater, otherwise we ig-
nored the output and assigned it to the NONE class.

No overlapping mentions were output, instead
each mention had to have no overlap at all. We
evaluated two different algorithms to determine
which mentions to keep: The highest probability
and the longest match:

• The highest probability algorithm proceeds
from left to right and uses the highest prob-
ability, nonoverlapping, leftmost mention.

• The longest match instead uses the longest,
nonoverlapping, rightmost mention.

During testing, the highest probability algo-
rithm produced the best results, a few points
greater than the longest first. The output was also
visually cleaner upon manual inspection. We did
a grid search for the cutoff value and found that
0.5 produced the best results. Nonetheless, both
0.4 and 0.6 yielded similar results and would be
reasonable choices as well.

6 Entity Linking

6.1 Generation of Entity Candidates
We used the mentions from the recognition step
to produce the entity candidates. Each mention
found by the FST dictionary has a unique ID that
serves as entry point to the mention-entity graph
(Sect. 3.3).

6.2 Construction of a Local Graph to
Disambiguate Entities

We build a local graph to disambiguate the entities
in a text. The nodes of the graph consist of the
mentions and the candidates. We link these nodes
with three types of edges:

1. The mention-to-candidate edges;

2. The entity cooccurrence edges linking enti-
ties when they cooccur in the Wikipedia cor-
pus;

3. The entity inlink edges, reflecting links be-
tween pages (entities) in Wikipedia;

While the mentions are language-dependent, the
entities reside in a multilingual domain and their



Language Named Nominal Overall
P R F1 P R F1 P R F1

English 0.734 0.816 0.773 0.580 0.805 0.674 0.801 0.676 0.733
Chinese 0.769 0.792 0.780 0.554 0.757 0.639 0.769 0.612 0.682
Spanish 0.736 0.685 0.709 0.584 0.657 0.618 0.736 0.567 0.640

Table 2: Results from evaluating on the 2016 data (not including wikipedia dictionary).
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Figure 3: Overview of the full NER network architecture

edges are aggregated from all the editions of
Wikipedia we consider.

Fig. 4 shows an overview of the graph.

Following Södergren and Nugues (2017), the
graph is weighted using the PageRank algorithm
(Brin and Page, 1998). The candidates are ranked
per mention and a normalized weight is produced.
The top three candidates are reordered if the can-
didate title exactly matches the mention.

In contrast to Södergren and Nugues (2017), we
included the inlinks and we carried out the disam-
biguation inside a window of 20 mentions. We in-
troduced this window method to reduce the com-
putation and the upper-bound execution time. At

the start of the disambiguation, the window is set
at the beginning of the text and then shift by 10
mentions. The windows are then partially overlap-
ping and, in case of conflict, we use the rankings
from the left one.

6.3 Reranker
To reduce errors made by the disambiguator and
introduce a NIL candidate, we trained a reranker
on the TAC 2015-2016 data. We generated a train-
ing set of examples by applying the graph-based
disambiguator to all the available annotated text.
We limited the set of candidates to the top three
entities for each mention or up to the correct one
if necessary. We then marked each candidate in



Name Value
Weight initialization RELU Uniform
Max. window size 7
Epoch count 160
Learning rate 0.1024
Dropout 0.4096
Optimizer ADAM
L2 regularization 0.0
Neuron count 512
Batch size 512
Activation function Leaky RELU

Table 3: The final hyperparameters used in the
TAC2017 EDL task

these lists as positive or negative according to the
gold standard. We assigned all the detected men-
tions overlapping gold standard mentions to the
NIL entity. We discarded the rest.

We used two sets of features, candidate and
context, resulting in two models:

1. The candidate set contains the Jaccard simi-
larity coefficient between the entity title and
the mention, the PageRank weight, and the
commonness defined as P (Eq|Mi), where E
is the entity and M is the specific mention.
All the features in the candidate set are en-
coded as a quantitized one-hot encoded array.

2. The context set includes the candidate fea-
tures and additional FOFE-encoded left and
right contexts surrounding the mention using
the same word embeddings as the NER de-
rived from Wikipedia.

We trained the reranker as a binary classifier
using a feed-forward neural network with binary
cross entropy loss and sigmoid activation. The net-
work consists of 3 dense layers of size 64 for the
candidate model and 128 for the context model.

We incorporated the candidate and context
model into the entity disambiguation using the fol-
lowing equation to produce final ranking score:

Final score = RV ·RRSα (3)

where RV is rank value and RRS is the rerank
score, which is equivalent to the prediction proba-
bility.
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Figure 4: Overview of the entity disambiguation
graph

We performed a grid search to find the optimal
α for the reranker using the gold standard training
set and we selected the best of the two models for
each language.

6.4 Postprocessing
The postprocessing stage involves consists of the
following steps: a baseline coreference resolution,
a nominal discovery, and a filtering. The baseline
coreferencing method uses the linked mentions as
input and tries to find exact matches of the first
and last word of each linked mention in the text.
When such a match is found, the two mentions are
coreferring.

To discover the nominal mentions, we first built
a seed word set from the nominal mentions in the
TAC data. We then built a dictionary, where the
keys were the entities and the values, the nominal
phrases compatible with each entity. We extracted
these values from Wikidata descriptions that we
intersected with the seed word set, the instances-
of and occupation relations, with their respective
labels and aliases.

Finally, we filtered out the mentions, where we
could not find an acceptable class using the entity-
to-class mapping dictionary or using the NER pre-



Language en es zh
NERC U2: 0.833 U2: 0.804 U1/U3: 0.760
NEL U4: 0.751 U2: 0.751 U4: 0.718
NELC U4: 0.726 U2: 0.733 U1/U3: 0.760
CEAFm U4: 0.783 U3: 0.728 U4: 0.736

Table 4: Best version for the named class. F1 score. Results on the TAC 2017 data

Languages en es zh
U1 U2 U3 U4 U5 U1 U2 U3 U4 U5 U1 U2 U3 U4 U5

NERC 0.813 0.833 0.825 0.813 0.797 0.802 0.804 0.788 0.749 0.763 0.760 0.750 0.760 0.750 0.741
NEL 0.732 0.738 0.730 0.751 0.691 0.747 0.751 0.746 0.701 0.687 0.716 0.691 0.716 0.718 0.690
NELC 0.711 0.717 0.710 0.726 0.668 0.784 0.788 0.788 0.745 0.765 0.757 0.755 0.757 0.746 0.741
CEAFm 0.752 0.751 0.752 0.783 0.754 0.722 0.714 0.728 0.685 0.700 0.726 0.702 0.726 0.736 0.720

Table 5: Breakdown of results for runs U1 to U5, F1 scores, bold indicates the best result per language

dicted class, when available.

7 Results

Ugglan was primarily targeting the named entity
disambiguation. It was not designed for the nomi-
nal and NIL entities, and hence its results on these
categories are not at the same level in terms of
accuracy. Therefore, we will merely analyze the
named results, where the result categories corre-
spond to these acronyms:

NERC, Named Entity Recognition and
Classification, corresponding to
strong_typed_mention_match
in the evaluation script.

NEL, Named Entity Linking
(strong_link_match);

NELC, Named Entity Linking and Classification
( strong_typed_link_match);

CEAFm, Clustered Mention Identification
(CEAFm).

We submitted five runs, U1 toU5. Table 4 shows
an overview of the best combination per language
and type of result taken from the official evaluation
data and Table 5 shows the full breakdown.

The pipeline setup for the particular runs were
selected using the TAC 2016 evaluation as a guide.
The runs U1 to U3 used available training data
from TAC 2014-2016, while U4 and U5 only used
TAC 2014-2015. Table 6 shows the different con-
figurations.

From the results in Table 4, the typed classifica-
tion is best using only the FOFE-based NER. The
Stanford NER is better when it comes to clustered
mentions.

8 Discussion

8.1 Mention Recognition

Ugglan’s ability to find linkable mentions is de-
termined by the recall level of the FST dictionary.
The NER only helps in reducing noise, thus in-
creasing precision at the expense of possibly low-
ering the overall recall. The hybrid mode tries
to mitigate the recall loss by including mentions
which have no overlap with any NER mention.
NIL mentions are only found using a NER or if
the mention was linked and could not be resolved
to a Freebase entity. The FOFE NER was trained
to identify NOMs, but these were never used as
they could not reliably be linked to existing link-
able mentions.

8.2 Linking

The windowing approach limits the computation
complexity at the expense of a possible lower pre-
cision. We did not evaluate the effects of the win-
dow size and the values were picked arbitrarily
using human insight only. Arguably, the optimal
size depends on the impact of topic drift, as the
linker performs best with a coherent and compati-
ble context with as many related mentions as pos-
sible. The more diverse the context is in terms
of mentions and candidates, the noisier the graph



Mention Recognition NER Reranker
NER-only Hybrid Candidate Context None

en es zh en es zh en es zh en es zh en es zh en es zh
U1 X X X F F F X X X
U2 X X X F F F X X X
U3 X X X F F F X X X
U4 X X X S S F* X X X
U5 X X X S F* S X X X

Table 6: System configuration, where F stands for FOFE and S for Stanford NER. F* is an older FOFE
model

becomes and the relevant context may shrink as
it would require a bigger context to get sufficient
supporting candidates to produce a good linkage.
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Abstract
In this paper, we describe a new system to extract, index, search, and visualize entities in Wikipedia. To carry out the entity extraction,
we designed a high-performance, multilingual, entity linker and we used a document model to store the resulting linguistic annotations.
The entity linker, HEDWIG, extracts the mentions from text using a string matching engine and links them to entities with a combination
of statistical rules and PageRank. The document model, Docforia (Klang and Nugues, 2017), consists of layers, where each layer is a
sequence of ranges describing a specific annotation, here the entities. We evaluated HEDWIG with the TAC 2016 data and protocol (Ji
and Nothman, 2016) and we reached the CEAFm scores of 70.0 on English, on 64.4 on Chinese, and 66.5 on Spanish.
We applied the entity linker to the whole collection of English and Swedish articles of Wikipedia and we used Lucene to index the
layers and a search module to interactively retrieve all the concordances of an entity in Wikipedia. The user can select and visualize the
concordances in the articles or paragraphs. Contrary to classic text indexing, this system does not use strings to identify the entities but
unique identifiers from Wikidata. A demonstration of the entity search and visualization will be available for English at this address
http://vilde.cs.lth.se:9001/en-hedwig/ and for Swedish at: http://vilde.cs.lth.se:9001/sv-hedwig/.

Keywords: named entity recognition, entity linker, wikipedia

1. Introduction
Wikipedia has become a popular NLP resource used in
many projects such as text categorization (Wang et al.,
2009), information extraction, question answering (Fer-
rucci, 2012), or translation (Smith et al., 2010). In addition
to its size and diversity, Wikipedia, through its links, also
enables to create a graph that associates concepts, entities,
and their mentions in text. Wu and Weld (2010), for in-
stance, used the “wikilinks”, the Wikipedia hyperlinks, to
collect the mentions of an entity and build sets of synonyms
for an open information extraction system.
However, according to the edition rules of Wikipedia, only
the first mention of an entity should be linked in an article.
An automatic wikification is then necessary to associate the
subsequent mentions with an entity (Mihalcea and Csomai,
2007). In addition, searching entities using names in the
form of strings can be tricky as names are sometimes am-
biguous and entities may have more than one name. Find-
ing all the occurrences of an organization like the United
Nations would require five or more queries as they can be
mentioned not only as the United Nations, but also as: UN,
U.N., United Nations Organization, UNO, etc.
In this paper, we describe a novel multilingual system to
process, index, search, and visualize all the mentions of
an entity in Wikipedia. This system consists of an entity
linker, HEDWIG, that extracts the mentions from text using
a named-entity recognition engine and links them to entities
with a combination of statistical rules and PageRank. We
applied HEDWIG to the whole collection of English and
Swedish articles of Wikipedia. We then used Lucene to in-
dex the layers and a search module to interactively retrieve
all the concordances of an entity in the articles, paragraphs
and metadata. The user can then select a concordance s/he
wants to visualize. As opposed to the Wikipedia index, the
system uses unique identifiers to index the entities and not
their mentions, which enables the users to carry out more
easily exhaustive searches.

2. Previous Work
Most named entity linkers adopt a two-step procedure,
where they first identify the mentions and then link them
to a unique identifier.

2.1. Mention Detection
The mention detection step, or spotting, has been addressed
by a variety of techniques. Mihalcea and Csomai (2007)
used a dictionary associating the entities with their surface
forms, where the surface forms are simply n-grams. They
extracted all the strings in a text that matched any of the
surface forms in the dictionary to produce the set of men-
tion candidates. As the candidates may overlap, the authors
ranked them using a keyphraseness metric defined as the
number of documents, where the mention was linked di-
vided by the number of documents, where the mention oc-
curred. They set the number of mentions to keep to 6% of
the total number of words in the document following fig-
ures they observed in Wikipedia.
Milne and Witten (2008) also used a dictionary of sur-
face forms as well a classifier to decide on the mentions
to keep. They trained the classifier on Wikipedia men-
tions, either linked, the positive examples, or nonlinked,
the negative ones. As features, they used the link proba-
bility (keyphraseness), relatedness, disambiguation confi-
dence, generality, location, and spread.
Lipczak et al. (2014) used the Lucene’s finite state trans-
ducers and Solr Text Tagger to detect the mentions. They
collected the surface form dictionary from Wikipedia as
well as Freebase and Google’s wikilinks. The tagging step
results in an overdetection that is pruned using lexical fil-
ters. The final selection of mentions is carried out in the
linking step.
Cucerzan (2014) used a dictionary of surface forms col-
lected from Wikipedia, anchor text, page titles, redirection
pages, etc, and a set of rules to identify the mentions in
the text. As in Lipczak et al. (2014), the overgeneration is
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solved at the linking stage.
Piccinno and Ferragina (2014) used a dictionary of sur-
face forms similar to Cucerzan (2014) to spot the men-
tions. They also used a pruner to discard unlikely anno-
tations based on a classifier and a coherence metric with
the set of neighboring entities. This final selection is done
at linking time.
Sil et al. (2015) used classifiers based on neural nets and
conditional random fields trained on three languages.
Some annotators also used an external named entity recog-
nition module to carry out this mention detection as AIDA
(Hoffart et al., 2011) and Tan et al. (2015) that used Stan-
ford NER (Finkel et al., 2005).

2.2. Entity Linking
Bagga and Baldwin (1998) is one of the earliest works that
introduced the notion of linkage to unique things through
the task of cross-document coreference. The main differ-
ence with entity linking is that predefined lists of entities do
not exist but have to be found. Bagga and Baldwin (1998)
created summary vectors and tried to cluster them to form
linkages. These summary vectors were created from noun
phrases contained within coreference chains in documents.
Using cosine similarity with a predefined threshold, they
were able to cluster coreferences that crossed the document
boundaries.
Bunescu and Pasca (2006) first explored entity linking us-
ing Wikipedia as knowledge base. They used hyperlinks,
redirects, disambiguation pages, and the category hierar-
chy, which would be used by almost every major paper
since. Using context article similarity based on 55-word
window vector space model (VSM) cosine similarity and
a taxonomy kernel, they trained SVM models to recast the
disambiguation problem as a classification. They reported
accuracies between 55.4% and 84.8% depending on which
model they used.
Cucerzan (2007a) introduced clearly defined end-to-end
pipelines – starting with text and ending with linked entities
– as well as a notion of collective agreement in the disam-
biguation component. Using a document vector comprised
of surface form context, entity context, and categories, he
could maximize an agreement between the proposed entity
candidates. Using the top two stories from 10 MSNBC
news categories in January 2, 2007, he reported an accu-
racy of 91.4% versus 88.3% from 350 random Wikipedia
pages.
Milne and Witten (2008) introduced important concepts
such as relatedness and commonness which still defines a
strong baseline used by many following papers in one form
or another.
Hoffart et al. (2011) used an ensemble system to compute
a linear combination of entity probabilities, context simi-
larities, and entity coherences, where the popularity prior
corresponds to the number of in-links to a Wikipedia entity;
the context similarity compares the context of the input by
computing a similarity between all the tokens in the input
against a key phrase defined for entities they extracted from
YAGO. A key phrase is a phrase that is derived from link
texts, category names, citation titles, and other references;
finally, coherence provides a way of comparing different

entity candidates in a text in order to measure how compat-
ible they are.
Lipczak et al. (2014) built a set of all the entity candidates
for all the mentions in a document. They started from an
entity core corresponding to the default senses. Using this
core, they built a topic centroid from Wikipedia categories
and discard entities from the core that are outside the topic.
They finally refined the core and rank the remaining entities
using a cosine similarity.
Eckhardt et al. (2014) built a graph of entity-mention pairs,
where they weighted the edges with P (E|M) probabilities.
They applied a variant to PageRank to rank the entities.
Sil et al. (2015) described a trilingual system that uses
a classifier with features such as the number of mention–
entity matches in Wikipedia, acronym match, pointwise
mutual information between entities and categories, etc.
Tan et al. (2015) used a graph of entity-mention and entity-
entity edges. The edges are weighted by a function of the
context similarity between a mention and an entity descrip-
tion in Freebase and functions of relatedness and context
similarities. The entity ranking is eventually determined by
a random walk in the graph.
Cucerzan (2007b) and Han and Zhao (2009) described
other algorithms for NERL. In contrast to most of these
previous works, multilingual support is at the core of HED-
WIG.

3. Extraction of the Wikipedia Structure
Before we apply the linker to Wikipedia, we convert
the HTML pages into a multilayer document model; see
Sect. 5. This preprocessing step parses the HTML docu-
ments into DOM trees and extracts the original page struc-
ture, text styles, links, lists, and tables. We then resolve all
the Wikipedia links to unique Wikidata identifiers, where
Wikidata is an entity database, which assigns unique iden-
tifiers across all the language editions of Wikipedia.
The United Nations, for instance, has the unique id: Q1065,
which enables to retrieve the article pages in English,
French, Swedish, or Russian. Figure 1 shows examples
of these ids in the United Nations article from the En-
glish Wikipedia, where we have replaced the manually
set Wikipedia anchors (the wikilinks) with their Wikidata
numbers: Q245065 for intergovernmental organization and
Q60 for New York City. Figure 2 shows the first paragraph
of the corresponding article from the Swedish Wikipedia,
Förenta nationerna ‘United Nations’, where mellanstatlig
organisation, the Swedish word for intergovernmental or-
ganization, has also the Q245065 number.

4. Entity Linking
Once we have collected and structured the text, we apply
the entity linking module to find all the mentions of an en-
tity in text and link these mentions to a unique identifier.

4.1. Set of Entities
We used the wikilinks to build a repository of (men-
tion, entity) pairs and Wikidata as the nomenclature for
the unique entity identifiers. We collected all the wik-
ilinks in the Wikipedia articles, where each link con-
sists of a label and the name of the destination page:
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Figure 1: Visualization of anchors with Wikidata Q-numbers. The first lines of the United Nations article in the English
Wikipedia

Figure 2: Visualization of anchors with Wikidata Q-numbers. First paragraph of the Förenta nationerna ‘United Nations’
article in the Swedish Wikipedia

[[destination|label]]. We parsed these links into
(mention, entity page) pairs and we translated the entity
pages into Wikidata Q-numbers.
We annotated each mention-entity pair with a set of prop-
erties: its frequency, its frequency relative to the mention,
P (E|M), if the mention is in a dictionary, if the mention
consists of stop words. We then pruned the knowledge base
from unique mentions for entities with a high frequency,
mentions that are only stop words, etc.
During the mention gathering, we also derived statistics for
a given language. Before we computed these statistics, we
applied a procedure that we called autolinking. In an ar-
ticle, the Wikipedia guidelines advise to link only one in-
stance of an entity mention1: Normally the first one in the
text. With the autolinking procedure, we link all the re-
maining mentions provided that we have sequences of ex-
actly matching tokens.
The statistics we collect are:

• The frequency of the mention string over the whole
Wikipedia collection (restricted to one language);

• The frequency of the pair (mention, entity) that we de-
rive from the links without autolinking (only manually
linked mentions);

• The count of (entity1, entity2) pairs in a window corre-
sponding to a paragraph and limited to 20 linked men-
tions. This is carried out after autolinking;

• Capitalization statistics for all the tokens: We extract
token counts for all tokens with a frequency greater
than 100 and we break them down by case properties:
uppercased, lowercased, titlecased, and camelcase;

1https://en.wikipedia.org/wiki/Wikipedia:
Manual_of_Style/Linking#Overlinking_and_
underlinking

4.2. Mention Recognition
To detect the mentions in an unannotated text, we use a two-
step procedure: We first generate the mention candidates
using a finite-state transducer; this results in a very large
overgeneration. We then apply a mention segmenter that
identifies the mentions to keep for the linking phase.
Following Lipczak et al. (2014) and Södergren and Nugues
(2017), we used an automaton to spot the mentions. This
automaton uses Lucene’s finite-state transducers and is ef-
ficient in terms of memory usage and execution time. De-
pending on the language and the availability of manually-
annotated data, we can complement this candidate genera-
tion with two named-entity recognition systems trained on
the annotated data: The first one being based on an exten-
sion of the fixed-size ordinally forgetting encoding (FOFE)
technique (Xu et al., 2017; Zhang et al., 2015) and the sec-
ond one being CoreNLP (Manning et al., 2014).
The overgeneration of mention candidates impairs the qual-
ity of the downstream linker. To discard the very un-
likely ones, we introduced rules based on the frequency
of the manual links applied to mention M and its link
probability lp. We denote Mlinked a mention with a man-
ual hyperlink; this would correspond to the wiki markup:
[[link|mention]], and Mautolinked, an autolinked
mention. We define:

lp(M) = P (Mautolinked|M)

=
#Mautolinked

#Mautolinked +#Munlinked
,

where #Mautolinked is the number of times a mention is
linked in the Wikipedia collection and #Munlinked, its fre-
quency when unlinked.
The rules are:

1. Remove the mentions M where lp(M) < Dlp, for
instance with Dlp = 0.01;
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2. Keep the mentions where lp(M) > Klp, and
#Mlinked > Kf , with, for instance, Klp = 0.15 and
Kf = 25. All these mentions are candidates for the
linking step;

3. Set the rest in a dubious set.

4.3. The Linking Step
We applied the JUNG implementation of PageRank (Brin
and Page, 1998; O’Madadhain et al., 2003) to the tagged
mentions. Following Eckhardt et al. (2014) and Södergren
and Nugues (2017), we created a node for every mention-
entity pair that is detected in the text and we ran PageRank
on this graph; we used the JUNG default settings.
We analyzed the internal links of Wikipedia to determine
the entities that appear in the same context. Two entities are
linked if the article of Entity A links to the article of Entity
B or there exist at least one link to the article of Entity A
and another one to the article of Entity B occurring in the
same paragraph.
We then re-ranked the PageRank candidates using a feed
forward neural network consisting of three layers with
RELU activations, a crossentropy loss, and a sigmoid out-
put. We trained the model on the output of the PageRank
disambiguator applied to the TAC 2015 dataset. The fea-
tures we used consist of the mention tokens, candidate title
tokens, both as word embeddings on 256 dimensions, the
Jaccard distance between the mention and candidate title,
the commonness and pagerank weights.
We evaluated the system with the same method as used in
the TAC 2016 competition (Ji and Nothman, 2016) and we
reached the CEAFm scores of 70.0 on English, on 64.4 on
Chinese, and 66.5 on Spanish. We applied our linker to
Swedish without any language adaptation.
We deployed the entity linker on our cluster and we used
HDFS to spread the Wikipedia dump across the nodes as
well as to save the final result.

5. The Document Model
We represented Wikipedia and the entity annotations using
the Docforia document model2 (Klang and Nugues, 2016b;
Klang and Nugues, 2016a; Klang and Nugues, 2017). Doc-
foria is designed it so that we can store the original markup,
as well as any subsequent linguistic annotation. It consists
of multiple layers, where each layer is dedicated to a spe-
cific type of annotation.
The annotations are encoded in the form of graph nodes,
where a node represents a piece of data: a token, a sentence,
a named entity, etc., delimited by ranges. These nodes are
possibly connected by edges as in dependency graphs. The
data structure used is similar to a property graph.

6. Indexing
We created an indexing tool, Panforia, to retrieve the enti-
ties from the annotated documents. As input, Panforia uses
the output of the entity annotation in the form of Parquet
files. Panforia is based on the Lucene search and indexing
library. Each Docforia record is converted into a Lucene

2https://github.com/marcusklang/docforia/

document by mapping record properties and documents to
Lucene fields. In addition, a binary copy of the Docforia
record is embedded with the indexed fields, which provides
the ranges and relationships between nodes needed for the
visualization.
Building directly on the Lucene library, instead of exist-
ing packages such as Solr or ElasticSearch, allowed us to
optimize the insertion into an index. One key advantage
of the Panforia indexer is that it can read the output from
the Wikipedia pipeline, Parquet files, without a conversion
step.

7. Visualization
The front-end of Panforia is a web server that embeds the
Docforia library, Lucene, and a client-side web application.
To search an entity, we enter a Wikidata Q-number, for in-
stance, urn:wikidata:Q168756, corresponding to the
entity identifier, here the University of California, Berkeley.
Figure 3 shows the results of this search, where in each row,
the entity is listed by its mention together with its left and
right contexts. The document that contains the source of the
concordance is listed in the leftmost column and the offset
from the beginning in the last column.
In the figure, we can see that the entity has many possi-
ble mentions: University of California, Berkeley, Berkeley,
UC Berkeley, etc. All these mentions and concordances are
automatically retrieved through the entity index. We can
visualize the document by clicking on a link in the left col-
umn.
For each document, the interactive visualization tool also
enables the user to examine the annotated layers resulting
from the HTML parsing (Sect. 3.). These layers include
the manually set anchors, the automatically detected enti-
ties, and text enrichment. These layers are selectable from
the dropdown menu to the right. Figure 4 shows an exam-
ple with the automatically linked entities, the text in bold
(strong) and in italics.
Figure 5 shows an example of results we obtained in the
Swedish Wikipedia when we searched the entity Göran
Persson, the former Swedish Prime Minister, using his Q-
number: Q53747. This mention, Göran Persson, is am-
biguous and Wikipedia lists as many as four different en-
tities with this name: The former Swedish Prime Min-
ister, a progressive musician (Q6042900), a Swedish so-
cial democratic politician, former member of the Riksdag
(Q5626648), and a Swedish statesman from the 16th cen-
tury (Q2625684). The latter is also spelled Jöran Person.
Searching the mention Göran Persson would return articles
or concordances with any of these entities, while searching
the entity through its Q-number only returns the intended
person, either with her/his name or with other mentions
such as Persson or Göran. The results are given in the forms
of concordances with left and right contexts (Fig. 5).

8. Conclusion and Future Work
We have described a system to extract, index, search, and
visualize entities on the English and Swedish Wikipedia.
Given a Wikidata Q-number, a user can interactively re-
trieve all the concordances of an entity in the articles, para-
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Figure 3: Searching an entity in the Wikipedia pages, where Q168756 is the Wikidata identifier of the University of
California, Berkeley. The entity concordances, where each concordance is listed with its source, mention in the text, left
and right contexts, and position in the text

Figure 4: Visualization of annotated layers: The automatically linked entities, text in bold and in italics

Figure 5: Concordances of the entity Göran Person, Q53747. The results are given in the form of concordances with a left
and right contexts.
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graphs, and metadata. The user can then select a concor-
dance and the annotations s/he wants to visualize.
This system could be improved in many ways. The entity
linker makes no assumption on the language and could eas-
ily be applied to other Wikipedias. We plan to extend this
demonstration to four other languages: French, German,
Spanish, and Russian and for one entity, show the concor-
dances in the six languages.
Finally, we plan to introduce a coreference resolution for
the languages where a coreference-annotated corpus exists
or where a solver is available.
The demonstrations will be available at: http:
//vilde.cs.lth.se:9001/en-hedwig/
for English and http://vilde.cs.lth.se:
9001/sv-hedwig/ for Swedish.
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Abstract
LSTM architectures (Hochreiter and Schmidhuber, 1997) have become standard to recognize named entities (NER) in text
(Lample et al., 2016; Chiu and Nichols, 2016). Nonetheless, Zhang et al. (2015) recently proposed an approach based on
fixed-size ordinally forgetting encoding (FOFE) to translate variable-length contexts into fixed-length features. This encoding
method can be used with feed-forward neural networks and, despite its simplicity, reach accuracy rates matching those of LTSMs
in NER tasks (Xu et al., 2017). However, the figures reported in the NER articles are difficult to compare precisely as the
experiments often use external resources such as gazetteers and corpora. In this paper, we describe an experimental setup,
where we reimplemented the two core algorithms, to level the differences in initial conditions. This allowed us to measure more
precisely the accuracy of both architectures and to report what we believe are unbiased results on English and Swedish datasets.

1. Introduction

Named entity recognition (NER) aims at identifying all the
names of persons, organizations, geographic locations, as
well as numeric expressions in a text. This is a relatively
old task of NLP that has applications in multiples fields
such as information extraction, knowledge extraction, prod-
uct recommendation, and question answering. Named en-
tity recognition is also usually the first step of named entity
linking, where the mentions of named entities, once recog-
nized, are disambiguated and linked to unique identifiers (Ji
and Nothman, 2016; Ji et al., 2017).

Over the time, NER has used scores of techniques start-
ing from hand-written rules, to decision trees, support vec-
tor machines, logistic regression, and now deep neural net-
works. The diversity of applications and datasets makes
it difficult to compare the algorithms and systems. Re-
searchers in the field quickly realized it and the committee
of the message understanding conferences (MUC) first de-
fined procedures for a systematic evaluation of NER perfor-
mance (Grishman and Sundheim, 1996). The CoNLL 2002
and 2003 conferences (Tjong Kim Sang, 2002; Tjong Kim
Sang and De Meulder, 2003) further developed them and
provided standardized annotations, multilingual datasets,
and evaluation scripts, that are still references today.

In spite of a continuous research, designing a perfect
domain-independent NER is still an unmet goal. New ideas
and architectures make that the state-of-the-art is improv-
ing every year. However, the figures reported in the NER
articles are difficult to compare precisely as the experiments
often involve external resources such as gazetteers and non-
published corpora.

In this paper, we describe an experimental setup, where
we reimplemented two of the best reported algorithms and
where we defined identical initial conditions. This allowed
us to measure more precisely the accuracy of both architec-
tures and to report what we believe are unbiased results on
English and Swedish datasets.

2. Previous Work
NER has been addressed by many techniques. Participants
in the MUC conferences, such as FASTUS, used exten-
sively gazetteers and regular expressions to extract the men-
tions (Appelt et al., 1993). The CoNLL conferences started
to distribute annotated corpora that enabled participants to
train classifiers such as logistic regression, decision trees,
perceptrons, often organized as ensembles. For a review of
early systems from 1991 to 2006, see Nadeau and Sekine
(2007).

With the advent of deep learning, long short-term mem-
ory architectures (LSTM) (Hochreiter and Schmidhuber,
1997) have become standard to recognize named entities.
Out of the 24 teams participating in the trilingual entity dis-
ambiguation and linking task (EDL) of TAC 2017, 7 used
bidirectional LSTMs – with varying degrees of success (Ji
et al., 2017).

Chiu and Nichols (2016) reported a score of 91.62 on
the CoNLL 2003 test set with LSTM and convolutional
neural networks (CNN) on character embeddings using the
development set and the training set to build their model;
Lample et al. (2016) used LSTM and conditional random
fields (CRF) and reached 90.94 on the same test set; Ma
and Hovy (2016) combined LSTM, CNN, and CRF and ob-
tained 91.21.

Parallel to the LSTM achievements, Zhang et al. (2015)
recently proposed an approach based on fixed-size ordi-

nally forgetting encoding (FOFE) to translate variable-
length contexts into fixed-length features. This encoding
method can be used with feed-forward neural networks and,
despite its simplicity, reach accuracy rates matching those
of LTSMs in NER tasks (Xu et al., 2017).

All the reported performance figures are now close and
may be subject to initialization conditions of random seeds.
See Reimers and Gurevych (2017) for a discussion on their
validity. In addition, all the experiments are carried out on
the same data sets, again and again, which may, in the long
run, entail some data leaks.



In this paper, we report experiments we have done with
reimplementations of two of the most accurate NER tag-
gers on English, to be sure we could reproduce the figures
and that we applied to the Swedish Stockholm-Umeå cor-
pus (SUC) (Ejerhed et al., 1992).

3. Datasets and Annotations
Annotated datasets. As datasets, we used the English
corpus of CoNLL 2003, OntoNotes, and SUC, that bracket
the named entities with semantic categories such as loca-
tion, person, organization, etc. The corpora use either IOB
v1 or v2 as annotation tagsets. We converted the annotation
to IOBES, where S is for single-tag named entities, B, for
begin, E, for end, I, for inside, and O for outside. For the
bracketed example from CoNLL:

Promising 10th-ranked [MISC American MISC]
[PER Chanda Rubin PER] has pulled out of
the [MISC U.S. Open Tennis Championships
MISC] with a wrist injury, tournament officials
announced.

the annotation yields:

Promising/O 10th-ranked/O American/S-MISC
Chanda/B-PER Rubin/E-PER has/O pulled/O
out/O of/O the/O U.S./B-MISC Open/I-MISC
Tennis/I-MISC Championships/E-MISC with/O
a/O wrist/O injury/O ,/O tournament/O offi-
cials/O announced/O ./O

The CoNLL 2003 dataset is derived from the Reuters cor-
pus (RCV).
Word embeddings. For English, we used the pre-trained
Glove 6B embeddings (Pennington et al., 2014) and the
lower-cased 100 to 300 dimension variants. In addition,
we trained our own cased and lowercased embeddings us-
ing the Word2vec algorithm provided by the Gensim library
(Řehůřek and Sojka, 2010). For Swedish, we used Swec-
tors (Fallgren et al., 2016) and we trained Swedish em-
beddings from the Swedish Culturomics Gigaword Corpus
(Eide et al., 2016).

4. Systems
We implemented two systems: one based on FOFE, which
is an extension to that of Klang et al. (2017) and Dib (2018)
and the second one on LSTM, taking up the work of Chiu
and Nichols (2016).

4.1 FOFE
The FOFE model can be seen as a weighted bag-of-words
(BoW). Following the notation of Xu et al. (2017), given a
vocabulary V , where each word is encoded with a one-hot
encoded vector and S = w1, w2, w3, ..., wn, an arbitrary
sequence of words, where en is the one-hot encoded vector
of the nth word in S, the encoding of each partial sequence
zn is defined as:

zn =

(
0, if n = 0
↵ · zn�1 + en, otherwise,

(1)

where the ↵ constant is a weight/forgetting factor which is
picked such as 0  ↵ < 1. The result of the encoding is a
vector of dimension |V |, whatever the size of the segment.

Features. The neural network uses both word and
character-level features. The word features extend over
parts of the sentence, while character features are only ap-
plied to the focus words: The candidates for a potential
entity.

Word-level Features. The word-level features use bags
of words to represent the focus words and FOFE to model
the focus words as well as their left and right contexts. As
context, we used all the surrounding words up to a max-
imum distance. The beginning and end of sentence are
explicitly modeled with BOS and EOS tokens, which have
been added to the vocabulary list.

Each word feature is used twice, both in raw text and nor-
malized lower-case text. The FOFE features are used twice,
both with and without the focus words. For the FOFE-
encoded features, we used ↵ = 0.5. The complete list of
features is then the following:

• Bag of words of the focus words;

• FOFE of the sentence: starting from the left, exclud-
ing the focus words; starting from the left, including
the focus words; starting from the right, excluding the
focus words; and starting from the right, including the
focus words.

This means that, in total, the system input consists of 10
different feature vectors, where five are generated from the
raw text, and five generated from the lowercase text.

Character-Level Features. The character-level features
only model the focus words from left to right and right
to left. We used two different types of character features:
One that models each character and one that only models
the first character of each word. We applied the FOFE en-
coding again as it enabled us to weight the characters and
model their order. For these features, we used ↵ = 0.8.
Higher choice of alpha for character features matches the
original implementation. Our hypothesis is, using a higher
alpha for the FOFE encoded character features increases its
likelihood to remain salient during training.

Training. NER datasets are traditionally unbalanced with
regards to the negative outside class. To produce enough
positive examples to fit the model, we balanced every mini-
batch, so that it contains a constant and adjustable ratio of
positive and negative classes. The size of an epoch is de-
fined by the number of mini-batches we can fill with the
smallest class repeated T times.

4.2 LSTM
The LSTM model uses the sequential input directly, which
does not require any preprocessing. We feed the network
with the input sentences. Before training as a performance
optimization, we sorted all the sentences by length and
we then divided them into mini-batches. This reduces the
amount of masking, and thereby wasteful computations as
the majority of mini-batches will be of fixed length.



We use the same set of input features as Chiu and Nichols
(2016):

• Word-level, the matching word-embedding for the in-
put word or the unknown word embedding if the word
is not in our vocabulary.

• Word-character level, all the characters per word are
mapped to embeddings trained with the model. We
extracted the alphabet manually and the language is
specific.

• Word-case feature, per word class mapping such as
lower, upper, title, digits etc.

Architecture. The word-character level features are
passed through a convolution layer with a kernel of size 3
and a max-pooling layer with a window matching the max-
imum word length, resulting in a fixed-width character fea-
ture.

We tested LSTM cell sizes of dimension 100 and 200,
our character embedding set at 30, and a maximum word
length at 52. Dropout was set to 50% for recurrent LSTM
connections, character feature and before the output layer.
We observed that the output dropout had the greatest influ-
ence on the results.

All the word and character features are then concatenated
per word and fed to a single BILSTM layer consisting inter-
nally of two independent LSTM cells which represent the
forward and backward passes. The BILSTM output is the
concatenation of both passes. We computed the tag scores
for the BILSTM-CNN model using softmax from a single
dense layer. The BILSTM-CNN-CRF model replaces the
dense softmax layer with a CRF layer.

We used a negative log likelihood as loss function for the
BILSTM-CNN-CRF model and categorical crossentropy
for BILSTM-CNN.

5. Experimental Setup
We implemented all the models using Keras and Tensor-
flow as its backend. Early stopping was performed on all
the models with a patience ranging from 5 to 10 depend-
ing on model; the parameters from the best epoch were
selected for the resulting classifier. The word-embeddings
were preinitialized without any preprocessing or normal-
ization. In addition, we froze them during training but in a
future work we may enable training. All the models used
the Nadam optimizer.
Hyperparameters. We carried out a minimal hyperpa-
rameter search for BILSTM variants as usable parameters
could be found in previous work. However, we could not
use FOFE parameters as they produced poor results for
us. We performed a smaller hyperparameter search on the
CoNLL 2003 dataset to find more optimal parameters.
Evaluation. All the models produce IOBv2 annotations,
IOBES is postprocessed by simple rules into correct IOBv2
tags. The annotated datasets were evaluated using conlleval
from the CoNLL 2003 task, using tab delimiter instead of
space, this because SUC3 has tokens with spaces in them.

SUC3 is evaluated on the 4 statistically significant
classes instead of all 9: PERSON, PLACE, INST and

MISC. The MISC is the combination of the remaining 5.
Ontonotes 5 is evaluated on PERSON, GPE, ORG, NORP,
LOC and MISC using the same principle as SUC. Follow-
ing (Chiu and Nichols, 2016), we excluded the New Tes-
taments portion from Ontonotes 5 as it lacks goldstandard
annotations for NER.

For crossvalidation, we indexed all the sentences of the
full dataset and we randomly split the index into 10 folds;
this created 10 sets of indices. For each fold, we used one
of them as test set and the rest as training set. For the train-
ing part, we used a 90/10% split to create a validation part
which is used to determine when to stop training. Finally,
we combined the predictions of the test part in each fold,
10 of them, into one dataset which we evaluated to produce
the final score.

6. Results
BILSTM models outperform FOFE-CNN, as can be seen
in Table 1. We trained FOFE-CNN models on Ontonotes
5 and SUC 3 with similar settings as the CoNLL 2003
dataset, these parameters produced subpar models which
were not comparable without a new hyperparameter search.

Character features are important, as can be seen in Ta-
ble 3 with more substantial improvements for lowercase
embeddings. CRF improves the result for most embeddings
and larger networks appear to have mixed results.
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Abstract

The availability of user-generated con-
tent has increased significantly over time.
Wikipedia is one example of a cor-
pus, which spans a huge range of top-
ics and is freely available. Storing and
processing such corpora requires flexi-
ble document models as they may con-
tain malicious or incorrect data. Docria
is a library which attempts to address
this issue with a model using typed
property hypergraphs. Docria can be
used with small to large corpora, from
laptops using Python interactively in a
Jupyter notebook to clusters running map-
reduce frameworks with optimized com-
piled code. Docria is available as open-
source code at https://github.
com/marcusklang/docria.

1 Introduction

The availability of user-generated content has in-
creased significantly over time. Wikipedia is one
example of a corpus, which spans a huge range
of topics and is freely available. User-generated
content tests the robustness of most tools as it
may contain malicious or incorrect data. In ad-
dition, data often comes with valuable metadata,
which might be semi-structured and/or incom-
plete. These kinds of resources require a flexible
and robust data model capable of representing a
diverse set of generic and domain-specific linguis-
tic structures.

In this paper, we describe a document model
which tries to fill the gap between fully structured
and verifiable data models and domain-specific
data structures. This model, called Docria, aims at
finding a tradeoff between the rigidity of the for-
mer and the specificity of the latter. To show its
merits, we contrast the application of fully struc-

tured data models to practical noisy datasets with
the simplicity of Docria.

2 Related Work

Linguistically annotated data have been stored in
many different formats, often developed to solve
practical problems. We can group prior work into
three categories:

Formats – the technical formats which are used
to serialize the data;

Document models – conceptual descriptions of
how the data is connected, often mapped to
concrete software implementations;

Applications and tooling – user-facing applica-
tions for annotation, search, etc.

in this section, we will focus on the low-level
formats and libraries to parse and access the data
contained within.

Pustylnikov et al. (2008), in their work on uni-
fying 11 treebanks, made a summary of formats
typically used, which shows a dominance of XML
variants and CoNLL-like formats. We examine
some of them here.

Tabular annotation. The tabular annotation in
plain text is one of the simplest formats: One to-
ken per line and white space separation for the data
fields connected to the token followed by a dou-
ble line separation to mark a sentence. This kind
of format was used first in the CoNLL99 task on
chunking (Osborne, 1999) and then on subsequent
tasks. Its main merits are the ease of use with re-
gards to writing parsers and its readability without
documentation.

Universal Dependencies (Nivre et al., 2019) is
an example of a recent project for multilingual cor-
pora using this format. It defines a variant called
CoNLL-U, an adaption of the format used in
CoNLL-X shared task on multilingual dependency



parsing (Buchholz and Marsi, 2006). CoNLL-U
includes field descriptions at the start of a docu-
ment using hashtag (#) comments, adds subword
support, and a field, if used, would allow for unto-
kenization by including information about spacing
between tokens.

CoNLL-* formats are tightly connected to data
used in the shared tasks. Variations of these plain-
text formats in the wild have no real standard and
are mostly ad-hoc development. The field separa-
tion is a practical aspect, which may vary: spaces
or tabulations. Depending on the corpus, these
are not interchangeable as the token field might
include ordinary spaces as part of the data field.

Semi-structured formats. Semi-structured for-
mats specify stricter rules and a frequent choice
is to follow the XML syntax to implement them
(Bray et al., 2008). XML is hierarchical and can
support higher-order structures such as sections,
paragraphs, etc. XML has been used successfully
in the development of the TIGER Corpus (TIGER
XML) (Brants et al., 2002) and the Prague Depen-
dency Treebank (PML) (Hajič et al., 2018).

The XML annotation relies on a schema defin-
ing its content on which programs and users must
agree. Aside from TIGER XML and PML, the
Text Encoding Initiative (TEI) and FoLiA XML
(van Gompel and Reynaert, 2013) are general pur-
pose XML schema definitions focused on linguis-
tic and text annotation. TEI and FoLiA provide ex-
tensive documentation and guidelines on how data
should be represented in XML.

Graph formats. From primarily hierarchical
formats, the NLP Interchange Format (NIF) pro-
vides a graph-oriented way of connecting infor-
mation which builds on existing standards such as
LAF/GrAF, RFC 5147, and RDF. The main inno-
vation in NIF is a standardized way of referring to
text with offsets also known as a stand-off anno-
tation. NIF is similar to WIKIPARQ (Klang and
Nugues, 2016).

3 Docria

Docria is a document model based on typed prop-
erty hypergraphs. We designed it to solve scala-
bility and tooling problems we faced with the au-
tomatic processing and annotation of Wikipedia.
This corresponds notably to:

• The lack of document models and storage so-
lutions that could fit small and large corpora

and that could be compatible with research
practices;

• The impossibility to use the same document
model with potentially costly large-scale ex-
traction algorithms on a cluster with a map-
reduce computing framework such as Apache
Spark.

Motivation. These aspects were dominant in the
construction of Docria, for which we set a list of
requirements:

Openness – release the library as open source1;
share processed corpora such as Wikipedia in
formats used by this library; invite others to
use the library for various tasks;

Scalability – from small corpora using a few lines
of code to show a concept on a laptop to
large-scale information extraction running on
multiple computers in a cluster with opti-
mized code;

Low barrier – progressive learning curve, sensi-
ble defaults, no major installations of services
or configurations. Specifically, we wanted to
reduce barriers when we shared larger cor-
pora with students for use in project courses;

Flexibility – capable of representing a diverse set
of linguistic structures, adding information
and structures progressively, changing struc-
ture as needed;

Storage – reducing disk-space and bandwidth re-
quirements when distributing larger corpora.

Design. To meet these goals, we implemented
Docria in both Python and Java with a shared con-
ceptual model and storage format. One of the user
groups we had in mind in the design step was
students in computer science carrying a course
project. As our students have programming skills,
we elected a programmer-first approach with a fo-
cus on common tasks and algorithms and a tooling
through an API.

Python with Jupyter notebooks provides an in-
teractive Read-Evaluate-Print-Loop (REPL) with
rich presentation possibilities. We created exten-
sions for it to reduce the need for external tool-
ing and so that with a few lines of code, a pro-
grammer can inspect the contents of any Docria

1https://www.github.com/marcusklang/
docria
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document. Through a matching implementation
in Java, Docria provides a path to scale up when
needed, as specific tasks can be orders of magni-
tudes faster than with a CPython implementation.

Docria documents consist of text collections
and layers, shown in Figure 1. Text collections
allow for multiple representations of a single text.
A layer is a collection of nodes. These nodes can
have fields which refer to the text collections. One
particular restriction we impose is that a user must
define a schema per layer. This is essential for in-
trospection and verification of the data contained
in documents. The schema defines the available
fields and their data type with support for meta-
data.

Datatypes. The datatypes include basic types
such as Boolean, integer, float, and string. Ad-
vanced types include text spans, node spans, node
references, and node array references, which en-
able a programmer to represent graph structures.
Field types, which are node references, must spec-
ify a target layer. In addition, this restriction re-
sults in well-defined dependencies between layers,
which can be used in the future for partial docu-
ment reconstruction when reading.

Using a relational database analogy, layers cor-
respond to tables; they contain nodes which are
equivalent to rows with fields, which are typed
columns with specialized support for references to
other nodes in other layers.

Stand-off references. Docria uses stand-off ref-
erences in which we separate text from linguistic
layers. These layers refer to ranges in the origi-
nal text. To simplify the implementation and re-

duce sources of common bugs, the text string is
split into pieces according to the offsets and stores
text as a list of substrings, which is reconstructed
without a loss by a join. Offsets, when serialized,
only refer to spans of substrings. Software imple-
mentations can reconstruct offsets by computing
the actual substring length and creating a lookup
table. This will generate correct offsets even if
the in-memory representation of a string differs,
which is the case with standard strings in Java and
Python 3.

Binary format. For the binary format, we
selected MessagePack. MessagePack is self-
describing, has an open well-defined specification,
and has multiple open-source implementations in
a diverse set of programming languages. The bi-
nary format can be used on a per document ba-
sis or in an included collection container, which
writes multiple binary documents in sequence.
This binary format was also designed to allow for
a quicker content listing by separating content into
compartments which can be read independently:
document properties, schema, text, and layer data.

The Wikipedia corpus. We used the official
REST API provided by Wikimedia and a page
listing from the official dump page to collect the
Wikipedia corpus. We downloaded all the pages
in HTML format from this page listing in Octo-
ber 2018. This HTML format was processed and
converted into a DOM using JSoup. Using recur-
sive rules, we transformed the DOM into a flat
text representation with structural layers referring
to ranges such as section, paragraph, and anchors.
Furthermore, we linked anchors to Wikidata by
translating page targets to Q-numbers where avail-
able. We also retained formatting, such as bold
and italics. We stored all this information using
Docria.

In this dump, there are 5,405,075 pages exclud-
ing redirections.

4 Evaluation

We applied the spaCy library2 to annotate all the
English Wikipedia pages with parts of speech, en-
tities, and dependency graphs, and we made the
result available at http://fileadmin.cs.
lth.se/papers/nodalida2019/. On av-
erage, each page of the corpus, after annotation,

2https://spacy.io/



contains 72.2 sentences, 901.8 tokens, 144.8 enti-
ties, and 4,383 characters.

We used this annotated corpus to evaluate the
technical aspects of Docria and compare them to
XML. We chose XML as it is pervasive in the liter-
ature and capable of representing all the structures
present in Wikipedia.

We selected FoLiA as the XML format. FoLiA
is well-defined, has good tooling, defines a diverse
set of structural annotations which covers most, if
not all, aspects of Wikipedia. FoLiA also has an
official Python library, which we used to read doc-
uments.

Millions of XML files can be stored uncom-
pressed in a file system. However, this often
results in considerable overhead in terms of ac-
cess times and reading and is therefore not prac-
tical for efficient processing. In addition, XML is
verbose and contains redundant information. All
this makes compression and streaming a neces-
sity when storing and processing millions of doc-
uments.

To compare FoLiA XML with Docria, we chose
to use a sequential tarball format with a bzip2
compression. We chose this format as it pro-
vided the most similar way to store documents
in sequence applicable to both FoLiA XML and
Docria. We created one XML file per article in-
memory and saved them in a sequence using the
tarfile API of Python. The structures we included
for the comparison were section, paragraph, enti-
ties, tokens with their part of speech and lemma,
and dependency relations.

5 Benchmark

We stored the Wikipedia corpus in 432 parts, con-
taining on average 12,512 pages per part. Due to
time constraints, the metrics below are computed
using only 64 of the 432 parts.

First, we measured the difference in size when
compressed: FoLiA XML files are on average 2.47
times larger than the matching Docria files. The
compressed Docria parts have a mean size of 85.0
MB3 compared to 209.8 MB for the compressed
FoLiA XML parts. This translates to a compressed
size of 6.8 kB resp. 16.8 kB on average per page.

Secondly, we measured the cost of decompress-
ing the files in memory. Reading a single bzip2
Docria compressed file without any processing
and a 1 MB buffer requires, on an Intel Xeon at

31 MB = 1,000,000 bytes

3.40 GHz, 16.3 sec ± 18.9 ms compared to 104
seconds ± 136 ms to read FoLiA XML, both av-
eraged over 7 runs. Reading compressed FoLiA
XML over binary Docria tar-files is on average 6.4
times slower.

Uncompressed Folia XML documents are on
average 9.5 times larger per document with a mean
size of a page of 314.5 kB vs. 32.1 kB for Docria.
For comparison, the mean average size of raw
UTF-8 encoded text is of 4.4 kB per page. Put
another way, using the plain text as starting point,
Docria has an annotation overhead of 7.6 times vs.
69.6 times for XML.

6 Programming Examples

In this section, we show programs for three basic
operations:

1. Create a new document and add a token with
part-of-speech annotation.

2. Read a sequential tarball and print all the to-
kens of all the sentences of the corpus;

3. Read a sequential tarball and extract the enti-
ties of type person.

Create a document and add a part of speech.
We first create a document from a string and we
add a token layer. We then add a node to this layer,
spanning the 0..4 range and we annotate it with a
part of speech using the add() method as this:

# Initial include
from docria import Document, \

DataTypes as T

# Create a document
doc = Document()

# Add main text
doc.maintext = "Lund University"

# Create a token layer with two fields
doc.add_layer("token",

pos=T.string, text=T.span)

# The token layer, when displayed
# in a Jupyter notebook, will be
# rendered as a HTML table.
tokens = doc["token"]

# Adding a token node
# referencing range 0:4
token = tokens.add(
pos="PROPN",
text=doc.maintext[0:4]

)



Print the tokens. We assume we have a tarball
of documents segmented into sentences and to-
kens, and annotated with the parts of speech. We
read the tarball with TarMsgpackReader and
we access and print the sentences, tokens, and
parts of speech using the Python dictionary syn-
tax.

from docria.storage \
import TarMsgpackReader

with TarMsgpackReader(
"enwiki00001.tar.bz2",
mode="r|bz2") as reader:

for rawdoc in reader:
# Materialize document
doc = rawdoc.document()

# Lists all layers with field
# types and metadata
doc.printschema()

# Print the original text
# Equivalent to doc.text["main"]
print(doc.maintext)

for sentence in doc["sentence"]:
# Print the full sentence
print(sentence["tokens"].text())

for tok in sent["tokens"]:
# Form <TAB> part-of-speech
print("%s\t%s" %

(tok["text"], tok["pos"])

Extract entities of a certain type. We assume
here that the tarball is annotated with entities
stored in an ENTITY layer. We read the tarball
and access the entities. We then extract all the en-
tities of category PERSON:

with TarMsgpackReader(
"enwiki00001.tar.bz2",
mode="r|bz2") as reader:

for rawdoc in reader:
# Materialize document
doc = rawdoc.document()

# Get the entity layer
entities = doc["entity"]

# Filter out PERSON in entity
# layer having field label
# equal to PERSON
query = (entities["label"]

== "PERSON")

for person in entities[query]:
# Tokens represents potentially
# many tokens, text()
# transforming it to a string
# from the leftmost
# to the rightmost token.
print(person["tokens"].text())

7 Discussion

When converting the Wikipedia corpora to fit the
FoLiA XML format, we had issues identifying a
suitable span annotation for the Wikipedia anchor
link. We decided to associate it with the FoLiA
XML entity type.

In addition, when using stand-off annotations,
some documents did not pass validation with off-
set errors, possibly due to normalization issues
common to Wikipedia text. This gives an argu-
ment that these kinds of formats do not work re-
liably with noisy datasets. We instead included
the sentences as text and used the nospace attribute
to allow untokenization, which does increase ver-
bosity slightly.

Initially, we used the official foliapy library, but
we were unable to get a decent performance with
it, potentially addressed in the future. We resorted
to using the LXML DOM matching example doc-
uments with Folia. To ensure correctness, we ver-
ified samples of our XMLs using foliavalidator.
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Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
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Abstract

Named entity linking is the task of identify-
ing named things such as “Barack Obama”
or a city such as “New York” in text com-
monly found in newspapers, discussion fo-
rums, etc. We propose Hedwig, an end-to-end
named entity linker which uses a combination
of word and character BILSTM models for
mention detection, Wikidata and Wikipedia
derived knowledge-base with global informa-
tion aggregated over 9 language editions, and
a page-rank algorithm for entity linkage. Hed-
wig was evaluated on the TAC2017 dataset
with a final score of 59.9% on CEAFmC+,
an improvement over our previous generation
linker Ugglan, and a trilingual entity link score
of 71.9%.

1 Introduction

Named entity linking (NEL) is the task of auto-
matically finding and linking mentions of things
to unique identifiers. The word thing is too broad
for the linkage problem; the more concrete defini-
tion used in this paper is linking uniquely separa-
ble things which we can identify by a name, i.e.
named entities. The classes of named entities we
will try to link are instances of persons, organiza-
tions, locations, etc.

Take for instance the named entity of class lo-
cation: “New York”. This mention can refer to
the state1 of New York or the large city2 situ-
ated in that particular state. The matching unique
identifier could be the English Wikipedia label:
New York City.

The typical NEL pipeline consists of many
phases including a name finding, mention detec-
tion (MD) phase (e.g. detecting “New York” in
a text), a candidate generation (CD) phase (e.g.
state or city), and a entity linking (EL) phase (e.g.

1
https://en.wikipedia.org/wiki/New York (state)

2
https://en.wikipedia.org/wiki/New York City

assigning the label). In addition, these phases
might be defined independently (Cucerzan, 2007),
or trained jointly (Ganea and Hofmann, 2017).
The MD phase is frequently a named entity rec-
ognizer (NER), which finds and classifies spans of
strings to a set of predefined classes such as per-
sons, organization, location, etc. The CD phase
uses the classified mention as input, possibly with
context, and from this information generates a list
of entity candidates. Finally, the entity linking
phase ranks and selects the most probable or co-
herent set of candidate entities and assigns each
mention a label which corresponds to the given
candidates unique identifier.

The unique identifier can be local or global,
and its concrete format is determined by the linker
method, which can span the spectrum of fully su-
pervised to unsupervised. This paper uses a super-
vised approach by linking to predetermined iden-
tifiers provided by an entity repository which we
refer to as the Knowledge-base (KB).

Depending on which specific task and thus a
matching benchmark is selected, different require-
ments will arise. This paper will present a named
entity linker for the 2017 edition of Text Analysis
Conference (TAC) Entity Discovery and Linking
(EDL) task with its provided benchmark (Ji et al.,
2017). This task was selected because it provides a
multilingual gold standard. This dataset is diverse
in its content and is a combination of real-world
noisy texts found on the internet. This type of
dataset presents challenges applicable to arguable
all entity linkers where real-world use is the goal.

1.1 TAC EDL 2017
The TAC EDL task consists of linking 2 categories
of mentions:

• Named mentions which has 5 classes:

– PER, Persons (not fictional)



– ORG, Organizations, (companies, insti-
tutions, etc.)

– LOC, Location (natural locations, such
as mountains, oceans, lakes etc.)

– GPE, Geopolitical entities (cities, ad-
ministrative areas, countries, states, mu-
nicipalities, etc.)

– FAC, Facilities (airports, transporta-
tion infrastructure, man-made buildings,
hospitals etc.)

• Nominal mention linkage, commonly
hyponyms of mentions such as ”Barack
Obama” would be the named mention and
the nominal mention would be ”president”.
Other common relations are son, wife,
daughter, father, company,
area etc. The nominal mentions are classi-
fied and linked in the same manner as named
mentions.

The corpus is a mixture of discussion forum
(DF) and newswire (NW) text in three languages:
English, Spanish, and Mainland Chinese stored in
XML and HTML (2014). The gold standard pro-
vides links to the Freebase KB and out of KB la-
bels which starts with “NIL” followed by a number
which spans all 3 languages. The Freebase identi-
fiers is connected in the BaseKB provided by TAC.
The final score is based on the performance on all
three languages.

We subdivided the corpus into a training and
test-set based on years. The 2017 dataset is the test
set, and 2014-2016 is our training-set. It is impor-
tant to note that the 2014 edition is not available
for Spanish and Chinese.

Nominal mentions were added in 2015, but they
were not fully annotated until 2016 which means
scarce data is available for training nominal detec-
tion using deeper models.

1.2 Specifics and Limitations to Hedwig
Hedwig uses data and statistics from Wikipedia,
almost exclusively, and as such, it is natural for us
to use Wikidata as the primary KB. Wikidata pro-
vides unique identifiers in the form of Q-numbers,
e.g. “Barack Obama” the president has identifier:
Q76. Wikidata binds the Wikipedia languages edi-
tions together, and is updated along and is thus
more up to date than other repositories, making
it the most logical choice for us. To be compliant
with the TAC EDL gold standard, the Q-numbers

are converted into Freebase using a mapping3 pro-
vided by Google, produced at the archiving and
termination of Freebase as a public open knowl-
edge base. This mapping is not perfect, a low
number of Q-numbers was represented by multi-
ple freebase entries and is heuristically resolved
using the lowest Q-number.

2 Related Work

Named entity recognition has its modern roots
with the CoNLL03 task of Language-Independent
Named Entity Recognition (Tjong Kim Sang and
De Meulder, 2003), where the best model used
simple linear classifiers (Florian et al., 2003),
which made progress until Ratinov and Roth
(2009). Neural models, starting with Collobert
et al. (2011), were further developed with an ex-
ponential weight encoding method called FOFE
(Fixed-Size Ordinally-Forgetting Encoding) using
feedforward neural networks (Zhang et al., 2015)
as an alternative to more computationally demand-
ing models. These architectures were ultimately
surpassed by deeper recurrent neural models us-
ing LSTMs (Hochreiter and Schmidhuber, 1997)
and CRFs in different combinations with or with-
out word character encoders (Chiu and Nichols,
2016; Ma and Hovy, 2016).

Word embeddings are a key ingredient to NER;
the most commonly used word embedding started
with Mikolov et al. (2013), followed by Penning-
ton et al. (2014), to more recent developments by
Mikolov et al. (2018), and deeper models by Pe-
ters et al. (2018).

Modern entity linking uses a variety of methods
such as simple classification models (Bunescu and
Paşca, 2006; Cucerzan, 2007; Milne and Witten,
2008), end-to-end linkage with a voting scheme
for linkage (Ferragina and Scaiella, 2010), graphi-
cal models (Hoffart et al., 2011; Guo and Barbosa,
2014), integer linear programming (Cheng and
Roth, 2013), fully probabilistic models (Ganea
et al., 2016) to deeper neural models (Ganea
and Hofmann, 2017). Wainwright et al. (2008)4

proved that entity linkage which tries to maximize
local and global agreement jointly during linkage
is NP-hard to solve, which most authors approxi-
mate or simplify to reach feasibility.

3https://developers.google.com/
freebase/

4cited in Globerson et al. (2016).



3 Data

In the making of Hedwig, we used these data
sources:

• 9 Wikipedia editions: en, es, fr, de, sv, ru, zh,
da, no, scraped using the Wikipedia REST
API5 in October 2018.

• Wikidata JSON dump from October 2018

• TAC EDL Data 2014-2016

• Manually annotated mappings for classes in
Wikipedia to a set of predefined classes.

3.1 Wikidata data: Our KB
The Wikidata JSON dump is delivered as one large
gzip or bzip2. This file when decompressed is
one single JSON object; it does however use “one
JSON object per line” approach for easier pro-
cessing. Using standard bash tools, it was split
into many parts with 50,000 objects per file to en-
able efficient cluster processing. The dump was
converted by an in-house built Wikidata parser
which transforms the JSON dump into Parquet
files for further processing and information extrac-
tion. Converted information was: Q-number, de-
scription, alias, claims also known as properties
and sitelinks. A subset of most common claim
datatypes are supported, the rest is either ignored
or encoded as plain strings.

3.2 Wikipedia
We scraped all 9 editions using the REST
API by first downloading a list of page names
from Wikimedias dump site6, more specifically
the [lang]wiki-[date]-all-titles-in-ns0.gz file which
contains all page labels7. This file was then pro-
cessed in sequence and parallel downloaded us-
ing a custom Python tool. This page name list is
slightly out of sync with the online version, result-
ing in that some pages does not exist; pages not
found were ignored. Pages that failed to download
due to server errors or network failure was retried
once more at the end of the scraping process which
consisted of retrying 5-250 pages, most of these
pages were retrieved.

The REST API provided by Wikimedia is us-
ing Parsoid8 internally and produces HTML out-

5https://[lang].wikipedia.org/api/rest v1/
6http://dumps.wikimedia.org/
7Wikipedia name for article titles
8https://www.mediawiki.org/wiki/

Parsoid

puts with added metadata tags and attributes for
elements. This parser does not produce an exactly
identical structure to the publicly facing rendering.
However, when sampling pages, no visible differ-
ences to the content or format was significantly ev-
ident. For the Chinese version, a translation table
was included in the output to convert the charac-
ter sequences between the different variants: Hong
Kong, Singapore, etc.

4 Refinement

4.1 Wikipedia
Wikipedia is refined in 2 steps:

• Import, converting HTML to Docria layers.

• Link, resolving Wikipedia anchors to Wiki-
data.

In the Import step, HTML was parsed using
JSoup9 which converts the raw HTML string into
a structured Document Object Model (DOM). We
used rules applied recursively to the DOM Tree to
filter out the markup and produce a flattened doc-
ument consisting only of readable text. In addi-
tion, during the flattening process or tree traver-
sal, enough information was retained to produce
multiple layers of spans with added metadata cov-
ering paragraphs, sections, anchors, lists, tables,
italic, bold etc. These layers were stored using
Docria which can represent this type of data and
store exact string mappings. With the exception
of the Chinese version, all editions were parsed
identically, the Chinese version required a pre-
conversion step to produce a Mainland Chinese
version using the provided translation table; this
conversion might not be perfectly accurate.

The link step used sitelinks in the Wikidata
dump and all anchors in the processed Wikipedia
dump to fully link all pages. It is necessary to do
this link step as many links are placeholder sug-
gestions for future articles.

Ultimately, this produces a docria dump which
is fully linked to Wikidata, and contains enough
semantic information and structure for all further
processing.

4.2 Word Embeddings
The word embeddings are trained in-house from
a 2016 version of Wikipedia on English, Span-
ish and Chinese, which was produced using the
word2vec tool released by Mikolov et al. (2013).

9https://jsoup.org/



4.3 Entity classification
Many articles in Wikipedia do not conform to ac-
ceptable classes in TAC EDL. To improve entity
linkage precision, entity candidate filtration based
on class is advantageous to reduce noise.

Using the TAC Annotation guidelines as the ba-
sis, we sampled a diverse set of entities by writing
rules that sampled entities with usable instance-of
relations and mapped them to 9 classes:

PER, natural persons, humans

PER F, fictional characters or persons

LOC, natural locations, continents, lakes, rives,
mountains, streams, etc.

GPE, geopolitical entities, countries, administra-
tive areas, regions, etc.

ORG, organizations, institutions, business enti-
ties etc.

EVT, events, sport-events, conflicts, wars, etc.

WRK, products, newspaper, books, films, tv-
series, etc.

FAC, man made buildings, transportation infras-
tructure, airports, hospitals, landmarks, etc.

NONE, all that does not fall into any above,
this explicitly includes: wikipedia categories,
templates, disambiguation pages etc.

The input features for the model were:

• direct relations such as P31 (instance-of) Q5
(human)

• Boolean indicating the existence of a P31 in-
stance. Empirically, most entities without an
instance-of are exceptionally hard to disam-
biguate and should, most of the time, be clas-
sified as NONE.

• all path segments from the initial seed entity
with source, relation and target, to the depth
of 5.

Breadth first search (BFS) search to the depth
of 5 was used to find suitable segments by fol-
lowing edges for relations: 31 (instance-of), 279
(subclass-of), 1269 (facet-of) and 1889 (different-
from). The training data consists of seed entities
mapped to one of these 9 classes, and all features

Layer 1

Layer 2

Layer 3

Embeddings trained jointly

P31? P31 Q515 Q515 P279 Q702492…

Attention
0.620.05 0.21

PER GPE LOC ...
70% 10% 2%

Figure 1: Entity classifier neural network, P31 is
instance-of, Q515 is “city” entity and Q702492 is “ur-
ban area” which is a subclass of (P279) city.

were generated on the fly. To produce negative ex-
amples, all unclassified are assumed to have label
NONE. To balance positive and negative bias, the
negative share was set to 10% per mini-batch. In
practice, this makes the classifier default to NONE
for all unknown relations; the large positive share
should force the classifier to learn given examples,
and retain the most significant patterns common to
each class. Phrased differently, we favored preci-
sion over recall in this setting.

We trained a three layer neural model with a
simplified attention mechanism to classify types as
shown in Figure 1. This model treats all input fea-
tures as a trainable embedding, a simplified atten-
tion mechanism is used to produce a single vector
of all inputs through a weighted average produced
by the attention mechanism and then 3 RELU lay-
ers with a final softmax layer to produce output
prediction.

4.4 Mention Dictionary

To bootstrap candidate generation, all anchor
texts, aliases and titles of Wikipedia articles were
used to build a mention dictionary. In addition, the
finished dictionary is applied to an auto-linked ver-
sion of each Wikipedia article to count the share of
matches in linked vs non-linked text. With auto-
linking, we refer to the process of linkage densifi-
cation by using the existing anchors per document
to add missing links with the exact same sequence
of tokens. If multiple segmentation is possible, we
resolve them using a dominant-right rule which se-



lects the longest to the right sequence when equal
length segmentations are encountered.

The gathered statistics are the basis for the link-
density measure which gives a measure of if a
mention should be linked or not, i.e. a baseline
mention filtering method.

ld(mi) =
C(mi is linked)

C(mi)
(1)

Tokenization uses an in-house JFlex parser de-
scribed in 5.1. To normalize token sequences, we
use the Lucene analysis infrastructure to convert
token sequence to query terms to find entries in
the dictionary which is detailed in 5.2. The dictio-
nary uses the finite-state transducer (FST) imple-
mented in Lucene and was selected for its query
performance and lower memory requirements.

4.5 Entity, Mentions, and Context
We have two types of statistically extracted map-
pings:

Monolingual, modeling the relation of mentions
and words to entities in localized language;

Multilingual, modeling the entity to entities in
context over all editions.

4.5.1 Multilingual
The goal is to compute the pointwise mutual
(PMI) information of an entity ei being in the same
context as entity ej :

PMI(ei, ej) = log
P (ei, ej)

P (ei)P (ej)
(2)

PMI produces an unbounded value, we there-
fore uses a slightly different formalization to com-
pute the normalized PMI (NPMI) (Bouma, 2009),
in this case using raw counts C.

total =
∑
i

∑
j

C(ei, ej) (3)

NPMI(ei, ej) =
log

C(ei, ej)

C(ei)C(ej)/total

− log
C(ei, ej)

total

(4)

Practically, this is computed by counting the oc-
currences of two entities in the same context, ul-
timately resulting in a sorted list of entities based
on PMI values. This list might be exhaustive and
is filtered to only retain the top-k entries.

The context in this paper is defined as entities
in the same paragraph. Only top-k filtering pro-
duces sub-optimal results as PMI will favor enti-
ties with strong but not statistical significant mu-
tual occurrences. This property is not desirable for
frequently occurring entities as semantically rele-
vant entities in this case will have lower PMI val-
ues and thus be filtered out.

To improve PMI lists, a cutoff based on counts
is dynamically determined for each list. Specifi-
cally, all counts are sorted from highest to lowest
counts and the count limit is determined by when
a total share of 80% has been reached, or minimal
of 2 if there are too few entries. Subjectively, this
heuristic produces better results for frequently oc-
curring entities and makes little difference for rare
entities where we do not have statistically signifi-
cant mutual occurrences.

4.5.2 Monolingual

In addition to multilingual entity relations, local-
ized word, mention relations are computed using
the same method as above. Words have a mini-
mum NPMI value of 0.1 to surpass, which seems
to be where most nonsense words start to appear.
This loosely results in a statistical basis for linkage
based on words, mentions, and other entities.

5 Pipeline

5.1 Segmentation and Tokenization

Tokenization is implemented using a custom JFlex
parser optimizer to find common patterns in many
languages, the parser is fully defined in that un-
known characters or rules will yield separate to-
kens. It will split tokens based on whitespace for
all relevant languages. The parser also applies
rule-based pattern matching to detect acronyms,
title cased words, upper cased words, numbers,
years, periods in many Unicode variants, citation,
parenthesis, etc.

Segmentation is rule-based and uses the tok-
enization stream and its token classification as in-
put. Concretely, it uses a split rule with a mini-
mum sentence length of 4 to retain data even if the
segmentation is incorrect, but also to avoid com-
mon rule-based mistakes, which are hard to en-
code without a context aware model.

5.2 Mention detection

The mention detection consists of 2 steps:



• Dictionary based detection, classification and
overlap resolution using dominant right rule;

• Neural NER model with dictionary detection
as part of input features.

5.2.1 Baseline: Dictionary Detection
Using only the localized mention dictionary and
cherry-picked link-density (ld) cutoff values per
language10, mentions are found in input sentences.
However, this only finds potential mentions with-
out class information. Named entity classes are
determined by using candidate generation and
picking the top candidate entity and its class ac-
cording to our produced entity class mapping from
section 4.3.

5.2.2 Named Entity Recognition using ML
The mention detector model is a BILSTM-
BILSTM CHAR-CRF model. Concretely, this
model contains the following elements:

• Character sequences per word using a BIL-
STM layer, essentially compressing embed-
dings into one vector which is concatenated
with word embedding;

• Word sequences in sentences using a BIL-
STM layer, using three inputs: word embed-
ding, char embedding from above and dictio-
nary feature from the dictionary detection;

• Finally all output is downprojected and feed
into a linear chain CRF layer to predict the
most likely tag sequence.

This model predicts all mentions used for link-
age. To generate candidates, we take token spans
as marked by the model and use the mention dic-
tionary to find all candidates.

5.3 Link stage
We start with all candidate lists consisting of pos-
sible Q-numbers. The pagerank method will give
weight to each vertex in a directed graph based on
the available edges.

In the context of linking: a vertex is either a
word, mention or an entity. Each candidate entity
has an associated list of words, mentions and other
entities it co-occurs with, these lists were built us-
ing the NPMI cutoff method described in section
4.5. Edges are created using these lists by search-
ing the context for the existance of these mentions,

100.35 for English, 0.25 for Spanish and 0.45 for Chinese

words and candidate entities, and generating ver-
tices and directed edges towards all relevant can-
didates. The context is unbounded meaning the
entire document. This produces a graph with di-
rected edges: from word, mentions to candidate
entities, and entity to entity edges.

The final output is a normalized pagerank value
for each candidate per mention. The normalized
pagerank values are sorted to produce a ranking
list. The highest ranking candidate is selected for
linkage. There is a minimal NIL detection, filter-
ing out entities which have the NONE class.

The pagerank implementation is in-house and
uses power iteration until convergence or max
number of iterations with default damping of 0.15,
alpha=0.85.

6 Results

Results are presented in Table 1. The baseline is
weak, which is to be expected as it only uses the
mention dictionary. Compared to the our older
benchmark on TAC2017 which used a reranker,
the new model is competitive, and improves on al-
most all metrics except NER on English and link-
age on English and Spanish, however small differ-
ences.

The model favors precision over recall, which
can be seen overall. Chinese is particularly strong
on entity linkage and increased the most on final
metric.

7 Discussion

7.1 Mention detection
Mention detectors based on neural models are not
perfect and can have recall issues. When trained
on a noisy dataset such as TAC, it tends to fa-
vor precision heavily, resulting in some mentions
not being predicted. One way of mitigating this
is to expand mentions by using the found men-
tions and searching for partials or full matches,
e.g. linking all occurrences of “Obama” when
“Barack Obama” is found as a mention.

TAC contains a large amount of spelling mis-
takes, particularly in discussion forum texts, do-
main specific variations which produces a differ-
ent surface from is also commonplace such as e.g.
“Microsoft” and “Micro$oft” forms which are eas-
ily recognizable to humans.

When training neural models such as LSTM, it
can be tricky to know when to stop training, as
such we employ model checkpointing using the



NER NERC KBIDs CEAFmC+
P R F1 P R F1 P R F1 P R F1

Baseline 78.4 43.1 55.6 73.5 40.4 52.1 62.1 53.8 57.6 66.7 36.7 47.3
Ugglan 89.4 58.4 70.6 83.0 54.3 65.6 80.1 61.7 69.7 70.9 46.4 56.1
NER-Only 91.5 61.6 73.6 87.9 59.2 70.8 0.0 0.0 0.0 12.9 8.7 10.4

Tri

Pagerank 91.4 61.7 73.7 86.2 58.3 69.5 82.4 63.8 71.9 74.3 50.2 59.9
Baseline 81.1 41.3 54.7 75.4 38.4 50.9 65.3 52.1 58.0 67.3 34.3 45.4
Ugglan 90.6 65.0 75.7 83.8 60.1 70.0 82.3 62.1 70.7 69.4 49.8 58.0
NER-Only 93.2 62.8 75.0 89.2 60.2 71.9 0.0 0.0 0.0 22.1 14.9 17.8

Eng

Pagerank 92.5 63.4 75.3 85.6 58.7 69.6 77.4 64.6 70.4 71.6 49.0 58.2
Baseline 71.5 47.7 57.3 64.7 43.2 51.8 52.7 55.1 53.8 55.7 37.2 44.6
Ugglan 88.5 59.1 70.8 84.8 56.6 67.9 83.9 59.5 69.6 70.0 46.7 56.0
NER-Only 92.2 58.4 71.5 88.5 56.0 68.6 0.0 0.0 0.0 21.7 13.7 16.8

Spa

Pagerank 92.2 58.3 71.5 88.7 56.0 68.7 84.6 58.4 69.1 74.0 46.8 57.3
Baseline 83.0 41.0 54.9 80.6 39.8 53.3 71.8 53.9 61.5 76.7 37.9 50.7
Ugglan 89.1 57.4 69.8 82.4 53.1 64.6 85.4 64.3 73.4 71.2 45.8 55.8
NER-Only 90.0 63.0 74.1 86.8 60.8 71.5 0.0 0.0 0.0 13.8 9.7 11.4

Cmn

Pagerank 90.0 63.0 74.1 85.0 59.5 70.0 84.8 68.2 75.6 76.4 53.5 62.9

Table 1: Final results

F1 score on a validation set during training. Ulti-
mately, picking the final parameters from the best
saved model. The validation set in this case is a
10% sample of the original data. Training on all
data might yield an improvement. For Spanish and
Chinese, improvements might be larger as these
are about 50% of English, and in some cases even
less when broken down into annotated tags. From
the results, the NOM category is the weakest cat-
egory to train on and to detect as they tend to be
highly ambiguous, insufficient data and repetition
to learn useful information.

One potential approach not evaluated is to train
on TAC 2016 data, predict on TAC 2015 data
and then merge and train again as described by
Bernier-Colborne et al. (2017).

We used an in-house embedding we know is
worse than publicly available state-of-the-art. The
motivation was that these can be reproduced in any
language that has a Wikipedia edition, enabling
us to expand the linker to many more languages.
Testing different pre-trained embeddings that are
available for languages in TAC might yield im-
provement in detection.

7.2 Linker

The linker in Hedwig uses a plain non-
personalized variant of PageRank which is solved
using the power iteration algorithm. The fact that
it is non-personalized means that important weight

information with regards to available computed
PMI values might reduce its ability to resolve im-
portant entities favoring frequent entities which in
this context improves the results.

The linker stage uses the entire document with
all possible candidates to form collective agree-
ment, the consequence is that all unique candi-
dates will receive a single weight. This means that
the linker is unable to model topic drift or a change
of meaning for different mentions, it will pick the
global most coherent choice. For TAC this limi-
tation is reasonable but might not hold for longer
texts.

Compared to Ugglan (TAC2017), which had a
machine learned reranker for the linking compo-
nent, we can see that for English and Spanish, the
results are slightly worse for linkage. A future im-
provement might be a reranker.

8 Conclusion

Hedwig, the next generation entity linker, sur-
passes our old solution in general, however has
marginal mixed results when analyzing the details.
The platform is solid and has ample opportunities
for further development. Particularly, the linker
stage can be improved.
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