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Using Radial Basis Functions to Approximate
the LQG-Optimal Event-Based Sampling Policy

Marcus Thelander Andrén

Abstract— A numerical method based on radial basis func-
tions (RBF) has been developed to find the optimal event-based
sampling policy in an LQG problem setting. The optimal sam-
pling problem can be posed as a stationary partial differential
equation with a free boundary, which is solved by reformulating
the optimal RBF approximation as a linear complementarity
problem (LCP). The LCP can be efficiently solved using any
quadratic program solver, and we give guarantees of existence
and uniqueness of the solution. The RBF method is validated
numerically, and we showcase what the different types of
optimal policies look like for 2D systems.

Index Terms— Event-based sampling, LQG-optimal control,
sampled-data control, radial basis functions

I. INTRODUCTION

In the field of sampled-data systems, the concept of event-
based control is to trigger sampling and actuation based on
the behavior of controlled variables, in contrast to traditional
triggering based on a periodic timer. The motivation is
the potential of designing more resource-efficient control
systems (by saving e.g. energy, network bandwidth and
computations), which was clearly demonstrated in the early
works [1] and [2]. Since then, event-based control has
become a very active field of research [3]–[6].

There are two degrees of freedom to consider in the design
of event-based controllers; (i) the intersample behaviour of
the controller and (ii) the sampling policy. Considering a
closed-loop sampled-data system of the form in Fig. 1, (i)
corresponds to designing the sampler S, the hold circuit H,
the discrete-time controller K̄ and (ii) is to design a policy
which decides the sequence of sampling times {ti}i∈N0 .
Finding an optimal co-design for this system is generally
considered a difficult task, and many previous works have
therefore focused on sub-optimal solutions shown to outper-
form their periodic counterparts [7]–[10].

However, recently a H2-optimal design of S,K̄ and H
was presented in [11], which was shown to be optimal for
any given, uniformly bounded, sequence of sampling times.
Furthermore, the optimal structure was shown to behave
equivalently to the system shown in Fig. 2. This remarkable
result was later applied to event-based control in [12] and
[13], wherein the latter it was proven that the structure
remains optimal in an LQG setting with sampling times
depending on the controlled variables. The implication is that
the co-design problem is separable in the LQG case, and that
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Fig. 1. An LTI system G in feedback with a sampled-data controller
consisting of a sampler S, a hold circuitH and a discrete-time controller K̄.
Solid lines represent continuous-time signals, whereas dashed lines represent
discrete-time signals.

the remaining problem is to find the sampling policy which
optimizes the trade-off between LQG cost and sampling rate.

In our previous work [14] we used the framework for
optimal impulse control in [15, Paper I & II] to formulate
the optimal event-based sampling policy as the solution
to a stationary partial-differential equation (PDE) with free
boundary. Solving this type of PDE is a non-trivial problem,
which generally requires numerical methods. To handle the
free boundary, we proposed in [14] a finite-difference method
based on simulating a time-dependent version of the PDE
from some initial guess, and then extract the solution once
the simulation reached stationarity. However, the introduction
of time-dependence brought several issues, such as errors
due to time discretization, dependency on initial guess and
ambiguous conditions for when the simulation is sufficiently
close to stationarity. Our contribution in this paper is to de-
rive a more efficient numerical method based on radial basis
functions (RBF) [16], which avoids the issues of introducing
artificial time-dependence by solving the stationary problem
directly. The method is inspired by solutions to similar free
boundary problems in mathematical finance [17], where the
task of finding the optimal approximation can be formulated
as a linear complementarity problem [18]. The optimal RBF
approximation is then easily obtained by solving a quadratic
program (QP), and we give guarantees for existence and
uniqueness of the optimal solution. The method is numer-
ically validated against an analytic solution of the PDE
for a special case, and we use the method to characterize
different possible types of optimal sampling policies in the
2D case. The results could be used to guide future designs of
near-optimal but simpler event-based sampling policies. To
highlight this, we also showcase a numerical example where
we compare the performance between the optimal sampling
policy and a much simpler heuristic policy.
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Fig. 2. The closed-loop system for which we are designing an optimal
sampling policy. It consists of an LTI system G and a Kalman-Bucy filter
on the sensor side that intermittently transmits its estimate x̂ to an LQR
controller simulating the closed-loop system on the actuator side.

II. PROBLEM FORMULATION

A. Setup and Goal

We consider the problem of finding the optimal event-
based sampling policy for the closed-loop system shown in
Fig. 2. It consists of a linear time-invariant (LTI) continuous-
time plant G, a Kalman-Bucy filter operating on the mea-
surement y on the sensor side and an LQR controller on
the actuator side which generates the control signal u based
on a simulation of G. The plant is subject to disturbances
in the form of a vector Gaussian white process w with unit
intensity. The controlled output z is a linear combination
of the plant state and control signal, and is used to express
the closed-loop performance in terms of the infinite-horizon
LQG cost

Jz , lim sup
T→∞

1

T
E[

∫ T

0

z(t)ᵀz(t)dt]. (1)

At sampling times {ti}i∈N0 , the Kalman-Bucy filter transmits
its estimate x̂ of the plant state vector to the actuator side,
where the simulated plant state vector xa is reset to x̂, i.e.
xa(ti) = x̂(ti). This structure is motivated by the fact that
it is an equivalent representation of the optimal controller
structure for the closed loop system in Fig. 1. For details on
this connection, we refer to the original derivation in [11]
and the subsequent works [13] and [14].

The goal is to design an event-based sampling policy
which achieves an efficient trade-off between the trans-
mission of x̂ (incurring costs in e.g. energy and network
bandwidth) and the closed-loop performance Jz . To this end
we define the average sampling rate as

f , lim sup
T→∞

1

T
E[

∞∑
i=0

1ti≤T ],

where the sum counts the number of sampling events up to
time T . Adding a fixed penalty ρ ≥ 0 per sample, our goal
is to find a sampling policy such that the objective

Jz + ρf, (2)

is minimized.

B. Models
The plant G has the following n-dimensional realization

G :


ẋ(t) = Ax(t) +Bww(t) +Buu(t),

z(t) = Czx(t) +Dzuu(t),

y(t) = Cyx(t) +Dyww(t),

(3)

which is assumed to satisfy the standard conditions on well-
posedness of H2 control [19, Sec. 14.5]. For a given set
of parameters in (3), we can compute the corresponding
Kalman-Bucy gain L and LQR gain F by solving the two
algebraic Riccati equations{

AᵀX +XA+ Cᵀ
zCz − F ᵀ(Dᵀ

zuDzu)F = 0,

F = −(Dᵀ
zuDzu)−1(Bᵀ

uX +Dᵀ
zuCz),{

AY + Y Aᵀ +BwB
ᵀ
w − L(DywD

ᵀ
yw)Lᵀ = 0,

L = −(Y Cᵀ
y +BwD

ᵀ
yw)(DywD

ᵀ
yw)−1.

The Kalman-Bucy filter on the sensor side in Fig. 2 is then
given by

˙̂x(t) = Ax̂(t) +Buu(t)− L(y(t)− Cyx̂(t)). (4)

The LQR controller on the actuator side, which is based on
an intermittently reset simulation of the plant, is given by{

ẋa(t) = (A+BuF )xa(t), xa(ti) = x̂(ti),

u(t) = Fxa(t).
(5)

C. The Optimal Sampling Problem
In the degenerate case ρ = 0 there is no cost on sam-

pling, and the optimal sampling policy thus becomes trivial;
sample infinitely fast (i.e. xa(t) = x̂(t), ∀t) and retain the
continuous-time LQG controller. We will then achieve the
minimum cost γ0 , min Jz , given by [19, Thm. 14.7]

γ0 = Tr(Bᵀ
wXBw) + Tr(CzY Cᵀ

z ) + 2Tr(XAY ). (6)

The cost γ0 is the fundamental lower bound on Jz , and
no other sampling policy can achieve a better closed-loop
performance.

When ρ > 0 it is clear that any sampling policy mini-
mizing (2) must have a finite average sampling rate f > 0
(the closed-loop system can be unstable for f = 0). The
performance of the closed-loop system is then fundamentally
dependent on the inter-sampling error between the Kalman-
Bucy estimate x̂ and the state xa of the LQR simulation.
We denote this error x̃ , x̂− xa, and compute its dynamics
from (4) and (5) as

˙̃x = Ax̃(t) + v(t), x̃(ti) = 0, (7)

where the innovation v = −L(y − Cyx̂) of the Kalman-
Bucy filter is a vector Gaussian white process with intensity
LDyw(LDyw)ᵀ , R � 0. Note in (7) that the action of
sampling corresponds to resetting the error x̃ to zero. The
fundamental role of x̃ becomes apparent from the result in
[13, Thm. 1], where it is shown that Jz can be re-formulated
as

Jz = γ0 + lim sup
T→∞

1

T
E[

∫ T

0

x̃(t)ᵀQx̃(t)dt], (8)
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Fig. 3. The optimal sampling problem (here in 2D) can be seen as searching
for a threshold (dashed) on the error x̃ (solid), from where we should reset
x̃ to the origin and incur the fixed cost ρ.

with Q = (DzuF )ᵀDzuF . We conclude from (8) that the
cost Jz is kept small if we choose to sample often, and thus
reset x̃ to zero. However, each time we sample we incur a
fixed cost ρ, and this is the trade-off our sampling policy
should optimize. From (8) we see that the constant γ0 can
be disregarded in the objective (2), and we are now ready to
formally define the optimal sampling problem:
OSPρ: Consider the closed-loop system in Fig. 2, with a

Kalman-Bucy filter governed by (4) and an LQR controller
based on a simulated plant according to (5). Denote

Jx̃ , lim sup
T→∞

1

T
E[

∫ T

0

x̃(t)ᵀQx̃(t)dt]. (9)

The optimal sampling problem is then to design a sampling
policy which determines the sampling times {ti} such that
the objective

J , Jx̃ + ρf, (10)

is minimized.
Note that OSPρ can be seen as an optimal stopping

problem, where we search for a threshold on x̃ which
optimizes the trade-off between expected average quadratic
cost and the deterministic cost ρ for resetting, see Fig. 3.
Designing a sampling policy based on x̃ is possible by using
a copy of (5) on the sensor side.

In the next section we will characterize the optimal policy
for OSPρ as the solution of a free boundary PDE, which is
the focus of the RBF approximation method of this paper.

D. PDE-Formulation of the Optimal Sampling Problem

In [15, Paper I & II] it was shown that OSPρ can be
equivalently posed as the solution to a stationary partial
differential equation (PDE) with a free boundary. Here we
outline how this PDE is derived, and refer to [15, Paper II]
for a detailed proof.

Let j denote the accumulated non-averaged cost up until
time T , i.e.

j , E[

∫ T

0

x̃ᵀ(t)Qx̃(t)dt] + ρE[

∞∑
i=0

1ti≤T ].

In the spirit of dynamic programming, we are searching for
a bounded relative value function V : x̃→ R and a scalar

¯
J

satisfying

¯
JT ≤ j + E[V (x̃(T ))− V (x̃(0))], ∀T ∈ [0,∞). (11)

If such a pair is found, then division by T and taking the
limit T → ∞ gives the lower bound

¯
J ≤ J . Note that in

particular if (11) is an equality for all T , then
¯
J = J is the

optimal cost in (10).
We now continue by deriving conditions on V and

¯
J such

that (11) is satisfied. Denote δV , V (x̃(T ))− V (x̃(0)) and
let I(T ) be the set of indices of the sampling times occurring
on [0, T ]. Furthermore, let T = [0, T ] \ {ti}i∈I(T ) denote
the intervals of time between samples. Using the dynamics
(7) of x̃ and Ito’s formula, we can compute the expected
change in V as

E[δV ] = E[

∫
T
dV ] + E[

∑
i∈I(T )

V (0)− V (x̃(t−i ))]

= E[

∫
t∈T

(x̃ᵀAᵀ∇V +
1

2
Tr(R∇2V ))dt]

+ E[
∑
i∈I(T )

V (0)− V (x̃(t−i ))],

where x̃(t−i ) denotes lim
t↑ti

x̃(t). We now see that if V and
¯
J

satisfy

x̃ᵀQx̃+ x̃ᵀAᵀ∇V +
1

2
Tr(R∇2V ) ≥

¯
J, ∀x̃, (12)

ρ+ V (0)− V (x̃) ≥ 0, ∀x̃, (13)

then it follows that

j + E[δV ] = E[

∫
t∈T

(x̃ᵀQx̃+ x̃ᵀAᵀ∇V +
1

2
Tr(R∇2V ))dt]

+ E[
∑
i∈I(T )

ρ+ V (0)− V (x̃(t−i ))] ≥
¯
JE[

∫
t∈T

dt]

=
¯
JT,

i.e. (12) and (13) implies the inequality (11). If we put stricter
conditions on V , enforcing that (12) and (13) are equalities
for those x̃ where sampling is not triggered and triggered
respectively, then we arrive at the following result:

Theorem 1 ( [15, Paper II, Thm. 1]):
Suppose a bounded, C2, function V and a constant

¯
J = J satisfy (12) and (13), with equality in at least
one of them for all x̃. Then the optimal cost in OSPρ
is J , and an optimal sampling policy is to trigger
sampling whenever equality holds in (13), i.e. the
sequence of optimal sampling times {ti} are given by
ti = min{t > ti−1 : ρ+ V (0)− V (x̃(t)) = 0}.

Proof: See proof of Theorem 1 in [15, Paper II].
The conditions on V and J in Theorem 1 can also be

more compactly formulated as

min{x̃ᵀQx̃− J + x̃ᵀAᵀ∇V +
1

2
Tr(R∇2V ),

ρ+ V (0)− V (x̃)} = 0, ∀x̃.
(14)



For a given J , this is a stationary PDE with a free boundary.
The free boundary is implicitly given by those x̃ where the
expression minimizing (14) changes. This class of PDE’s
typically arises in optimal stopping problems, e.g. in pricing
of American options in finance [17].

While an analytic solution is available for the special case
A = 0 (see [15] and [14]), there is little hope of finding
such a solution for the general case with A 6= 0. Instead
we turn to numerical methods to approximate the solution
to some required precision. In the next section we derive
an RBF method which solves the stationary problem (14)
directly for some given value of J .

III. A RADIAL BASIS FUNCTION APPROXIMATION

A. Preliminaries

We start with some simple observations in (14). First,
linear transformations can always be performed on x̃ such
that R = I and Q is a diagonal matrix in the transformed
variable. Second, the choice of V (0) is non-consequential
since it is only a reference value, and can thus be set to
V (0) = −ρ to eliminate the explicit dependence of ρ. With
these steps performed, we write (14) as

−V (x̃ᵀQx̃− J + x̃ᵀAᵀ∇V +
1

2
∆V ) = 0, ∀x̃,

−V ≥ 0, x̃ᵀQx̃− J + x̃ᵀAᵀ∇V +
1

2
∆V ≥ 0, ∀x̃.

(15)

Henceforth the PDE of the form in (15) will be used.

B. Approximation using RBFs

Our aim is to approximate V as a weighted sum of radial
basis functions φj(x̃) : x̃→ R, where each basis function is
radially symmetric, and centered at one of a set of N given
collocation points {x̃j}Nj=1. The approximation V̂ is given
by

V (x̃) ≈ V̂ (x̃) ,
N∑
j=1

αjφj(x̃), (16)

where {αj}Nj=1 is a set of weights to be determined. The
concept is illustrated in Fig. 4. The RBF approximation is
mesh free, meaning that we can choose the set of collocation
points freely in the state space, not constrained to a uniform
grid as for example finite-difference approximations.

While there are many choices for basis functions in the
literature [16], a popular choice, which we will use here, are
Gaussian basis functions

φj(x̃) , exp(−c||x̃− x̃j ||22).

The parameter c > 0 is known as a shape parameter,
and determines the decay rate of the basis functions. It
is typically chosen as a trade-off between accuracy and
numerical stability, where a small value of c often will
improve the accuracy at the price of ill-conditioning [16].

V̂

x̃j−1 x̃j x̃j+1

0

Fig. 4. The approximation V̂ (solid) is formed as a weighted sum of RBFs
(dashed), each centered at one of a given set of collocation points {x̃j}.

With the choice of Gaussian basis functions, we can
analytically compute the gradient and Laplacian of V̂ as

∇V̂ =

N∑
j=1

αj∇φj(x̃) = −2c

N∑
j=1

αj(x̃− x̃j)φj(x̃), (17)

∆V̂ =

N∑
j=1

αj∆φj(x̃) = 2c

N∑
j=1

αj(2c‖x̃− x̃j‖22 − n)φj(x̃).

(18)

Thus, inserting V̂ into (15) yields

−(

N∑
j=1

αjφj(x̃))(x̃ᵀQx̃− J +

N∑
j=1

αjλj(x̃)) = 0,

−
N∑
j=1

αjφj(x̃) ≥ 0, x̃ᵀQx̃− J +

N∑
j=1

αjλj(x̃) ≥ 0,

(19)

where λj(x̃) is given by

λj(x̃) , c(2c‖x̃− x̃j‖22 − 2x̃ᵀAᵀ(x̃− x̃j)− n)φj(x̃).

Note that if (19) would be satisfied for all x̃, then V̂ would
in fact be a true solution to (15). Since we generally can not
guarantee this, we instead relax the condition and specify that
(19) must be satisfied at the collocation points {x̃j}Nj=1. We
then get a system of N equations subject to 2N inequalities,
and the goal is now to find a set of weights {αj}Nj=1 such
that they are all satisfied. In the next section we will derive
an equivalent QP formulation of this problem.

IV. COMPUTING THE RBF WEIGHTS

A. The Linear Complementarity Problem

Inspired by how American option prices are approximated
in [17], we proceed by formulating a linear complementarity
problem (LCP) which ensures that (19) is satisfied at all
collocation points. To this end we define the vectors

α ,
[
α1, ..., αj , ..., αN

]ᵀ
,

β ,
[
x̃1Qx̃1 − J, ..., x̃jQx̃j − J, ..., x̃NQx̃N − J

]ᵀ
,

and the matrices Φ,Λ ∈ RN×N , whose elements on the ith
row and jth column are given by

Φi,j , φj(x̃i), Λi,j , λj(x̃i). (20)



The condition that (19) should hold for all collocation points
can be expressed as

(−Φα)i(Λα+ β)i = 0, ∀i = 1...N, (21)
s.t − Φα ≥ 0, Λα+ β ≥ 0, (22)

where the inequalities are element-wise, and (·)i denotes the
ith element of a vector. Since the factors in (21) are non-
negative, this is equivalent to

(−Φα)ᵀ(Λα+ β) = 0,

s.t − Φα ≥ 0, Λα+ β ≥ 0.

Finally, let z , −Φα, i.e α = −Φ−1z (Gaussian basis
functions guarantees Φ � 0 [16]), which gives

zᵀ(Mz + β) = 0,

st. z ≥ 0, Mz + β ≥ 0,
(23)

where M = −ΛΦ−1. Finding a z satisfying (23) is an LCP,
and is equivalent to the QP

min
z
zᵀ(Mz + β),

st. z ≥ 0, Mz + β ≥ 0,
(24)

with the minimum objective zero. The problem (24) is
efficiently solved using any QP solver, and after obtaining a
solution z∗ we simply compute the weights as α = −Φ−1z∗.

B. Uniqueness of Solution

Guarantees of existence and uniqueness of the solution to
(24) are given by the following theorem:

Theorem 2: For the QP (24) with M = −ΛΦ−1, there
exists a finite

¯
c > 0 such that for any shape parameter c >

¯
c,

(24) has a unique solution.
Proof: The proof is given in the appendix.

While Theorem 2 states the existence of a finite lower
bound on c such that (24) has a unique solution, it does
not provide this bound explicitly. The result of Theorem 2
is based on the fact that an LCP of the form (23) has a
unique solution for every β iff M is a P-matrix (a matrix with
positive principal minors) [18]. Thus in order to verify that
the value of c is chosen sufficiently large for our problem, we
need to verify if M is a P-matrix or not. Unfortunately, this
task is an NP-hard problem, and a straightforward evaluation
of the 2N−1 principal minors typically requires some N32N

operations [20]. This means we can only practically perform
this verification for small N . However, there exist several
sufficient conditions of less computational complexity that
can be used. For instance, M is a P-matrix if M +Mᵀ � 0,
which requires some N3 operations to verify. The condition
of Lemma 1 in the appendix can also be used, which only
requires some N2 operations to verify. However, based on
numerical studies it seems that Lemma 1 is more conser-
vative than checking positive definiteness of M + Mᵀ. For
more sufficient conditions, see [21] and references therein.

C. Summary of Method

Here follows a summary of our proposed method to
compute an approximate solution to OSPρ1:

1) From the representation (3) of the plant G, extract the
system matrix A and compute the innovation noise
intensity R and weight matrix Q.

2) Perform a linear transformation of the error state x̃
such that R = I in the transformed state.

3) Pick a cost J .
4) Pick a set of collocation points {x̃j}Nj=1 and a shape

parameter c for the RBF approximation V̂ .
5) Compute M = −ΛΦ−1 and verify according to

Section IV-B that (24) has a unique solution. If not,
increase c.

6) Solve (24) using any QP solver, and compute the RBF
weights as α = −Φ−1z∗.

7) The approximation of the optimal sampling policy is
now to sample whenever V̂ (x̃) = 0. The cost per
sampling action ρ is given by V̂ (0).

Remark 1: Depending on the size of the interpolation
errors in the RBF approximation V̂ , the threshold V̂ (x̃) = 0
might not be a single coherent surface as we would expect
from the true solution. In that case, it is instead preferable
to consider the threshold V̂ (x̃) = ε, where ε is some small
negative value close to zero chosen such that the threshold
is coherent.

V. NUMERICAL EVALUATION

In this section we consider numerical validation of the
proposed RBF method, and showcase the optimal policies
for different classes of systems. We also present an example
where we compare the performance of periodic sampling, a
simple heuristic event-based sampling policy and the optimal
event-based sampling policy.

A. Validation

The proposed RBF method is numerically validated using
the analytic solution for the special case when A = 0. The
solution was derived in [15, Paper II], and is given by

V (x̃) = −1

4
(max{0, 2√ρ− x̃ᵀPx̃})2, (25)

where P is the unique solution to the Riccati-like equation

PRP +
1

2
Tr(RP )P = Q. (26)

Solving (26) is efficiently done via a simple scalar search,
as shown in [14].

In the validation, we randomize 50 versions of OSPρ with
a 2D plant, and for each version compute the maximum
absolute error (MAE) ‖V −V̂ ‖∞ of the RBF approximations
using N = 52, 62, ..., 402 uniformly distributed collocation
points. Since we can assume R = I and Q = diag(q1, q2)
without loss of generality (see Section III-A), the OSPρ is
uniquely described by the parameters q1, q2 and ρ. These

1Demo code is available at https://gitlab.control.lth.se/marcus/rbf-approx
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Fig. 5. Mean and standard deviation of MAE of RBF approximation over
50 randomized OSPρ for different number of collocation points. A curve
of order O(N−1.05) is plotted for reference.

parameters were chosen randomly for the 50 OSPρ, with
ρ ∈ [0.01, 1] and q1, q2 ∈ [1, 10].

The mean and standard deviation of the MAE over all
50 versions are shown in Fig. 5. Additionally, the RBF
approximation for one example OSPρ from the validation
is shown in Fig. 6. The results indicate that the RBF method
produces an approximation with an order of accuracy of
roughly O(N−1), and is able to approximate the optimal
policy well.

B. Types of Policies for 2D Systems

While the optimal policies are known to be elliptic in the
special case A = 0, it has been largely unknown what these
policies look like in the general case. In [14], we observed the
optimal policies for a couple of choices of A, and concluded
that they are not necessarily convex. In this section, we make
a more thorough characterization of the types of optimal
policies that are possible for different systems in the 2D
case.

Based on the different types of possible phase portraits
of the expected trajectory, we have chosen to investigate
systems with a saddle point, a double integrator, a center, a
star, a node and a spiral. Since we are interested in the impact
of A, we keep R = Q = I and J = 1 fixed throughout. The
A-matrices for the different systems are given by

Saddle: A =

[
0 15
15 0

]
, Integrator: A =

[
0 1
0 0

]
,

Center: A =

[
0 15
−15 0

]
, Star: A =

[
15 0
0 15

]
,

Node: A =

[
15 10
10 15

]
, Spiral: A =

15√
2

[
1 −1
1 1

]
.

The resulting optimal polices are shown in Fig. 7. Perhaps
the most striking observation is that most of the policies
either are, or are well-approximated by, circles. The fact that
the optimal policies for the center, star and spiral are all
circles becomes apparent when considering that their phase
portraits are symmetric. Less obvious are the shapes of the
double integrator and node, which despite their asymmetric

Fig. 6. Validation example using A = 0, q1 = 3, q2 = 1 and ρ = 0.1.
The RBF approximation V̂ (left) has 502 = 2, 500 collocation points and
an MAE of 4.6 · 10−4. The approximation of the optimal policy compares
well to the true optimal policy (right).

phase portraits have optimal policies which could be well
approximated by circles. This suggests that simple heuris-
tic sampling policies parametrized by an ellipse could be
designed such that near-optimal performance is achieved in
these cases.

The only notably different case is the system with a saddle
point, which results in a non-convex policy. This curious
result also appears in higher dimensions, as shown in the 3D
case in Fig. 8. While the non-convex policy itself is radically
different from the other cases, it remains to be quantified
how much better this policy actually can perform over, say,
an elliptic policy. This is investigated in the next section.

C. Performance Comparison

Here we compare the trade-off between the cost Jx̃ and
the average sampling period havg , 1/f for three different
sampling policies:

(a) Periodic sampling.
(b) The optimal sampling policy, approximated using the

proposed RBF method.
(c) A simple heuristic policy, where sampling is triggered

whenever ‖x̃‖2 ≥ δ holds for some choice of δ > 0.
We consider a 2D unstable system with the following pa-
rameters:

A =

[
0 15
15 0

]
, Bw = Cᵀ

z =

[
3.35 0 0 0
−3.27 0.72 0 0

]
,

Bu = Cᵀ
y =

[
28.71 0
28.64 2

]
, Dzu = Dᵀ

yw =

[
0
I

]
,

which correspond to Q = R = I and the continuous-time
LQG cost γ0 = 16.41. Note that for this system the optimal
sampling policy will be of the same shape as in the saddle
point example in Fig. 7.

The trade-off curve for (a) is computed using the expres-
sion in [12, Remark 4], while for (b) and (c) we employ
Monte-Carlo methods. Specifically, trade-off curves for (b)
and (c) are obtained by using different values of J and δ
respectively, and simulating a sampled version of the system.
The system is sampled with a nominal period hnom = 10−4,
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Fig. 7. Optimal sampling policies (blue solid) for six different systems categorized by the phase portrait of their expected trajectories (red arrows).

Fig. 8. Example of a non-convex optimal sampling policy in the 3D
case, where it is optimal to sample when the error state crosses the surface
(blue). Here, A = [0 0 5; 0 5 0; 5 0 0], R = Q = I and J = 4. The RBF
approximation was generated using 303 = 27, 000 collocation points.

and the simulation runs until the standard deviation of the
Monte-Carlo estimates of havg is smaller than 10−3.

The trade-off curves are presented in Fig. 9, where the
cost Jx̃ has been normalized by γ0. We note that periodic
sampling is clearly outperformed by the event-based sam-
pling policies, where the improvement becomes increasingly
prominent as havg grows (note the logarithmic scale in
Fig 9). For example, at havg = 0.28 the closed-loop LQG-
cost is increased by roughly 100% for periodic sampling
when compared to the continuous-time LQG cost, while the
corresponding increase is only about 30% for the event-based
policies. Secondly, we note that the performance of the sim-
ple heuristic policy (c) and the approximation of the optimal
policy (b) is practically identical. This further supports the
idea that simple, elliptic, policies can achieve near-optimal
performance, even for systems where the optimal policy is
non-convex.

VI. CONCLUSIONS

In this paper we have derived a numerical method based on
radial basis functions to approximate the optimal event-based
sampling policy in the LQG setting. The optimal sampling
problem is equivalent to solving a stationary free boundary
PDE, and the proposed method is able to solve this PDE
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Fig. 9. Trade-off curve between the relative performance degradation
Jx̃/γ0 and average sampling period havg. While periodic sampling (red
solid) is clearly outperformed by event-based sampling, the difference is
negligible between sampling based on the RBF approximation of the optimal
policy (black asterisks) and the simple heuristic policy (blue squares).

efficiently for lower order systems. Guarantees for existence
and uniqueness of the optimal RBF approximation of the
solution have been given, and we have shown that it is
straightforwardly obtained by solving a QP. The method has
been validated numerically, and is shown to converge to the
true solution with increasing number of basis functions.

Using the RBF approximation method, we have charac-
terized different types of possible optimal policies in the
2D case. Since most of the policies are convex and almost
elliptic, this suggests that simpler, elliptic policies could
be designed to achieve near-optimal performance. This was
further supported by a numerical example, where the perfor-
mance of a simple elliptic policy was practically identical
to the performance of the optimal one. Future work will be
focused on design rules for such sub-optimal policies, which
can be benchmarked against the corresponding optimal ones
obtained from the proposed RBF method.
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APPENDIX

Proof of Theorem 2

We prove Theorem 2 by showing that M = −ΛΦ−1 is a
P-matrix (a matrix with positive principal minors) for some
finite choice of c > 0, since this implies that (24) will have
a guaranteed unique solution [18]. To this end we define:

Definition 1: A matrix B ∈ RN×N is row diagonally
dominant (RDD) if,

|Bi,i| >
∑
j 6=i
|Bi,j |, ∀i = 1, ..., N,

where Bi,j denotes the element on the ith row and jth
column of B.

We also introduce the following lemma:
Lemma 1 (Proposition 4.6 in [21]): Let −Λ and Φ be

RDD matrices with positive diagonal entries. Then −ΛΦ−1

is a P-matrix.
For proof of this lemma we refer to [21].

We first consider Φ, which clearly has positive diagonal
elements since Φi,i = φi(x̃i) = 1 > 0, ∀i. Thus, for Φ to be
RDD, we require that

1 >
∑
j 6=i
|Φi,j | =

∑
j 6=i

exp(−c‖x̃i − x̃j‖22), ∀i = 1, ..., N.

(27)

Note that for c > 0, the sum in (27) is a continuous, strictly
decreasing function in c. It has the upper and lower limits
N − 1 and 0 as c ↓ 0 and c → ∞ respectively. Therefore,
the inequality (27) is trivially satisfied for N ≤ 2, while for
N > 2 there exists a

¯
cΦ,i > 0 for each row i such that

1 =
∑
j 6=i

exp(−
¯
cΦ,i‖x̃i − x̃j‖22), ∀i = 1, ..., N.

Thus Φ is RDD for c >
¯
cΦ , maxi(

¯
cΦ,i).

Now we consider −Λ, which also has positive diagonal
elements since −Λi,i = nc > 0, ∀i. For −Λ to be RDD it
must satisfy

n >
1

c

∑
j 6=i
| − Λi,j |

=
∑
j 6=i
|x̃ᵀiAᵀ(x̃i − x̃j)− 2c‖x̃i − x̃j‖22 + n|φj(x̃i),

∀i = 1, ..., N.

(28)

Using the triangle inequality we note that the sum in (28) is
less than or equal to∑

j 6=i
(|x̃ᵀiAᵀ(x̃i − x̃j)|+ 2c‖x̃i − x̃j‖22 + n)φj(x̃i). (29)

Showing that (29) is strictly smaller than n for all rows i is
thus sufficient to ensure that (28) is satisfied. The sum (29)
is a continuous function in c with the limit 0 as c→∞, and
is guaranteed to be strictly decreasing in c for

c >
¯
c∗−Λ,i , max

j

(
2− |x̃ᵀiAᵀ(x̃i − x̃j)| − n

2‖x̃i − x̃j‖22

)
.

Thus, for every row i we can pick a
¯
c−Λ,i ≥

¯
c∗−Λ,i such that

n ≥
∑
j 6=i

(|x̃ᵀiAᵀ(x̃i − x̃j)|+ 2
¯
c−Λ,i‖x̃i − x̃j‖22 + n)φj(x̃i).

This means that (28) is satisfied for c >
¯
c−Λ , maxi(

¯
c−Λ,i),

implying that −Λ is RDD. Finally, if we pick c >
¯
c ,

max{̄cΦ,
¯
c−Λ}, then both Φ and −Λ are RDD, and −ΛΦ−1

is a P-matrix according to Lemma 1.
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[2] K. J. Åström and B. Bernhardsson, “Comparison of periodic and event
based sampling for first-order stochastic systems,” IFAC Proceedings
Volumes, vol. 32, no. 2, pp. 5006–5011, 1999.
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