LUND UNIVERSITY

Protecting OpenFlow using Intel SGX

Medina, Jorge; Paladi, Nicolae; Arlos, Patrik

Published in:
IEEE Conference on Network Function Virtualization and Software Defined Networks

DOI:
10.1109/NFV-SDN47374.2019.9039980

2020

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):

Medina, J., Paladi, N., & Arlos, P. (2020). Protecting OpenFlow using Intel SGX. In IEEE Conference on Network
Function Virtualization and Software Defined Networks: (NFV-SDN) Article 9039980 IEEE - Institute of Electrical
and Electronics Engineers Inc.. https://doi.org/10.1109/NFV-SDN47374.2019.9039980

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://doi.org/10.1109/NFV-SDN47374.2019.9039980
https://portal.research.lu.se/en/publications/dafe54d3-25a1-426d-bef9-eba697544c6b
https://doi.org/10.1109/NFV-SDN47374.2019.9039980

Protecting OpenFlow using Intel SGX

Jorge Medina*, Nicolae Paladi’ and Patrik Arlos?
*Dept. Electrical and Computing Engineering
New Jersey Institute of Technology, New Jersey, USA, Email: jmc237 @njit.edu
TLund University & RISE Research Institutes of Sweden, Stockholm Sweden, Email: nicolae.paladi@ri.se

iDept. Computer Science, Blekinge Institute of Technology, Karlskrona Sweden, Email: patrik.arlos@bth.se

Abstract—OpenFlow flow tables in Open vSwitch
contain valuable information about installed flows,
priorities, packet actions and routing policies. Their
importance is emphasized when collocated tenants
compete for the limited entries available to install
flow rules. OpenFlow flow tables are a security asset
that requires confidentiality and integrity guarantees.
However, commodity software switch implementations
- such as Open vSwitch - do not implement protec-
tion mechanisms capable to prevent attackers from
obtaining information about the installed flows or
modifying flow tables. We adopt a novel approach
to enabling OpenFlow flow table protection through
decomposition. We identify core assets requiring secu-
rity guarantees, isolate OpenFlow flow tables through
decomposition and implement a prototype using Open
vSwitch and Software Guard Extensions enclaves. An
evaluation of the prototype on a distributed testbed
both demonstrates that the approach is practical and
indicates directions for further improvements.

Index Terms—Software Defined Networks, Software
Guard Extentions, integrity, confidentiality.

I. INTRODUCTION

Flexible and powerful control over network flows
is one of the core advantages of Software-Defined
Networking (SDN). Flow rules stored in the switch
network flow tables contain information on packet
processing and routing. Flow rules are stored in
memory, within a set of data structure rules, and
managed by a classifier in flow tables.

Recent advancements in software programmable
networks allow tenants to independently populate
switch network flow tables to control communica-
tion between endpoints in their respective slices.
Network flows are a valuable security asset: they
contain information about traffic patterns between

the endpoints, while network tenants are competing
for the limited entries in flow tables [1].

Commodity software switches do not currently
implement confidentiality or integrity protection of
flow tables. An attacker can observe or modify
installed flows by exploiting software vulnerabilities
to access the switch host memory [2]. By Observ-
ing installed flows, an attacker can learn security-
sensitive information such as network topology,
flow patterns between the endpoints and flow prior-
ity defined by the network administrator. By modi-
fying installed flows an attacker can exploit routing
loopholes and avoid network defence mechanisms
- for example route around a firewall or prevent
mirroring packets to an intrusion detection system.

We describe an approach to protecting the confi-
dentiality and integrity of network flows installed on
software switches. We modify the network switch
architecture to reduce the attack surface by isolating
the OpenFlow flow tables and the flow rules from
the rest of the code base. We describe the design
and use Open vSwitch (OvS) to implement a pro-
totype of the solution [3]. Finally, we evaluate our
prototype to measure its performance and identify
ways to further improve the approach.

Due to the page limit we exclude the internals
of OvS packet forwarding and flow table protection
by decomposing OvS; we refer the reader to [4].

The rest of this paper is organized as follows. In
Section II we introduce the necessary background
information. In Section III we present OFTinSGX,
a library that enables OvS to allocate its OpenFlow
flow tables and forwarding logic inside enclave
memory. We evaluate the proposed solution in Sec-

tion IV, describe the current limitations and future
work in Section V and conclude in Section VI.

II. PRELIMINARIES
A. Open vSwitch Overview

OvS is an open source programmable switch [5].
It comprises a daemon (ovs-vswitchd), a database
server (ovsdb-server) hosting a configuration
database, and a switching module (data path) [6].

ovsdb-server hosts a database containing the OvS
configuration including bridges, interfaces, tunnels
and a list of IP addresses of managers and con-
trollers that communicate with OvS. OvS clients
(e.g, ovs-vswitchd, ovs-vsctl) use JSON-RPC! to
retrieve configuration data from the ovsdb-server.

ovs-vswitchd is a user space daemon that fol-
lows the OvS configuration from ovsdb-server to
initialize the bridge module, spanning the data path
initialization, the flow tables and the translation
process; flow table entries determine the actions that
the switch executes on unknown incoming packets.

A data path implements packet forwarding. OvS
is a flow-based switch, where clients install flows
determining forwarding decisions. Flows are in-
stalled in a cache level structure that assists the
data path to execute actions on received packets,
e.g. allow, drop, learn or resubmit. For each ingress
packet, the data path consults its cache and forwards
the packet to its destination if matching entries exist.
For each cache miss, the data path issues an upcall
and forwards the packet to ovs-vswitchd. A data
path can be deployed as a kernel module or in user
space with additional firmware support [7].

B. Open vSwitch Packet Classification

Packet classification in OvS is computationally
expensive, mostly due to the many types of match-
ing fields. Matching is implemented in a hash table
of flow rules, with matching fields hashes as keys.
OvS uses a modified Tuple Space Search (TSS)
algorithm [8] for packet classification. The algo-
rithm searches through the hash map tables based on
the maximum entry’s priority and terminates after
finding the highest priority matching flow rule.

lJavaScript Object Notation, Remote Procedure Call,
https://www.jsonrpc.org

Early OvS releases implemented OpenFlow pro-
cessing exclusively as a kernel module. However,
the difficulty of developing and updating kernel
modules motivated moving packet classification to
user space. A multi-level cache structure kernel
implementation compensates the resulting perfor-
mance impact [5]. The cache structure consists
of two levels with increasing lookup costs: a mi-
croflow cache (or Exact Match Cache) and a larger
megaflow cache. The megaflow cache is key to
forwarding performance tuning, since it covers mul-
tiple flow matches through wildcards [9].

C. Open vSwitch Forwarding Operation

Figure 1 illustrates the OvS components, utilities
and interactions. When an incoming packet reaches
the data path from a Network Interface Card (1), the
forwarding process runs an exact match search (2).
In case of a microflow cache match, the packet is
sent to the specific table in the megaflow cache
to retrieve the required actions. Otherwise, the
forwarding process runs a second search in the
next cache line (3). This search is computationally
expensive, since the process visits every table in the
megaflow cache until it encounters a matching flow.
If there is no match in the megaflow, the data path
notifies the ovs-vswitchd via upcalls that it lacks
information to handle the packet (4).

[ovsdb-toolJ [ovs-vsctl J
' i’ [
_________ ®
ovsdb- | I @

OF flow
tables

[ovs»dpctlJ [ovs-appctlj [ovs-ofctlJ
T T

server

ovs-vswitchd

OVSDB Management

Packet back@
e ®

|

I | Megaflow I f'gw
| Cache) entries

HO]]

®m=

JV outgoing packet

Userspace

I
= [
@omiE @ :

e Datapath

Microflow
Cache

Kernel/Userspace

Figure 1: Open vSwitch components

Ovs-vswitchd uses the classification process (5)
to obtain a matching rule via its OpenFlow flow

tables’. A matching rule contains a priority value,
a wildcard mask, and actions for handling the
unknown flow (5). Ovs-vswitchd returns to the data
path, inserts the new entry in the cache struc-
ture (6) and returns the packet to the kernel (7).
Finally, the data path forwards the packet to the
intended destination (8). If no match is found in
the OpenFlow flow tables, ovs-vswitchd sends a
packet_in request to the controller for get a
matching rule.

D. Trusted Execution Environments

We use SGX enclaves to create trusted execution
environments (TEEs) during operating system run-
time [10]. We use TEEs to allocate and initialize
OpenFlow flow tables, together with sensitive infor-
mation stored in flow rule structures. SGX enclaves
rely on a trusted computing base of code and data
loaded at enclave creation time, processor firmware
and processor hardware. Program execution within
an enclave is transparent to the underlying operating
system and other mutually distrusting enclaves on
the platform. Enclaves operate in the Enclave Page
Cache, a range of dynamic random access memory
that cannot be accessed by system software or
peripherals [11]. The CPU is the root of trust of an
enclave; it prevents access to the enclave’s memory
by the operating system and other enclaves.

E. Threat Model

We consider a powerful adverary, capable of
exploiting software vulnerabilities in the host op-
erating system and OvS, reload the OvS its binary,
access the host memory and start arbitrary processes
on the host. We rely on the confidentiality and
integrity guarantees provided by SGX enclaves.
Following the attacker model of SGX enclaves [10]
we exclude side-channel attacks.

F. Related Work

Protecting the security assets of network elements
is a topic of active on-going research. Jacquin
proposed an architecture that used a hardware root

2We use “OpenFlow tables” referring to OpenFlow flow
tables in user space, different from flow tables in the data path

of trust to remotely attest the integrity of virtualiza-
tion hosts in SDN infrastructure [12]. Furthermore,
commodity TEEs were used in case studies on
securing network applications [13]. TruSDN is a
framework for bootstrapping trust in an SDN in-
frastructure [14]. It supports secure provisioning of
switches in SGX enclaves, a secure communication
channel between switches and SDN controller, and
secure communication between endpoints. Trusted
Click [15] explores the feasibility of performing
network processing in SGX enclaves. While none
of the approaches above address the integrity and
confidentiality of OpenFlow flow tables, they can
be complemented with OFTinSGX to achieve this.

SCONE enables operators to protect confiden-
tiality and integrity of computation in containers
against adversaries with host root access [16]. An
alternative approach to protecting virtual network
functions running in containers, that avoids the
excessive expansion of the trusted computing base
is presented in [17].

Event Handler Eviction mitigates DoS attacks
and overflow of OpenFlow flow table [18]. The
mechanism uses two independent modules - learn-
ing module and flow checking module - although
the event handler mechanism reduces overflow of
flow tables and the risk of DoS attacks, it does not
provide security guarantees to the OpenFlow flow
tables. OFTinSGX protects both the integrity and
confidentiality of the OpenFlow flow tables, as well
as the forwarding logic and eviction process.

TLSonSGX protects the cryptographic material
used by OvS instances to protect communication
with SDN controllers [19]. This approach can be
combined with OFTinSGX to enable wider security
guarantees for OpenFlow switches.

III. OFTINSGX

We now present the design and implementation
of OFTinSGX, a security mechanism allowing OvS
to allocate its OpenFlow flow tables and forwarding
logic inside enclave memory. OFTinSGX has four
components: the SGX OpenFlow tables, the SGX
rule mechanism, the SGX Eviction Component and
the SGX Tables dpif. We illustrate the interaction of
these components in Figure 2.

A. OFTinSGX Components

SGX OFtables implement the OpenFlow flow ta-
bles running in the enclave memory. SGX OFtables
host the forwarding logic to match classification
rules for unknown incoming flows. The classifica-
tion rules are subsequently translated to instructions
installed in the data path.

The SGX rule mechanism is an interface im-
plementing the logic mapping rules allocated in
untrusted memory to classification rules in the
enclave for matches in the SGX OFtables. It en-
sures that only rules created by an authenticated
SDN controller are used to install entries in the
data path. The SGX rule mechanism translates
the SGX-wrapper calls to direct operations on the
OpenFlow flow tables. It is structured as a hash
map table (SGX_cls_table), enclosing SGX rules
(SGX_cls_rule). We used the hmap OvS library to
implement the SGX hash map table.

The SGX Eviction Component implements the
rule eviction process. Based on given criteria,
it removes a classification rule from the classi-
fier when a table reaches the maximum num-
ber of allowed flows. The SGX Eviction Com-
ponent also contains the eviction groups (struct
eviction_group). The dpif SGX tables im-
plement struct table_dpif to maintain updated
information about the existing rules in the Open-
Flow flow tables after flow update routines. This is
necessary to monitor entries in the data path and
maintain up-to-date statistics.

B. Workflow Summary

Prior to sending OpenFlow requests to OvS,
a remote SDN controller attests the integrity of

SGX Rule
Mechanism

SGX OF
tables

SN

SGX tables SGX Eviction
dpif Component

A

—

SGX-wrapper
ecalls

Figure 2: OFTinSGX architecture

the enclave where the OpenFlow flow tables are
hosted (1) [10]. Upon a successful attestation, the
controller sends OpenFlow requests to operate the
OpenFlow flow tables (2). If the requested opera-
tion is a rule addition, a rule is first allocated in
untrusted memory and an SGX rule containing a
classification rule is allocated in the enclave mem-
ory. The SGX Rule Mechanism receives the rule
operation requests and handles the requests inside
the enclave by calling the services of the respective
processing component (3): lookup, eviction or flow
revalidation. The SGX Rule Mechanism contacts
the OpenFlow flow tables when the data path does
not find instructions to handle an incoming packet.
In this scenario, an upcall request for a rule lookup
is passed to user space, containing the incoming
packet the data path cannot handle (4). If a match-
ing classification rule is available, the SGX Rule
mechanism returns the address of the corresponding
untrusted rule and the essential information about
the matching classification rule to install an entry
in the data path cache for the incoming packet,
containing a flow and a mask (5). The entry in
the data path is installed once the rule allocated in
untrusted memory was identified and the actions to
be executed on that packet were provided (6). The
OpenFlow flow tables deployed in SGX enclaves
are protected from malicious tampering (7). The
SDN controller maintains a hash of the enclave and
private key used to sign the enclave, and later uses
them to establish an authenticated channel with the
enclave. As a result, only an authenticated SDN
controller can operate on the OpenFlow flow tables.

IV. EVALUATION

To evaluate the prototype implementation of the
solution, we deployed a testbed that uses a Net-
work Test Automation Systems (NTAS) instance.
The testbed is based on the Distributed Passive
Measurement Infrastructure (DPMI) [20] with En-
dace/Emulex DAG 3.6 cards [21] with accuracy of
60 ns and GPS to ensure high quality and rigour
on the collected data. In the testbed, NTAS or-
chestrates the experimentation while DPMI collects
and distributes packet data. In addition, packets are
mirrored by full duplex measurement points (MPs)

that collect and store the relevant packets at specific
locations for further analysis.

SDN

Controller
192.168.186.114:6653

Open vSwitch

P1 P2

Server
172.16.1.10:1500

Client

172.16.1.14

Figure 3: Testbed setup

The testbed includes four components (see Fig-
ure 3): a client (packet source); a server (packet
sink); an instance of OvS; an SDN controller.
Packets flowing in our testbed are mirrored by two
MPs - from the client to OvS and from OvS to the
server by MPd10 and MPd11. All aforementioned
components run on separate hardware; We use the
Ryu?, SDN controller, version 2.8.

A. Performance Analysis

Our evaluation is based on the scenario that
involves user space and interaction with an SDN
controller. In this scenario, the client packet is
sent from user space to the controller. Next, the
controller installs a rule in the OpenFlow flow
tables, and returns the packet to user space. We
(1) flush the installed rules using ovs-ofctl, (2)
send one packet from client to server, return to 1
and repeat over 10000 times. The generated flow
corresponds to UDP traffic with a unique identifier
to easily identify ingress and egress packets of the
OvS instance, and to obtain its service time (7T3),
i.e. delay through the device [22].

Table I shows the collected statistics and a
relative overhead (rOH) between 10 and 13%
in the first incoming packet delay. The relative
overhead is calculated as rOH = (E[SGX] —
E[Plain])/E[Plain]*100. This overhead is caused

3htps://github.com/osrg/ryu

by the use of SGX enclaves: for each ecall to
OpenFlow flow tables, the CPU transitions to the
enclave mode, with a performance degradation.
Overhead increases linearly with the number of
ecall invocations. It is advisable to keep the number
of ecalls as low as possible. In this scenario ecalls
are invoked by methods for rule lookup, addition
and deletion of rules.

Table I: Summary of first incoming packet delay

PacketSize OvS Mean Std Min Max rOH

[Bytes] version [us] [us] [ps] [us] — [%]
SGX 3367 493 1473 12511

o4 Plain 2986 413 1234 5086 128
SGX 3356 490 1446 14602

128 Plain 2981 435 1236 6668 120
SGX 3393 471 1522 6784

256 Plain 3038 440 1267 9493 117
SGX 3431 494 1547 11740

S12 Plain 3108 442 1345 8000 104
SGX 3579 496 1727 11072

1024 pin 3202 442 1461 5975 118

V. LIMITATIONS AND FUTURE WORK

A mechanism to protect the OpenFlow flow
tables should span both the tables contents and
complete representation of the rules allocated in
untrusted memory. Isolating only the contents of
OpenFlow flow tables does not address all security
risks, since a classifier keeps only references of the
classification rules. Classification rules are allocated
in the struct rule, which is pointed by a struct
rule_dpif, in untrusted memory. We limited the
implementation scope to porting the contents of
the classification rule to enclave memory and leave
porting classification rules for future work.

VI. CONCLUSION

Flow tables in software switches carry security-
sensitive data. Its integrity and confidentiality is
essential for SDN security: an adversary capable
to modify the flow tables can control the topology
of the respective network deployment. Commodity

software switches have weak or no security mecha-
nisms to protect the integrity and confidentiality of
flow tables. We presented an approach to protect the
flow tables through decomposition. We reduced the
attack surface of software switches by isolating the
flow table processing and management logic. While
we implement a prototype using OvS and Intel SGX
enclaves, the approach is generalizable to other
switch implementations and isolated execution en-
vironments. The prototype evaluation results show
the approach is practical for commodity platforms.

VII. ACKNOWLEDGMENTS

This work was financially supported in part by
the Swedish Foundation for Strategic Research,
grant RIT17-0035 and EU H2020 project ASCLE-
PIOS, grant 826093. Jorge Medina was supported
by a scholarship from the Swedish Institute.

REFERENCES

[1] H. Cui, G. O. Karame, F. Klaedtke, and R. Bifulco, “On the
fingerprinting of software-defined networks,” IEEE Trans-
actions on Information Forensics and Security, vol. 11,
no. 10, pp. 2160-2173, Oct 2016.

[2] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P.
Seifert, A. Feldmann, and S. Schmid, “Taking Control of
SDN-based Cloud Systems via the Data Plane,” in Proc.
of the Symp. on SDN Research, ser. SOSR *18. ACM,
2018, pp. 1:1-1:15.

[3] N. Paladi, J. Svenningsson, J. Medina, and P. Arlos,
“Protecting OpenFlow Flow Tables with Intel SGX,” in
Proceedings of the ACM SIGCOMM 2019 Conference
Posters and Demos, ser. SIGCOMM Posters and Demos
’19. New York, NY, USA: ACM, 2019, pp. 146-147.

[4] J. A. Medina Chirinos, “Deconstructing open vswitch for
isolated enclaves : A security enabler for sdn data plane,”
Master’s thesis, , Department of Computer Science and
Engineering, 2018.

[5] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implemen-
tation of open vswitch,” in Proc. 12th USENIX Conf.
on Networked Systems Design and Implementation, ser.
NSDI'15. Berkeley, CA, USA: USENIX Association,
2015, pp. 117-130.

[6] B. Pfaff and E. B. Davie, “The Open vSwitch Database
Management Protocol,” Internet Requests for Comments,
RFC Editor, RFC 7047, December 2013.

[7] D. Intel, “Data plane development kit,” 2014.

[8] V. Srinivasan, S. Suri, and G. Varghese, “Packet classi-
fication using tuple space search,” in Proc. of the Conf.
on Applications, Technologies, Architectures, and Protocols
Sfor Computer Communication, ser. SIGCOMM ’99. ACM,
1999, pp. 135-146.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

O. vSwitch, “Tutorials Open vSwitch 2.9.90 documen-
tation, performance,” http://docs.openvswitch.org/en/latest/
tutorials/, accessed: 2018-03-16.

I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Inno-
vative technology for CPU based attestation and sealing,”
in Proc. 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP
’13. ACM, June 2013, p. 10.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “Innova-
tive Instructions and Software Model for Isolated Execu-
tion,” in Proc. 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, ser.
HASP ’13. ACM, June 2013, pp. 10:1-10:1.

L. Jacquin, A. L. Shaw, and C. Dalton, “Towards trusted
software-defined networks using a hardware-based In-
tegrity Measurement Architecture,” in Proc. 1st IEEE Conf.
Network Softwarization, ser. NetSoft’15, April 2015.
M.-W. Shih, M. Kumar, T. Kim, and A. Gavrilovska,
“S-NFV: Securing NFV States by Using SGX,” in Proc.
2016 ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization, ser.
SDN-NFV Security *16. ACM, March 2016, pp. 45-48.
N. Paladi and C. Gehrmann, “TruSDN: Bootstrapping Trust
in Cloud Network Infrastructure,” in Proc. 12th Interna-
tional Conf. on Security and Privacy in Communication
Networks, ser. SecureComm’16. Springer, Oct. 2016.
M. Coughlin, E. Keller, and E. Wustrow, “Trusted Click:
Overcoming Security Issues of NFV in the Cloud,” in
Proc. ACM International Workshop on Security in Software
Defined Networks & Network Function Virtualization, ser.
SDN-NFVSec ’17. ACM, March 2017, pp. 31-36.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L.
Stillwell, D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch,
and C. Fetzer, “SCONE: Secure Linux Containers with
Intel SGX,” in Proc. 12th USENIX Conf. on Operating Sys-
tems Design and Implementation, ser. OSDI’16. USENIX,
November 2016, pp. 689-703.

D. Girtler and N. Paladi, “Component integrity guarantees
in software-defined networking infrastructure,” in 2017
IEEE Conf. on Network Function Virtualization and Soft-
ware Defined Networks (NFV-SDN), Nov 2017, p. 292.
Y. Qian, W. You, and K. Qian, “Openflow flow table
overflow attacks and countermeasures,” in 2016 European
Conf. on Networks and Communications (EuCNC), June
2016, pp. 205-209.

N. Paladi, L. Karlsson, and K. Elbashir, “Trust anchors
in software defined networks,” in Computer Security,
J. Lopez, J. Zhou, and M. Soriano, Eds. Cham: Springer
International Publishing, 2018, pp. 485-504.

P. Arlos, M. Fiedler, and A. A. Nilsson, “A dis-
tributed passive measurement infrastructure,” in Interna-
tional Workshop on Passive and Active Network Measure-

ment. Springer, Berlin, Heidelberg, 2005, pp. 215-227.
Endace Measurement Systems, “Endace,”
2019. [Online]. Available: https://www.endace.com/

endace-high-speed- packet-capture-solutions/oem/dag/

P. Carlsson, D. Constantinescu, A. Popescu, M. Fiedler,
and A. A. Nilsson, “Delay performance in ip routers,” in
2nd International Working Conf. (HET-NETs ’04), 2004.

