
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Combating Error Propagation in Window Decoding of Braided Convolutional Codes

Zhu, Min; Mitchell, David G.M.; Lentmaier, Michael; Costello, Daniel J.; Bai, Baoming

Published in:
2018 IEEE International Symposium on Information Theory, ISIT 2018

DOI:
10.1109/ISIT.2018.8437819

2018

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Zhu, M., Mitchell, D. G. M., Lentmaier, M., Costello, D. J., & Bai, B. (2018). Combating Error Propagation in
Window Decoding of Braided Convolutional Codes. In 2018 IEEE International Symposium on Information
Theory, ISIT 2018 (Vol. 2018-June, pp. 1380-1384). Article 8437819 IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/ISIT.2018.8437819

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 25. Aug. 2025

https://doi.org/10.1109/ISIT.2018.8437819
https://portal.research.lu.se/en/publications/fb6c198b-405f-43d5-95b0-a29a1d908df1
https://doi.org/10.1109/ISIT.2018.8437819


Combating Error Propagation in Window Decoding
of Braided Convolutional Codes

Min Zhu∗, David G. M. Mitchell†, Michael Lentmaier‡, Daniel J. Costello, Jr.§, and Baoming Bai∗
∗State Key Laboratory of ISN, Xidian University, Xi’an, P. R. China, mzhu@xidian.edu.cn, bmbai@mail.xidian.edu.cn

†Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USA, dgmm@nmsu.edu
‡Department of Electrical and Information Technology, Lund University, Lund, Sweden, michael.lentmaier@eit.lth.se

§Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA, dcostel1@nd.edu

Abstract—In this paper, we study sliding window decoding of
braided convolutional codes (BCCs) in the context of a streaming
application, where decoder error propagation can be a serious
problem. A window extension algorithm and a resynchronization
mechanism are introduced to mitigate the effect of error propaga-
tion. In addition, we introduce a soft bit-error-rate stopping rule
to reduce computational complexity, and the tradeoff between
performance and complexity is examined. Simulation results
show that, using the proposed window extension algorithm and
resynchronization mechanism, the error performance of BCCs
can be improved by up to three orders of magnitude with reduced
computational complexity.

I. INTRODUCTION

Braided convolutional codes, first introduced in [1], are a

counterpart to braided block codes (BBCs) [2] which can be

regarded as a diagonalized version of product codes [3] or

expander codes [4]. In contrast to BBCs, BCCs use short

constraint length convolutional codes as component codes. The

encoding of BCCs can be described by a two-dimensional

sliding array, where each symbol is protected by two com-

ponent convolutional codes. BCCs are a type of parallel-

concatenated convolutional code in which the parity outputs

of one component encoder are fed back and used as inputs to

the other component encoder at the succeeding time unit. Two

variants of BCCs were considered in [1]. Tightly braided con-

volutional codes (TBCCs) are obtained if a dense array is used

to store the information and parity symbols. This construction

is deterministic and simple but performs relatively poorly due

to the absence of randomness. Alternatively, sparsely braided

convolutional codes (SBCCs) that employ random permutors

have low density, resulting in improved iterative decoding

performance [1]. Moloudi et al. considered SBCCs as spatially

coupled turbo-like codes and showed that threshold saturation

occurs for SBCCs over the binary erasure channel [5], [6].

SBCCs can operate in bitwise or blockwise modes, according

to whether convolutional or block permutors are employed. It

was also shown numerically that the free (minimum) distance

of bitwise (blockwise) SBCCs grows linearly with the overall

constraint length, leading to the conjecture that SBCCs are

asymptotically good [1], [6].

Due to their turbo-like structure, BCCs can be decoded

with iterative decoding. Analogous to LDPC convolutional

codes [7], [8], SBCCs can employ sliding window decod-

ing for low latency operation. Unlike window decoding of

LDPC convolutional codes, which typically uses an iterative

belief-propagation (BP) message passing algorithm, window

decoding of SBCCs is based on the Bahl-Cocke-Jelinek-Raviv

(BCJR) algorithm. It has been shown that blockwise SBCC-

s with sliding window decoding have capacity-approaching

performance [9], but for large frame lengths or streaming

applications, SBCCs are susceptible to severe but infrequent

decoder error propagation. That is, once a block decoding

error occurs, decoding of the following blocks can be affected,

which can in turn cause a continuous string of block errors and

result in unacceptable performance loss.

In this paper, we study several error propagation mitiga-

tion techniques for SBCCs. Specifically, a window extension

algorithm and a resynchronization mechanism are introduced

to combat error propagation. In addition, a soft bit-error-rate

(BER) stopping rule is proposed to reduce decoding complex-

ity and, the resulting tradeoff between decoding performance

and decoding complexity is explored.

II. CONTINUOUS TRANSMISSION OF BRAIDED

CONVOLUTIONAL CODES

In this section, we briefly review continuous encoding and

sliding window decoding of blockwise SBCCs. For details,

please refer to [1] and [9].

A. Continuous Encoding

Sparsely braided convolutional codes are constructed using

an infinite two-dimensional array consisting of one horizontal

and one vertical encoder. These two encoders are linked

through parity feedback. In this manner, the systematic and

parity symbols are “braided” together. In this paper, we limit

ourselves to rate R = 1/3 blockwise SBCCs as an example,

but generalization to other rates is straightforward. In this

case, the information sequence enters the encoder in a block-

by-block manner, typically with a relatively large block size.

Fig. 1 is a conceptual illustration of the continuous encoding

process for a rate R = 1/3 blockwise SBCC, which uti-

lizes two recursive systematic convolutional (RSC) component

encoders each of rate Rcc = 2/3, where P(0), P(1), and

P(2) are each block permutors of length T . The information

sequence is divided into blocks of length T symbols, i.e.,



Fig. 1. Continuous encoder chain for a rate R = 1/3 blockwise SBCC.

u = (u0,u1, . . . ,ut, . . .), where ut = (ut,1, ut,2, . . . , ut,T ).
At time t, ut is interleaved using P(0) to form ũt, and ut

and ũt enter the component encoders. The parity outputs v̂
(i)
t ,

i ∈ {1, 2}, at time t are delayed by one time unit, interleaved

using P(1), and P(2), respectively, and then enter the com-

ponent encoders as the input sequences ṽ
(i)
t , i ∈ {1, 2}, at

time t + 1. The information sequence u, the parity output

sequence v̂
(1)
t of encoder 1, and the parity output sequence

v̂
(2)
t of encoder 2 are sent over the channel. For initialization,

at time instant 0, we assume that ṽ
(1)
−1 = 0 and ṽ

(2)
−1 = 0.

Transmission can be terminated after a frame consisting of

L blocks, resulting in a slight rate loss, or proceed in an

unterminated (streaming) fashion, in which case the rate is

given by R = 1
3 .

B. Sliding Window Decoding

In order to help describe the proposed error propagation

mitigation methods, the structure of the sliding window de-

coder [9] is shown in Fig. 2. The window size is denoted as

w. The block at time instant t is the target block for decoding

in the window containing the blocks received at times t to

t+w−1. Briefly, the decoding process in a window beings with

I1 turbo, or vertical, iterations on the target block at time t,
during which the two component convolutional codes pass soft

messages on the T information bits in that block to each other.

Then, soft messages on the parity bits are passed forward, and

I1 vertical iterations are performed on the block at time t+1.

This continues until I1 vertical iterations are performed on the

last received block in the window. Then the process is repeated

in the backward direction (from the last block to the first block

in the window) with soft messages being passed back through

the 2w BCJR decoders. This round trip of decoding is called a

horizontal iteration. After I2 horizontal iterations, the T target

symbols are decoded, and the window shifts forward to the

next position, where the T symbols at time t+ 1 become the

target symbols.

C. Error Propagation

Since an encoded block in a blockwise BCC affects the

encoding of the next block (see Fig. 1), each time a block

of target symbols is decoded, the log-likelihood ratios (LLRs)

associated with the decoded symbols also affect the decoding

of the next block. Hence, if, after the maximum number of

decoding iterations, some unreliable LLRs remain in the target

block, causing a block decoding error, those unreliable LLRs

can potentially trigger a string of additional block errors,

resulting in error propagation. To illustrate this effect, we

consider two identical 4-state RSC component encoders whose

generator matrix is given by

G (D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
, (1)

where we assume the encoders are left unterminated at the

end of each block. The three block permutors P(0), P(1), and

P(2) were chosen randomly with the same size T = 8000. We

assume that transmission stops after a frame of L blocks is

decoded and a uniform decoding schedule (see [9] for details)

is used. The bit error rate (BER), block error rate (BLER), and

frame error rate (FER) performance for transmission over the

AWGN channel with BPSK signalling is given in Fig. 3, where

the window size w = 3, the number of vertical iterations is

I1 = 1, the number of horizontal iteration is I2 = 20, and the

frame length is L = 1002 blocks.

From Fig. 3, we see that the rate R = 1/3 blockwise

SBCC performs about 0.6 dB away from the Shannon limit.

Even so, among the 10000 simulated frames, several were

observed to exhibit error propagation. For example, 9 such

frames were observed at Eb/N0 = 0.04. In order to depict the

error propagation phenomenon clearly, we give the bit error

distribution per block of one frame with error propagation in

Fig. 4(a), for Eb/N0 = 0.04 dB. We see that, for I2 = 20,

from the 830th block on, the number of error bits is large, and

the errors continue to the end of the frame, a clear case of error

propagation. For I2 = 30, error propagation starts two blocks

later than for I2 = 20, but the overall effect of increasing the

number of iterations is minimal. On the other hand the bit

error distribution per block, based on 10000 simulated frames

with two different window sizes, is shown in Fig. 4(b), where

we see that increasing the window size from 3 to 4 reduces

the number of error propagation frames from 9 to 1, thus

significantly improving performance.

For larger frame lengths, and particularly for streaming

transmission, error propagation will severely degrade the de-

coding performance illustrated in Fig. 3. Hence, we now

introduce two ways of mitigating the error propagation effect

in sliding window decoding of SBCCs.



Fig. 2. Continuous sliding window decoder for blockwise SBCCs [9].

-1 -0.5 0 0.5 1 1.5
10-8

10-6

10-4

10-2

100

Fig. 3. The BER, BLER, and FER performance of rate R = 1/3 SBCCs.

800 900 1000 1100
100

101

102

103

104

(a)

0 500 1000 1500
0

0.5

1

1.5

2 104

(b)

Fig. 4. The error distribution per block for rate R = 1/3 blockwise SBCCs:
(a) One frame with different numbers of iterations, w = 3, and (b) 10000
frames with different window sizes, I1 = 1, I1 = 20.

III. ERROR PROPAGATION MITIGATION

In this section, we propose a window extension algorithm

and a resychronization mechanism to mitigate the effect of

error propagation in SBCCs.

A. Window Extension Algorithm

In [9], window decoding of SBCCs is performed with a

fixed window size. Based on the results presented in Fig.

4(b), we introduce a variable window size concept for s-

liding window decoding. Before describing the window ex-

tension algorithm, we give some definitions. Let L
(i,j)
d =

{l(i,j)d,0 , l
(i,j)
d,1 , l

(i,j)
d,2 , . . . , l

(i,j)
d,T−1} denote the decision LLRs of

the T information bits in the ith block of the current window

after the jth horizontal iteration. Then the average absolute

LLR of the T information bits after the jth horizontal iteration

is given by L̄
(i,j)
d = 1

T

T−1∑
k=0

∣∣∣l(i,j)d,k

∣∣∣.
During the decoding process, the window extension algo-

rithm operates as follows: when the number of horizontal

iterations reaches its maximum value I2, if any of the average

absolute LLRs of the first τ blocks in the current window,

1 ≤ τ ≤ w, is lower than a predefined threshold θ, that is, if

L̄
(i,j)
d < θ, i = 0, 1, . . . , τ − 1, (2)

the target block is not decoded, the window size is increased by

1, and the decoding process restarts with horizontal iteration

number 0. This process continues until either the target block

is decoded or the window size reaches a predefined maximum

wmax, in which case the target block is decoded regardless of

whether (2) is satisfied. Assuming an initial window size w =
3, Fig. 5 illustrates how the decoder window size increases

by 1 each time (2) is met, up to a maximum window size of

wmax = 6.1 Full details of the window extension algorithm

are given in an expanded version of the paper posted online

[10].

For the same simulation conditions used in Fig. 3, the BER,

BLER, and FER performance of rate R = 1/3 blockwise

SBCCs with the window extension algorithm is shown in Fig.

6, where wmax = 6, τ = 2, and θ = 10. We see that rate

R = 1/3 blockwise SBCCs with window extension show an

order of magnitude improvement in BER, BLER, and FER

compared to the results of Fig. 3. We also remark that, even

though wmax = 6, the average window size w̄ is found to be

only slightly larger than w, e.g. w̄ = 3.0014 for Eb/N0 = 0.04
dB, since window extension is only activated in the few cases

when error propagation is detected.

B. Resynchronization Mechanism

We see from Fig. 6 that the window extension algorithm

greatly reduces the effect of error propagation. However, for

1We can use the existing hardware serially, with additional memory, and set
wmax as high as needed, but wmax = 6 gives a reasonable tradeoff among
complexity, memory requirements, and delay.



Fig. 5. Decoder with the window extension algorithm.

-0.04 -0.02 0 0.02 0.04 0.06 0.08
10-8

10-6

10-4

10-2

100

Fig. 6. BER/BLER/FER performance comparison of rate R = 1/3 blockwise
SBCCs with and without the window extension algorithm.

very long frames or for streaming, even one occurrence of

error propagation can be catastrophic. We now introduce a

resynchronization mechanism to address this problem.2

As noted above, the first block in a BCC encoder chain has

two known input sequences. Therefore, the input LLRs in the

first block are more reliable than for the succeeding blocks.

Motivated by this observation, and assuming the availability

of a noiseless binary feedback channel, we propose that,

when the window extension algorithm is unable to stop error

propagation, the encoder resets to the initial 0 state and

begins the encoding of a new chain. This resynchronization

mechanism is described below.

After a target block is decoded in the window extension

algorithm, if its average absolute LLRs satisfy L̄
(0,I2)
d < θ, we

consider this target block as failed. If we experience Nr con-

secutive failed target blocks, we declare an error propagation

condition and initiate encoder and decoder resychronization

using the feedback channel. In other words, the encoder 1) sets

the initial register states of the two component convolutional

encoders to “0”, and 2) begins encoding the next block with

2Resynchronization could be employed with or without window extension
but, due to the low cost and effectiveness of extension, we assume the
techniques are used together.

two known (all “0”) input sequences together with the new

information block. Meanwhile, the decoder makes decisions

based on the current LLRs for the remaining blocks in the

current window and restarts decoding once w new blocks are

received. Full details of the resynchronization algorithm are

given in an expanded version of the paper posted online [10].

To demonstrate the efficiency of the resynchronization

mechanism alongside the extension technique, the BER,

BLER, and FER performance of rate R = 1/3 blockwise

SBCCs with the window extension algorithm and the resyn-

chronization mechanism is shown in Fig. 7 for the same

simulation conditions used in Fig. 6 and Nr = 1. We see that,

compared to the results of Fig. 3, rate R = 1/3 blockwise

SBCCs with window extension and resynchronization gain

approximately three orders of magnitude in BER and BLER

and about one order of magnitude in FER at low SNRs.3 (At

high SNRs, the curves tend to merge, since error propagation,

and thus the need for window extension and resynchronization,

is very rare under good channel conditions.)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1
10-10

10-8

10-6

10-4

10-2

100

Fig. 7. BER/BLER/FER comparison of rate R = 1/3 blockwise SBCCs with
and without window extension and resynchronization.

3Although the resynchronization mechanism terminates error propagation
in a frame, thus improving both BER and BLER, it does not further reduce
the number of frames in error.



IV. EARLY STOPPING RULE

The decoding complexity of BCCs with sliding window

decoding depends mainly on the number of horizontal itera-

tions. Therefore, in order to minimize unnecessary horizontal

iterations, we introduce a soft BER stopping rule, which was

first proposed for LDPC convolutional codes in [11]. Every

time a horizontal iteration finishes, the average estimated BER

BERest of the target bits in the current window is obtained

using the following steps:

• Calculate the decision LLR (the sum of the channel

LLR, the prior LLR, and the extrinsic LLR) Lj
d of every

information bit in the target block, j = 0, 1, . . . , T − 1;

• Compute the average estimated BER of the target infor-

mation bits is

BERest =
1

T

T−1∑
j=0

1.0/
(
1.0 + exp

(∣∣∣Lj
d

∣∣∣)).
If the average estimated BER of the target bits satisfies

BERest ≤ γ, decoding is stopped and a decision on the target

symbols in the current window is made.

Note that the window extension algorithm, the resynchro-

nization mechanism, and the soft BER stopping rule can

operate together in a sliding window decoder. We now give an

example to illustrate the tradeoffs between performance and

computational complexity when error propagation mitigation

is combined with the stopping rule. Fig. 8 shows the per-

formance of rate R = 1/3 blockwise SBCCs with window

extension, resynchronization, and the stopping rule for the

same simulation conditions used in Fig. 7 and γ = 10−7. We

see that using the stopping rule degrades the BER performance

only slightly, but the BLER performance is negatively affected

in the high SNR region.4 The average number of horizontal

iterations per block is also shown in Fig. 9, where we see that

the stopping rule greatly reduces the number of horizontal

iterations, especially in the high SNR region.

-0.2 -0.15 -0.1 -0.05 0 0.05
10-8

10-6

10-4

10-2

100

Fig. 8. BER/BLER comparison of rate R = 1/3 blockwise SBCCs with
window extension and resynchronization, with and without the stopping rule.

V. CONCLUSION

In this paper we investigated the severe but infrequent error

propagation problem associated with blockwise SBCCs. A

4The BLER loss at high SNR can be reduced by using a smaller γ at a
cost of some increased complexity.

-0.2 -0.15 -0.1 -0.05 0 0.05
4

6

8

10

12

14

16

18

20

Fig. 9. Number of horizontal iterations of rate R = 1/3 blockwise SBCCs
with window extension and resynchronization, with and without the stopping
rule.

window extension algorithm and a resynchronization mech-

anism were proposed to mitigate error propagation, which

can have a catastrophic effect on the performance for large

frame lengths and continuous streaming operation. The BER

and BLER performance of blockwise SBCCs with these two

mitigation methods was shown to outperform the original

blockwise SBCCs by about three orders of magnitude. Fur-

thermore, a soft BER stopping rule was introduced and shown

to significantly reduce decoding complexity with little effect

on BER performance.

ACKNOWLEDGMENT

This work was supported in part by U. S. NSF Grant CCSS-

1710920, by NSFC Grant 61701368, and by NSFC Grant

61771364.

REFERENCES

[1] W. Zhang, M. Lentmaier, K. Sh. Zigangirov, and D. J. Costello, Jr.,
“Braided convolutional codes: a new class of turbo-like codes,” IEEE
Trans. Inf. Theory, vol. 56, no. 1, pp. 316-331, Jan. 2010.

[2] A. J. Feltström, M. Lentmaier, D. V. Truhachev, and K. S. Zigangirov,
“Braided block codes,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2640-
2658, Jun. 2009.

[3] P. Elias, “Error free coding,” IRE Trans. Inf. Theory, vol. 4, no. 4, pp. 29-
37, Sep. 1954.

[4] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 1710-1722, Nov. 1996.

[5] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Spatilly coupled turbo-
like codes,” IEEE Trans. Inf. Theory, vol. 63, no. 10, pp. 6199-6215, 2017.

[6] S. Moloudi, M. Lentmaier, and A. Graell i Amat, “Finite length weight
enumerator analysis of braided convolutional codes,” in Proc. Int. Symp.
Inf. Theory and Its Applications, Monterey, CA, USA, Oct. 2016, pp.
488-492.

[7] M. Lentmaier, A. Sridharan, D. J. Costello, Jr., and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274-5289, Oct. 2010.

[8] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory, vol.
58, no. 4, pp. 2303-2320, April 2012.

[9] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, Jr., and B.
Bai, “Braided convolutional codes with sliding window decoding,” IEEE
Trans. on Communications, vol. 65, no. 9, pp. 3645-3658, Sept. 2017.

[10] M. Zhu, D. G. M. Mitchell, M. Lentmaier, D. J. Costello, Jr., and
B. Bai,“Combating error propagation in window decoding of braided
convolutional codes,” available at http://arxiv.org/abs/1801.03235.

[11] N. Ul Hassan, A E. Pusane, M. Lentmaier, G. P. Fettweis, and D.
J. Costello, Jr., “Non-uniform window decoding schedules for spatially
coupled LDPC codes,” IEEE Trans. on Communications, vol. 65, no. 2,
pp. 501-510, Nov. 2016.


