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ABSTRACT
Software developers use collection data structures extensively and
are often faced with the task of picking which collection to use.
Choosing an inappropriate collection can have major negative im-
pact on runtime performance. However, choosing the right collec-
tion can be di�cult since developers are faced with many possi-
bilities, which often appear functionally equivalent. One approach
to assist developers in this decision-making process is to micro-
benchmark datastructures in order to provide performance insights.

In this paper, we present results from experiments on Java col-
lections (maps, lists, and sets) using our tool JBrainy, which synthe-
sises micro-benchmarks with sequences of random method calls.
We compare our results to the results of a previous experiment on
Java collections that uses a micro-benchmarking approach focused
on single methods. Our results support previous results for lists, in
that we found ArrayList to yield the best running time in 90% of
our benchmarks. For sets, we found LinkedHashSet to yield the
best performance in 78% of the benchmarks. In contrast to previ-
ous results, we found TreeMap and LinkedHashMap to yield better
runtime performance than HashMap in 84% of cases.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware libraries and repositories; Reusability.
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1 INTRODUCTION
Java developers use collections extensively and are often faced with
the task of picking a collection class. The Java collection framework
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provides documentation describing each collection’s functional
properties in an interface, and supplies several classes implement-
ing this interface. However, it can be di�cult to pick the most
appropriate implementation, and in practice software developers
often make sub-optimal choices when picking collections [9].

When developers are unsure which collection class to use, they
can run benchmarks on their application and compare di�erent
solutions. This approach gives precise insight, evaluating collection
classes in the context in which they are used. However, in practice
developers may lack the time to benchmark each use of collections
in their code. Instead they turn to existing guidelines and look for
general strategies for datastructure selection.

Considering the Java collections API, it is relatively rich, o�ering
28, 16 or 25 operations on lists, sets, and maps, respectively. Corre-
spondingly, each collection can be utilised in many di�erent ways:
for instance, developers might initialise one of the collections and
then only perform lookups, or they might repeatedly update the
datastructure and only rarely perform lookups.

Consequently, collections have di�erent usage pro�les, which
we can think of as statistical distributions of sequences of opera-
tions. Di�erent collection classes perform better for di�erent usage
pro�les, e.g., a linked list may more e�ciently support insert-at-the-
beginning operations than an array-based vector, whereas pro�les
dominated by index-based lookup may be faster on the vector.

Therefore, to recommend a collection class to a programmer, we
must (a) understand what the programmer’s usage pro�le is, and
(b) have a mechanism for predicting the performance of a given
collection class for that usage pro�le. Our research question in this
paper focuses on the second point: how can we obtain a performance
model that allows us to predict collection class performance with a level
of precision that is adequate for giving e�ective recommendations?

Related work has explored models for two kinds of pro�les,
which we here call single-operation pro�les and multi-operation pro-
�les. Single-operation pro�les are the basis for the CollectionsBench
study by Costa et al. [3], in which the authors study Java collec-
tions from the standard library and from third-party libraries by
examining one operation at a time. Multi-operation pro�les are the
basis for the Brainy approach [7], in which the authors synthesise
benchmarks for C++ to exercise random sequences of operations.

Both kinds of pro�les can produce guidelines for developers
for picking data structures, but neither is perfect: single-operation
pro�les capture typical usage scenarios, but cannot capture inter-
ference between di�erent operations (one operation a�ecting the
performance of another). Multi-operation pro�les can capture in-
terference, but present a much larger and more challenging search
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space for benchmarking. To facilitate the comparison between these
two approaches this paper makes the following contributions:

• a porting of the Brainy approach to Java via the JBrainy tool.
• Pólya Pro�les, a re�nement of multi-operation pro�les.
• an evaluation of the JBrainy approach on Java collections.
• an initial comparison of JBrainy and CollectionsBench.

The rest of this paper is organised as follows: Section 2 describes
the methods used in the experiments presented in Section 3. We
discuss results and implications of the experiments in Section 4,
review related work in Section 5, and conclude in Section 6.

2 METHODS
In this section we describe the three approaches that we consider
in this paper in terms of the usage pro�le they embody.

2.1 Single-Operation Pro�les
Costa et al.’s CollectionsBench system [3] builds models for �ve
hand-written usage pro�les that test, respectively, element inser-
tion, multi-element insertion, is-element-of checks, index-based
lookup (lists only), and iteration. Except for iteration, all of these
pro�les capture the exclusive use of a single operation.

While these single-operation pro�les represent some of the real-
life usage of collections, they do not directly capture e.g. uses in
which the code alternates between adding and deleting. If there
is nontrivial statistical interference between the performance of
addition and deletion operations for a given collection class, models
built from single-operation pro�les may be inaccurate.

2.2 Multi-Operation Pro�les
To account for the possibility of interference between di�erent oper-
ations, Jung et al.’s Brainy system [7] explores a single usage pro�le
that assumes that operations occur with a certain probability dis-
tribution but independently of any previously selected operations.
Brainy uses this pro�le to generate a family of microbenchmarks,
each a sequence of randomly selected operations, and executes the
benchmarks to build a performance model.

Thus, Brainy’s multi-operation pro�les allows for construction of
a model that can directly observe interference between operations,
i.e., whether one operation coinciding with another may speed up
or slow down that operation. However, the price that Brainy pays
for this approach is that it is unlikely to generate microbenchmarks
that correspond to CollectionsBench-style single-operation pro�les,
even though such pro�les arguably correspond to practically rele-
vant usage patterns. For example, assuming uniform distribution,
the probability of generating ten list additions in a row is only

1
3×1014 .

2.3 Pólya Pro�les
To address the limitation with multi-operation pro�les, we pro-
pose a third model, which we call Pólya Pro�les. Pólya pro�les
are multi-operation pro�les in which the probability distribution
is biased through a Pólya urn [8]: for the �rst operation, we are
equally likely to select any of a collection’s operations, but each
time we choose an operation, we increase its likelihood of being

picked again. Consequently, when we use Pólya pro�les to gen-
erate microbenchmarks, we lean towards generating benchmarks
that use a small number of operations frequently. However, when
we consider all generated benchmarks, our approach favours no
particular methods, because all methods have an equal probability
of being favoured in one benchmark.

3 EXPERIMENTS
To explore the utility of Pólya pro�les in generating more accurate
performance models, we here compare the recommendations from
CollectionsBench’s single-operation pro�les against recommenda-
tions from our own JBrainy system, which uses Pólya pro�les.

3.1 Experimental Setup
Our experiments focussed on collections in the Java standard library,
where we considered a selection of lists (ArrayList, LinkedList
and Vector), sets (HashSet, LinkedHashSet and TreeSet), and
maps(HashMap, LinkedHashMap, and TreeMap). Each collection was
tested with integer elements, using the Java Microbenchmarking
Harness [4] for compatibility with CollectionsBench and to simplify
our evaluation methodology [1].

We ran our microbenchmarks on an Intel(R) Core(TM) i7-3820
CPU 3.60GHz with 16 GB of RAM, running Ubuntu 18.04 (Linux
4.18.0-15-generic), on OpenJDK 10.0.2. Each benchmark ran asmany
times as possible during 250ms, with three warm-up runs and �ve
sampling runs.

We con�gured the microbenchmarks to execute 10, 100, and 1000
operations each, and initialised the collections to initially contain
0, 1000, or 10000 entries. Together, these two parameters yielded
3 × 3 di�erent con�gurations. We found no signi�cant di�erence
between these con�gurations, so in the following we only report
on experiments and results aggregated over all con�gurations.

CollectionsBench. We re-ran CollectionsBench with the con�g-
uration that we reported above. The only changes that we made
were to recon�gure CollectionsBench to use integers instead of
strings as collection elements, and to analyse only collections from
the Java standard library.

JBrainy. For our JBrainy system, we �rst re-implemented Jung
al.’s benchmarking strategy from their Brainy system in Java. We
then augmented it to utilise Pólya pro�les. For each interface of
interest, we synthesised 4500 (500 × 3 × 3) microbenchmarks for
each collection class that each exercised the methods declared in
the interface.

Comparison of CollectionsBench and JBrainy. To compare the
two approaches, we �rst identi�ed the dominant operation for each
JBrainy microbenchmark, i.e., the operation with the largest num-
ber of invocations in the benchmark. Second, we computed the
speedup of each benchmark, compared with a baseline collection,
mapping to the most popular collections, as reported by Costa et
al.: ArrayList for lists, HashSet for sets, HashMap for maps. For
each single-operation pro�le in CollectionsBench, we then aggre-
gated results from all JBrainy microbenchmarks with a matching
dominant operation and compared the median speedups for each
tool.



JBrainy: Micro-benchmarking Java Collections with Interference (Work in Progress Paper)
ICPE 2020, Edmonton, Canada,

0 1 20.5 1.5

add
addAll

contains
LinkedHashSet

add
addAll

contains
TreeSet

put
containsKeyTreeMap

entrySetLinkedHashMap
addLinkedList

CollectionsBench
JBrainy speedup

Figure 1: Comparison between speedup predictions by Col-
lectionsBench and JBrainy for various operations

3.2 Results
Figure 1 shows the ten largest di�erences between JBrainy’s and
CollectionsBench’s results (out of 26 results in total). For example,
CollectionsBench reports that LinkedList.add has roughly the
same performance as ArrayList.add, while JBrainy reports it as
being slower by approximately a factor of two. Conversely Collec-
tionsBench reports a speedup of 0.41 for TreeSet.add compared to
HashSet, while JBrainy reports these operations as having roughly
comparable performance, and we observe a similar di�erence for
TreeMap.put when compared to HashMap.

For completeness, we also report the recommendations that
JBrainy gives for operations that CollectionsBench does not report
on. Figure 2 shows the median speedups for each collection class
and the dominant operation in each synthetic benchmark. We re-
port medians instead of averages as the distribution of speedups is
skewed (skewness ≈ 14.78).

In the case of lists, LinkedLists are on average approximately
twice as slow as ArrayLists, while Vectors are approximately 1.1
times slower than ArrayLists. In the case of maps, LinkedHashMap
is faster for most of the methods in the interface, and particularly for
methods put (s ≈ 1.28), hashCode (s ≈ 1.20), and remove (s ≈ 1.10).
TreeMap is only faster for benchmarks where the most common
method is clear, with a median speedup of 1.07. Similarly in the
case of sets, LinkedHashSet is faster for all of the methods that
we considered, and particularly for methods toArray (s ≈ 2.96),
toArray (s ≈ 2.85), and add (s ≈ 2.10). TreeSet is faster on method
clear with a median speedup of 1.18.

Figure 3 summarises how often JBrainy found a particular col-
lection class to be optimal for any of its benchmarks. For lists,
ArrayList is fastest in 91% of our benchmarks, while Vector and
LinkedList are the best �t in respectively 7% and 2% of all runs.
This agrees with Costa et al.’s �ndings that ArrayList may be
a good default choice. For maps, the situation is more nuanced.
LinkedHashMap and TreeMap are the best �t for respectively 42%
of benchmarks, while HashMap is the best �t for 16% of benchmarks.
For sets, LinkedHashSet is the best data structure for 78% of our
generated benchmarks, while HashSet and TreeSet are the best
�t for 11% of benchmarks each.

4 DISCUSSION
JBrainy does not explore iteration over lists directly. However, the
implementation of the operations toArray() and hashCode() is domi-
nated by iterating over the underlying collection, so we use these as
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Figure 2: Median speedup of various collections compared
to baseline (in magenta), with 25% and 75% quantiles

a proxy for iteration performance, since adaptive inlining is likely
to be equally e�ective for both sets of microbenchmarks.

We can conjecturewhy LinkedHashSet performswell on toArray()
and similar operations: These operations iterating over all the el-
ements of the set. In a HashSet, this iteration requires iterating
over all buckets in the hash table (i.e., it depends on the capacity of
the table), whereas for a LinkedHashSet, the iteration only goes
through the set’s internal linked list of the set elements (i.e., only
depends on the actual list size). The same considerations apply to,
hashCode(), which requires iterating over all elements for both
LinkedHashSet and LinkedHashMap.

We further note that LinkedHashMap’s put and add operations
perform surprisingly well. We conjecture that the additional over-
head of these operations is amortised by later calls. In the case
of TreeSet and TreeMap, the performance of the clear method
comes about because clearing a tree only requires NULLing the root
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SetMapList

Figure 3: Count of fastest benchmarks depending on the col-
lection class used.

node, while clearing (linked) hash maps requires iterating over all
hash buckets.

For sets, Costa et al. focus on third-party alternatives to HashSet
[3], while our results show that LinkedHashSet is faster than
HashSet in a majority of cases. For Maps, Costa et al. describe
HashMap as providing solid performance in the CollectionsBench
study, while our results show that LinkedHashMap often performs
better. For Lists, our results con�rm the �ndings of the Collections-
Bench study: ArrayLists are signi�cantly faster than LinkedLists
in the vast majority of cases.

A key insight from our work is that LinkedHashSet and Linked-
HashMap, which account for a small percentage of Java collection
classes used in real-world programs [3], can outperform more pop-
ular alternatives when the benchmark run involves calling many
di�erent methods on the object.

Our results strongly suggest that there is interference between
di�erent operations in the interfaces that we examined. This in turn
means that performance models based on Pólya pro�les (or other
multi-operation pro�les) may provide more accurate suggestions
for collection class selection than those of single-operation pro�les.

Threats to Validity. While our initial results are very encourag-
ing, we observe a number of threats to validity that we will explore
in future work. Regarding internal validity, we have not yet system-
atically analysed the di�erence in recommendations from JBrainy
and CollectionsBench, nor have we validated our recommendations
by exploring their impact on the performance of existing software.

Regarding external validity, we have only benchmarked one
hardware setup and one virtual machine, and not considered third-
party collection classes.

5 RELATEDWORK
Automatic datastructure replacement for Java has been explored
e.g. by Shacham et al. [9] who explored a modi�ed Java VM that
could automatically propose or perform container class migrations,
though the authors only explored automatic migration for reducing
memory footprint. Xu’s CoCo system [10] similarly enabled auto-
matic dynamic collection class migration, but successfully targeted

performance optimisation with the ability to migrate more than
once at runtime. Both tools used hand-written rules for controlling
migration. Recently, Costa et al. presented a dynamic migration
technique [2] that improves over CoCo by utilising performance
models generated from single-operation pro�les [3], for dynamic
collection class selection instead of hand-coded rules.

Similar ideas have also been explored for C++ [7], though re-
search in automatic datastructure selection dates back further [5].

6 CONCLUSIONS
Developers are often faced with the need to pick a collection datas-
tructure from options that appear functionally equal. One way to
assist them is to providing decision support in the form of perfor-
mance insights from micro-benchmarking.

We have explored one suchmicro-benchmarking approach in our
tool JBrainy, which builds on the benchmark synthesis approach
introduced in Brainy [7]. Using JBrainy and its novel Pólya pro-
�les, we have run an initial performance evaluation experiment
following the setup of the CollectionsBench study [3]. While Col-
lectionsBench focused on improvements from using third-party
Java collections, we have focused our experiment on collections in
the Java standard library. For lists, our results agree with those of
CollectionsBench, �nding ArrayList to be the best candidate for
the vast majority of benchmarks. However, for maps and sets, our
results show that less well-used collections such as LinkedHashMap
or LinkedHashSet can improve the performance of many bench-
marks.

We �nd these initial results encouraging and see several direc-
tions for future work. As an immediate next step we plan to include
the third-party collections used in the CollectionsBench study in
our work, to search for further insights. In addition, we plan to
explore various threats to validity, especially by validating the rec-
ommendations from JBrainy on real-world software.
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