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Popular summary in English

The reason I find nanophysics so fascinating is that we can build and study new quantum
mechanical systems. Nowadays it is possible to create and engineer systems, so small that
quantummechanics describes their physics, in a laboratory! These small nanostructures can
in principle have any shape and consist of different materials, what they have in common
is their size: they are on the scale of around 1− 100 nm (nanometer). One nm is 10−9 m
or one billionth of a meter. This means that in one meter there are 1, 000, 000, 000 nm!
I know this might not be so easy to grasp, so let’s make a comparison: a nanostructure of
tens of nm is roughly the same size as a smaller virus, but ten to a hundred times larger
than an atom. However, it is a hundred times smaller than typical bacteria, and less than a
thousand times smaller than the thickness of a strand of hair!

Like everything else around us, the nanostructures are made of atoms. The atoms consists of
nuclei and electrons, and when the atoms are put together some electrons can move around
between the atoms. The electrons are electrically charged, so when they move they can carry
an electrical current. However, the electrons are not really free! They are affected by the
confinement inside the small nanostructures and are restricted to have certain energies (this
is an effect of quantum mechanics).

To find information about the electrons we use mathematical models, and calculate the
electrons energies. To model something very small we need to use a quantum mechanical
description.

Quantum mechanics is something else than the world we are used to in our everyday lives.
As the name suggests, in the small world, things (such as energy) come in packages or
quanta. Briefly, this means that for small systems, particles or atoms, there are only certain
allowed energies, so that only specific velocities, positions or colors are allowed. This has
implications in the big world as well! For example, to understand why metals can conduct
currents, one needs to use a quantum mechanical description of the atoms in the metal!
Another example is gems: their transparency, colors and good insulating properties can
only be explained using quantum mechanics.

A prerequisite for the electrons to be able to move around inside a structure is that the mate-
rial in the system is either a metal or a semiconductor. In a metal, electrons can move under
all circumstances, while in a semiconductor the electrons can move only under certain cir-
cumstances. This means that a semiconductor sometimes can carry a current, depending
on circumstances such as temperature, system size, applied electric field etc. In addition to
being an electrically charged particle, the electron is also like a tiny magnet! It has a prop-
erty called spin, that reacts to magnetic fields similar to a compass needle, and can align
with a magnetic field.
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The energies that are allowed in a nanostructure is to a large extent determined by its shape,
size, and material. This means that if we know these things about the nanostructure we can
calculate how the electrons will “behave” inside! In fact, inside the nanostructures, the
electrons are the only things that we can affect in the systems, since they are the only thing
that can move at all. They have electric charge that reacts to voltages and spins that react
to magnetic fields.

This thesis concerns electrons inside two different nano “shapes” made of semiconductors:
nanowires and quantum dots. Nanowires are small cylinders, and I have studied a special
type called a core-shell nanowire. This structure consists of a core (a cylinder) with one or
several “shells” of different materials. In a nanowire the electrons can move in one direction
only, along the wire. Quantum dots are small in all directions, so the electrons inside cannot
move. The quantum dots I have studied are actually made of nanowires, but only from very
small segments, so they look like little discs. The electronic properties of the nanowires and
the quantum dots can be altered by changing the thickness of the nanowire (or its shells)
or by applying a voltage or a magnetic field to the structures.

In the core-shell nanowires, I have studied the effects of interacting electrons and so-called
holes. Holes are here the name for a “missing electron” in a large electron quantity (leaving
a hole where the missing electron should have been). I have found that in the core-shell
nanowires electrons and holes interact and mix, and can live in both the core and the
shell simultaneously. I have also suggested how this effect can be seen from experimental
electrical measurements. Furthermore, in special cases, some electrons can live only at the
ends of the wire!

For the quantum dots, I have collaborated with experimentalists, and together we have
investigated the properties of two neighboring quantum dots, where the electrons inside
one quantum dot can sense electrons in the other quantum dot. The two neighboring
quantum dots are made using a new technique: from a single quantum dot two quantum
dots are formed by creating two separate pockets for the electrons. This new method makes
it possible to control how much the two quantum dots can interact! This means that if we
have two electrons, one in each quantum dot, we can control how the electrons interact
and hence how they behave.

In the long run we are interested in applications possibly within electronics and quantum
computing. The components of modern electronics are so small that quantum effects are
inevitable - in many cases, such as for transistors and LEDs, quantum mechanics is needed
to explain how they work. Quantum computers are a new type of computers that function
in a different manner than classical computers, by taking advantage of quantummechanics.
They can solve many problems that are impossible for a classical computer to solve. This
thesis is a step on the way to finding out how nanowires or quantum dots could be used
for these applications.
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Populärvetenskaplig sammanfattning på svenska

Idag är det möjligt att konstruera saker som är så små att kvantmekanik behövs för att
beskriva dess fysik, och det är dessutommöjligt att designa dessa små strukturers egenskaper
i ett laboratorium!Detta är anledningen till att jag tycker nanofysik är så fascinerande - att vi
kan bygga och studera nya kvantmekaniska system. Dessa små nanostrukturer kan i princip
ha vilken form som helst och bestå av olika material - vad de har gemensamt är storleken: de
är ungefär mellan 1 och 100 nanometer (nm) långa. En nm är 10−9 m, eller en miljarddels
meter. Detta innebär att på en meter går det 1, 000, 000, 000 nm! Det är inte helt enkelt att
förstå hur litet detta faktiskt är, så låt oss göra en jämförelse: en nanostruktur som är några
tiotals nm lång har ungefär samma storlek som ett mindre virus, men är tio till hundra
gånger större än en atom. Samma nanostruktur är ca hundra gånger mindre än en bakterie,
och mer än tusen gånger mindre än tjockleken på ett hårstrå!

Precis som allt annat runt omkring oss är nanostrukturerna uppbyggda av atomer. Varje
atom består av en atomkärna och en eller flera elektroner, och när atomerna sätts ihop kan
vissa av elektronerna röra sig fritt mellan atomerna. Elektronerna är elektriskt laddade, så
när de rör sig utgör de en elektrisk ström. Elektronerna är dock inte helt fria! De påverkas
av att de är instängda inuti de små nanostrukturerna och får därför bara anta vissa tillåtna
energier (detta är en av konsekvens av kvantmekaniken).

För att ta reda på hur elektronerna beter sig använder vi oss avmatematiskamodeller och be-
räknar elektronernas energier. För att kunna modellera något mycket litet måste vi använda
en kvantmekanisk beskrivning. Kvantmekaniken beskriver fysik som är väldigt annorlunda
än vad vi är vana vid att se i vår vardag. Som namnet antyder är saker (till exempel energi)
uppdelade i bestämda mängder, eller kvanta, i den lilla världen. Kort sagt betyder detta
att för små system, partiklar eller atomer finns det bara vissa tillåtna energier, så att endast
specifika hastigheter, positioner eller färger är tillåtna. Detta har också konsekvenser i den
stora världen! Ett exempel på detta är, att för att förstå varför vissa material leder ström,
medan andra är isolatorer, måste man använda en kvantmekanisk beskrivning av atomerna
i metallen! Ett annat exempel är ädelstenar: deras transparens, färger och dåliga elektriska
ledningsförmåga kan förklaras med hjälp av kvantmekanik.

En förutsättning för att elektroner ska kunna röra sig (och bilda en elektrisk ström) inu-
ti ett material, är att materialet antingen är en metall eller en halvledare. I en metall kan
elektronerna alltid röra sig, medan elektronerna i en halvledare bara kan röra sig under vissa
omständigheter. Detta innebär att en halvledare ibland leder ström, beroende på förhållan-
den såsom hur varmt det är, hur stor materialbit vi har eller om vi har lagt på en elektrisk
spänning över materialet.

Vi kan också påverka elektronerna genom att lägga på ett magnetfält. Förutom att vara en
elektriskt laddad partikel, så är elektronen också som en liten magnet! Den har en egenskap
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som kallas spinn, som reagerar ett på magnetfält likt en kompassnål och ställer in sig i
magnetfältets riktning.

Vilka energier som tillåts i en nanostruktur bestäms till stor del av dess form, storlek och
material. Detta innebär att om vi känner till dessa saker om nanostrukturen kan vi räkna
ut hur elektronerna kommer att “bete sig” inuti! I nanostrukturerna är det faktiskt bara
elektronerna som vi kan påverka, eftersom de ju är det enda som kan röra sig. De har
elektrisk laddning som reagerar på spänningar och spinn som reagerar på magnetfält.

Den här avhandlingen handlar om elektroner inuti två olika nanosystem uppbyggda av
halvledare: nanotrådar och kvantprickar. Nanotrådar är små cylindrar, och jag har studerat
en speciell typ som kallas en kärna-skal nanotråd. Denna struktur består av en kärna (en
cylinder) med ett eller flera “skal” som kan bestå av olika halvledarmaterial. I en nanotråd
kan elektronerna bara röra sig i en riktning, längs med tråden. Kvantprickar är små i alla
riktningar, vilket innebär att elektronerna inuti inte kan röra sig särskilt mycket alls. De
kvantprickar jag har studerat är faktiskt tillverkade av nanotrådar, men bara frånmycket små
segment, så de ser ut som små skivor. Jag har studerat nanotrådar och kvantprickar gjorda
av halvledare så att de elektroniska egenskaperna kan ändras genom att ändra tjockleken på
nanotråden (eller dess skal) eller genom att lägga på en spänning eller ett magnetfält över
strukturerna.

I nanotrådarna har jag räknat på elektroner som växelverkar med så kallade hål. Hål är här
namnet på en “elektron som fattas” i en stor mängd elektroner (alltså, ett hål där den för-
svunna elektronen borde ha varit). Jag har upptäckt att i nanotrådarna med skal,“blandas”
elektroner och hål, och blandningen kan finnas i både kärnan och skalet samtidigt. Jag har
också föreslagit hur denna effekt kan ses i experiment genom elektriska mätningar. Dess-
utom har jag sett att under speciella förutsättningar kan vissa elektroner befinna sig endast
i trådens ändar!

I arbetet med kvantprickar har jag samarbetat med experimentalister, och tillsammans har
vi undersökt egenskaperna hos två närliggande kvantprickar, där elektronerna som befinner
sig i en prick kan känna av elektroner i den andra pricken. De två kvantprickarna tillverkas
med en ny teknik: en ensam kvantprick kan “delas” och bli till två stycken, genom att två
elektron-“fickor” skapas. Denna nya metod gör det möjligt att kontrollera hur mycket de
två kvantprickarna kan växelverka! Detta betyder att om vi har två elektroner, en i varje
kvantprick, kan vi styra hur elektronerna pratar med varandra, och därmed hur de beter
sig.

På lång sikt är vi intresserade av tillämpningar främst inom elektronik och kvantdatorer.
Komponenterna i modern elektronik är så små att kvanteffekter är oundvikliga - och i
många fall, till exempel för transistorer och lysdioder, behövs kvantmekanik för att förklara
hur de fungerar. Kvantdatorer är en ny typ av datorer som fungerar på ett fundamentalt an-
norlunda sätt jämfört med klassiska datorer - genom att utnyttja kvantmekanik. Dessa nya
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typer av datorer kommer förhoppningsvis att kunna lösa många problem som är omöjliga
för en klassisk dator att lösa. Det är högst troligt att både nanotrådar och kvantprickar kan
komma att användas i dessa tillämpningar, och denna avhandling är ett steg på vägen för
att ta reda på hur.
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Chapter 1

Introduction

A large part of condensed matter physics deals with periodic structured materials such as
metals and semi-conductors (in contrast to non-crystalline materials). The crystalline peri-
odic structures give rise to electronic bands, which can explain the conductive properties of
both metals, insulators, and semi-conductors. The very short explanation for their different
behavior is that between the bands, energy gaps open up. If a band just below such a gap
is filled with electrons while the first band above the gap is empty, electrons cannot move
freely (insulator), whereas in a partly filled band electrons can move and become a current
(metal). If the band gap between a filled and an empty band is very small, we call the system
a semi-conductor. By creating carriers (e.g., by photo-excitation) above the band gap, the
system can carry some current. While some semi-conductors are made up of only one type
of atoms, others consist of two (or more) different atoms in a periodic structure. One type
of such semi-conductor compounds is the so-called III-V materials. These are crystalline
(periodic) materials with two repeating atoms, one from group III and one from group V
of the periodic table. This thesis is mainly concerned with two such III-IV compounds:
InAs and GaSb.

1.1 Semi-conductor materials and nanostructures

The picture of periodic structures with electronic bands can be seen in contrast to very small
nanostructures - quantum dots (QDs) - where the single electron levels are discrete andwell-
separated from each other. What makes a QD special is that is small in all directions. If
we change its extent in space we can tune the difference between the energy levels, making
this a very nice system to conduct experiments on, almost like an engineered atom.
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Another type of nanostructure is the nanowire; this is as the name suggests a small wire.
Since a wire has a much larger extension in one direction than in the other two, we have
(approximately) a system with energy bands in one direction, and confinement (like in the
QD) in the other two. This means that we can make the wire thicker or thinner, to make
the energy bands come closer or further apart. We can also connect this wire (since it is a
wire, after all) to an electric circuit relatively easy.

In this thesis we study two types of nanostructures, based on InAs nanowires. In Paper i
we look at so-called core-shell nanowires, where an InAs (GaSb) nanowire core has been
covered with a GaSb (InAs) shell. In Paper ii we study a very similar system to that in
Paper i, but with a hole (or an insulator) in the middle of the core. This can be seen as a
core-shell-shell nanowire with an insulator core, and an InAs and a GaSb shell. In Papers
iii and iv we look at double quantum dots (DQDs), situated in InAs nanowires (a DQD
is a system of two QDs that can talk to each other). The DQDs we study are connected in
parallel to a measurement setup.

1.1.1 Band structure theory

For any one-electron Hamiltonian that describes a lattice periodic system, such as a crys-
talline solid, we can find the electronic energies as a function of the crystal momentum
k. We refer to this as the band structure of the system, since the electronic energies form
bands when the electrons are subject to the lattice periodic potential. The theory of elec-
tronic band structure is arguably the most important tool to understand solids. It has im-
portance both for analyzing electronic and optical properties, and what can not be found
from the band structure, can often be deduced from the corresponding wave functions of
the electrons [1].

There are many different approaches to how to model and calculate electronic band struc-
tures, the most simple one assuming a free-electron parabola with a modified mass – an
effective mass – to adjust for the periodic potential from the atomic lattice. This effective
mass model is for most purposes not sufficient to describe semiconductors [2], since it in-
cludes only one band, and hence no band gap. On the other side of the spectrum of band
structure theories we have the ab initio methods. The latin term ab initio literally means
“from the beginning”, and these methods start from the theory of atoms to find the elec-
tronic energies, taking the potentials from the nuclei and the electron-electron interactions
into account explicitly. While many of these methods, such as Hartree-Fock and density
functional theory in the local density approximation take the electron-electron interaction
into account through an average field [1], others include the interactionmore explicitly, e.g.,
through many-body perturbation theory [3]. These models are computationally expensive
and are limited to bulk systems or small structures [1].

6



RC RC + tS

E 
(e

V)

r

GaSb InAs

CB

VB

SO

1

-1

0.5

0

-0.5

0

(a) z

r

GaSb
InAs

RC tS

(b)

Figure 1.1: (a) Band diagram showing the bulk broken band gap alignment between GaSb and InAs. The band edges are shown
for the conduction band (CB), valence band (VB) and split-off band (SO). (b) A core-shell nanowire. Both figures
adapted from Paper i.

For larger systems on the nanoscale (large is a very relative term here), but small enough
for quantum confinement effects to be important, we can use an effective model, such
as the Kane model of the k · p theory. The k · p theory is a semiempirical method [4],
meaning that we use empirical data as input to our calculations, such as band gap position
and band gap size. This model includes several bands, and is not restricted to a parabolic
band dispersion. Another type of semi-empirical model is the tight-binding method, where
a basis consisting of electronic states localized on individual sites is used. The electrons
are allowed to tunnel to the nearby sites, usually tunneling to the neighboring or next-
neighboring sites is considered [5]. For the material system studied in this thesis, GaSb and
InAs, it is necessary to use a method that includes both conduction and valence bands.

An important part of the Kane model is the spin-orbit coupling (SOC) terms. The SOC is
a relativistic effect where the spin of a charged moving particle interacts with the magnetic
field that is generated by the moving charge [6]. This effect leads to a splitting of energy
levels in atoms, and in semiconductors it causes a splitting of the VBs [7]. The magnitude
of this VB splitting is referred to as the split-off gap. For a material such as InAs, it is crucial
to include SOC effects in band structure calculations, due to the large split-off gap [8] of
this material.

1.2 GaSb/InAs

The III-V material system GaSb/InAs is interesting mainly due to its bulk broken band gap
alignment, meaning that the valence band in bulk GaSb lies above the conduction band in
bulk InAs, see Fig. 1.1(a). Close to the material interface in a GaSb/InAs heterostructure
this band alignment gives rise to hybridizing, spatially separated, electron and hole states,
which can lead to a gapped band structure with band inversion. We call a gap in such an
inverted structure a hybridization gap, to distinguish it from an ordinary band gap, or from
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a confinement gap caused by the finite size of a nanostructure.

One reason that the GaSb/InAs material system has gained attention is for its properties
in quantum wells (QWs). A QW is a nanostructure, made from a very thin sheet of one,
or several, layered, materials. This structure makes the electrons strongly confined in the
smallest direction (perpendicular to the sheets). QWs are often referred to as quasi-two-
dimensional, since they are approximately two-dimensional objects: if the thin sheets would
be infinitely wide and infinitesimally thin, we would have a pure two-dimensional object.
However, often the structure in the thin direction is important, such as for heterostructures;
we then refer to the QWs as being quasi-two-dimensional. The InAs/GaSb QWs consists
of two thin (≈ 10−20 nm) layers of GaSb and InAs. It has been suggested that these QWs
may host excitonic ground states [9], interesting SOC effects [10], and they are known to be
so-called topological insulators (TIs) [11, 12], a concept that will be explained in Chapter 3.
The material system of InAs/GaSb has been reported to have interesting properties also in
zero dimensions, where coupled and parallel electron-hole QDs have been studied [13, 14].
These QDs are epitaxially defined within core-shell nanowires.

1.3 Core-shell and core-shell-shell nanowires

In Papers i and ii we consider core-shell nanowires [15], which are small (around 10 −
100 nm in diameter) heterostructures with one semiconductor material in the middle (the
core) and one around (the shell), see Fig. 1.1(b). Nanowires made from III-V semiconductor
compounds are often hexagonal, but wemodel them to be cylindrical. Core-shell nanowires
have been suggested as components in solar cells [16] and in infrared lasers [17], and they can
be grown epitaxially [18, 19, 20] with very good precision. Today it is possible to epitaxially
grow core-shell nanowires of GaSb and InAs.

In Paper i we have calculated the band structures of GaSb/InAs and InAs/GaSb core-shell
nanowires of dimensions realistic to grow epitaxially. The band structures are used as input
to diffusive and ballistic transport calculations to find the conductivities and the Seebeck
coefficients for the nanowires. The band structures show far from parabolic bands and there
is a large hybridization between electrons and holes.

Today, it is also possible to grow nanowires with multiple shells [15, 13]. In Paper ii we
propose a core-shell-shell nanowire made of an AlSb inner core and InAs and GaSb shells.
The AlSb has a much larger band gap than InAs and GaSb, so it is an insulator. The
nanowire could hence be regarded as a hollow core-shell-shell wire, even though in practice
it has an inner core of an insulating barrier material, making it suitable for the growth
processes available today. We use a BHZ model together with k · p theory to calculate
the band structures and wave functions of such core-shell nanowires. The resulting band
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structures are compared to those of two-dimensional QWs in the topological regime. Our
goal is to understand if we have end states in the nanowire system, similar to the topological
edge states present in the two-dimensional QWs.

1.4 Quantum dots

In Papers iii and iv we investigate an epitaxially grown QD in an InAs nanowire, that
becomes aDQDunder the influence of positive side gates. This setup gives a DQD coupled
in parallel in the contacted nanowire. We study the spin states in the DQD under an
applied magnetic field, a varying interdot coupling and a detuning of the QD one-electron
levels. This is done in collaboration with experimentalists. With a few-electron model
with one one-electron level in each QD, and a master equation transport model, we can
reproduce the experimental data.

1.5 Thesis outline

The thesis is organized in the following manner:

In the first part we introduce the theoretical framework of the models used in Papers i –
iv. In Chapters 2 – 4 we introduce the framework of k · p theory, some basic theory of
topological insulators, and one-electron transport methods, relevant for Papers i and ii. In
Chapters 5 – 7, relevant for Papers iii and iv, we discuss single and double QDs, how their
properties are measured and modeled, and we present the master equation formalism used
for the QD transport calculations. In the second part of the thesis we discuss the results
from Papers i–iv. The thesis is ended with an outlook.
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Chapter 2

k · p theory

In this chapter, we present the basics of the eight-band k · pmethod, often called the Kane
model, used in Papers i and ii. We aim at defining concepts and quantities and discuss
approximations and limitations that are relevant for this thesis. However, for a complete
description of the k · pmethod, the reader is referred to the works in e.g., Refs. [7, 21, 4, 22,
23, 24]. It is worth noting that even though k · p theory was developed in the 1950s [22],
and has been widely used since, many discrepancies in notation and definitions exist. We
do not try to follow any of the existing notations strictly, but instead define all quantities
introduced to avoid uncertainties as far as possible.

Originally, the k · p method was developed to calculate the band structure of bulk mate-
rials [22]. The k · p bulk Hamiltonian has to be modified for finite systems and for het-
erostructures (and for systems with internal or external electric or magnetic fields), since
the derivation of the bulk Hamiltonian assumes that the Bloch theorem can be applied.
By using the envelope function approximation (EFA) [25, 4], a similar Hamiltonian can be
derived describing systems lacking lattice translation symmetry. It can be shown [7] that
it is possible to go from the k · p Hamiltonian to the EFA Hamiltonian by substituting
k → −i∇, but this substitution introduces an operator ordering problem. The derivations
for the k · p and the EFA Hamiltonians are very similar, but will both be presented in this
thesis for completeness. This chapter is organized as follows: We first present the k · p
equation, valid for bulk. In the following section we restrict ourselves to an eight-band
model, the Kane model, for zincblende. In Section 2.3 the EFA is introduced, used to
model finite systems and heterostructures. In the last sections we discuss how we solve the
k · p equations to obtain the band structures and wave functions.
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2.1 The k · p equation

We attempt to make a hand-waving derivation of the k · p equation valid for bulk. A
similar equation for a finite system and/or a heterostructure can be found in Ref. [7]. We
start from the (one-electron) Schrödinger equation (SE) Hψnk(r) = En(k)ψnk(r) for the
Bloch spinors ψnk(r) = eik·runk(r) = eik·r⟨r |nk⟩, and the Hamiltonian

H =
p2

2m0
+ V0(r) +

ℏ
4m2

0c2
p · σ × (∇V0(r)), (2.1)

where n is the band index and V0(r) is the lattice periodic crystal potential. The last term
accounts for SOC effects. The only included SOC here is of atomic origin and stems from
the Pauli SOC term. This term is found from a non-relativistic expansion of the Dirac
equation [7]. Operating with p2 on the plane-wave part of the wave function, the SE reads

[
p2

2m0
+ V0 +

ℏ2k2

2m0
+

ℏ
m0

k·π +
ℏ

4m2
0c2

p · σ × (∇V0)

]
|nk⟩ = En(k) |nk⟩ (2.2)

with π ≡ p + ℏ
4m0c2

σ × (∇V0). If we insert π into the SE in Eq. 2.2 we find that one of
the terms is ℏ

m0
k · p. This is the term k · p theory is named from. However, note that this

term is not arising from the SOC. We will use the approximation π = p, neglecting the k-
dependent part of the SOC interaction since this term is small compared to the term [21, 7]

HSO =
ℏ

4m2
0c2

p · σ × (∇V0). (2.3)

The index n is a common index for orbital motion and spin, necessary to use when taking
SOC into account, since spin is not a good quantum number by itself anymore. This is
also the band classification arising from the double group irreducible representations [7].
However, the states are still degenerate Kramers pairs since time-reversal symmetry is not
broken. The eigenfunctions of the Hamiltonian in Eq. 2.1without the SOC term, {|νk0 ⟩},
are a complete orthonormal basis for the SE for any choice of k0, so that we can expand
|nk⟩ in terms of these (here we make the choice k0 = 0, since this is where we have our
direct band gap in our special case, but any other choice is possible):

|nk⟩ =
∑
ν′σ′

cnν′σ′(k)
∣∣ν ′σ′ ⟩ (2.4)

with |ν ′σ′ ⟩ = |ν ′0⟩ ⊗ |σ′ ⟩. The reason that we choose to expand in this basis is that we
will treat the SOC as a perturbation [22, 4, 23, 7]. The remote band coupling from HSO
(and H′SO) is not included in the Kane Hamiltonian.

12



CB 

LH 
HH 

SO 

Figure 2.1: The four doubly degenerate bands (eight bands in total) included in the Kane model: conduction band (CB), heavy
hole (HH), light hole (LH) and split-off (SO) band.

Now we multiply the SE (Eq. 2.2) from the left by ⟨νσ| and use the eigenvalue equation
for |νσ ⟩ to obtain

∑
ν′σ′

{[
Eν′(0) +

ℏ2k2

2m0

]
δνν′δσσ′ +

ℏ
m0

k ·Pνν′,σσ′ + Δνν′,σσ′

}
cnν′σ′(k)

= En(k)cnν′σ′(k)

(2.5)

where [7]
Pνν′,σσ′ = ⟨νσ| π

∣∣ν ′σ′ ⟩, (2.6)

and
Δνν′,σσ′ =

ℏ
4m2

0c2
⟨νσ| [p · σ × (∇V0)]

∣∣ν ′σ′ ⟩. (2.7)

The constant SOC elements Δ cause splitting of the otherwise degenerate VB states at
k = 0, into a so-called split-off band.

2.2 The Kane model

The Hamiltonian presented above is infinite-dimensional, but in practice we are mostly
interested in a finite number of bands, N, near the band gap. In the Kane model we take
N = 8 bands into account explicitly: the conduction band, (CB), and three valence bands,
the heavy hole (HH), light hole (LH), and the split-off band (SO), all two-fold Kramers
degenerate. These bands can be seen in Fig. 2.1. The k · p and the SOC interactions are
taken into account for these bands explicitly, but remote bands are treated using Löwdin
perturbation theory [4, 26], so that our SE becomes an eigenvalue problem of dimension
N.

Here, the 8×8 k · p Kane matrices are presented, together with a discussion of the param-
eters used in our model. The matrix representations presented in this section are valid for
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zincblende, but not for wurtzite crystal structures. The corresponding Kane Hamiltonian
for wurtzite is similar to that for zincblende, but has 19 parameters instead of ten [21]. For
a discussion on wurtzite modeling using k · p theory, see e.g., Refs. [7, 21, 4].

We will present the Kane Hamiltonian for bulk in a the Bloch basis

{|S ↑⟩, |S ↓⟩, |X ↑⟩, |Y ↑⟩, |Z ↑⟩, |X ↓⟩, |Y ↓⟩, |Z ↓⟩}, (2.8)

with one s-like CB and three p-like VBs states, where |X ↑⟩ = |X⟩ |↑⟩ etc. This basis can
be related to a pure band basis

{|S ↑⟩, |S ↓⟩, |HH ↑⟩, |LH ↑⟩, |LH ↓⟩, |HH ↓⟩, |SO ↑⟩, |SO ↓⟩} (2.9)

by

|HH ↑⟩ = − 1√
2
(|X⟩+ i |Y⟩) |↑⟩

|LH ↑⟩ = 1√
6
[− (|X⟩+ i |Y⟩ |↓⟩) + 2 |Z⟩ |↑⟩]

|LH ↓⟩ = 1√
6
[(|X⟩ − i |Y⟩ |↑⟩) + 2 |Z⟩ |↓⟩]

|HH ↓⟩ = 1√
2
(|X⟩ − i |Y⟩) |↓⟩

|SO ↑⟩ = − 1√
3
[(|X⟩+ i |Y⟩ |↓⟩) + |Z⟩ |↑⟩]

|SO ↓⟩ = − 1√
3
[(|X⟩ − i |Y⟩ |↑⟩)− |Z⟩ |↓⟩] .

(2.10)

The reason for using the Bloch basis instead of the band basis, is that the eight-band Hamil-
tonian then takes a simpler and more elegant form.

The Kane Hamiltonian in the Bloch basis (Eq. 2.8) is given by [4, 24, 21]

H8 = H0 +HSO (2.11)

where

H0 =


Hcc 0 Hcv 0
0 Hcc 0 Hcv
Hvc 0 Hvv 0
0 Hvc 0 Hvv

 (2.12)
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and

HSO =
1
3
ΔSO



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 1
0 0 i 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 −1 0 i 0
0 0 0 0 −i −i 0 0
0 0 1 i 0 0 0 0


. (2.13)

The submatrices of H are given by

Hcc = Ec + kxAkx + kyAky + kzAkz, (2.14)

Hcv =
(
kyBkz + iPkx kzBkx + iPky kxBky + iPkz

)
, (2.15)

Hvc = H†cv, (2.16)

where † s is used for the Hermitian conjugate, and

Hvv =

(
E′v +

ℏ2

2m0
k2
)1 0 0

0 1 0
0 0 1

 (2.17)

+

kiMki + kx(L−M)kx kxN+ky + kyN−kx kxN+kz + kzN−kx
kyN+kx + kxN−ky kiMki + ky(L−M)ky kyN+kz + kzN−ky
kzN+kx + kxN−kz kzN+ky + kyN−kz kiMki + kz(L−M)kz


where Ec and Ev = E′v+ΔSO/3 are the CB and VB edge energies, and we have introduced
the notation kiMki = kxMkx + kyMky + kzMkz. The parameter P is related to the Kane

energy EP through P =
√

ℏ2
2m0

EP.

The coupling to remote bands is accounted for through the second-order-in-k matrix ele-
ments inHcv,Hvc andHvv. The parameter A is given by A = ℏ2

2m0
S where S = m0

m∗
CB
− 2EP

3Eg −
EP

3(Eg+ΔSO)
= 1+2F [21]. The parameter B originates from the k · p -term in Eq. 2.2 and ac-

counts for bulk inversion asymmetry in zincblende, which will be discussed in Section 2.5.
It is often set to zero [27, 28, 24, 29, 30, 31], approximating the zincblende structure to be
inversion symmetric (i.e., a diamond structure). We use this approximation and assume
that B = 0 throughout this thesis.
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The parameters L,M, N+ and N− are calculated from the Luttinger parameters γ1, γ2 and
γ3 as [31, 21]

L = − ℏ2

2m0
(γ1 + 4γ2) +

P2

Eg
(2.18)

M = − ℏ2

2m0
(γ1 − 2γ2) (2.19)

N− = M− ℏ2

2m0
(2.20)

N+ = −6
ℏ2

2m0
γ3 +

P2

Eg
− N−. (2.21)

In bulk we can use N+ = N− = N/2, whereN = N++N−, since N+ andN− commute
with all ki in Eq. 2.18 in that case.

To calculate for a structure grown in another crystallographic direction than [100], [010]
or [001], usually identified with the x, y, and z coordinates, the coordinate system needs to
be rotated. This rotation process is discussed in Appendix A.

2.3 The envelope function approximation

For systems lacking lattice translation symmetry, such as low-dimensional structures, het-
erostructures, strained systems, and systems with applied fields, the k · p equation is not
valid. Instead we derive an equation in the EFA. It turns out that the EFA Hamiltonian is
very similar to the k · p Hamiltonian in the end, but it is important to state that they are
not completely identical. The Hamiltonian we start from in this case is similar to the k · p
Hamiltonian, but with an extra potential term V(r)

H =
(−iℏ∇)2

2m0
+ V0(r) +

ℏ
4m2

0c2
(−iℏ∇) · σ × (∇V0) + V(r). (2.22)

Here we have assumed that no external magnetic or electric fields are present. Note that
there is no k · p term in this Hamiltonian, and that we cannot use the Bloch theorem as
we did in Section 2.1, since lattice translation symmetry is broken. We wish to solve the
SE HΨ(r) = EΨ(r) for this Hamiltonian. We expand the wave function Ψ(r) in Bloch
functions at k0 = 0,

Ψ(r) =
∑
ν′σ′

ψν′σ′(r)uν′0(r)
∣∣σ′ ⟩. (2.23)

The ψ are envelope functions, the u oscillating Bloch functions and |σ ⟩ are the spin eigen-
states. We insert the expansion into the SE, multiply from he left by ⟨σ| u∗ν′0(r) and inte-
grate over one unit cell. To be able to carry out the integration we assume that V(r) and
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ψν′σ′(r) are slowly varying and can be taken outside the integral. Using this approximation
we get

∑
ν′σ′

[(
Eν′(0) +

(−iℏ∇)2

2m0
+ V(r)

)
δνν′δσσ′ +

1
m0

(−iℏ∇) ·Pνν′,σσ′ + Δνν′,σσ′

]
ψν′σ′(r) = Eψν′σ′(r).

(2.24)

The EFA SE is now a system of coupled differential equations, with its eigenfunctions being
multicomponent spinors. Using Löwdin perturbation theory we can scale down from the
case with infinitely many bands, to an N-dimensional system that only includes N bands
explicitly, as we did in Section 2.2 for the Kane model with N = 8.

In most practical implementations, the matrix elements P and Δ, together with the ma-
terial parameters, are taken from experiments or ab initio calculations for bulk systems.
Additionally, we have to input the bulk band edge energies to our calculations. For a
heterostructure, this is done by assuming that the parameters are constant in each of the
materials separately, and that they vary step-like at the material interface [4, 24]. Further-
more, at the material interface the EFA assumption that the potential varies slowly is not
valid. An implication of this is that the results of the k · p calculations will not be reliable
very close (some Å) to the material interfaces [4].

2.3.1 Operator ordering in the Kane Hamiltonian

It is often argued that we can go from the k · p Hamiltonian to the EFA Hamiltonian
by substituting ℏk = p → −iℏ∇ and adding the external potential V(r) (if V(r) = 0,
the k here is the wave vector). This is in some sense true, but introduces problems with
operator ordering. For a system with more than one material, the operators k → −i∇ do
not commute with the space-dependent k · p -parameters. In the case of a finite magnetic
field, the components of k do not even commute with each other. However, apart from
the operator ordering, the 8-band EFA Hamiltonian in matrix form will look just like the
Kane Hamiltonian in Eq. 2.11 if we substitute∇ → ik. The problem will then turn into a
system of eight coupled partial differential equations.

Some authors [4, 24] use a symmetrization scheme to go from the k · p to the EFA Hamil-
tonian, and make the bulk Hamiltonian in Eq. 2.11 valid for a heterostructure by forcing all
Hamiltonian matrix elements to be Hermitian, by letting kQ(r) → 1

2 [kQ(r)+Q(r)k] for a
material dependent parameter Q(r). However, we prefer to use the EFA formalism where
a Hamiltonian for heterostructures is derived taking boundary conditions into account, so
that it has the correct operator ordering to begin with. In practice, the only matrix elements
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that will be different in the two approaches are¹

1. The elements in Hvv involving the N+ and N− parameters

2. All elements in Hcv and Hvc

If we use the approximation N+ = N− = N/2, the EFA and the symmetrized version
will be the same for these elements. In the special case of the InAs/GaSb and GaSb/InAs
core-shell nanowires, using this approximation for N+ and N− yields (almost) the same
result as using the expressions for N+ and N− given by Eqs. 2.20 and 2.21, hence these
elements will not be further discussed here.

For the elements in Hcv and Hvc, we assume that B = 0, as mentioned above. What is left
to resolve is then the ordering of the P–operator and ki, i = x, y, z. According to Foreman
all elements in Hcv in the Hamiltonian involving P should be proportional to Pki, so that

Hcv =
(
iPkx iPky iPkz

)
(2.25)

and Hvc = H†cv [31]. This leads to a Hermitian Hamiltonian for a general heterostructure.
For A = 0 (an approximation often used) this is the only operator ordering that gives
a Hamiltonian that is mathematically consistent, in the sense that for all other operator
orderings there will be boundary conditions that cannot be satisfied in the limit A → 0 [31].

It is common to see a version of the Kane Hamiltonian identical with the one presented
here, but with

Hvc =
(
−ikxP −ikyP −ikzP

)T (2.26)

This leads to a non-Hermitian Hamiltonian if not k = k†, which is in general not true for
k → −i∇. If one replaces k → k† in this version of Hvc it holds that Hvc = H†cv, so that
the full Hamiltonian is Hermitian. In a numerical implementation the best way to set up
the Hamiltonian matrix is to set Hvc = H†cv with Hcv given by Ref. [31], and it is then not
necessary to write down an explicit analytical expression for Hvc. In practice, Hermiticity
of the total Hamiltonian matrix is often assumed in numerical diagonalization schemes, so
that we only need to specify the upper right (or lower left) half of the Hamiltonian.

2.4 Spurious solutions

One of the challenges with the k · p method is the existence of spurious solutions. These
are solutions which are correct solutions to the k · p equation in a mathematical sense, but

¹Matrix elements that are second-order-in-k will be the same in the EFA approach and in the symmetriza-
tion scheme.
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unphysical [31, 21]. One explanation for this phenomenon is that the k · p equations are
valid only for small k (or k close to k0). However, when we employ the EFA, k → −i∇,
solutions that in bulk would correspond to large k values can give rise to non-physical
solutions [32].

2.4.1 Choosing parameters to avoid spurious solutions

All parameters in the Hamiltonian are in general functions of r, and when using the EFA,
the crystal momentum k becomes an operator, so that it does not commute with the space
dependent parameters. The spurious solutions arise due to a term proportional to k4 in
the secular equation [31]. It was suggested by Foreman [31] to set A = 0 to avoid spurious
solutions, since the k4 term then becomes zero. The term A scales the band bending of the
CB, and to maintain the correct effective mass of the CB he showed that the value of EP
should then be adjusted according to

EP =

(
m0

mc

)
Eg(Eg + ΔSO)

Eg + 2
3ΔSO

. (2.27)

The Kane energy EP enters the Kane Hamiltonian through the optical parameter P =√
ℏ2
2m0

EP, and scales the linear-in-k coupling between the CBs and the VBs. Another alter-
native to get rid of the k4 term in the secular equation is to neglect all couplings to remote
bands [31]. Doing this would require the CB and the VB effective masses to be determined
by one parameter only. Hence, it is a better alternative to set only A = 0 and rescale EP
accordingly. However, another alternative used by some [21] is to neglect the effect of the
remote bands on the CB.² This approach is implemented by setting A = ℏ2

2m0
(sometimes

referred to as A = 1 using natural units) and adjusting EP in a similar fashion as before:

EP =

(
m0

mc
− 1
)

Eg(Eg + ΔSO)

Eg + 2
3ΔSO

. (2.28)

It is common practice to set A = ℏ2
2m0

, even if EP is not accordingly adjusted.

It may seem odd that we can just change the value of our parameters and that there is
no consensus on how this should be done. However, taking into account that spurious
solutions are unphysical results with errors that grow with problem size (e.g., the number
of basis functions used), adjusting the parameters is not only something you could do, but
in fact something that should be done in many cases.

In Chapter 9 we discuss an additional method to avoid spurious solutions. In addition to
the methods mentioned above, we have found that adding insulator barriers to a semicon-
ductor heterostructure can remove spurious solutions. We believe that the reason for this

²This can be a rather controversial subject.
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behavior is that we then get rid of the abrupt material interface (between the semiconduc-
tor and the vacuum), where the wave function must tend to zero very quickly, which can
render oscillations and overshooting.

2.5 Inversion asymmetry

The lack of inversion symmetry in zincblende heterostructures causes spin-degenerate bands
to split.These effects can be divided into bulk inversion asymmetry (BIA) terms (from crys-
tal structure) and structural inversion asymmetry (SIA) terms (from finite crystal systems
that breaks inversion asymmetry due to their nanoscale structure, i.e., InAs/GaSb QWs).

The parameter B in Eq. 2.11 (Kane Hamiltonian) accounts for bulk inversion asymmetry
(BIA) in zincblende structures. All zincblende structures (except diamond structure) lack
a center of inversion, so that B should be non-zero [7]. This term causes spin-splitting in
second order in k, and mixes the CB and VB [7].

In addition to BIA, structural inversion asymmetry (SIA) can split spin degenerate bands,
in structures that breaks inversion symmetry. The SIA is to a large extent taken into ac-
count implicitly in the Kane model [21], where structure is accounted for when solving the
equations. However, in effective models based on k · p theory (such as the BHZ model,
introduced in Chapter 3) the SIA terms must be introduced explicitly. The SIA terms
split the CB in linear order in k, but higher order terms mix both CB and VB with each
other and within the bands [7]. The linear-in-k coupling is often referred to as the Rashba
term, but sometimes SIA splitting of any order is called Rashba splitting. Additional spin
splitting SIA terms are needed in the presence of electric field [7], but we do not consider
such effects (similar to Refs. [33, 34], but in contrast to Ref. [11] which uses a self-consistent
Poisson solver together with the k · pmodel, and Ref. [10], imposing a linear voltage drop).

For single material nanowire systems, the BIA spin split affects only k ̸= 0 and is not con-
tributing in the high-symmetry directions [001] and [111] [21]. However, for heterostruc-
tures, B can cause spin splitting in all directions of k [21]. We assume that B is small and
set it to zero, following many other authors, see for example Refs. [27, 28, 24, 29, 30, 35, 31,
10, 34, 36]. In Ref. [27] BIA is not taken into account since it is much smaller in the QWs
than the SIA.

It is important to note that even though BIA and SIA cause splitting of spin-degenerate
states, they cannot split Kramers pairs. Instead they split the spatial inversion symmetry
pairs {E↑(k),E↑(−k)}. The Kramers pairs {E↑(k),E↓(−k)} cannot be split as long as
the system obeys time reversal symmetry. For systems that are both space inversion and
time reversal invariant, we will then have doubly degenerate states for all k, since then
E↑(k) = E↓(k) must hold for all states.

20



2.6 Basis expansion of envelope functions

We solve the eight partial differential equations of the EFA SE by inserting a complete
basis function expansion in the directions where the structure is finite. When calculating
band structures and wave functions for the QW in Paper ii, we take only the z direction
to be finite. However, for our cylindrical systems (the nanowires) we assume that we have
translation invariance in the z-direction, and take our system to be finite in the x- and
y-directions.

The basis function expansion is truncated to yield a finite eigenvalue problem. We write
our wave function as an expansion

ψ(r) =
∑
mnl

Fn,l(ki)Um,n,l(r) (2.29)

where Fn,l(ki) is a smooth, continuos, function over the existing wave vectors ki (in the
directions where translational symmetry applies) andUm,n,l(r) is a complete set of orthogonal
basis functions over the whole structure. The indices {m, n, l} label the basis functions in
the finite directions of the problem. This means that for a nanowire with confinement in
two directions, only two indices are needed, and for a QW that is confined in one direction,
only one index is needed,

In principle any complete basis could be chosen to expand in. However, to be able to use as
few basis functions as possible one needs to choose a basis with functions that relatively well
describes the wave functions for the bands close to the band gap. Which type of functions
one should expand in hence depends on the spatial geometry of the problem. If a basis
that is not well-suited is used in the implementation, it can in practice be impossible to
converge the calculations.

For the QWs we use a plane wave basis expansion. For the cylindrical nanowires considered
in this thesis a basis of Bessel functions (i.e., the solutions to the SE in a cylindrical infinite
potential well)

Un,l(r) = Jn(αnl
r
R
)einθeikzz, (2.30)

is used. When we consider core-shell nanowires with an insulator core, we model them to
be hollow in the middle to avoid large computational costs, using the basis expansion

Un,l(r) =
2√
πr

sin

(
R− r
RC − R

lπ
)
einθeikzz. (2.31)

This is a complete basis and is chosen since it is an approximation of the solution to the
Bessel equation for a hollow cylinder for large r [37]. Furthermore, it is easily adaptable to
the Dirichlet boundary conditions that the wave function should vanish both at the inner
and the outer border of the system.
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2.7 Calculating the wave functions using the k · p method

Until this point, the focus has been on the energy dispersion obtained from solving the
eigenvalue problem of the k · p Hamiltonian. Since we are also interested in the wave
functions, some theory and some notation is presented here. This is done for the cylindrical
systems. Following Ref. [24], we write the total wave function in the Kane model as

Ψ(r) =

8∑
n=1

Un(r)ψn(r), (2.32)

with Un(r) as Bloch functions and ψn(r) envelope functions (where we take r → r, θ and
multiply with eikzz for a cylindrical structure such as a nanowire, assumed to be grown in the
z-direction). When the SE is rewritten as the k · p equation, the Bloch functions cancel,
so that our eigenvalue problem is just

Hψ(r) = Eψ(r), (2.33)

where H is the Kane Hamiltonian given by Eq. 2.11 and

ψ(r) = [ψ1(r) ψ2(r) ... ψ8(r)]
T . (2.34)

To solve these coupled differential equations we expand the envelope functions in radial
and angular basis functions, Rj,l(r) and Θj,l(θ), respectively, as

ψn(r) =

j=J,l=L∑
j=−J,l=1

Fn(j, l)Nj,lRj,l(r)Θj,l(θ), (2.35)

using the j- and l-dependent normalization constant Nj,l. We are here only considering
the special case of a cylindrical structure, infinite in z, the general expansion can found in
Ref. [24]. Solving the equations numerically will give us Fn(j, l) as the eigenvectors. To
obtain the X = 8 · ((2 · J + 1) + L) wave functions we must reassemble them from the
eigenvectors obtained from diagonalizing the Hamiltonian. For the wave function we find

Ψ(r, θ) =
8∑

n=1

ψn =
8∑

n=1

∑
j,l

Fn(j, l)Nj,lRj,l(r)Θj,l(θ), (2.36)

and correspondingly for the probability density ρ we find

ρ(r, θ) = |Ψ(r, θ)|2 =
8∑

n=1

|ψn|2 =
8∑

n=1

|
∑
j,l

Fn(j, l)Nj,lRj,l(r)Θj,l(θ)|2, (2.37)

where we have used that |Un(r)|2 = 1.
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Chapter 3

Topological insulators

In the last fifteen years or so, topological materials have gained a lot of attention. It is
a broad and theoretically vast and deep subject, that has attracted the interest of many
physicists, and we do not attempt to cover the whole subject here. In this chapter we
focus on quantum spin Hall (QSH) insulators, but it should be mentioned that other
topological systems exist, including e.g., the fractional, integer and anomalous Hall effects
and topological superconductors.

One of the most promising applications for topological materials lies within quantum in-
formation processing. For example, in topological superconductors topologically protected
states with non-abelian exchange statistics are one suggestion for realizing qubits [38].

3.1 Topological materials

Topological phases are non-local, meaning that they cannot be described by a local or-
der parameter [41]. Instead, the topological materials can be classified according to the
fundamental symmetries of time-reversal, particle-hole and chirality, together with their
dimensionality [39], see Table 3.1. This classification leads to ten different so-called sym-
metry classes, including all possible combinations of these three symmetries. For every
class and every specific dimensionality in the symmetry table there exists (or does not exist
for a topologically trivial system) a topological invariant n. The topological invariant is
an integer, n ∈ Z or n ∈ Z2, that can only change if the system undergoes a topologi-
cal phase transition. This is where the name “topological” in physics comes from, because
it has similarities with topological properties in mathematics. Topology in mathematics
describes objects that can be categorized by an integer alone, such as the number of holes
(one) in a donut. Here, we can label a physical system with an integer, that tells us in which
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Table 3.1: The Altland-Zirnbauer periodic table of topological materials. Ten symmetry classes are defined by their behavior
under time-reversal symmetry (eigenvalue T ), particle hole-symmetry (eigenvalue C) and chiral symmetry (eigenvalue
P = T C) in dimensions d. The table is periodic for d → d + 8. The symmetry classes marked with ‡ requires fine
tuning of the Hamiltonian, and is thus hard to realize in a real physical system. Adapted from references [39] and [40].

Symmetry
class T 2 C2 P d = 1 2 3 4 5 6 7 8
A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII‡ 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI‡ 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII‡ −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

topological phase we are in.

For certain topological phases there exist more or less exotic properties which are interesting
to study for many reasons, because (among other things) they are topologically protected.
This means that these properties cannot be affected by perturbations, but are instead robust
and can only be destroyed if the system undergoes a topological phase transition (or if one
of the three classifying symmetries are changed - then the system can change topological
class). For the topological insulators with topological invariant n ∈ Z2, the system can
be either in a topologically trivial phase (n = 0), or in a topologically non-trivial phase
(n = 1) . In the topologically trivial phase the system behaves as an ordinary insulator,
while in the topologically non-trivial phase topologically protected states at the end, edges
or surfaces are present.

3.1.1 Topological insulators with time-reversal symmetry

TheQSH insulators belong to symmetry class AII in Table 3.1 [40], meaning that they obey
time-reversal symmetry (with a time-reversal operator T that squares to T 2 = −1), but
not particle-hole, or chiral symmetry. A two-dimensional QSH insulator is an insulator
(or semiconductor) with additional spin-momentum-locked electronic states at its surface,
living inside the insulating bulk gap. These QSH edge states propagate without backscat-
tering, as long as no time-reversal breaking mechanism, such as magnetic impurities, are
present. There are also three-dimensional TIs in the AII symmetry class.

The bulk gap of a topological insulator in the topological phase is special, since it has in-
verted bands. Band inversion means that some CB-like bands are found below the band
gap, while some VB-like bands lie above the gap. We call such an inverted gap a hybridiza-
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Figure 3.1: Left: A confinement gap for a quantum well in the trivial regime. Right: A hybridization gap, for the same quantum
well, but in the topological phase.

(a) z

CdTe

HgTe

CdTe

(b) z

AlSb
InAs
GaSb
AlSb

Figure 3.2: The geometry of the (a) HgTe/CdTe QW and the (b) InAs/GaSb QW with AlSb barriers. By varying the thickness of
the HgTe middle layer in (a), the system can be tuned between a topological regime (w > wc) with inverted bands,
and a trivial regime (w < wc) with a normal band gap. Figure (b) adapted from Paper ii.

tion gap. In Fig. 3.1 we show such a hybridization gap, together with a normal confinement
gap.

In 2006 the authors of Ref. [42] showed that band inversion, via closing of the band gap,
can signal a topological phase transition. This implies that, as long as we do not break time-
reversal symmetry a topological insulator in the topological phase will stay in that nontrivial
phase as long as there is no closure of the bulk gap. This result can be used to greatly simplify
the analysis of TIs. We can compute the topological invariant and/or look for edge states
of the system in a limit where the complexity of the Hamiltonian has been greatly reduced
(e.g., by tuning parameters to zero), knowing that as long as this simplification of the system
does not imply any closing of the band gaps, all topological properties will remain intact.
Another approach is to introduce an effective low-energy Hamiltonian to study the states
around (and in) the bulk gap. This is done in the BHZ model [42].

3.2 Two-dimensional topological insulators

The two-dimensional TIs were first predicted to exist in graphene [43]. However, graphene
TIs have not been realized experimentally, due to the small energy gap in graphene resulting
from thematerial’s small SOC [42]. Instead it was QWsmade from layeredHgTe andCdTe
(see Fig. 3.2) that proved to be the first experimentally realizable TI [44]. These materials
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are made up from heavy atoms, with large SOC, leading to relatively large band gaps (in
comparison with graphene). It has been shown [11, 12] that also QWs made from InAs
and GaSb are TIs. While the gap size in HgTe/CdTe QWs can be tuned by changing the
thickness of HgTe in the QWs, the gap in the InAs/GaSb QWs can in addition be tuned
by a gate voltage [45]. This is of course a great advantage for practical purposes.

For a topological phase transition to take place in a TI, it is necessary for the band gap
to close and reopen. An effective model (later called the BHZ model) of the bands clos-
est to the band gap in a TI was proposed by Bernevig, Hughes and Zhang in Ref. [42].
This model can be derived from a multi-band k · p Hamiltonian [42, 33], or obtained as a
low-k approximation to a tight-binding model [42]. It is also possible to find the Hamilto-
nian using symmetry arguments only. The BHZ Hamiltonian usually takes its parameters
from fitting with k · p calculations [42, 33, 11]. Using their model,Bernevig, Hughes and
Zhang showed that the TI is in the topologically non-trivial phase when the CB and VB
are inverted (as long as the system still has an effective bulk band gap) [42]. In the trivial
phase the CB lies above the VB. By showing that the gap was not closed when tuning pa-
rameters to zero, hence simplifying the model, an analysis of the topological phase could
be performed for a simpler system than was modelled originally. In HgTe/CdTe the bulk
inversion asymmetry can be taken out of the calculations in this way [42].

One of the reasons that we are so interested in two-dimensional TIs is because they exhibit
the QSH effect. The QSH effect is similar to the quantum Hall effect, but requires no
external magnetic field. An ordinary quantum Hall system has edge modes propagating in
one direction on its edges, so that on a single edge a charge current is present. However, for
a QSH insulator, the edge states are spin polarized, so that particles with opposite spin are
counterpropagating. This is sometimes referred to as spin-momentum locking or helical
edge states. This means that, in contrast to the quantum Hall insulator, a single edge of the
QSH insulator carries no net charge current. The edge states are topologically protected,
in the sense that as long as time-reversal symmetry is not broken and we persist in the
topologically non-trivial phase, the edge states are robust against perturbations. This means
that non-magnetic impurities cannot cause backscattering of the edge states. However,
when magnetic impurities are present, time-reversal symmetry is broken, and the edge
states can be affected [46, 47].

3.2.1 The BHZ model

The BHZ model was originally proposed for HgTe/CdTe QWs, but has also been used
for GaSb/InAs QWs, see Fig. 3.2(a)-(b) [11]. We stress the difference between these two
systems; in the former the band inversion takes place in the HgTe, while in the latter the
electrons and the holes lives in different materials (in InAs and GaSb, respectively) and
it is then the full system that is the TI. It includes one CB and one VB, both Kramers
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degenerate, so that we will have a four band Hamiltonian [42]:

HBHZ =

(
H(k) 0
0 H∗(−k)

)
, (3.1)

with
H(k) = ε(k)σ0 +

∑
i=x,y,z

di(k)σi, (3.2)

d =

 Akx
−Aky

M− B(k2x + k2y )

 , (3.3)

and
ε(k) = C−D(k2x + k2y ). (3.4)

In Paper ii, when we model InAs/GaSb QWs, we also add a SIA term to the Hamiltonian
in Eq. 3.1. We include SIA terms up to third order in k:

HSIA =

(
0 H2×2

SIA
(H2×2

SIA )† 0

)
, (3.5)

where

H2×2
SIA =

(
−iR0k− −S0k2−
S0k2− iT0k3−

)
, (3.6)

and we have introduced k± = kx ± iky.

It is possible to diagonalize the full BHZ Hamiltonian analytically. The mass parameterM
changes sign at a critical width w = wc of HgTe, where the band gap closes, or in the more
general case, when a topological phase transition takes place. However, while we can use
this model to find the bulk properties for a two-dimensional system, we need to modify it
for a system finite in x or y, so that we can study the edges and the possible edge states.

The presence of topological edge states can in practice be deduced from two different ap-
proaches. The first way consists of employing a model of a finite system, i.e., with edges,
and study the energy spectrum together with the wave functions. The edge state reside
inside the bulk band gap, where each of the edge state bands has a different velocity di-
rection and are not Kramers degenerate. However, Kramers theorem is still not violated,
since E+(k) = E−(−k) holds for the Kramers partners E+ and E−. Possible edge states
must be tested for robustness to exclude the possibility of a non-topological origin. This
method is employed in Paper ii. The second approach is using the so-called bulk boundary
correspondence, where the presence of topological edge modes is deduced from the topo-
logical invariant Z2 calculated from the corresponding bulk system [48]. The Z2 invariant
ν is given by

ν = C mod 2, (3.7)
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where C is the Chern number. The Chern number can in turn be computed from the Berry
curvature, [49] and is related to a geometrical phase of the wave function [50], as well as to
the Hall conductance [42].

For aHgTe/CdTeQW,we can relate theQWwidthw forHgTe to the topological invariant.
When w < wc (w > wc) the invariant is ν = 0 (ν = 1), so that for w = wc the
system undergoes a topological phase transition. Furthermore, when w < wc the QSH
conductance is zero, while for w > wc it is finite. This implies that when the system is in
the inverted regime (CB below VB), so that ν = 1, it is in a non-trivial topological phase,
whereas for the normal band ordering when ν = 0 it is in the topologically trivial phase.
The reason that we can relate w to the topological invariant like this, is that the width of
the HgTe QW determines if the bands are inverted or not. For a InAs/GaSb QW, we must
know both the widths of the InAs layer and the GaSb layer to determine if we are in the
topological phase. This is because in this system, electrons from InAs and holes from GaSb
hybridize so that an inverted gap opens up.
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Chapter 4

Diffusive and ballistic transport

To analyze the electron transport through the core-shell nanowires, we calculate the con-
ductivity and the Seebeck coefficient for a nanowire subject to a voltage drop and a temper-
ature difference, see Fig. 4.1. The calculations are made in two different limits: the diffusive
limit, using the Boltzmann equation, and the ballistic limit. The reason for calculating the
transport in these two different limits is that even though nanowires are known to show
diffusive transport behavior, ballistic transport has been reported in shorter nanowire seg-
ments [51, 52, 53]. In this chapter we present the formalism of the methods, while the results
are discussed in Chapter 8.

4.1 Electronic transport and thermoelectrics in quasi-one-dimensional
systems

For a current density, J, we can write its contributions from an electrical bias V and a
temperature gradient ∇T as

J = −σ∇V− σT∇T (4.1)

Figure 4.1: Sketch of the transport setup for the core-shell nanowire. Figure adapted from Paper i.
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in a linear response regime. Here σ is the electrical conductivity (from an applied voltage),
and σT is the “thermoelectrical conductivity” (from a temperature difference). Equation
4.1 is similar to Ohm’s law, but has an extra term accounting for a charge current that arises
due to a temperature gradient. We can also express this in terms of a current I and the
conductances G and GT, as

I = GV+ GTΔT. (4.2)

We calculate the one-dimensional conductivities σ = Gl/A and σT = GTl/A separately,
where l is the nanowire length and A is its area, to be able to determine the Seebeck coeffi-
cient from

S =
σT
σ

=
GT

G
. (4.3)

The Seebeck coefficient is a measure of the thermoelectric properties of a system, or more
specifically,

Vth = SΔT, (4.4)

a proportionality constant for how the system relates a thermally induced voltage Vth in an
open-circuit configuration to a temperature difference.

The conductance is proportional to the conductivity,

G = σ
A
l
, (4.5)

scaled by the area A and the length l of the wire. In the diffusive limit we calculate the
conductivity, since this is the quantity corresponding to the conductance, that is not de-
pendent on A and l. However, in the ballistic limit the conductance is independent of l,
since we assume that there is no scattering in the nanowire. Since we do not want to as-
sume any specific wire length, we instead calculate G in the ballistic limit and compare to
σ calculated in the diffusive limit.

4.2 Diffusive limit

We want to derive an expression for J, similar to Eq. 4.1, from the Boltzmann equation.
Doing this, we are able to identify expressions for σ and S. In a semiclassical limit, we
can find the current density from the distribution function. The method is inspired by
Ref. [54], but we make no assumption about parabolicity of the bands, and we include all
bands from our k · p results in our calculations. We here derive the equations used, in a
similar manner to Ref. [55]. To obtain the distribution function, we solve the Boltzmann
equation in the linear response regime, using the relaxation time approximation (RTA). By
assuming a constant relaxation time, τ , for the time it takes for the electron distribution to
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relax, the integral part of the Boltzmann equation can be simplified, so that the equation
can be solved; this is what we refer to as the RTA.

In equilibrium, the distribution is given by the Fermi-Dirac distribution

f0(r,k) =
1

1+ e[E(r,k)−EF]/kBT
(4.6)

where E is the energy, EF is the Fermi level, r and k are real space and crystal momentum
coordinates, and kB is the Boltzmann constant. Close to equilibrium we can write the
distribution of electrons as a sum of the equilibrium distribution and a non-equilibrium
part δf,

f = f0 + δf. (4.7)

To find f we use the Boltzmann equation [56, 55]

df
dt

+ v · ∇rf+ F · 1
ℏ
∇kf =

df
dt

∣∣∣∣
coll
, (4.8)

with the velocity v = 1
ℏ∇kE(r,k) and the force F = ∇rE(r,k) . The left hand side

originates from the semiclassical equations of motion for the electrons, and the right hand
side is an integral that accounts for scattering processes. In the RTA this scattering integral
becomes

df
dt

∣∣∣∣
coll

= −δf
τf
. (4.9)

Furthermore we use the assumption that we are close to equilibrium by approximating
df
dt = 0, so that the Boltzmann equation becomes

v · ∇r(f0 + δf) + F · 1
ℏ
∇k(f0 + δf) = −δf

τf
. (4.10)

Now we assume that we are close to equilibrium, so that f0 ≫ δf and |∇r,kf0| ≫ |∇r,kδf|.
Based on these assumptions we make the approximation that we can remove small terms,
which gives us an equation for the out-of-equilibrium part of the distribution function,

v · ∇rf0 + F · 1
ℏ
∇kf0 = −δf

τf
, (4.11)

that we can use to find an expression for J. Since the equilibrium part of the distribution
function given by the Fermi-Dirac distribution in Eq. 4.6 is symmetric in k, it does not
contribute to the current. Hence we can find the desired transport properties from δf.

The total number of carriers is given as a sum over all possible momenta (states in the first
Brillouin zone), so that the average carrier density is

n(r, t) =
1
Ω

∑
k

f(r,k, t), (4.12)
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where we have introduced a small normalization volume Ω. The electron current density
is given by this sum, weighted with carrier velocity and charge (−e for the electron)

J(r, t) = − e
Ω

∑
k

v(k)f(r,k, t) (4.13)

We can here insert the expression for the distribution function given by Eq. 4.11 and com-
pare to the expression for the current density in Eq. 4.1 to find σ and S. To avoid summa-
tions, we go from sums to integrals in the standard way∑

k

g(k) → Ω
4π3

∫
g(k)d3k, (4.14)

or in one dimension ∑
k

→ L
2π

∫
dk. (4.15)

The integrals are carried out over the first Brillouin zone. We find the expressions for the
conductivities as

σ = 2e2
∫

v2(k)τ
(
−∂f(E,EF)

∂E

)
dk, (4.16)

and
σT = −2eT

∫
v2(k)τ(E− EF)

(
−∂f(E,EF)

∂E

)
dk. (4.17)

4.2.1 Inter- and intraband relaxation

In Paper i we have considered a case where no interband relaxation is possible, so that we can
treat each conducting channel separately. We here justify this approach, by showing that
by allowing all channels to scatter to every other channel, the resulting transport properties
will remain the same. Generalizing the conductivity so that we can allow for interband
relaxation, the conductivity in each band n (where n = 1, 2, . . . ,N), is given by

σ̄ =


σ1
σ2
...
σN

 =

∫
τ̄g(k)dk (4.18)
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where τ̄ is a matrix with relaxation times in and between bands, and

g(k) = 2e2


v21(k)

(
−∂f1

∂E

)
v22(k)

(
−∂f2

∂E

)
...

vN2 (k)
(
−∂fN

∂E

)

 . (4.19)

The total conductivity is given by a sum over the conductivities in all bands,

σtot =
∑
n

σn. (4.20)

We consider two cases; the first allows for intraband relaxation only, while the second one
allows for relaxation between all bands. When only intraband relaxation is allowed, the
relaxation matrix is given by τ̄ = τ1, so that the coupled equations in (4.18) become
uncoupled:

σintran =

∫
τgn(k)dk (4.21)

and our total conductivity is

σintratot =
∑
n

σintran =
∑
n

∫
τgn(k)dk. (4.22)

For the second case, we limit our analysis to a case where all bands relax to all other bands
with equal probability. We have our relaxation time matrix as

τ̄ = τN


1 1 . . . 1
1 1
...

. . .
1 1

 , (4.23)

leading to the conductivity

σintern =
∑
n′

∫
τNgn′(k)dk, (4.24)

and in total

σintertot =
∑
n

σintern =
∑
n

∑
n′

∫
τNgn′(k)dk = N

∑
n′

∫
τNgn′(k)dk, (4.25)

so if τN = τ/N we have that σintratot = σintertot .
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4.3 Ballistic limit

Following Ref. [5], we find the following expressions for the conductances, G andGT, from
a small applied voltage V and a small temperature difference ΔT, respectively:

G =
e2

2π

∫ ∞
−∞

(
−∂f(E,EF)

∂E

)
(v→(k)− v←(k))T(k)dk (4.26)

GT = − e
2π

∫ ∞
−∞

E− EF
T

(
−∂f(E,EF)

∂E

)
(v→(k)− v←(k))T(k)dk (4.27)

with v→ (v←) being the velocity of rightmoving (leftmoving) electrons, and T(k) = 1 the
scattering matrix (we assume that no scattering elements are present in the nanowire). Here
we have assumed that we have Kramers degeneracy, E↑(−k) = E↓(k), so that E(k)must be
even, and the first order term vanishes under the k-integral when expanding the integrand
in Taylor series in k.

4.4 Mott formula

An alternative way of calculating the Seebeck coefficient is using the Mott formula [57]. In
a low temperature limit, S can be approximated by

S =
π2

3
k2BT
e

d(lnσ(E))
dE

∣∣∣∣
E=EF

(4.28)

in the diffusive limit. Likewise, we can write down an approximate expression for the
Seebeck coefficient in the ballistic limit using the conductanceG instead of the conductivity
σ.

We compare the calculated conductivities and conductances, and the Seebeck coefficient
calculated in the diffusive and the ballistic limits. The results are discussed in Chapter 8.
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Chapter 5

Quantum dots

Quantum dots are (quasi-)zero-dimensional structures, confining electrons in all spatial di-
rections. Physically, they can be thought of as artificial atoms, in the sense that the electron
energy levels are quantized due to the confinement potential. QDs can be realized in many
different ways [58], but here we focus on QDs that are epitaxially grown between wurtzite
barriers in zincblende InAs nanowires. However, apart from epitaxial growth, QDs can be
realized in other ways, e.g., by applying gates to a two-dimensional electron gas to create
electron confining potentials.

In Papers iii and iv we study parallel DQDs and the evolution of the electron energy levels
under a magnetic field and one-electron level detuning. In contrast to the k · p model
employed in Papers i and ii, we need amany-bodyHamiltonian to describe theQD systems
in Papers iii and iv. Themain reason for this is that in the QDs we study, the energy scale of
the Coulomb interaction between electrons is relatively large and governs some of the most
important physical effects. We begin this chapter by briefly explaining the mechanisms of
a single QD in an electrical measurement setup. Our treatment follows the more detailed
discussions in Refs. [59, 60, 61].

5.1 Constant interaction model: Coulomb blockade

We consider a single QD, tunnel coupled to source and drain contacts, and capacitively
coupled to a gate, see Fig. 5.1. We are interested in probing the QD spectrum using trans-
port measurements, and from a theoretical point of view, to calculate the spectra of and
the transport through a QD. There are two main effects that are taken into account here:
the quantized energy levels of the QD and the Coulomb repulsion between the electrons
populating the QD. The simplest model for this is the constant interaction model. The
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Figure 5.1: Measurement setup for a quantum dot tunnel coupled to source and drain contacts, with applied voltage VSD, and
capacitively coupled to a gate voltage Vg.
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Figure 5.2: QD in Coulomb blockade (left) and transport (right) regime

total energy E(N) of the N electrons on the QD is given by

E(N) =
N∑
i=1

εi + Estat(N) (5.1)

where εi are the single-electron levels (including spin, so that ε1 = ε2 etc. when no mag-
netic field is present) and

Estat(N) =
eN2

2C
(5.2)

the electrostatic energy from all electrons in the QD. We define the single particle level
spacing between states i and i+ 1 as

Δi+1 = εi+1 − εi, (5.3)

and the chemical potential µN in the QD as the energy needed to add an Nth electron,

µN = E(N)− E(N− 1), (5.4)

given that the QD is already occupied byN−1 electrons. For a Kramers degenerate system,
note that Δi+1 = 0 for an even electron number i+ 1. The charging energy of the QD is
given byU = e

C , whereC = Cg+CS+CD is the self-capacitance of the QD, using the gate,
source, and drain capacitances defined in Fig. 5.1. The charging energy is determined by the
size of theQD (smaller QD implies largerU because of the increased Coulomb interaction).
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We assume in the rest of this chapter that both the temperature and the tunnel coupling
to the leads are small in comparison to the charging energy. Furthermore, we can write the
charging energy in terms of the electrostatic energy as

U = EC(N+ 1)− EC(N) (5.5)

where the difference EC in electrostatic energy is

EC(N) = Estat(N)− Estat(N− 1). (5.6)

With the use of equations 5.1,5.3, 5.4, 5.5, and 5.6 we can write the difference between two
chemical potentials as

µN − µN−1 = ΔN + U. (5.7)

The gate voltage will result in the addition of an additional term to the total energy in
Eq. 5.1 so that

E(N,Vg) =
N∑
i=1

εi + Estat(N)− |e|NαgVg. (5.8)

Here the lever arm αg = Cg/(CD + CS + Cg) is introduced. If we use this gate dependent
expression for the total energy to calculate the chemical potential in Eq. 5.4 we find that

µN(Vg) = µN(Vg = 0)− |e|αgVg, (5.9)

so that the chemical potentials can be tuned linearly with the gate.

The QD and lead systems can be in one of two regimes, either in a Coulomb blockade or a
transport regime, shown in Fig. 5.2, where transport can only take place if the QD chemical
potentials is aligned with the chemical potentials of the source and drain contacts. Note
that we here only tune the gate voltage, the bias voltage VSD is kept at a fixed small value.
The Coulomb blockade mechanism implies that if we measure the conductance through
the QD, while sweeping the gate voltage Vg, we will see peaks in the conductance. We
can write µN in terms of V(N)

g , the gate voltage for where I has its Nth peak, so that the
chemical potential (and eventually the single electron spectrum) can be deduced from this
measurement, using Eq. 5.9. The peaks appear when µS = µD = µN(V

(N)
g ) = µN(Vg =

0)− |e|αgV
(N)
g , so the difference between two peaks at V(N)

g and V(N+1)
g can be written as

V(N+1)
g − V(N)

g =
µN+1(Vg = 0)− µN(Vg = 0)

|e|αg
=

ΔN+1 + U
|e|αg

. (5.10)

For an external parameter, such as an applied magnetic field, we can see how the Vg position
of the peaks evolve with varying parameter strength. If the capacitances in the system and
the background charge are unchanged (this is usually a good approximation), V(N)

g is a
measure of how εN evolves with the external parameter. Hence we study the difference of
the peaks to find the QD spectrum.
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Figure 5.3: QD in transport (left) and Coulomb blockade (right) regime

5.1.1 Charge stability diagrams: Coulomb diamonds

We now lift the restriction on VSD that it should be very small (but we assume that VSD
is applied symmetrically to source and drain contacts). The transport through the QD is
then also affected by changes in VSD, which is usually tuned in experiments together with
Vg. The finite bias voltage results in a bias window where transport can take place, see
Fig. 5.3. In the Coulomb blockade regime there is no QD chemical potential in the bias
window (defined as µD − µS, marked with blue in Fig. 5.3), and the transport through
the system is blocked. However, the blockade can be lifted by tuning the gate voltage so
that a chemical potential is situated in the bias window. As long as there is a QD chemical
potential µN inside the bias window, transport can take place, and the electron number
fluctuates between N and N − 1, as in the last section. Similarly if there are M chemical
potentials in the bias window the electron number on the QD can fluctuate between N
and N−M.

The transport through the QD, now affected by two quantities, is often understood in
terms of charge stability diagrams. The system is subject to sweeping of both the gate
voltage and the bias voltage, and the resulting current I, or more commonly, the differential
conductance dI/dVSD is plotted as a function of both voltages in a two-dimensional plot.
Wewill here give the very basics of the charge stability diagrams for singleQDs, that exhibits
the typical Coulomb diamonds, necessary to understand the results of Papers iii and iv.

Figure 5.4 shows a sketch of a typical charge stability diagram for a single QD. The trans-
port processes are clearly visible as lines in dI/dVSD, since at these lines the current changes.
Inside the lines (white areas), around VSD = 0, in the larger diamond-shaped areas, the
system is in Coulomb blockade, and no transport can take place. The fully depleted sys-
tem (N = 0) is shown by a large non-closed structure at low gate voltage. When Vg is
increased, more electrons can populate the QD. For odd occupation number N, the dia-
monds are smaller, since it is close in energy to add the one-electron Kramers partner to the
last occupied one-electron energy level, compared to the Coulomb repulsion energy inside
the QD. This can be seen from

µN+1 − µN = ΔN+1 + U =

{
U, N odd

ϵN+1 − ϵN + U, N even
(5.11)

38



Vg

VSD

0 N = 0 N = 1 N = 2 N = 3

E
F

G
A B

C

D

A

µS
µ1 µD

B

µS
µ2

µ1
µD

C

µS
µ2

µ1 µD

D

µS
µ2 µD

E

µS µ2

µ1,02

µD

F
µS

µ0,13

µ2
µD

Figure 5.4: Above: Coulomb diamonds for N electrons in the quantum dot. Below: Sketch of the chemical potentials at the
marked points in the charge stability diagram

where we have used Eq. 5.7, together with the fact that Δi+1 = 0 for an even i+ 1. For an
even occupation number, the diamonds are larger, since it is not only Coulomb blockade
that suppresses transport, but also the fact that the electron needs a higher energy to go to
the next single-electron level (since two spins occupy a spin-degenerate level).

As an example we, discuss the N = 1 diamond (for VSD ≥ 0). At the lines enclosing it
towards lower gate voltages, the energy level µ1 aligns with µD (marked A in Fig. 5.4), while
the line towards higher Vg corresponds to when µ2 = µS (marked B). Where these lines
intersect (C) both µ1 and µ2 enters the transport window, i.e., µ1 = µD and µ2 = µS.
This means that above this point, in the green shaded area in the sketch, two-electrons can
occupy the QD, and the occupancy can fluctuate between N = 0, 1 and 2. Where the
N = 1 and N = 2 diamonds meet (D) we have that µ2 = µD = µS, so transport is
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not forbidden. In the regime between point D and the green two-electron area above C,
marked in blue, one level is situated in the bias window, so that one or zero electrons can
populate the QD, and tunneling in and out from the QD is possible.

5.1.2 Excited states

Apart from the ground state transition lines that enclose the Coulomb blockade diamonds,
it is also possible to see transport involving excited states in the QD, when the bias voltage
becomes larger than the one-particle level spacing: eVSD > ΔN+1 [60, 59]. It is interesting
to study the excited state transition lines, since their spacing (or the spacing between them
and the lines from ground state transitions) gives us the single particle level spacing (in
a similar manner as in Eq. 5.10). We use the definition µn,mN = En(N) − Em(N − 1)
for a transition to and/or from an excited state, where En(N) is the (energy of the) nth
excited N state (and Em(N − 1) is the mth excited N − 1 state). We define µn,0N so that
µn,0N > µ0,0N = µN for all n > 0.

An example of an excited state line can be seen at mark E in Fig. 5.4, where an excited energy
level for N = 2 enters the bias window, so that the QD goes from the N = 1 ground state
to an excited N = 2 state. This line lies in a regime where transport is already permitted,
and N fluctuates between N = 1 and N = 2 (µ2 enters the bias window at mark B and
leaves it at G). However, such an excited state cannot contribute to transport “on its own”
in the bias window; if µN leaves the bias window, so does all µ1,0N , µ2,0N ... etc. This is because
we define the excited state as µ1,0N = E1N − E0N−1, where E

1
N is the first excited N-electron

state. This means that when µN < µD, there can be no Nth electron in the QD, and the
excited state cannot contribute to transport anymore.

It is also possible to go from an excited N state, to a ground state or to an excited state
with N − 1 electrons. Such a transition line can be seen at mark F in Fig. 5.4 for N = 3.
This line appears when transport from an excited N = 2 state to the N = 3 ground state
becomes possible, i.e., when µ0,13 enters the bias window. For transitions that start from
an excited state relaxation times become important. If the relaxation times are very short
these transitions will not be visible.
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Chapter 6

Parallel double quantum dots

Papers iii and iv both treat electron transport through a parallel DQD.The main idea is to
probe the spin states in the DQD in a transport measurement setup. This project is done
in the framework of an experimental collaboration, but we here focus mainly on the theory
part of the project.

6.1 Parallel and serial quantum dots

DQDs can be connected either in serial or in parallel in a measurement setup. In serial
DQDs transport through the system can take place only when both chemical potentials in
theQDs are aligned. It is also possible to go via excited states, leading to triangular windows
in the gate and bias voltages where transport can be studied. In such a configuration a
leakage current can flow in the spin blockade regime, because of spin relaxation [62, 63,
64, 65, 66]. However, for parallel DQDs there is no similar blockade mechanism of the
transport; electrons can tunnel through either of the QDs irrespective of the existence of
an aligned level in the other QD. Instead it is possible to directly probe the spin transitions
using tunnel spectroscopy via electrical measurements.

TheDQDwe study is made from epitaxially defined single QDs in InAs nanowires, subject
to side gates that create two electron pockets, or a DQD, inside the disc-shaped single QD,
see Fig. 6.1. Using source and drain contacts at the ends of the wire (or, anywhere on the
wire outside theQD), theDQDwill be electrically contacted in parallel in themeasurement
setup. The DQD can be fully depleted and we can tune the interdot coupling using the
side gates. Furthermore, we can detune the one-electron energy levels in each of the QDs
without blocking the transport, something that is not possible in serial DQDs, which gives
better possibilities for spectroscopy of the system.
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(a)

(b)

VL(+) QD QD VR(+)

B

Figure 6.1: Sketches showing (a) epitaxially defined single quantum dot in the InAs nanowire and (b) the formation of the DQD
using sidegates on the epitaxially defined QD. Figure (a) adapted from Paper iv.

Many earlier works on parallel DQDs where performed using GaAs [67, 68, 69, 70] which
has a small g-factor (compared to that of InAs) , so that the spin splitting cannot be resolved
if B is not very large. In InAs DQDs the hyperfine interaction is small (compared to that in
GaAs) [63, 64], so that we can find the coupling strength due to SOC between singlet and
triplet states from the magnitude of the anticrossing of the states under a magnetic field
(approximating the hyperfine coupling to be zero).

The model we use to reproduce the experimental results consists of a simple few-electron
Hamiltonian with a single electron energy level on each QD, including exchange energy,
SOC and the Zeeman effect. In the next section we present the Hamiltonian used to
calculate the energies of the isolated DQD system. The resulting spectrum is used as input
to a master equation, presented in Chapter 7. In the rest of this chapter we discuss some
results from Papers iii and iv.

6.2 Model

The DQD is modeled using a few-electron Hamiltonian with one single-electron energy
level on each QD, similar to the model used in Ref. [71]. The use of such a simple model
is motivated by the good match of the theoretical and the experimental results in Papers iii
and iv. We assume that the one-electron energy levels are unaffected by the number N of
electrons populating the QDs. The Hamiltonian is given by

H = H0 +HSO +HB (6.1)
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with

H0 =
∑
i=1,2
σ=↑,↓

ϵic
†
iσciσ −

∑
i,j=1,2
i̸=j

σ=↑,↓

tc†iσcjσ

+
∑
i,j=1,2
i ̸=j

σ,σ′=↑,↓

[
Uii

2
δσ ̸=σ′c†iσc

†
iσ′ciσ′ciσ +

Uij

2
c†iσc
†
jσ′cjσ′ciσ − Vx

2
c†iσc
†
jσ′cjσciσ′

]
,

(6.2)

HSO =
∑
i,j=1,2
i̸=j

(−1)iitSO(−c†i↑cj↑ + c†i↓cj↓), (6.3)

and
HB =

∑
i=1,2

B
2

[
cos θ(c†i↑ci↑ − c†i↓ci↓) + sin θ(c†i↑ci↓ + c†i↓ci↑)

]
, (6.4)

where ϵi is the one-electron energy on QD i,Uii andUij the intradot and interdot charging
energies, respectively, and Vx the value of the exchange integral. The spin-orbit coupling
parameter tSO is assumed to be linear in t so that tSO = αt, since it accounts for a tunneling
process and a spin flip. The magnetic field term B in the Hamiltonian is assumed to be
the same on the two QDs, and is related to the applied magnetic field Bext through the
effective g-factor |g∗| and the Bohr magneton µB as B = µB|g∗|Bext, where Bext = |Bext|.
We assume that |g∗| is unchanged during themeasurements. The quantization axis is chosen
along the SO field direction (alongBSO). The angle betweenBSO andBext [72] is set to
θ = π/2. We do not include any hyperfine interaction in themodel, since it is small [63, 64]
and the experimental data could be well-reproduced without it.

6.3 One- and two-electron states

The one-electron energy levels can be adjusted using the sidegates VL and VR according to

ϵL = αLLVL + αRLVR

ϵR = αLRVL + αRRVR
(6.5)

where the lever arms αij accounts for how much gate Vi affects ϵj. However, we use a
detuning parameter Δ to model the detuning, defined so that ϵ2 − ϵ1 = Δ. Irrespective of
the detuning, the one-electron eigenstates can be considered in a weak or a strong coupling
regime, shown for the one-electron states in Fig. 6.2. If the coupling between the QDs is
weak (t → 0), the eigenstates are given by the doublet states D(↑, 0) and D(0, ↓). These
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EB = ϵ− t
2t

Figure 6.2: One electron states in a weak coupling regime (left) and a strong coupling regime (right). In the weak coupling
regime E = ϵ1 = ϵ2, while in the strong coupling regime the tunneling coupling splits the degenerate energies into
bonding and anti-bonding states. In the left panel we have indicated the doublet state D(↑, 0).

ϵ2ϵ1 ϵ1
ϵ2

Δ

Figure 6.3: Detuning between the single electron energy levels in the quantum dots. The two-electron ground state changes
when detuning the one electron levels. When the detuning becomes strong enough to overcome the Coulomb
repulsion, the S(2,0) becomes the ground state.

states are pairwise degenerate for a finite level detuning and zero magnetic field. In a regime
where the coupling is large, the ground states are instead given by bonding (B(↑), B(↓))
and anti-bonding states (AB(↑), AB(↓)).

When two electrons occupy the DQD the eigenstates are given by singlet (S) and triplet
(T) states. Figure 6.3 shows how the two-particle states evolve under detuning of the one-
electron levels (but under a zero magnetic field B = 0). For the two-electron occupation
we define the exchange energy as

J = E(S(1, 1))− E(T(1, 1)), (6.6)

where the energies are for B = 0. This implies that J will increase with t. Note that
although Vx is related to the singlet triplet separation J, they are not the same quantity. If
the one-electron levels are aligned (so that Δ = 0) and B = 0, the singlet state S(1, 1)
with one electron in each QD is the ground state for J < 0 (if J > 0, the triplet state
T(1, 1) is the ground state). The excited singlet states S(2, 0) and S(0, 2) are (very) high
in energy compared to the ground state and the three-fold degenerate triplet state T(1, 1).
Under detuning the S(2, 0) (or S(0, 2)) state will become the ground state when Δ is large
enough.

Under a magnetic field the triplet states will split into T+(1, 1) (lowest in energy), T0(1, 1)
and T−(1, 1). For a critical value of the magnetic field the lowest lying triplet state will
anticross with the singlet ground state, so that a ground state transition takes place. A
similar transition takes place between the triplet state T+(1, 1) and the singlet state S(2, 0)
when increasing the detuning strength (under a finite magnetic field).
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Figure 6.4: Honeycomb charge stability diagram for the double quantum dot. Figure adapted from Paper iii.

6.4 Charge stability diagrams for the DQD

Honeycomb charge stability diagrams are a way to visualize the current data from a parallel
DQD experiment, similar to the Coulomb diamonds mentioned in Chapter 5, but show-
ing the current I as a function of both side gates. An example is given in Fig. 6.4, taken
from Paper iii. In a similar way to the Coulomb diamonds we can see when the system is
subject to Coulomb blockade and when there is transport through the system. The differ-
ent blockade regimes are labeled (NL,NR) for when there is occupancy NL and NR in the
left and the right QD, respectively.

To gain more information about a specific transition between two DQD states, we can
again study Coulomb diamonds, but plotted against a voltage vector VL,R instead of the
gate voltage, typically taken as the red arrow in Fig. 6.4, so that we go as straight as possible
from one electron configuration to another. The simplest way to choose this vector is of
course VL,R = 1√

2
(VL + VR). However, in practice there are lever arms coupling the gate

voltages to the system differently, that have to be taken into account. The voltage vector
quantity VL,R can effectively be seen as a gate voltage applied to both QDs in our system,
since it leaves the interdot tunnel coupling t approximately constant, while tuning the single
electron energy levels in each QD.
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Chapter 7

Transport through the double
quantum dot

For the few-body Hamiltonian used to describe the DQD in Papers iii and iv we need to
employ a different transport method than the ones described in Chapter 4. This is because
we now consider transport through many-body quantum states in the QD, which a one-
electron transport model fails to describe. We wish to calculate the current through the
DQD system, and hence the current through the nanowire. This is achieved by using a
master equation solved for the non-equilibrium populations, derived using a lowest order
perturbation expansion in the tunnel couplings between the DQDs and the source/drain
contacts. The transport model is used together with the calculated energies from theHamil-
tonian for the DQD system, given in equation 6.1. In this chapter we first introduce the
Hamiltonian for the full system, containing both the DQD and the source and drain con-
tacts. In the following section we present a general introduction to the master equation
formalism. For a detailed discussion, see e.g., Refs. [73, 74]. In the following sections we
present the transport equations we solve to calculate the current for Papers iii and iv.

7.1 Hamiltonian for the full system

The Hamiltonian for the full system, including the DQD and the source and drain leads
is given by

Htot = H+HR +HT (7.1)

where H is the DQD Hamiltonian (Eq. 6.1), assumed to be diagonalized for the many-
body eigenstates {|a⟩} in the DQD, so that H =

∑
a Ea |a⟩⟨a|. The probability for the

DQD to be in state |a⟩ is given by Pa. The source and drain contacts are considered in
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the reservoir Hamiltonian HR =
∑

rHr, where the reservoir index in this case is given by
r = S,D (but this can easily be generalized to a system with arbitrarily many reservoirs).
The source and drain leads are modeled by

Hr =
∑
σk

Erσkc
†
rσkcrσk, (7.2)

where c†rσk (crσk) creates (annihilates) an electron in the lead r with energy Erσk and spin
polarization σ. We assume that electron distributions in the reservoirs r can be described
by Fermi functions

fr(E− µr) =
1

1+ e(E−µr)/kBT
, (7.3)

and that they are so large that the chemical potential µr is fixed and their physical properties
can be assumed to be unaffected by adding or removing an electron. This means that the
densities in the leads are the same for all times. The tunneling between the DQD and the
leads is described by

HT =
∑
rσkN

∑
a′∈N
a∈N−1

(
Ta′a
rσ
∣∣a′ ⟩⟨a| crσk + (Taa′

rσ )
∗ |a⟩⟨a′

∣∣ c†rσk) , (7.4)

where we have introduced the transition matrix Taa′
rσ . The elements of Taa′

rσ are calculated
according to

Taa′
rσ =

∑
d=1,2

trtd⟨a′
∣∣ d†dσ |a⟩+ h.c. (7.5)

using the coupling parameters t1, t2, tS and tD for the separate QDs and for the source and
drain, respectively. The operator d†dσ (ddσ) creates (annihilates) an electron in dot d with
spin σ.

The spin index σ sees to that the process is allowed (spin is a good quantum number and is
conserved outside the DQD). The transition probabilities taa′ between states |a⟩ and |a′ ⟩
is found from solving for the isolated DQD system.

7.2 The master equation

The main idea of the master equation approach, is that we are mainly interested in some
small system (in our case the DQD) coupled to a number of reservoirs (such as the source
and drain contacts). We are mainly interested in the small system, and want to find an
equation for its density operator. In short, a density operator ρ(τ) (at time τ ) for a mixed
ensemble can be defined as

ρ(τ) =
∑
a

pa |Ψa(τ)⟩⟨Ψa(τ)| (7.6)
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with probabilities pa to be in the states |Ψa(τ)⟩. Here we consider ρ(τ) to be the density
operator for the full system, including the DQD and the source and drain contacts. The
master equation is an equation for the time evolution of the density operator and can be
derived from the von Neumann equation

dρ(τ)
dτ

= − i
ℏ
[Htot, ρ(τ)] (7.7)

where we have introduced the Hamiltonian of the full system Htot . We integrate the
equation of motion from some initial time τ0 to τ and take the trace of the density operator
over the reservoir states to find an equation for the reduced density operator ρS(τ) =
trR{ρ(τ)}, since the physical properties we are interested in are contained in this reduced
density operator for the small system. The resulting equation is the master equation. The
master equation is given in general form like

d
dτ
ρS(τ) =

∫
dτ ′W(τ − τ ′)ρ(τ ′) (7.8)

where W is some problem-dependent kernel dependent on Htot. The master equation is
typically solved under a number of approximations, suitable for the system. We consider
one of the simplest cases, a rate equation.

The density operator is considered to be independent of time, since we want to solve for
a stationary state, so it can be taken out of the integral in Eq. 7.8. In addition, we do not
consider any coherences (non-diagonal elements in the density matrix), which is a good
approximation in the limit where the interdot coupling τ is very large. However, if τ would
become very small this would be violated, and we would need to have a more sophisticated
model, allowing for coherent states. The fact that we don not take coherences into account
results in a density matrix for the DQD that can be chosen to be diagonal (in the same
basis) for all times τ .

7.3 Rate equation

Because our density matrix is approximated as a diagonal matrix, we simply write it as
a vector P = diag(P), containing the probabilities Pa(τ) = ⟨a| ρS(τ) |a⟩ for the many-
body eigenstates {|a⟩} in our DQD.Themaster equation for the DQD can then be written
on the form [75, 76]

dP
dτ

= MP, (7.9)

where the matrix M contains all possible transitions in the full system. We are interested
in the stationary solution dP

dτ = 0.
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For a given state |a′ ⟩ with Na′ = Na + 1 and Na′′ = Na′ + 1, an explicit version of the
rate equation can be written down as

dPa′
dτ

=
∑
r

[∑
a

Γr
a′a
(
fr,a′aPa − f̄r,a′aPa′

)
+
∑
a′′

Γr
a′′a′
(̄
fr,a′′a′Pa′′ − fr,a′′a′Pa′

)
+ Ra′

]
,

(7.10)

where the shorthand notations fr,a′a = fr(Ea′ −Ea− µr) and f̄r,a′a = 1− fr(Ea′ −Ea− µr)
have been introduced. The tunnel rates Γr

aa′ for taking the DQD from state a′ to a by
tunneling to/from reservoir r are found from the Fermi golden rule [77]

Γr
aa′ =

2π
ℏ
∑
kσ

|Taa′
rσ |2δ(Ea − Ea′ − Ek). (7.11)

Here energy conservation is assumed, meaning that only first order processes are allowed.
The term Ra′ accounts for relation within the DQD. It is given by

Ra′ =
∑
a′X

(
γa′Xa′Pa′X − γa′a′XPa′

)
(7.12)

with the summation over all states {|a′X ⟩} that has the same number of electrons as |a′ ⟩,
and relaxation rates γa′a′x ,

γaaX =

{
Trelax
aaX , EaX < Ea

Trelax
aaX e−(EaX−Ea)/kBT, EaX ≥ Ea

(7.13)

where we have introduced the relaxation matrix Trelax. The relaxation matrix Trelax can
be seen as an analogue to the transition matrix for the tunneling, and can in principle be
defined through a relaxationHamiltonian. However, in Papers iii and iv Trelax is set to zero.
Relaxation rates with constant relaxation times for all states have been used when analyzing
the results (e.g., to see which conductance lines are from transitions starting from excited
states).

To solve Eq. 7.9 we impose the boundary condition tr{ρS} = 1, i.e.,
∑

a Pa = 1. We then
use the calculated probabilities to obtain the current in Section 7.4.

7.4 Current through the system

We wish to obtain the current through the small system, defined as the current Ir(τ) into
(or out from) one the reservoirs:

Ir(τ) = trtot Îrρ(τ) (7.14)
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where the trace is taken over the full system. The current operator Îr is defined as

Îr = − d
dτ

Nr = −i[HT,Nr], (7.15)

where the number operators in the reservoirs are given by Nr =
∑

σk c
†
rσkcrσk.

Using tunnel rates Γ, we can then calculate the current in reservoir r from

Ir =
∑
a,a′

[
PaΓr

a′afr(Ea′ − Ea − µr)− Pa′Γr
aa′
(
1− fr(Ea − Ea′ − µr)

)]
(7.16)

which is the same as the total current through the system.
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Part II

Main results of the research papers
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Chapter 8

Results and discussion about Paper i

In Paper i we calculated band structures for InAs/GaSb andGaSb/InAs core-shell nanowires,
using the Kane model introduced in Chapter 2. We focused on thicker nanowires than
those that have been studied before, since they are easier to grow. In addition to the band
structure calculations, we use the obtained energies as input to the transport equations in
Chapter 4. This is done to investigate if the interesting band features can be seen from elec-
tric and thermoelectric transport properties, that are studied as a function of the chemical
potential.

The band structures show that both InAs/GaSb and GaSb/InAs core shell nanowires ex-
hibit a large hybridization of electron like and hole like states, and that by changing the
shell thickness of the core-shell nanowires, the system can be tuned from metallic to insu-
lating. In addition, for the case of nanowires with GaSb cores and InAs shells, the band
structures exhibit a closing, reopening and reclosing of the band gap when increasing the
shell thickness. Our transport calculations, together with the calculated band structures,
show that it is possible to find some of the most interesting band structure features by
performing thermoelectric measurements of the Seebeck coefficient as a function of gate
voltage.

8.1 Band structures

The band structures of the core-shell nanowires are affected by two geometric properties:
the core radius and the shell thickness. In Paper i we have limited our analysis to core-shell
nanowires with a core radius RC = 20 nm. Apart from the fact that we are interested in
nanowires that can be grown and characterized experimentally, and that other theoretical
studies have focused mostly on thinner wires, the reason for this is that we want to keep
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(a) (b)

(c) (d)

Figure 8.1: Calculated band structures for a nanowire with a GaSb core with radius RC = 20 nm, and an InAs shell with shell
thickness (a) tS = 8.5 nm, (b) tS = 7.8 nm, (c) tS = 7.62 nm, and (d) tS = 7.5 nm. Figure adapted from Paper i.

some parameter fixed. Alternatively, one could keep the total radius (or even the shell
thickness) fixed, and perform a similar analysis to the one presented in Paper i.

In Paper i we study nanowires both with GaSb and InAs cores, with InAs and GaSb shells,
respectively. In both cases we show that by decreasing the shell thickness, the band structure
can be tuned from gapless to gapped, i.e., a band gap opens up. In Fig. 8.1 we show the
resulting bands presented in Paper i for the case with a GaSb core and an InAs shell. In
Fig. 8.1(a) the system is metallic, in Fig. 8.1(b) a hybridization gap opens up, which then
closes when the shell thickness is decreased further in Fig. 8.1(c), and in Fig. 8.1(d) a gap
reopens. For nanowires with InAs cores and GaSb shells the closing and reopening of the
gap is not present (cf. Fig. 3 in Paper i).

To be able to put our results in a larger context we also carry out calculations on thinner
and thicker nanowires (smaller and larger core radii) than those presented in Paper i. For
thinner GaSb/InAs nanowires a larger hybridization gap is found (in agreement with e.g.,
Ref [35]); an example of this can be seen in the left panel Fig. 8.2. For InAs/GaSb core-shell
nanowires we find that a hybridization gap indeed exists for nanowires with thinner core
radii, consistent with Ref. [35]. An example of such a case is shown in the right panel of
Fig. 8.2.
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Figure 8.2: Left: Band structure for a GaSb/InAs core-shell nanowire with a core radius of RC = 10 nm and shell thickness
ts = 8.2 nm. The hybridization gap is 2.5 meV. Right: Band structure for an InAs/GaSb core-shell nanowire with a
core radius of RC = 9 nm and shell thickness ts = 3.7 nm. Parameters as in Paper i.

GaSb/InAs	Rc=20nm	ts	=	7.8	nm	
T	=	1K	(as	in	paper)	
T	=	0.5	K	(ref.	response)	
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Figure 8.3: Left: Conductivities and conductances as a function of Fermi level (that can be controlled by a gate voltage) for a
GaSb/InAs core-shell nanowire with RC = 20 nm and ts = 7.8 nm, corresponding to the band structure in Fig. 8.1
for T = 1 K (upper panel) and T = 0.5 K (lower panel). Right: The corresponding Seebeck coefficients. Figure
adapted from Paper i.

8.2 Transport results

For both nanowire types, we used the band structures as input to calculate the conductivity,
the conductance and the Seebeck coefficient in the diffusive and ballistic limits discussed
in Chapter 4. The transport properties are calculated as a function of EF, a quantity which
can be controlled by a gate voltage. In both cases, we see that the conductivity (calculated
in the diffusive limit) and the conductance (calculated in the ballistic limit) are similar (see
upper panel of Fig. 8.3 for an example, or see Fig. 4 and Fig. 5 in Paper i for full results).
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Figure 8.4: Left: The Seebeck coefficient as a function of Fermi level (that can be controlled by a gate voltage) calculated from
the Mott formula (red) in the diffusive limit, and from Eqs. 4.16--4.17 for a GaSb/InAs core-shell nanowire with a
core radius of RC = 20 nm and shell thickness ts = 7.8 nm. Right: The Seebeck coefficient calculated, for the same
nanowire, from the Mott formula (red) in the ballistic limit, and from Eqs. 4.26--4.27. Parameters as in Paper i.

This is also the case for the calculated Seebeck coefficient in the two limits. We see that the
conductivity and the conductance drops to zero when EF lies in a band gap, hence we can
distinguish between the gapped and the metallic systems from studying these quantities.

The Seebeck coefficient is more interesting to study, since its sign reveals the charge of
the carriers dominating transport (negative for electrons and positive for holes). For the
nanowires with GaSb core and InAs shell we see that this feature can be used to distinguish
between the hybridization gap and the confinement gap in Fig. 8.1(b) and Fig. 8.1(d), re-
spectively. For any gapped system the Seebeck coefficient as a function of EF always has
a large positive peak followed by a larger negative peak around the band gap. When we
have a hybridization gap the Seebeck coefficient exhibits a negative peak, in energy just
below the large positive peak, see right panel of Fig. 8.3. When there is no gap in the band
structure, it is possible to see where the CB ends from the calculated Seebeck coefficient.
This is signaled by the in energy lowest lying negative peak; see Fig. 5(f ) in Paper i.

For the transport calculations we used a temperature of T = 1 K in Paper i. This temper-
ature is low enough to resolve the interesting features, which are further enhanced at even
lower temperatures (cf. Fig. 8.3). Another reason for not using a lower temperature is that
the calculations of transport properties become significantly heavier.

In Fig. 8.4 we show an example of the Seebeck coefficient calculated from theMott formula
compared to the Seebeck coefficient calculated from Eqs. 4.16–4.17 and 4.26–4.27. We find
that the Seebeck coefficient calculated from the Mott formula is very similar to the Seebeck
coefficient calculated as in Chapter 4 in the two separate limits.
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Chapter 9

Results and discussion about Paper ii

We know from previous works that a two-dimensional QW of InAs/GaSb is a TI [11, 12]. It
belongs to the symmetry class AII [40], which is characterized by the topological invariant
Z2 in two dimensions, while being topologically trivial in one dimension, see Table 3.1 in
Chapter 3. However, the quasi-one-dimensional nanowire is not a strictly one-dimensional
system; one could consider the rotational symmetry around the growth axis and assign a
k-index in the angular direction, even though such index can take only quantized values.

Exploiting the geometry of a core-core-shell nanowire, it is possible to look for topological
properties in such a system. We consider a thought deformation from a two-dimensional
sheet, that is “rolled-up” into a hollow core-shell-shell nanowire with a hole through its
center axis, see Fig. 9.1. Such a core-shell-shell nanowire could in principle be grown with
the techniques available today.

Figure 9.1: Left: The modeled quantum well (here depicted without AlSb barriers). The pure two-dimensional system corre-
sponds to taking Lx, Ly → ∞. Middle: The quantum well is thought of as being rolled-up. Right: The rolled-up
system has periodic boundary conditions in x. It is similar to a core-shell nanowire, but has an empty core and two
shells made of different materials.
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Figure 9.2: Band structures for a quantum well calculated using (a) the Kane model and (b) the BHZ model, shown for kx = 0.
The material layer thicknesses are given by tInAs = 11 nm, tGaSb = 5 nm, and tAlSb = 14 nm. The parameters for
the BHZ model can be found in Table 9.1. (c) Quantum well gap size plotted on a color scale, as a function of
InAs and GaSb layer thicknesses. Here kx = 0. The maximum value of the colormap is set to 5 meV, so that all
values Eg ≥ 5 meV will be the same color. Here AlSb barriers of tAlSb = 10 nm are used. Parameters for the k · p
calculations taken from Ref. [36].

In Paper ii we study hollow InAs/GaSb core-shell-shell nanowires and make comparisons
to InAs/GaSb QWs. The QW system is known for exhibiting the quantum spin hall effect
in the topological phase. We show that the hybridization gap persists in the core-shell-
shell system, and that if the nanowires are made finite in the growth direction the system
hosts edge (or end) states at the ends of the wire. However, these end states are two-fold
degenerate in each Kramers sector, and are not robust against disorder applied in the axial
direction of the nanowire.

The band structures for the QWs and the core-shell-shell nanowires are calculated using the
Kane model introduced in Chapter 2. A BHZ model, as presented in Chapter 3, is then
used to reproduce the band structures, so that we find suitable parameters to use in further
BHZ calculations. These calculations are used to study a finite nanowire system, and used
together with a tight-binding scheme to study the effects of disorder, both in the radial and
in the axial directions.

In this chapter we focus on the k · p calculations of the QWs and the core-shell-shell
nanowires related to the results of Paper ii. However, we make a few comparisons to results
from BHZ calculations.

We start by modeling a QW with infinite extension in the x- and y-directions, so that
Lx, Ly → ∞ in Fig. 9.1. We discuss problems with spurious solutions in the k · p calcu-
lations for QWs, and how to avoid these. Then we turn to k · p calculations for a corre-
sponding core-shell-shell nanowire, and show resulting band structures and wave functions.
We end this chapter with a short discussion of the results from BHZ calculations of a finite
core-shell-shell nanowire.
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Figure 9.3: Band structure from the BHZ calculations of a QW with open boundary conditions in the y-direction showing the
system in the topological regime, with mid-gap edge states. The parameters for the BHZ model can be found in
Table 9.1.

9.1 InAs/GaAs quantum well

We start by analyzing k · p calculations of an InAs/GaSb QW. This system has been mod-
eled before [36, 11, 28], so it is a good starting point for testing parameters and convergence.
In our calculations in this chapter the commonly occurring parameter set, introduced in
Ref. [36], for InAs/GaSb is used (referred to as the Halvorsen parameter set). The reason
for using a different parameter set than in Paper i, is that we want to be able to compare
to the calculations of the QW band structures with those from other groups. However, in
Paper i we also chose parameter set so that our calculations could be compared to results
from previous works [35, 78].

In Fig. 9.2(a) we show band structures for a QW with InAs and GaSb sandwiched in be-
tween AlSb barriers. The thicknesses of the layers are given by tInAs = 11 nm, tGaSb = 5 nm
and tAlSb = 14 nm, chosen so that we are in a regime with a hybridization gap. This hy-
bridization gap is here given by Eg = 3.4 meV. A version calculated with the BHZ model
is shown in Fig. 9.2. Note that in both Figs. 9.2(a) and (b) the bands are degenerate only
at ky = 0, a degeneracy that is split for all other values of ky due to the SIA.

If we do not include AlSb barriers in the k · p calculations for the QW the resulting band
structures show spurious solution. This will be discussed in detail in the next section.

In Fig. 9.2(c) we have calculated the size of the effective band gap for varying thicknesses of
the InAs and GaSb layers in the QW.The effective gap size is taken as the energy difference
of the lowest point in energy of the bands above the gap, and the highest point in energy for
the bands below the gap. These points are in general taken for different values of ky. Since
the band gap closing and reopening can signal a topological phase transition, this plot can
be used to find a QW in the desired topological regime.

Using the BHZmodel together with a tight-binding scheme, we have calculated the energy
dispersion for a QW structure finite in the x direction. Figure 9.3 shows the band structure
for such a finite-in-x QW structure in the topological regime, with mid-gap edge states.
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Figure 9.4: Probability densities from the k · p simulations of the QW with layered InAs (tInAs = 15 nm) and GaSb (tGaSb =
10 nm). Here the parameters are taken from Ref. [8], but with adjusted EP and A according to Ref. [31] (like in Paper
i). The number of basis functions are given by J = 100 (left) and J = 200 (right).
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Figure 9.5: Probability densities from the k · p simulations of the QW with layered InAs (tInAs = 15 nm) and GaSb (tGaSb =
10 nm). The parameters are taken from Ref. [36]. The number of basis functions are given by J = 100 (left) and
J = 200 (right).

These edge states are robust against disorder (not shown), a known results from works of
other groups [11, 12]. For this system the disorder causes a shift of all edge state energies by
some amount, while the spacing between the levels remain constant. This signals that the
edge modes are topologically protected.

9.1.1 Quantum well with and without AlSb barriers

In the k · p calculations we consider a QW of layered InAs and GaSb. Without any addi-
tional barrier material around the semiconductors, the calculated wave functions oscillate
in an unphysical manner, see Figs. 9.4 and 9.5. The reason that we consider those oscil-
lations unphysical is that the ground state wave function oscillates very rapidly. For the
parameter set used in Paper i, oscillations die off for around J > 200 basis functions. This
is a significantly higher number of basis functions than was needed for convergence of the
calculations for core-shell nanowires in Paper i, where (depending on size) around 20− 25
functions were needed in the radial and the angular direction each.

There is an additional erroneous feature at the boundaries of the sample, which is much
more pronounced when using theHalvorsen parameter set (cf. Fig. 9.5). Thewave functions
do not seem to converge towards a physically reasonable result: they do not tend to zero
close to boundaries. There is also a kink at the material interface, which is not present when
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Figure 9.6: (a) The InAs/GaSb quantum well with AlSb barriers. (b) Band diagram of bulk band edges for InAs, GaSb and AlSb.
(c) The core-shell-shell nanowire we solve for in Paper ii.

using the other parameter set; however, this kink can also be seen in Ref. [36]. For both
parameter sets used in the simulations, the oscillation frequency increases with an increased
number of basis functions. However, while the amplitude decreases and tends to zero (so
that we reach convergence) for the parameter set used in Paper i, it is not significantly
reduced for the wave functions calculated using the Halvorsen parameter set. Nevertheless,
for calculations of the core-shell-shell nanowires, more than 200 basis functions in the
radial direction is in practice impossible, since we have an additional, angular, direction
to consider as well.¹ In total, the matrix size we need to solve for for the nanowires is
8LN × 8LN, where L is the number of basis functions in the radial direction, and N is
the number of basis functions in the angular direction (cf. Eq. 2.31). For the radial part
we need many more basis functions than were needed for the simulations of the core-shell
wires, in practice around L = 70. One aspect of why we need more radial basis functions
for the (hollow) core-shell-shell nanowires than for the solid core-shell nanowires is that
we use a different basis to expand in. It is not far-fetched to think that cylindrical Bessel
functions are better for describing the states in a cylindrical wire, than the basis we use for
the core-shell-shell calculations is for describing states in a shell; the basis we use for the
core-shell-shell calculations is an approximation of the Bessel functions valid for r → ∞.
We need a fewmore angular basis functions for the core-shell-shell system than for the core-
shell nanowires. There could be a difference in angular behavior for when we have a shell
(origin not contained) and for when we have a wire (origin contained), but the difference
can also be caused by the larger circumference of the core-shell-shell nanowires.

Another interesting feature in the calculations that yields spurious solutions, is that we see
“alternating convergence” with respect to odd or even number of basis functions used, i.e.,
that the results seem to oscillate between two distinct solutions while slowly converging.
We do not understand this phenomenon, but advice that it should be tested for in k · p
calculations.

¹The radial direction is where we consider the different material layers for the nanowires, similar to the
growth direction (z in Fig. 9.1) for the QWs.
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Figure 9.7: Left: Band structure of the InAs/GaSb QW with AlSb barriers on both sides. The thicknesses of the material layers
are given by tInAs = 15 nm, tGaSb = 10 nm, and tAlSb = 10 nm. The parameters are taken from Ref. [36] and the
number of basis functions is J = 40. Right: Corresponding probability densities for lowest lying states at ky = 0.

To overcome the convergence problems for the QWs, and to be able to compare our simu-
lations to previous works [11, 34, 28, 36], we add AlSb barriers to the QWs, see Fig. 9.6(a).
As shown in the band diagram in Fig. 9.6(b), AlSb is an insulator, with a much larger bulk
band gap than both InAs and GaSb. In Fig. 9.7, we show that this solves the problem with
erroneously oscillating wave functions. Our calculated band structures and probability den-
sities are also in good agreement with the previous results by other groups [11, 34, 28, 36].
When using AlSb barriers, we obtain similar results from both parameters sets.

Using 10 nm AlSb barriers on each side, we need J = 40 basis functions to converge our
simulations (using the Halvorsen parameter set). This is indeed a higher number of basis
functions than needed in the radial direction for the core-shell nanowires. However, even
though we do not see (or expect) significant parts of the wave functions to leak out into the
AlSb barriers (for the states around the gap), the k · p solver still has to take into account
four different material regions. With two of these regions being more or less impenetrable,
it is not surprising that this would require a larger basis.

For the core-shell-shell nanowires we have seen that one inner AlSb barrier, inside the inner
(InAs) shell, is enough to obtain well-behaved wave functions (not shown). Such an inner
AlSb barrier is used for the results in the next section. This is also how we imagine that
a hollow InAs/GaSb core-shell-shell nanowire would be grown; with a solid AlSb core.
However, due to the basis we use, we only include an inner AlSb shell, and keep the inner
core-part empty. In Fig. 9.6(c) we show such a hollow core-shell-shell nanowire.

9.2 InAs/GaSb core-shell-shell nanowire

In this sectionwe calculate band structures andwave functions for a core-shell-shell nanowire,
like the one shown in Fig. 9.6(c). We have chosen to keep the total radius fixed to R =
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Figure 9.8: Band structures for a core-shell-shell nanowire, calculated using the Kane model, with Rc = 10 nm, tAlSb = 14 nm (a)
tInAs = 9.5 nm and tGaSb = 6.5 nm, and (b) tInAs = 11 nm and tGaSb = 5 nm. (c) Band structure calculated using the
BHZ model with parameters from Table 9.1 and RBHZ = 32 nm. (d) Band structure for a core-shell-shell nanowire,
calculated using the Kane model, with RC = 10 nm, tGaSb = 5 nm, tInAs = 11 nm and tAlSb = 5 nm. Parameters for
the k · p calculations taken from Ref. [36].

40 nm in all k · p calculations, an experimentally feasible value, but also chosen so that the
length (thickness) scales are comparable in the QW and the nanowire calculations. How-
ever, we have chosen not to include an outer AlSb shell, since it is an advantage to not
have an extra material shell in an actual growth process. Furthermore, it is not needed for
convergence, but merely adds to the computational cost. From a theoretical point of view,
the inner AlSb layer could be exchanged for another insulator material (such as vacuum),
without altering the overall physical properties of the system to any larger extent.

In Fig. 9.8 we show band structures for the core-shell-shell nanowire. In Fig. 9.8(a) the
thicknesses for the InAs and GaSb material layers are given by tInAs = 11 nm and tGaSb =
5 nm, the same thicknesses as for the QW in Fig. 9.2. The empty core radius is given by
RC = 10 nm and the AlSb shell thickness is given by tAlSb = 14 nm. We see that the energy
gap for the core-shell-shell nanowire becomes much smaller, Eg = 1.0 meV, compared to
that for the QW of Eg = 3.4 meV. The main reason for this, is the additional confinement
in the nanowire. Furthermore, the band structure shows many subbands, both from radial
and angular confinement. The subbands from the angular confinement are much closer in
energy to each other than the subbands from radial confinement. Comparing the length
scales, we see that this is reasonable: the angular confinement is related to the circumference
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of the wire, 2πR ≈ 250 nm, while the radial confinement depends on the shell thickness,
t ≈ 5 − 16 nm. In Fig. 9.8(b) we show the band structure for a core-shell-shell nanowire
where the material thicknesses are adjusted to tInAs = 9.5 nm and tGaSb = 6.5 nm. In
this case, the hybridization gap is larger (compared to Fig. 9.8a), Eg = 1.9 meV. Here we
have kept the AlSb shell thickness fixed at tAlSb = 14 nm. However, adjusting the AlSb
shell thickness, the empty core and/or the total nanowire radius, could likely yield a larger
hybridization gap.

In Fig. 9.8(c) we show the band structure for a core-shell-shell nanowire, reproduced by the
BHZ model. The radius for the “rolled-up” QW is R = 32 nm, and the parameters from
the fitting of the QW band structures are used (cf. Table 9.1), except for R0 and T0 that
are set to zero, to account for the fact that structural inversion symmetry is present in the
core-shell-shell nanowire.

In theory it is possible to create core-shell-shell structures which have a much larger hy-
bridization gap. Figure 9.8(d) shows the band structure of such a core-shell-shell nanowire
with a somewhat different material distribution. Here a vacuum core (of RC = 10 nm)
is covered by an inner GaSb shell (tGaSb = 5 nm), an InAs shell (tInAs = 11 nm) and an
outer AlSb barrier shell (tAlSb = 5 nm). Note that the thicknesses of the InAs and GaSb
shells are the same as in Fig. 9.8(a), but the order of the layers have been changed, and the
GaSb and InAs shells are closer to the core, since the inner AlSb barrier is moved to the
outermost part of the structure. This structure shows a hybridization gap of Eg = 4.6 meV,
larger than that for the corresponding QW. However, this structure might not be realistic
to grow, due to the lack of an inner AlSb shell (that could be extended to cover the full
core). Nevertheless, one could consider growing an AlSb core, covered by an inner GaSb
shell and an outer InAs shell, but without the outermost AlSb shell. This structure is how-
ever hard to model with our k · p solver since it yields spurious solutions. We have found
that this is because we in these structures need to include an AlSb barrier next to the InAs
layer. An alternative is to use both inner and outer AlSb barriers in the model. This would
solve the problem with spurious solutions, but would instead introduce a problem with
very large matrices, due to the increased number of radial basis functions that would be
needed to describe four different material regions.

In contrast to the bands for theQWs, the bands for the core-shell-shell nanowires are doubly
degenerate everywhere. This is because the nanowires obeys structural inversion symmetry,
while for the QWs this symmetry is broken in the z direction. Together with the time-
reversal symmetry this results in doubly degenerate bands for all kz. This is because while
time-reversal causes Kramers degeneracy, E+(kz) = E−(−kz), for the Kramers partners
E±, inversion symmetry causes an additional degeneracy E+(kz) = E+(−kz), so that in
total we must have E+(kz) = E−(kz) [7].
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Figure 9.9: (a) The same band structure as in Fig. 9.8(b), but plotted with a larger energy span. (b) Real parts of the wave
functions for kz = 0, corresponding to bands marked b-i in (a). Parameters for the k · p calculations taken from
Ref. [36].

To simulate a nanowire of finite length, we take open boundary conditions in the y-direction
in the BHZ model. The QW edge states gap out in this system, but leave quantized
bound states localized at the nanowire ends. These end states are doubly degenerate for
each Kramers pair, so that they are four fold degenerate in total. The degenerate pairs can
be chosen to be localized at opposite edges in the y-direction.

9.2.1 Wave functions of the core-shell-shell nanowires

In Fig. 9.9(b) – (i) we show the real part of the wave functions corresponding to the bands
in Fig. 9.9(a), for kz = 0. This is the same band structure as in Fig. 9.8(a), but for a larger
energy range, and with states indicated.

First we study some of the wave functions corresponding to VB like bands, marked b-f in
Fig. 9.9(a), then we address wave functions corresponding to some of the CB like bands,
marked g-i in Fig. 9.9(a). However, in most of the states, the wave functions have weights
in both the InAs and the GaSb shells.

In the states shown in Fig. 9.9(b)-(d), corresponding to marks b-d in Fig. 9.9(a), we see that
the wave functions have their weight in the outer (GaSb) shell. This comes as no surprise
- the corresponding bands show VB-like curvatures. In Fig. 9.9(d), the wave functions
has a much higher angular momentum than the states in b and c, and the corresponding
band has a visibly larger curvature. In Fig. 9.9(e) we show the wave function corresponding
to one of the bands marked e in Fig. 9.9(a). These two bands are almost degenerate, and
their curvature close to kz = 0 cannot be deduced by looking at the bands. These states
have large weights in both shells, and have different angular momenta in the two different
material regions.
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In Fig. 9.9(f ) the state corresponding to the highest in energy, non-hybridizing state below
the gap is shown (mark f in Fig. 9.9a). It is confined to the GaSb shell, and we see that the
state has a large angular momentum, an expected feature this far from the band gap.

In Fig. 9.9(g) and (h), we continue with the CB like states above the band gap. Here
we show the two lowest in energy, seemingly non-hybridizing states, above the band gap
(corresponding to marks g and h in Fig. 9.9a). While the state in Fig. 9.9(g) has most of
its weight in the InAs shell, the state in Fig. 9.9(h) has more weight in the GaSb shell. This
shows that looking at the curvature of the bands can sometimes be deceiving! However,
this close to the hybridization gap, it is hard to predict the strength of hybridization for
individual energy bands. A change of the curvature that is not seen on this scale can occur
close to kz = 0.

In Fig. 9.9(i) we show the wave function for the lowest lying CB-like state (mark i in
Fig. 9.9a). The state has almost all of its weight in the InAs shell, and no angular momen-
tum. That a state, with no mixing of the CB- and VB-like states, is seen this far in energy
from the band gap strengthens that the gap we see is caused by hybridization, and not by
confinement. One interesting feature, seen in several of the states in Fig. 9.9, is that the an-
gular momentum is different in the InAs and GaSb shells (this is easiest to see in Fig. 9.9e).
This shows that mixing of states with different angular momenta is present in the nanowire.

We stress that some arbitrary symmetry breaking is seen in some of the plots, due to the
fact that all the states doubly degenerate, and only one of the Kramers partners is shown.
The total wave function for the degenerate states, |Ψtot|2 =

∑
i = 1, 2(|ψ1|2 + |ψ2|2)

(i runs over the two Kramers degenerate states) must obey a higher symmetry. However,
they do not have to be rotationally symmetric in the plane (in the k · p model) since the
underlying crystal structure can impose visible peaks in the angular direction of the wave
function.

9.3 Core-shell-shell nanowires with disorder

To analyze the character of the end states we have found for the core-shell-shell nanowire,
we introduce disorder to our system by adding a disorder term Hdis = V(x, y)14×4 to the
BHZ Hamiltonian. The introduced disorder respects time-reversal symmetry, and has a
random uniform distribution with amplitude Vdis and is applied either in the axial (Vax

dis)
or in the radial direction (Vrad

dis ).

Figure 9.10 shows the energies of the system for applied disorder. In Fig. 9.10(a), axial
disorder is applied. Between the bulk states at the top and bottom of the figure, we see that
the mid-gap end states split linearly with increasing disorder strength. Figure 9.10(b) shows
the probability densities for the states marked in in Fig. 9.10(a). The four fold-degenerate
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Figure 9.10: Energy spectrum as a function of disorder strength for the quantum well with periodic boundary conditions in x
and open boundary conditions in y. Only energies in the band gap are displayed. The degeneracy of these end
states split with increasing disorder strength. The parameters for the BHZ model can be found in Table 9.1.

Table 9.1: Parameters used in the BHZ model throughout this chapter and in Paper ii (if nothing else is stated). Parameters not
listed are set to zero.

Parameters and values

A/(meV·nm) B/(meV·nm2) D/(meV·nm2) M/meV R0/(meV·nm) T0/(meV·nm3)
30.5 -710 -450 -4.6 10 300

states (for Vax
dis = 0) are split into Kramers pairs, residing at opposite ends of the nanowire,

even for increasing disorder strength.

In Fig. 9.10(c), we show the energy spectrum under applied disorder in the radial direction.
For this type of disorder the ends states do not split, but show only a slight shift in energy.
However, at large disorder strengths (large Vrad

dis ) the bulk states are closer in energy, so that
the band gap becomes smaller.

Since disorder can split the degeneracy of the end states, these states are not robust against
disorder, which confirms that that they are not topologically protected.
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Chapter 10

Results and discussion about Papers
iii and iv

Papers iii and iv treat DQDs coupled in parallel to source and drain contacts, subject to
a magnetic field. The DQD system consists of an epitaxially confined single QD in a
zincblende InAs nanowire, between wurtzite segments that act as walls. Positively charged
side gates applied to the QD creates a double-well potential, creating two electron pockets
at the sides of the disc shaped QD, so that we effectively have a DQD. Data from tunnel-
ing spectroscopy experiments are analyzed using a theoretical model including a few-body
Hamiltonian with SOC and B-field, together with a master equation method for the trans-
port.

Paper iii is mainly focused on tuning the interdot coupling to control the B-field dependent
singlet- triplet ground state transition in the regime where one electron populates each QD.
Around the ground state transition the singlet and triplet states anticross.

In Paper iv the same system is studied, but with a level detuning between the single-
electron energy levels on each QD. In this paper there are three main focuses: the transition
(1, 0)− (1, 1)− (2, 0), the evolution of the T(1, 1) states under a magnetic field, and the
hybridization of the (1, 1) and (2, 0) states.

In Paper iii we model the single electron energy levels to be degenerate, while in Paper iv a
level detuning is introduced. All parameters in the Hamiltonian in equation 6.1 are chosen
carefully to reproduce the experimental transport data. In particular, Vx andU12 are chosen
to yield the correct J, while α is taken so as to give us the correct size of the anticrossing
minimum Δ∗ST of the S(1, 1) and T(1, 1) states. The value for |g∗| is taken so that this
minimum occurs at the “correct” value of the B-field. The value of t is extracted from the
splitting between the anti-bonding (AB) and bonding (B) one-electron states, t = EAB−EA

2 .
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Figure 10.1: Evolution of the singlet and triplet (1,1) states under an external magnetic field, calculation. Data set A from
Table 10.1 is used.

We assume t to be independent of small changes in the gate voltages, so that we use the
same t when the DQD is doubly occupied.

In Paper iii we additionally tune t by sweeping a back gate voltage (while keeping the
direction of VL,R fix). This can be viewed in a simple wave function picture, where the
wave functions will overlap more when t is lowered. In Paper iv we detune the one-electron
energy levels in the QDs, using VL and VR, and study the (2, 0) → (1, 1) transition. In
addition to the already mentioned parameter sweeps in Papers iii and iv, an external B-field
is varied to study how the spin states evolve.

The focus of Paper iii lies on the one- to two-electron transition including the S(1, 1) and
T(1, 1), the singlet and triplet states with one electron in each QD. The singlet and triplet
states with both electrons in the same QD (e.g., S(2, 0)) are high in energy, due to the large
charging energy for having two electrons on the same QD. They can thus be omitted from
the analysis when the single electron levels align in the QDs (these states are not seen in the
experimental data for Paper iii). However, in Paper iv the DQD is studied under a level
detuning between the QDs, for a relatively weak coupling t. The level detuning results in
a lower relative energy for the (2, 0) states, compared to that for the (1, 1) states.

10.1 Anti-crossing between the S(1, 1) and T+(1, 1) states

In Paper iii we study the B-field evolution of the 2e ground states, transitioning from S(1, 1)
to T+(1, 1) (the lowest lying triplet state). The SOC couples the singlet and triplet states,
so that a we see an anticrossing of these states, see Fig. 10.1. Figure 10.2 shows experimental
data for the corresponding anticrossing. We find that the magnitude of the anticrossing
is Δ∗ST = 230 eV when the tunnel coupling is given by t = 2.3meV (data set B in
Table 10.1). Where this happens in B depends on t; when t (and hence J) increases, the
value of B where the ground state transition takes place also increases (cf. Fig. 10.1). In
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field. Figure adapted from Paper iii.

Table 10.1: Values for the parameters used in the calculations. The electron temperature used is T = 46 mK.

Data set 2t/meV Vx/meV U11/meV U22/meV U12/meV α |g∗| t2/t1 tS/tD
A 3.12 0.0548 14.4 16.4 4.49 0.08 10.37 25 1
B 4.6 0.258 9.6 12.9 4.46 0.08 - 25 1
C 0.28 0 14.8 13.3 2.58 0.6 8.9 1 2

general Δ∗ST has a linear t-dependence. We can estimate the spin-orbit length based on this,
lSO ∼ t

tSO
ldot ≈ 400 nm, where ldot = 34 nm is taken as the radius of the disc-shaped QD

(i.e., the radius of the nanowire).

Figure 10.3 shows charge stability diagrams, resulting from measurements and from calcu-
lations, for the case when B = 1.2 T. At this value of the B-field the S(1, 1) and T(1, 1)+
anticross. The magnitude of the anticrossing is here 2Δ∗ST by definition (under the assump-
tion that this is where the ground state transition happens , i.e., where S(1, 1) and T(1, 1)+
would have crossed without SOC present). Note that all possible transition lines are visible
in the experimental data except two: B↓ − T0 and AB↓ − T0 – these two lines both start
from an excited states and end in an excited state. However, these lines can be seen in the
calculated transport (there is no relaxation of excited states included in these calculations).

10.2 Anticrossing between the S(2, 0) and the T(1, 1) states

In Paper iv we study the (2, 0) → (1, 1) transition under level detuning Δ of the one-
electron states in each QDs, subject to an external magnetic field. We see hybridization of
(2, 0) and (1, 1) states, resulting in anticrossings. In the experimental data for Paper iv all
three triplet states and the singlet states are seen, including the excited T(1, 1) states. When
populating the DQD with up to three electrons, the DQD shows a symmetry between the
one- to two-electron and two- to three-electron transitions, as expected due to Kramers
degeneracy in the single-electron levels. With one level on each QD, three electrons corre-
spond to one hole, meaning that three electrons is the hole equivalent to the one-electron
states. However, if Kramers degeneracy is broken, the corresponding electron and hole
states will not have the same energy: for example, the state |2, ↑⟩e (with two electrons in
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Figure 10.3: Left: Experimental transport data for B = 1.2 T. Middle: Calculated transport corresponding to the measurement
data. Data set A from Table 10.1 is used. All transitions are indicated. Right: Allowed transitions between one-
and two-electron states. Figures adapted from Paper iii.
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the left QD and one electron in the right QD) will not correspond to the hole state |0, ↓⟩h
if the single electron spin states are split.

Figure 10.4 shows how the energy levels evolve with Δ, for B = 2 T. In the right panel the
coloring of the lines shows the contribution of the S(1, 1), S(2, 0) and T(1, 1) states, to
the total wave function Ψ, i.e., the coefficient pi for the basis states ψi: Ψ =

∑
i piψi. The

S(2, 0) state, where the two electrons reside in one of the QDs, exhibits a slope, while the
spatially symmetrical states do not. This is because we do not change the overall energy by
the detuning, but only the relative one-electron QD levels.

Figure 10.5 shows experimental data and calculated differential conductance as a function
of detuning, for both corresponding to the state evolution in Fig. 10.4, and we can again see
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Figure 10.5: Differential conductance for the double quantum dot under level detuning. Left: Data from measurements. Right:
Corresponding calculated transport. Data set C from Table 10.1 is used. In the calculations the three-electron
states were omitted. The parameter δ is chosen so that Δ+ δ = 0 at the anticrossing. Figures adapted from Paper
iv.

how the states evolve with Δ. In the vicinity of the hybridization of the S(2, 0) and T(1, 1)
states spin is mixed. We note that Fig. 10.4 looks like a rotated version of the two-electron
evolution in Fig. 10.5; this is because the quantities on the x-axes differ: in Fig. 10.4 the x-
axis is given by the one-electron energy ϵ1 , while in Fig. 10.5 the x-axis shows the detuning
between the two one-electron levels ϵ1 and ϵ2.

We can see some lines from transport starting from excited one-electron states. An example
of a line originating from a process starting from a ground state can be seen in the lower
panel of Fig. 10.5, as a line going through the S(2, 0) − T+(1, 1) anticrossing. However,
while some lines overlap, it is expected that transport line contributions corresponding to
transport starting from one-electron ground states will dominate, since, it is in general
much more likely for a ground state to be populated. A reason for the visible line in the
calculated transport is that relaxation is not taken into account. This means that in reality
the weak lines from transport processes starting from an excited state should be even weaker.
By setting a constant relaxation time for all states in the DQD, we can investigate how
relaxation affects the transport, and find that the above mentioned excited states do not
contribute to the transport. Avoided crossings between S(2, 0) and T(1, 1) and a transition
between D(↑, 0) and T−(1, 1), normally forbidden, can be seen close to the hybridization
of the S(2, 0) and T(1, 1) states, since spin-mixing caused by SOC allows for it.

10.3 Comparison between the two anticrossings

The states S(2, 0) and T(1, 1) are related by a spin-flipping tunneling process only, while
the states S(1, 1) and T(1, 1) mixes through second order tunneling. To go from S(1, 1)
to T(1, 1) an electron first needs to tunnel (to the intermediate S(2, 0) state), and then
tunnel back while flipping its spin. This is since no local spin flipping process is allowed
here, meaning that S(1, 1) and T(1, 1) cannot couple in first order in t.
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In Paper iii the S(1, 1) andT(1, 1) couples, resulting in an anticrossing of 2Δ∗ST ∼ ttSO/U =
αt2/U (where U is a function of U11, U22 and U12) . In Paper iv we saw that there is
instead mixing between S(2, 0) and S(1, 1), and between S(2, 0) and T(1, 1). The anti-
crossing S(2, 0)− S(1, 1) has a gap size of ΔE = 2

√
2t, while between S(2, 0) and T(1, 1)

the gap is 2ΔST, where ΔST ∼ tSO = αt. However, the numerical value of ΔST is much
smaller in Paper iv compared to Δ∗ST in Paper iii, due to that t is much smaller in Paper
iv (t = 170 eV in Fig. 10.5). Furthermore, in the two papers a different SOC parameter
α is needed for the measurement data sets in the two papers, corresponding to two differ-
ent cooldowns of the DQD system. The different cooldowns might cause a change in the
SOC vector from changes in the QD shape and the internal electric field, meaning that the
system is subject to more differences than just a change of t.
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Chapter 11

Outlook

In this thesis we have discussed two types of nanostructures based on InAs nanowires:
InAs/GaSb core-shell(-shell) nanowires, and parallel DQDs made from single QDs, epi-
taxially defined in InAs nanowires.

It would be interesting to investigate how the end states in the core-shell-shell nanowires
are affected by changing the empty core radius; for a large radius (tending to infinity),
the system would effectively be a QW. In addition, it would be good to study the full
parameter space of InAs and GaSb shell thicknesses, to see where the hybridization gap
opens and closes, and where it is largest. To bridge Paper i and Paper ii, one could imagine
a study of the gap size and the end states when filling up the empty core. However, for the
InAs/GaSb core-shell and core-shell-shell nanowires, one interesting bigger step would be
to induce superconductivity in the system. The system would then be in the topological
class DIII, known to be able to host Majorana bound states at the ends of the system in one
dimension. Majorana bound states are one of the most promising candidates for qubits,
due to their topological robustness and non-local properties - they are suggested to ideally
being able to perform quantum computations without errors [79].

The DQDs have been further investigated in the group of Claes Thelander. In transport
measurements, both spin and orbital Kondo effects are seen [80], and by tuning the pa-
rameters of the DQD, ring-like QDs are formed [81]. For further studies of the DQDs,
like for the core-shell-shell nanowires, introducing superconductivity is suggested as an in-
teresting direction. As a first step measurements using superconducting contacts are being
performed.

In the future, it would be interesting (but challenging) to use the DQDs in quantum tech-
nologies. For such applications several DQDs would have to be contacted to each other,
possibly by creating several DQDs inside one nanowire, and using different side gate pairs
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to control them (maybe inspired by Ref. [82]). The DQDs have advantages such as large
level spacings, huge and controllable g-factors, and that a large number of QDs can be epi-
taxially grown in one structure [81]. However, if such applications are implemented is up
to the future to show.
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Appendix





Appendix A

Kane Hamiltonian for the [111]
direction

In Papers i and ii we consider nanowires grown in the [111] crystallographic direction.
When calculating for a nanowire grown in another crystal direction than [001], we need
to rotate the coordinate system. The reason for this is that for the Kane Hamiltonian in
Eq. 2.11 it is assumed that the x, y and z axes align with the crystallograpic [100], [010]
and [001] directions, respectively. This means that we rotate the coordinate system such
that the original z axis, pointing in the [001] direction, will be rotated into z′, pointing in
the [111] direction. We follow the rotation process from Refs. [4, 83, 30], and rotate the
coordinate system by the azimuthal and the polar angles ϕ and θ, respectively, see Fig. A.1.

The Kane Hamiltonian for the [111] direction is given by

H[111] = S∗W∗Hrot
0 W†S† +HSO (A.1)

y

z

x

z′

θ

ϕ

Figure A.1: Original coordinate system and the rotated z′ axis.
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whereHrot
0 is the Kane Hamiltonian, without the spin-orbit partHSO, given in in Eqs. 2.11–

2.12, with rotated coordinates (ki → k′i). In Fig. A.1 we show this rotation of coordinates.
The diagonal, non-k-dependent part ofH0, and the full spin-orbit matrixHSO are invariant
under rotations. The matrix W is a rotation matrix, and the matrix S accounts for an
additional change of the basis to

{|S ↑⟩, |S ↓⟩, |HH ↑⟩, |LH ↑⟩, |LH ↓⟩, |HH ↓⟩, |SO ↑⟩, |SO ↓⟩}. (A.2)

This basis relates to the original one in Eq. 2.8 according to Eq. 2.10.

The rotation matrix W is given by
W = AÛ, (A.3)

with

A =

(
e−i

ϕ
2 cos θ

214×4 ei
ϕ
2 sin θ

214×4
−e−i

ϕ
2 sin θ

214×4 ei
ϕ
2 cos θ

214×4

)
, (A.4)

Û =


1 0 0 0
0 U 0 0
0 0 1 0
0 0 0 U

 , (A.5)

and

U =

cosϕ cos θ sinϕ cos θ − sin θ
− sinϕ cosϕ 0

cosϕ sin θ sinϕ sin θ cos θ

 . (A.6)

The resulting Hamiltonian for the [111] direction (with N symmetrized and B = 0) is
given by

H =

 HCC HCV8 HCV7
† HV8V8 HV8V7
† † HV7V7

 , (A.7)

with
HCC = (Ec + kxAkx + kyAky + kzAkz)12×2, (A.8)

HCV8 =

i 1√
2
Pk+ −i

√
2
3Pkz −i 1√

6
Pk− 0

0 i 1√
6
Pk+ −i

√
2
3Pkz i 1√

2
Pk−

 , (A.9)

HCV7 =

(
i 1√

3Pkz −i 1√
3Pk−

i 1√
3Pk+ i 1√

3Pkz

)
, (A.10)
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HV8V8 =

1
6


N(k2 − 3k2z) H1,2

V8V8 H1,3
V8V8 0

† −N(k2 − 3k2z) 0 −H1,3
V8V8

† † −N(k2 − 3k2z) H1,2
V8V8

† † † N(k2 − 3k2z)


+

1
6
(6E′v + 2Γ1k

2)14×4,

HV8V7 =


− 1

6
√
2
H1,2

V8V8
1

3
√
2
H1,3

V8V8
N

3
√
2
(k2 − 3k2z)

√
3H1,1

V8V7

H3,1
V8V7 H2,1

V8V7
H4,1

V8V7 − 1√
3H

3,1
V8V7

 , (A.11)

and
HV7V7 =

1
3
(3E′v − 3Δ + Γ1k

2)12×2. (A.12)

The matrix elements are given by

H1,2
V8V8 =

1√
6
[2(Γ2 − N)k2+ −

√
2(2Γ2 + N){k−, kz}] (A.13)

H1,3
V8V8 =

1√
3
[−(Γ2 + 2N)k2− +

√
2(Γ2 − N){k+, kz}] (A.14)

H3,1
V8V7 =

1
6

[
(Γ2 − N)k2− − 1√

2
(2Γ2 + N){k+, kz}

]
(A.15)

H4,1
V8V7 =

1
3
√
6

[
(Γ2 + 2N)k2+ −

√
2(Γ2 − N){k−, kz}

]
. (A.16)

The terms of the form Qk2i are to be interpretated as kiQki, {ki, kj} = kikj + kjki denotes
the anti-commutator, and

Γ1 = L+ 2M
Γ2 = L−M.
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